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Abstract. The Ring Learning with Errors (RLWE) problem over a cyclotomic ring has been
the most widely used hardness assumption for the construction of practical homomorphic
encryption schemes. However, this restricted choice of a base ring may cause a waste in terms
of plaintext space usage. For example, the approximate homomorphic encryption scheme of
Cheon et al. (ASIACRYPT’17) is able to store a complex number in each of the plaintext
slots since its canonical embedding of a cyclotomic field has a complex image. The imaginary
part of a plaintext is not underutilized at all when the computation is performed over the real
numbers, which is required in most of the real-world applications such as machine learning.
In this paper, we propose a new approximate homomorphic encryption scheme which is
optimized in the computation over real numbers. Our scheme is based on RLWE over a
special subring of a cyclotomic ring, which is no easier than a standard lattice problem over
ideal lattices by the reduction of Peikert et al. (STOC’17). Our scheme allows real numbers
to be packed in a ciphertext without any waste of a plaintext space and consequently we can
encrypt twice as many plaintext slots as the previous scheme while maintaining the same
security level, storage, and computational costs.
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1 Introduction

Learning with Errors (LWE) is a computational problem which asks to distinguish a system of linear
equations with small errors from a uniformly random one. After Regev [27] firstly introduced the
LWE problem, it has been one of the standard assumptions for the construction of cryptographic
primitives due to its security and versatility. Lyubashevsky, Peikert, and Regev [24] proposed a
variant of LWE called the Ring Learning with Errors (RLWE) problem. They also showed that the
(decisional) RLWE problem over a cyclotomic ring can be reduced from the Shortest Independent
Vectors Problem (SIVP) over ideal lattices.

Homomorphic Encryption (HE) is a cryptographic scheme which enables arithmetic operations
on encrypted data without decryption. This technology is a promising solution which can prevent
leakage of sensitive personal information such as financial, medical and genomic data. A number
of HE schemes [13, 5, 18, 4, 16, 3, 19, 14, 12, 11, 10] have been suggested following Gentry’s
blueprint [17]. Currently, security of the most of the practical HE schemes [18, 16, 11, 10] relies
on the hardness of RLWE over a cyclotomic ring. For several years, the choice of base ring was re-
stricted because nothing was known about the hardness of (decisional) RLWE over non-cyclotomic
rings.

Cheon et al. [10] proposed a HE scheme (HEAAN) that supports the arithmetic of approximate
numbers contrary to the exact computation on discrete plaintext spaces of the previous HE schemes.
In addition to homomorphic addition and multiplication, the HEAAN scheme can compute the
rounding operation (extraction of the most significant bits) efficiently which has traditionally been
considered a challenging subject on HE system. Because of this, the HEAAN scheme showed



a remarkable performance in many of the applications [22, 21], requiring computations of real
numbers.

Motivation. The HEAAN scheme uses the canonical embedding of a cyclotomic field to pack a
number of plaintext values in a single ciphertext. A cyclotomic field is a totally imaginary number
field, so each of the plaintext slots can store a complex number. We point out that this complex
encoding method has an inefficiency in terms of the utilization of a plaintext space. Since most of
the real-world applications (e.g. machine learning) require computations over purely real numbers,
the imaginary part of a plaintext of HEAAN is underutilized. It can be viewed as a waste of a
plaintext space.

Peikert et al. [26] recently showed that the RLWE problem over the ring of integers of an
arbitrary number field is no easier than SIVP over ideal lattices in the same number field. So we
aimed to find a new number field and construct a HE scheme over its ring of integers, which utilizes
a fully packed plaintext space over real numbers to overcome the existing problem.

Our Contribution. We consider the maximal real subfield of a cyclotomic field as a base number
field and define the RLWE problem over its ring of integers which is called the conjugate-invariant
ring. We first show that the conjugate-invariant ring is the set of real numbers in the ring of integers
of a cyclotomic field and adapt the reduction of [26] to guarantee the hardness of RLWE problem
over the conjugate-invariant ring.

Based on this problem, we construct a new HE scheme that supports approximate arithmetic of
real numbers. Our scheme can store a real number in each of the plaintext slots since the image of
conjugate-invariant ring with respect to the canonical embedding belongs to the set of real vectors.
We also propose a specialized Fast Fourier Transformation (FFT) algorithm over the residue ring
of conjugate-invariant ring to minimize the complexity of arithmetic operations.

As a result, our HE scheme can encrypt twice as many plaintext slots as the original HEAAN
scheme while maintaining the same security level and computational costs, i.e., the amortized
timing (complexity) per slot is reduced by half.

Technical Details. Let m be a power-of-two integer so that n := φ(m) = m/2 and Φm(X) =
Xn +1. Let ζ = exp(2πi/m) be an m-th primitive root of unity and let F = Q(ξ) be the maximal
real subfield of the cyclotomic field K = Q(ζ) for ξ = ζ+ζ−1. Then the ring of integers of F = Q(ξ)
is R = Z[ξ], and we call this ring the conjugate-invariant ring. By adapting the reduction in [26], we
can show that RLWE over the ring R is no easier than SIVP over ideal lattices in K. This hardness
proof reasonably motivates us to exploit R as a base ring for the construction of a HE scheme. We
also give a cryptanalysis of RLWE over the conjugate-invariant ring R = {a(X) ∈ Z[X]/(Xn+1) :
a(X) = a(X−1)} to study the concrete security level. We consider all known attacks on RLWE and
conclude that this problem requires the same attack complexity as the ordinary (n/2)-dimensional
LWE problem.

The plaintext encoding technique of HEAAN utilizes the canonical embedding map for the
packing of plaintexts in a single ciphertext. Similarly, we consider the canonical embedding map
τ : F → Cn/2 of the number field F . Since ξ and its conjugations are real, the image of F with
respect to its canonical embedding actually lies in Rn/2. Therefore, we can successfully define a
ring homomorphism from F into the vector of purely real numbers, and make the use of plaintext
encoding/decoding algorithms between R and Rn/2 based on this canonical embedding.

