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Abstract

An obfuscated program reveals nothing about its design other than its input/output behavior.
A digital locker is an obfuscated program that outputs a stored cryptographic key if and only if a
user enters a previously stored password. A digital locker is private if it provides an adversary with no
information with high probability. An ideal digital locker would also prevent an adversary from mauling
an obfuscation on one password and key into a new program that obfuscates a related password or key.
There are no known constructions of non-malleable digital lockers (in the standard model).

Komargodski and Yogev (Eurocrypt, 2018) constructed a simpler primitive: a non-malleable keyless
digital locker. For this functionality, a user can only confirm if their point is correct. This primitive is
known as non-malleable point obfuscation. Their construction prevents an adversary from transforming
an obfuscation into an obfuscation on a related password.

This work first describes two nonmalleable digital lockers for short keys, one for a single bit key
and a second for a logarithmic length keys. These constructs can be safely composed with the same
input password. We then show how to extend to an arbitrarily polynomial length key and provide non-
malleability over the stored password and key. Our full design combines a digital locker for short keys,
non-malleable codes, and seed-dependent condensers. Seed-dependent condensers inherently require
the distribution of passwords to be efficient sampleable.

Keywords: Digital Lockers; Point obfuscation; Virtual black-box obfuscation; Non-malleable
codes; Seed-dependent condensers

1 Introduction

Obfuscation hides the implementation of a program from all users of the program. This work is concerned
with virtual black-box obfuscation, where an obfuscator creates a program that reveals nothing about the
program other than its input and output behavior [BGI+01, BGI+12]. (We do not consider indistinguisha-
bility obfuscation in this work [GGH+13, GGH+16, SW14, PST14, GLSW15, AJ15] [BR17]). Barak et
al. showed that a virtual black-box obfuscator cannot exist for all polynomial time circuits [BGI+01].
However, this leaves open the possibility of virtual black-box obfuscators for interesting classes of pro-
grams [CD08, BC10] [CRV10, WZ17, BR17].

Our focus is on digital lockers. A digital locker obfuscator inputs a value, val, and key, key. The output
is a program unlockval,key(·) which outputs key if and only if the input is val. Privacy says unlockval,key
should reveal nothing about val or key if the adversary cannot guess val. A digital locker is also known as

∗Email: peter.fenteany@uconn.edu. University of Connecticut.
†Email: benjamin.fuller@uconn.edu. University of Connecticut.

1



a multi-bit point obfuscation [CD08, BC10]. Digital lockers have applications in password [Can97] and
biometric authentication [CFP+16].

A simpler object to construct is a point function unlockPointval which stores val, outputting 1 if and only
if the input is val. An obfuscated point function only needs to hide val [Can97]. It is possible to compose
point functions to build a digital locker (if the point function retains security when composed) [CD08].
The construction is straightforward, for each bit of the key, either a random point or val is obfuscated
producing unlockPointyi . When running the program, the user tries to open each unlockPointyi , the point
functions that output 1 represent 1s in key. The point function functions that output 0 correspond to a
0 in key. We call this digital locker the real-or-random construction.

Nonmalleability A desirable property of an obfuscated program is non-malleability. A non-malleable
obfuscator prevents any tampering of the obfuscation (for some family of functions f ∈ F) to obtain a
related obfuscation [CV09]. For example, it is desirable to prevent unlockPointval from being mauled to
unlockPointf(val). In the random oracle model, designing non-malleable digital lockers and point functions
is easy: for random oracle h one outputs the program h(val) ⊕ (key||h(key)), where h(key) is truncated.
Furthermore, in the common reference string model, one can achieve nonmalleability using appropriate
zero-knowledge proofs of knowledge [BCFW09].

Recently, Komargodski and Yogev showed how to build a non-malleable obfuscated point function
in the standard model [KY18]. Their construction is as follows, let g be a fixed group generator, to

obfuscate the point val, the obfuscator computes a random r and outputs O(x) = (r, rg
h(val)

). Here
h(x) = x4 + x3 + x2 + x. As we explain below, the function h is designed specifically to prevent mauling.

Security of the construction relies on two variants of the Decisional Diffie-Hellman (DDH) assump-
tion [DH76] - the strong DDH assumption (discussed in [BC10]) and the power DDH assumption (intro-
duced in [GJM02]). For an obfuscated point val, the construction prevents the adversary from changing
val to f(val) for a polynomial f (of degree at most t).

In this work, we construct the first non-malleable digital lockers in the standard model. One could
try and compose Komargodski and Yogev’s construction for each bit of the key using the real-or-random
construction. However, that approach does not ensure nonmalleability over the bits of key. It is easy to
permute bits of key by reordering group elements and to set individual bits of key to 0 by replacing a
group element by a random group element. Consider a case when a user encrypts their files with key.
If the adversary can create lockval,key′(·), the user may use some cryptographic key that is known to the
adversary or susceptible to cryptanalytic attack [BCM11].