We construct a new HE scheme whose security relies on the hardness of RLWE over R. We first
propose a vector representation for the elements F , which is efficient for the rounding operation
into R and the modulo operation of the residue ring Rq = R/qR. Then, we describe a HE scheme
over the real numbers, which provides approximate arithmetic operations and an approximate
rounding operation.

We also explain how to represent the elements of Rq and perform the arithmetic operations
between them. We present a specialized Fast Fourier Transform (FFT) algorithm for an efficient
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Number Theoretic Transform (NTT) on the residue ring Rq and fast multiplication between ring
elements. This optimization technique constructs a simply computable ring isomorphism from Rq
to Zq[X]/(Xn/2 − 1), so the ordinary NTT conversion on Zq[X]/(Xn/2 − 1) can be applied to Rq
whose dimension is one quarter of that of a naive method.

In conclusion, our approximate HE scheme over R can encrypt (n/2) plaintext slots in a single
ciphertext, twice as many plaintext slots compared to (n/4) of the ordinary HEAAN scheme over
Zq[X]/(Xn/2+1), while keeping the same concrete security level, storage, and computational costs.

Related Works. Arita and Handa [2] proposed a HE scheme based on RLWE over the de-
composition ring, which is a subring of cyclotomic ring. Their subring technique is applied to
HElib [20]: they consider the plaintext space as Zp ⊕ · · · ⊕ Zp, which is a subring of the plaintext
space GF(pd)⊕ · · · ⊕GF(pd) of HElib for some integers p and d, where GF(pd) denotes the Galois
field of the cardinality pd. They claimed that RLWE over the decomposition ring is at least as
hard as its search version. However, there is no known reduction from lattice problems over ideal
lattices to the search version, since the decomposition ring is not known to be a ring of integers of
some number field so far. In contrary, RLWE over the conjugate-invariant ring which we desired
in this paper has a reduction from SIVP over ideal lattices.

Road-map. In section 2, we present notations of our paper and some backgrounds for RLWE.
In section 3, we define RLWE over the conjugate-invariant ring and discuss about its hardness. In
section 4, we present our new approximate HE scheme constructed over the conjugate-invariant
ring, describe encoding/decoding algorithms for real numbers, and propose a specialized FFT
algorithm for the desired ring. In last section, we give a summary on our approximate HE scheme
compared to original HEAAN.

2 Background

2.1 Notation

All logarithms are base 2 unless otherwise indicated. For an integer m ≥ 2, Zm := Z/mZ, and Z×m
is the multiplicative group of units in Zm. For a ring R, its residue ring R/qR modular an integer
q is denoted by Rq. For a real number r, bre denotes the nearest integer to r, rounding upwards
in case of a tie. For a vector u of (complex) numbers, ‖u‖2 (resp. ‖u‖∞) denotes the `2-norm
(resp. `∞-norm) of u. For an element a of a number field K, ‖a‖can2 (resp. ‖a‖can∞ ) denotes the
`2-norm (resp. `∞-norm) of the image vector of a via the canonical embedding map. For vectors
a and b of the same dimension, a� b denotes the component-wise multiplication of a and b. We
denote by φ(·) the Euler’s totient function and Φm(X) the m-th cyclotomic polynomial. For a
complex number z ∈ C, z denotes the complex conjugation of z. For a random variable X, E(X)
denotes the expectation value of X.

2.2 Number Fields and Ideal Lattices

An (algebraic) number field is a finite extension field of Q. For any number field K, there exists
an element ζ of K such that K = Q(ζ) since every number field is a simple extension. Hence K is
isomorphic to Q[X]/(f(X)) for the minimal polynomial f(X) of ζ over Q. The degree n of f(X)
equals to the extension degree [K : Q].

There exists exactly n injective ring homomorphisms σj : K → C for 1 ≤ j ≤ n. We call the
n-tuple of these embeddings the canonical embedding of K into Cn. The canonical embedding map
is defined as

σ : K → Cn

a 7→ (σj(a))1≤j≤n.
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Let s1 be the number of real embeddings of K, then n = s1 + 2s2 for some non-negative integer
s2. Without loss of generality, let σ1, . . . , σs1 be real embeddings of K. Then the image of σ
actually lies in the space H := {(x1, ..., xn) ∈ Cn : xs1+s2+j = xs1+j , 1 ≤ j ≤ s2}. Let {ej}1≤j≤n
be a canonical basis of Cn. Let hj = ej for 1 ≤ j ≤ s1, hs1+j = (es1+j + es1+s2+j)/

√
2 and

hs1+s2+j = (es1+j−es1+s2+j)/
√
−2 for 1 < j ≤ s2. Then, {hj}1≤j≤n forms an orthogonal R-basis

of H.
An element of K is called an algebraic integer if its minimal polynomial over Q has integral

coefficients. The set of all algebraic integers, denoted by OK , is called the ring of integers of K. A
fractional ideal I of K is OK-submodule of K such that there exists a non-zero element r ∈ OK
which satisfies rI ⊆ OK . If I ⊆ OK , then we call I an (integral) ideal. The image σ(I) of a fractional
ideal I via the canonical embedding σ forms a lattice in Cn, and we call it an ideal lattice generated
by I. The dual of I in K is a fractional ideal in K defined as I∨ := {a ∈ K : Tr(aI) ⊆ Z}.

For 1 ≤ k ≤ n, the k-th successive minima of the lattice L, denoted by λi(L), is the minimum
value of r > 0 such that L has k linearly independent vectors of length at most r. If L is an ideal
lattice σ(I) for a fractional ideal I ∈ K, we simply denote by λk(I). The SIVP over ideal lattices
in K is defined as follow.

Definition 1. (SIVP over ideal lattices) For a number field K of degree n and an approxima-
tion factor γ ≥ 1, the K-SIVPγ problem is: given a fractional ideal I of K, output n linearly
independently vectors in the ideal lattice σ(I) of length at most γ · λn(I).

2.3 Ring Learning with Errors

For positive integers n and q, let R be the ring of integers of a number field K, Rq = R/qR and
KR = K ⊗Q R. Let χkey and χerr be distributions over R∨ and KR, respectively. For s ∈ R∨q ,
AR-LWE
q,χerr

(s) is a distribution which draws a← Rq and e← χerr, and output the pair (a, a · s+ e) in
Rq ×KR/qR

∨. The (decisional) RLWE problem is defined as follows.

Definition 2 (Ring Learning with Errors). Let n, q be positive integers, and χkey (resp. χerr)
be a distribution over R∨q (resp. KR). The RLWE problem, denoted by R-LWEq,χerr

(χkey), is to
distinguish between the uniform distribution over Rq ×KR/qR

∨ and AR-LWE
q,χerr

(s) where s← χkey.

Since KR is isomorphic to the vector space H, a distribution over H can be identified as a
distribution over KR. If χerr is a (spherical) Gaussian distribution Dαq over H with respect to the
basis {hi}1≤i≤n and χkey is the uniform distribution over R∨q , we simply denote by R-LWEq,α.

Lyubashevsky et al. [24] proposed a polynomial-time quantum reduction from lattice problems
over ideal lattices to the RLWE problem, which holds only for the cyclotomic fields with some
special conditions on the modulus q. Peikert et al. [26] gave a new reduction from the same problem
which can be applied to an arbitrary number field and modulus.

Theorem 1. [26, Corollary 7.3] Let n, q be positive integers, 0 < α < 1 be a real number such that
αq = ω(1), K be an arbitrary number field of degree n and R = OK . Then there exists a polynomial-
time quantum reduction from K-SIVPγ to R-LWEq,α given ` samples for γ = max{ω(

√
n log n/α) ·

(n`/ log(n`))1/4,
√
2n}.

Recently, it was shown by Rosca et al. [28] that the non-dual RLWE problem, i.e., RLWE
with the distribution of the secret over Rq rather than R∨q , is at least as hard as the original
RLWE problem. In addition, the rounding technique of Peikert [25] allows us to sample errors
from a discrete Gaussian distribution rather than a continuous Gaussian distribution. With these
settings, an RLWE sample lies in Rq ×Rq rather than Rq ×KR/qR

∨.
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3 RLWE over the Conjugate-invariant Ring

The cyclotomic rings have been the most commonly used as base rings for RLWE for two main
reasons. The ring of integers of the m-th cyclotomic field is isomorphic to Z[X]/(Φm(X)), and
its structure was particularly well suitable in the construction of cryptographic schemes with the
perspective of efficiency and some functionalities. In addition, there have been no known reduction
to the RLWE over a non-cyclotomic ring for years until Peikert et al. [26] proposed a reduction
from SIVP over ideal lattices to (decisional) RLWE for arbitrary number fields recently.

In this section, we introduce a new number field which has not been exploited in the lattice-
based cryptography so far, and compute the ring of integers of the number field. Then we study on
the hardness of RLWE problem over a new ring in two ways: we give a reduction from a standard
lattice problem and study the concrete security level by considering all known attacks.

Let m ≥ 2 be an integer and n = φ(m) for Euler’s totient function φ(·). For the m-th primitive
root of unity ζ = exp(2πi/m), the m-th cyclotomic field is defined by K = Q(ζ). Let σ−1 be the
element of Gal(K/Q) defined by σ−1 : ζ 7→ ζ−1, and G = {id, σ−1} be the cyclic subgroup of
Gal(K/Q) generated by σ−1. We denote by F = KG the G-invariant subfield of K which is defined
as F = {a ∈ K : τ(a) = a,∀τ ∈ G}. We first remark that F = Q(ξ) for ξ = ζ + ζ−1. It is clear
that Q(ξ) ⊆ F ⊆ Q(ζ) and [Q(ζ) : F ] = |G| = 2. Since ζ is a root of X2 + ξ ·X +1 ∈ Q(ξ)[X], the
inequality [Q(ζ) : Q(ξ)] ≤ 2 holds and it implies F = Q(ξ). In particular, we are interested in the
set of integer coefficient elements in Q(ξ) with respect to the Q-basis {1, ξ, ξ2, ..., ξ n

2−1}. We will
call this set Z[ξ] as the conjugate-invariant ring.

3.1 Reduction from SIVP

Some well-known reductions [24, 26] from standard problems over ideal lattices to RLWE requires
a condition that the base ring exploited in RLWE should be a ring of integers of a number field.
Therefore, it is crucial to study the ring of integers of a number field to define and show the
hardness of RLWE problem.

We consider the subfield F = Q(ξ) of K = Q(ζ) as a base number field, and compute its ring
of integers R := OF in this section. Fortunately, the structure of a cyclotomic field derives a quite
simple and nice result on the conjugate-invariant ring as follows.

Fig. 1. Diagram of the cyclotomic ring and the conjugate-invariant ring

K = Q(ζ)

OK = Z[ζ]

F = Q(ξ)

R = Z[ξ]

Q

Z
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Lemma 1. Z[ξ] is the ring of integers of F = Q(ξ).

Proof. It is clear that Z[ξ] ⊆ OF . Since OF ⊆ OK = Z[ζ], every element a ∈ OF is uniquely
expressed as a =

∑
−n

2≤j<
n
2
aj · ζj for some integers a−n

2
, . . . , an

2−1. From the definition of F , we
obtain σ−1(a) = a, i.e.,

∑
−n

2≤j<
n
2
ajζ

j =
∑
−n

2<j≤
n
2
a−jζ

j which implies aj = a−j for 0 ≤ i < n
2

and a−n
2
= 0. Then, a = a0 +

∑n
2−1
j=1 ai(ζ

j + ζ−j) ∈ Z[ξ], since ζj + ζ−j ∈ Z[ξ] for 1 ≤ j < n
2 .

Therefore, OF ⊆ Z[ξ], which directly implies Z[ξ] = OF . �

From Lemma 1, we can derive a conclusion that the RLWE problem over R = Z[ξ], simply
denoted by R-LWEq,α, is at least as hard as F -SIVP from Theorem 1.

We can naturally identify R with the ring of polynomials Z[Y ]/(g(Y )) for the minimal polyno-
mial g(Y ) ∈ Z[Y ] of ξ over Q via mapping a(Y ) 7→ a(ξ). However, it is more convenient to consider
R as the subring

R = {a(X) ∈ Z[X]/(Φm(X)) : a(X) = a(X−1)}

of OK = Z[X]/(Φm(X)), where X−1 ∈ Z[X]/(Φm(X)) denotes the inverse of X modulo Φm(X).
Note that the condition a(X) = a(X−1) corresponds to the conjugation-invariant property. We
will follow this subring perspective in the rest of paper.

3.2 Cryptanalysis

In this section, we discuss the attack complexity of RLWE over the conjugate-invariant ring. In
general, the RLWE problem does not guarantee the same security level as LWE with the same
parameter. For example, there have been several attempts to attack the RLWE (or Poly-LWE)
problem over a ring Z[X]/(f(X)) by exploiting its ring structure [15, 6, 8]. One common limitation
of these attacks is that f(X) should have a root modulo q satisfying some strong conditions.

The RLWE assumption can be viewed as a specific case of LWE (A, b = As + e) where the
random matrix A has a special algebraic structure. In the case of RLWE over a power-of-two
cyclotomic ring, an RLWE sample can be understood as a variant of n-dimensional LWE instance
where A is a random anti-circulant matrix. However, there has been no known attack achieving
a lower complexity by exploiting this property. As a result, the current best known attacks are
standard lattice attacks on the ordinary LWE problem such as dual attack and primal attack,
which are well described in [7].

Now we explain how to understand an R-LWE instance as an LWE instance with a special
structure. Let m be a power-of-two integer so that n = m/2 and Φm(X) = Xn + 1. An element
of R = {a(X) ∈ Z[X]/(Xn + 1) : a(X) = a(X−1)} can be uniquely expressed as a(X) = a0 +∑n

2−1
j=1 aj · (Xj +X−j) for some integers a0, . . . , an

2−1. Therefore, a(X) can be identified with the
vector a = (a0, a1, ..., an

2−1) of length (n/2). Based on this identification, an RLWE sample over
the conjugate-invariant ring (a(X), b(X) = a(X) · s(X) + e(X)) ∈ R2

q with secret s(X) can be
transformed to

(A, b = As+ e) ∈ Z
n
2×

n
2

q × Z
n
2
q

where A is a square matrix of size (n/2) whose (i, j)-th component is given by

Aij =


a|i−j| j = 0, or i+ j = n

2

a|i−j| + ai+j j > 0, and i+ j < n
2

a|i−j| − an−(i+j) j > 0, and i+ j > n
2

for 0 ≤ i, j < n/2. This transformation shows that R-LWE can be viewed as a variant of the
(n/2)-dimensional LWE problem where the random matrix A has this special form. We consider
all known attacks on RLWE and claim that they do not achieve a lower complexity than the
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Fig. 2. Polynomial representation of number fields and canonical embedding

K = Q(ζ) Q[X]/(Xn + 1)

	

F = Q(ξ) Q[Y ]/(g(Y )) Rn/2

'

τ'
Y 7→ X +X−1

standard lattice attacks on LWE, i.e., currently there is no special attack on R-LWE which exploits
the ring structure of R corresponding to this special structural distribution of A, similar to the
case of RLWE over a power-of-two cyclotomic ring. Therefore, we conclude that the current best
attacks on R-LWEq,α are the standard lattice attacks, which require the same attack complexity
as the lattice attacks on the (n/2)-dimensional LWE problem.

4 Approximate Homomorphic Encryption over the Real Numbers

The HEAAN scheme of Cheon et al. [10, 9] is the first HE system which supports an efficient
rounding operation for approximate arithmetic. It allows us to encrypt a number of complex
numbers in a single ciphertext and perform an approximate arithmetic between encrypted vectors
in a SIMD manner. However, there remained one significant problem about the plaintext space.

Most of the real-world applications require computations over the purely real numbers, but
the original HEAAN scheme could encrypt a complex number in each of plaintext slots. The
previous researches [22, 21] used the set of real numbers as a subring of complex numbers, but
this approach cannot be a fundamental solution for the following reason. Every algorithm of the
original HEAAN scheme, such as homomorphic arithmetic and rounding operation, adds a small
complex error to the plaintext vector. The imaginary part of an encrypted plaintext can gradually
increase as the computation progressed, and finally the desired result (real part) can no longer
be recovered after its imaginary part becomes larger than the ciphertext modulus. Consequently,
every circuit in previous applications had a limited depth to bound the size of imaginary parts
during its evaluation.

In this section, we describe a HE scheme which is optimized in the approximate computation
over the real numbers compared to the original HEAAN scheme with complex plaintext slots. The
security of our scheme relies on the RLWE assumption over the ring R = Z[ξ] introduced in the
previous section. For simplicity, the integer m will be chosen as a power of two so that n = m/2
and Φm(X) = Xn + 1.

4.1 Canonical Embedding and Packing Technique

In this subsection, we describe the canonical embedding map of the conjugate-invariant field and
explain how to represent its elements. As mentioned in the previous section, the conjugate-invariant
field F = Q(ξ) can be identified with the polynomial ring Q[Y ]/(g(Y )) for the minimal polynomial
g(Y ) ∈ Z[Y ] of ξ over Q. Note that g(Y ) is the polynomial of degree (n/2) that satisfies g(X +
X−1) = Xn/2 +X−n/2. Let ξj = ζ4j+1 + ζ−(4j+1) for 0 ≤ j < n/2. Then {ξ0, . . . , ξn

2−1} forms the
set of distinct roots of g(Y ) since Xn+1 = (X−ζ)(X−ζ3) . . . (X−ζm−1) =

∏n
2−1
j=0 (X2−ξj ·X+1).

Therefore, we have a commute diagram (Fig. 2) for a polynomial representation of number fields
by identifying Y 7→ X +X−1.
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Let us denote by τ the canonical embedding of F = Q[Y ]/(g(Y )) into Cn/2. It sends an element
a(Y ) to the vector of its evaluations τ(a) = (a(ξj))0≤j<n

2
at the roots of g(Y ). Since all roots of

g(Y ) are real, F is a totally real number field and the image of τ is a subring of Rn/2. The canonical
embedding norm of an element of a number field is defined by the norm of its canonical embedding.
For example, we write ‖a‖can∞ := ‖τ(a)‖∞ and ‖a‖can2 := ‖τ(a)‖2 for a ∈ F .

The packing technique of HE system allows us to encrypt a multiple number of messages in a
single ciphertext and supports the parallel computation in a SIMD manner. It has been one of the
most important techniques to improve the performance of HE schemes in the sense of expansion
rate and amortized computational cost. Cheon et al. [10, 9] first suggested a packing method for
the approximate HE scheme based on the canonical embedding over the complex numbers.

We present a new packing method over the real numbers, by modifying the previous solution
over the complex plane. The core idea is to restrict the domain of canonical embedding τ to the
ring of integers R = Z[Y ]/(g(Y )). In other words, the decoding algorithm transforms an element
a(Y ) of R into the vector τ(a) = (a(ξj))0≤j<n/2 of dimension (n/2). This vector is real as noted
above. Conversely, the encoding map takes a real vector x = (xj)0≤j<n/2 ∈ Rn/2 as an input.
It first computes the rounding x′ = bxeτ(R) ∈ Rn/2, which is an element of τ(R) with a small
rounding error ‖x− x′‖can2 . The output is obtained by computing the inverse of x′ which is an
integral polynomial in R = Z[Y ]/(g(Y )). Our packing method is explicitly described as follows.

• Ecd(x). For given x = (xj)0≤j<n/2 ∈ Rn/2, discretize x into τ(R). Output the corresponding
polynomial m(Y ) = τ−1

(
bxeτ(R)

)
∈ R.

• Dcd(m). For given m ∈ R, output the vector x = (xj = m(ξj))0≤j<n/2 ∈ Rn/2.

The Ecd algorithm can be viewed as an approximate inverse of the decoding function with a small
rounding error. One can multiply a scale factor to an input vector before the rounding operation
to reduce the relative size of rounding error and preserve the precision of plaintexts.

As a toy example, let n = m/2 = 4. In this case, ζ8 = exp(πi/4) = (1 + i)/
√
2 is an m-th

primitive root of unity, and we have {ξ0, ξ1} = {
√
2,−
√
2}. For a real vector x = (1.1, 2.3), its

encoding polynomial with the scaling factor ∆ = 64 is obtained by m(Y ) = τ−1
(
b∆ · xeτ(R)

)
=

109− 27Y . Conversely, the decoded vector of 109− 27Y is computed by ∆−1 · Dcd(m) = 1
64 (109−

27
√
2, 109 + 27

√
2) ≈ (1.1065, 2.2997), which is a good approximation of the original vector x.

4.2 Scheme Description

This subsection gives a explicit description of our HE scheme over the real numbers. Our scheme
is very similar to the original HEAAN scheme, but it exploits a different ring structure R = Z[ξ].
We first propose a method to represent the elements of the conjugate-invariant field F .

The number field F can be identified with Qn/2 as a Q-module. For example, an arbitrary
element of F = Q[Y ]/(g(Y )) can be uniquely expressed as the sum

∑n
2−1
j=0 aj ·Y j for some aj ∈ Q,

which corresponds to the isomorphism a 7→ (a0, . . . , an
2−1) between two modules. However, this

representation is not the best choice for the construction of HE system. One major reason is that
the image {τ(1), τ(Y ), . . . , τ(Y

n
2−1)} of the basis {1, Y, . . . , Y n

2−1} does not form an orthogonal
set in the space Rn/2.

The conjugate-invariant field F = Q[Y ]/(g(Y )) can be understood as a subfield of K =
Q[X]/(Xn + 1) by identifying Y = X +X−1 as noted in the previous subsection. Every element
a(X) of F ≤ K can be uniquely expressed as a Laurent polynomial a(X) = a0+

∑n
2−1
i=1 ai(X

i+X−i)
of degree and order strictly less then (n/2) for some a0, . . . , an

2−1 ∈ Q. In the following, an ar-
bitrary element a(X) of F will be identified with its vector of coefficients (a0, . . . , an

2−1) ∈ Qn/2.
Note that the set {1, X +X−1, . . . , Xn/2−1 +X1−n/2} is a basis of F (resp. R) as a module over
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Q (resp. Z). In addition, the image of this basis with respect to the canonical embedding map τ
forms an orthogonal basis in Rn/2.

This orthogonal property allows us to use an efficient rounding operation on F as well as
a modulo operation over R. We define the rounding operation b·e : F → R by sending each of
coefficients ai ∈ Q to the closest integer baie ∈ Z. Note that bae is an element of R which minimizes
the rounding error ‖a− bae‖can2 with respect to the `2 canonical embedding norm. Similar to the
rounding operation, the modulo q operation is simply defined by the coefficient-wise modular
reduction, i.e., [a]q is the element of a+ qR which minimizes the size ‖[a]q‖can2 .

• Setup(p, 1λ, L).
- The base integer p, the number of levels L and the security parameter λ are given as input.
Set moduli q1, q2, ..., qL, which are usually chosen as qi = pi .

- Choose integers m and P , and small distributions χkey, χenc, and χerr over the ring R.
- Return the parameter set params← (m,P, χkey, χenc, χerr).

The setup step should generate a HE parameter set that achieves λ-bit of security level against
the best known attacks on RLWE. A security proof will be given at the end of this subsection.

• KeyGen(params).

- Sample s← χkey. Set the secret key as sk← (1, s).
- Sample a ← U(RqL) and e ← χerr. Set the public key as pk ← (b, a) ∈ R2

qL where
b← −as+ e (mod qL).

• KSGen(s1, s2). For s1, s2 ∈ R, sample a′ ← U(RP ·qL) and e′ ← χerr. Output the switching key
as swk← (b′, a′) ∈ R2

P ·qL where b′ ← −a′s2 + e′ + P · s1 (mod P · qL).
- Set the evaluation key as evk← KSGen(s2, s).

• Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output v ·pk+(m+e0, e1) (mod qL).
• Decsk(ct). For ct = (c0, c1) ∈ R2

q`
, output m′ = c0 + c1 · s (mod q`).

The decryption algorithm can be simply written by m′ ← [〈ct, sk〉]q` . The encryption procedure
returns a level L ciphertext ct which satisfies [〈ct, sk〉]qL ≈ m, i.e., we can only recover an approx-
imate value of m from its encryption. We use the canonical embedding norm to measure the size
of polynomials in R.

• Add(ct, ct′). For ct, ct′ ∈ R2
q`
, output ctadd ← ct+ ct′ (mod q`).

• Multevk(ct, ct′). For ct = (c0, c1), ct
′ = (c′0, c

′
1) ∈ R2

q`
, let (d0, d1, d2) = (c0c

′
0, c0c

′
1 + c1c

′
0, c1c

′
1)

(mod q`). Output ctmult ← (d0, d1) + bP−1 · d2 · evke (mod q`).
• RS`→`′(ct). For a ciphertext ct ∈ R2

q`
at level `, output ct′ ← b(q`′/q`) · cte (mod q`′). We will

omit the subscript (`→ `′) when `′ = `− 1.

The algorithms Add and Multevk perform the arithmetic operations over encrypted plaintexts. The
rescaling procedure RS`→`′(·) transforms a level ` encryption of m into an encryption of (q`′/q`)·m of
level `′ securely. We show the correctness of our scheme and estimate the size of noise in Appendix.

Security.We claim that our HE scheme is IND-CPA secure under the hardness of RLWE problems
over the ring R. It can be shown by considering the following three distributions:

D1 = {(pk, ct) : pk← KeyGen(params), ct← Encpk(0)},
D2 = {(pk, ct) : pk← U(R2

q), ct← Encpk(0)},
D3 = {(pk, ct) : pk← U(R2

q), ct← U(R2
q)}.

First, the distributions D1 and D2 are computationally indistinguishable under the assumption of
R-LWEqL,χerr (χkey) since the key generation step samples s from χkey and generates an RLWE
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sample pk of parameter (qL, χerr). The second and third distributions are computationally indistin-
guishable as long as R-LWEqL,χerr

(χenc) since a sample fromD2 forms two independent RLWE sam-
ples of parameter (qL, χerr) with a secret v ← χenc. Finally, the evaluation key evk← KSGen(s2, s)
can be viewed as an encryption of s2 encrypted by the secret s. The distribution of evk can be
indistinguishable from the uniform distribution on R2

P ·qL under the assumption of circular security
when the R-LWEP ·qL,χerr (χkey) problem is hard.

4.3 Implications of the Conjugate-Invariant Ring

This section compares our approximate HE scheme over the real numbers with the original HEAAN
scheme from a variety of perspectives. We claim that our scheme can have twice as many plaintext
slots as HEAAN while guaranteeing the same security level and performance. Furthermore, the
utilization of the conjugate-invariant ring fundamentally blocks the complex explosion problem of
HEAAN which possibly effect on the most significant bits of real messages.

Representation of ring elements. Our HE scheme is constructed over the residue ring Rq =
{a(X) ∈ Zq[X]/(Xn + 1) : a(X) = a(X−1)} for an integer q. We introduce two methods to
represent the ring elements of Rq, both of which have their own pros and cons.

Basically we use the coefficient representation (a0, . . . , an−1) ∈ Zn/2q for an element a(X) ∈ Rq
as described in the previous subsection. The coefficient representation is useful to perform the non-
arithmetic operations such as the rounding operation in rescaling procedure. However, we have to
consider the following representation for an efficient multiplication between polynomials in Rq.

Suppose that q is an integer such that there exists an m-th primitive root ωm of unity in the
modulo space Zq. Note that ωn := ω2

m (resp. ωn
2

:= ω4
m) is an n-th (resp. (n/2)-th) primitive

root of unity in Zq. The map Zq[X]/(Xn + 1) → Znq , a 7→ (a(ωm), a(ω3
m), . . . , a(ωm−1m )) is a

ring isomorphism since the m-th cyclotomic polynomial is expressed as a product Xn + 1 =
(X−ωm)(X−ω3

m) . . . (X−ω2n−1
m ) modulo q. We point out that an element a ∈ Zq[X]/(Xn+1) is

contained in the subring Rq if and only if a(ωjm) = a(ω2n−j
m ) for all j = 1, 3, . . . , n−1. Therefore, we

can deduce an ring isomorphism from Rq to Zn/2q defined by a 7→ â = (a(ωm), a(ω5
m), . . . , a(ωm−3m )),

i.e., it is satisfied that â · b = â� b̂ for any a, b ∈ Rq where � denotes the Hadamard (component-
wise) multiplication between vectors. It enables us to perform an arithmetic operation of Rq in
O(n) modulo q operations, but the rescaling procedure cannot be done under this representation.

Complexity of ring operations. The conversion between two representations a 7→ â is one of
the most important parts to improve the efficiency of the HE system on Rq. It can be viewed as a
linear transformation on Zn/2q by identifying the elements of Rq with their coefficient vectors.

The NTT is a discrete Fourier transform over a finite field. Specifically, the NTT over the
finite field Zq with an m-th primitive root ωm of unity modulo q, denoted by NTTm(·), converts
a polynomial in Zq[X]/(Xm − 1) into a vector in Zmq by a 7→ (a(ωjm))0≤j<m. The NTT is a ring
isomorphism between Zq[X]/(Xm − 1) and Zmq , and its inverse is denoted by INTTm(·). The NTT
conversion can be understood as a linear map from Znq to Znq whose matrix representation is the
m ×m Vandermonde matrix generated by {1, ωm, . . . , ωm−1m }. The FFT algorithm can compute
NTTm(·) in O(m · logm) operations in Zq.

There have been suggested several methods to modify the NTT conversion to perform some
operations used in cryptographic schemes. For example, Alkim et al. [1] and Longa-Naehrig [23]
exploit a variant of NTT to make an efficient conversion between distinct representations of a ring
element in Zq[X]/(Xn + 1). In the following, we propose a specialized FFT algorithm to perform
the linear transformation a 7→ â on Rq efficiently.
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Fig. 3. An example of fixed-point operation
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The main idea is to express the linear transformation a 7→ â by a composition of (n/2)-
dimensional NTT conversion and a few simple arithmetic operations. To be precise, the equality

a(ω4j+1
m ) = a(ωm · ωjn

2
) = a0 +

n
2−1∑
i=1

ai

(
ωim · ω

ij
n
2
+ ω−im · ω

−ij
n
2

)

= a0 +

n
2−1∑
i=1

ai · ωim · ω
ij
n
2
+

n
2−1∑
i=1

an
2−i · ω

−(n
2−i)

m · ωijn
2

= a0 +

n
2−1∑
i=1

(
ai · ωim + an

2−i · ω
−(n

2−i)
m

)
ωijn

2
= ã(ωjn

2
)

holds for any 0 ≤ j < n
2 where

ã(X) = a0 +
(
a1 · ωm + an

2−1 · ω
1−n

2
m

)
X + · · ·+

(
an

2−1 · ω
n
2−1
m + a1 · ω−1m

)
X

n
2−1.

Therefore, the linear transformation a 7→ â can be written by the composition of NTTn/2 and a
simple arithmetic operation

(a0, . . . , an
2−1) 7→ (a0, a1 · ωm + an

2−1 · ω
1−n

2
m , . . . , an

2−1 · ω
n
2−1
m + a1 · ω−1m ),

and we can compute its inverse by

a = (ã0, 2
−1 · (ã1 · ω−1m + ãn

2−1 · ωm), . . . , 2−1 · (ãn
2−1 · ω

1−n
2

m + ã1 · ω
n
2−1
m ))

for ã = (ã0, . . . , ãn
2−1)← INTTn/2(â).

Now let us consider the multiplication of polynomials in the conjugate-invariant ring R. For
given polynomials a, b ∈ Rq with coefficient representation, we compute their product c = a · b by
computing ĉ = â · b = â� b̂ and recovering c from ĉ. It consists of three Hadamard multiplications
on Z

n
2
q , two NTTn/2 conversions, and a single INTTn/2. Since the Hadamard multiplication takes only

O(n), the complexity of a multiplication over the special ring Rq can be estimated by three NTT
conversions of dimension (n/2), while a multiplication over the ring Zq[X]/(Xn+1) includes three
NTT conversions of dimension n. As a result, the computational cost of an arithmetic operation
on Rq is almost half that of the m-th cyclotomic ring.

4.4 Application to Fixed-Point Operation

The HEAAN scheme is able to evaluate a circuit approximately, and specifically our variant is
optimized in an arithmetic over the real numbers. We explain how to use our scheme to perform
the fixed-point operation with a finite precision.
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As described in Section 4.1, a real-valued vector can be identified with a polynomial in the
conjugate-invariant ring R via the canonical embedding τ . For the use of our scheme in fixed-point
operation, the base p in scheme description will be chosen as a scaling factor. So an arbitrary real
vector x ∈ Rn/2 is encoded to a polynomial m ∈ R such that m ≈ p · τ−1(x) with a small rounding
error. An encryption procedure induces an additional error so that an encryption of m is a pair
ct = (c0, c1) ∈ R2

qL satisfying [c0 + c1 · s]qL = m + e ≈ p · τ−1(x) for some small error e. We
estimate rounding and encryption errors in Appendix, and the precision of encrypted plaintext is
decided by a scaling factor p and the size of errors, i.e., a larger scaling factor allows us to keep
more significant bits.

Let cti be an encryption of mi ≈ p ·τ−1(xi) for i = 1, 2. Then their homomorphic multiplication
returns a ciphertext ctmult encrypting

m1 ·m2 ≈ p2 · τ−1(x1) · τ−1(x2) = p2 · τ−1(x1 � x2)

which is an encoding of the slot-wise product x1�x2 with scaling factor p2. Then, we can use the
rescaling procedure RS(·) to obtain an encryption of p · τ−1(x1�x2) and recover the initial scaling
factor p. Fig. 3 describes an example of a fixed-point multiplication between 1.12 and 2.34 with
scaling factor p = 104. Numbers in gray boxes represent the encrypted values in plaintext slots.

The scaling factor stays the same and the rescaling procedure reduces a ciphertext level by one.
Therefore, for the evaluation of a circuit with depth L, the bitsize of largest ciphertext modulus
should be O(L · log p) which grows linearly on the depth and bit precision of plaintext, compared
to the exponential growth based on the HE schemes for exact computations without rounding
operation [5, 16].

5 Discussions

The security of our scheme relies on the hardness of R-LWE problem. From the cryptanalysis on
RLWE over the conjugate-invariant ring in Section 3.2, our approximate HE scheme over R =
{a(X) ∈ Z[X]/(X2n + 1) : a(X) = a(X−1)} has (approximately) the same security level as the
original HEAAN over Z[X]/(Xn +1) for a power-of-two integer n, while the other parameters are
set equal. In this setting, the maximum number of plaintexts packed in a single ciphertext in our
scheme is n, while that of HEAAN is (n/2). This implies our approximate HE scheme supports
twice more parallel computations than HEAAN in a SIMD manner.

Since it requires n log q bits to express an element of the form a0 +
∑n−1
i=1 ai(X

i +X−i) ∈ Rq,
both schemes essentially have the same key size and ciphertext size. Furthermore, both schemes
exploit the NTT of dimension n for a ring multiplication, so they have almost same arithmetic
complexity. As a result, our scheme over the dimension 2n actually performs as well as HEAAN
over the dimension n while carrying a definite advantage in the number of plaintext slots.

Table 1. Comparison of our scheme and HEAAN

Approximate HE OurScheme(2n, q) HEAAN(n, q)
Number of plaintext slots n n/2

NTT dimension n n
Bit size of ciphertexts 2n log q 2n log q
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A Noise Analysis

We show the correctness of our scheme and analyze the noise from homomorphic operations. If we
identify an element of a ∈ F with its coefficient vector (a0, . . . , an

2−1) such that a = a0+
∑n

2−1
j=1 aj ·

(Xj +X−j), then its canonical embedding can be represented by

τ(a) =

a0 + n
2−1∑
i=1

ai · (ζ(4i+1)j + ζ−(4i+1)j)


0≤j<n

2

= a0 · u0 +

n
2−1∑
j=1

aj · uj

for the orthogonal vectors u0 = (1, . . . , 1) and ui = (ζ(4i+1)j + ζ−(4i+1)j)0≤j<n
2
in Rn/2. Note that

‖u0‖22 = n
2 and ‖uj‖22 = n.

We follow a heuristic approach of Halevi and Shoup [20] which estimates the noise variance of
its canonical embedding. Namely, we consider a as a random variable over F , then the expected
squared `2 canonical norm of a is given by

E
[
(‖a‖can2 )2

]
= n · E

1
2
· a20 +

n
2−1∑
i=1

a2i

 ≤ n · E [‖a‖22] .
Therefore, each entry of τ(a) has a variance V ≈ 2 · E

[
‖a‖22

]
, and we call V the noise variance of

a.
We choose the distributions χerr, χkey, and χenc on R as follows. For an error parameter

σ > 0, the error distribution χerr draws each coefficient independently from the discrete Gaussian
distribution of a variance σ2. For an integer h > 0, the secret distribution χkey uniformly at
random from the set {0,±1}n

2 of signed binary vectors that have exactly h nonzero coefficients.
The encryption key distribution χenc draws each of coefficients independently from {0,±1}, with
probability 1/4 for each of −1 and +1, and probability being zero 1/2.

When a ∈ R is sampled from U(Rq), then each of its coefficient has the variance (q2− 1)/12 <
q2/12, so we get the noise variance Vq ≈ n · q2/12. When a ← χkey, we get a noise variance of
Vkey = 2h. When a← χerr (resp. χenc), we get Verr = n · σ2 (resp. Venc = n/2).
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Encoding. For a given x ∈ Rn
2 , there exists a0, . . . , an

2−1 ∈ R such that x =
∑n

2−1
i=0 ai · ui. its

rounding x′ to τ(R) is obtained by rounding the numbers ai’s to the closest integers. Therefore,
the rounding error is bounded by ‖x− x′‖22 ≤ (1/4) · (n/2) · n = n2/8.

Rescaling. For a level ` ciphertext ct = (c0, c1) ∈ R2
q`
, let ct′ = bq−k · cte (mod q`−k). Then it

is satisfied that [〈ct′, sk〉]q`−k
= q−k · [〈ct, sk〉]q` − q−k · 〈[ct]qk , sk〉. We can (heuristically) assume

that [c0]qk and [c1]qk behave as uniform random variables on Rqk . Therefore, the noise variance of
rescaling error q−k · ([c0]qk + [c1]qk · s) has a variance of Vrs = (n/12) · (1 + 2h).

Encryption. Let pk = (b = −as + e, a) ∈ R2
qL be the public key and ct ← Encpk(m) be an

encryption of m ∈ R generated by v ← χenc and e0, e1 ← χerr. Then we have [〈ct, sk〉]qL = m+eenc
for eenc = v · e + e0 + e1 · s. Therefore, the noise variance of encryption error is obtained by
Venc · Verr + Verr + Verr · Vkey = n · σ2 · (1 + 2h+ n/2).

Addition. This operation has no additional error since 〈ctadd, sk〉 = 〈ct, sk〉+ 〈ct′, sk〉 (mod q`).

Multiplication. For ciphertexts ct = (c0, c1) and ct′ = (c′0, c
′
1) of level `, let (d0, d1, d2) =

(c0c
′
0, c0c

′
1 + c1c

′
0 + c1c

′
1) (mod q`). It is direct from the definition that d0 + d1s+ d2s

2 = 〈ct, sk〉 ·
〈ct′, sk〉 (mod q`). We can assume that d2 looks a uniform random variable on Rq` as above.

Let evk = (b′ = −a′s+e′, a′) ∈ R2
P ·q` be the evaluation key. The multiplication error comes from

the key-switching procedure d2 7→ bP−1 · d2 · evke (mod q`). Note that [〈bP−1 · d2 · evke, sk〉]q` =
P−1 · d2 · [〈evk, sk〉]P ·q` + ers = d2 · s2 + ers + P−1 · d2 · e′ where ers is a rescaling error. Therefore,
the output ciphertext satisfies 〈ctmult, sk〉 = 〈ct, sk〉 · 〈ct′, sk〉+ emult (mod q`) for a multiplication
error emult = P−1 ·d2 ·e′+ers, and its noise variance is obtained by Vmult = Vrs+P

−2 ·Vq` ·Verr =
(n/12) · (1 + 2h + P−2 · q2` · n · σ2) which is approximately equal to Vrs = (n/12) · (1 + 2h) when
P � q`.
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