1.1 Our Contribution

We present the first construction of a non-malleable digital locker in the standard model. As mentioned,
the real-or-random digital locker does not prevent mauling of key. To prevent mauling of key, a natural
idea is to use some integrity primitive Tag and include Tag(key) in the real-or-random construction.

A natural keyed primitive is a one-time message authentication code (MAC) or their non-malleable
extensions [DW09]. The only other source of private randomness is in val which may be highly nonuniform
and is highly correlated to the value being locked. Any approach that uses val as part of a MAC needs
to ensure tampering on key and the MAC must be done “together.” We use a keyless primitive to ensure
the entire that key and any authentication are tampered “together.”

Before describing the authentication in detail, we make a small but important change to the cryp-
tographic primitive that is being composed. Instead of composing point functions, we compose digital
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lockers that natively store a small number of key bits. We present two constructions of digital lockers
that support short keys: one that supports a single bit and the second for a logarithmic number of bits.

The single-bit digital locker Point obfuscators output 1 on the correct input and 0 everywhere else.
Our single-bit digital locker has three possible outputs: 1, 0, and ⊥ (to indicate any incorrect point). To
specify the output, the obfuscator now takes an additional bit b as input. Our construction of a single-bit
digital locker is:

O(val, b) = (r, rg
h(2∗val+b)

) = (r, rg
h(val||b)

).

Here h(x) = x4 + x3 + x2 + x as in Komargodski and Yogev’s point function obfuscator. With a known
value val′ the user attempts to unlock with both values of b. Since the underlying function h is one-to-
one, the construction remains correct. The intuitive argument for nonmallability of a single obfuscation
is simple, if an adversary could change either x or b that would correspond to a break of the original
system.

However, to create a digital locker requires composition of several obfuscations. This small modification
makes it more difficult to show nonmalleability (even just for functions on val). This is because the
adversary now gets access to obfuscations of two distinct points 2val and 2val + 1. Now the adversary
may be able to compute a function f ′ that takes h(2val), h(2val+ 1) and 1, yielding h(2val′+ b′). Despite
this additional information provided to the adversary, Theorem 3.2 states it is still difficult to maul using
a bounded degree polynomial.

In Theorem 3.2, we have to directly reduce to the strong power and strong vector Diffie-Hellman
assumptions (defined in Section 2.1). Previous constructions of multi-bit point obfuscators [CD08, BC10]
could be constructed generically from any point obfuscator (assuming the underlying point obfuscator is
“secure” when composed).

Extending to nonbinary alphabet Our second construction builds a digital locker that encodes a
logarithmic number of bits in a pair of group elements. Suppose that we wish to encode τ bit symbols in
each group element. The most natural idea is to extend our first construction by computing h(τ∗val+keyi).
As stated above, in the single bit case, nonmalleability required showing that given h(2val) and h(2val+1)
it was difficult to compute h(2val′+ b′). Under the power DDH assumption (see Section 2.1) this requires
one to show that h(2val′+b) is linearly independent of h(2val) and h(2val+1). Since h(x) = x4+x3+x2+x,
the space spanned by differed h(x) is only dimension 4. Naturally, as the adversary is given more linearly
independent values h(τ ∗ val + keyi) these span a larger dimensional space and it becomes impossible to
show that fresh values are linearly independent. To address this problem we use a new hash function for
symbols y ∈ {0, 1}τ :

h(x, y) =

(
4∑
i=0

(x+ 2)4+τ

)
+

τ−1∑
j=0

yi · (x+ 2)j .

This new hash function ensures that all τ different values of y create a log τ dimensional subspace and
cannot be used to predict the value of the hash function for any x′ 6= x. There are a few subtle notes
about this new construction:

1. Reconstruction proceeds by exhaustive checking of possible y values so running time is proportional
to 2τ making this construction efficient when τ = O(log(λ)).

2. Our single bit construction used a polynomial that included four nonzero powers. Interestingly, if
we include 4 powers that are not multiplied by a bit of key there is a problem. For three values
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of τ there are values of val′ in the linear span. This is because the choice of τ introduced a new
degree of freedom to the linear system. The three values depend on field arithmetic (solutions to
τ3 − 15τ2 − 52τ − 12 ≡ 0 mod p). It would be possible to avoid these τ by checking when τ is a
solution for a particular p. Instead, our construction adds another power of x, which retains a single
bad τ which is τ ≡ p− 5. This value of τ never occurs for logarithmic τ .

3. To ensure the construction is correct and one-to-one, we restrict x ∈ {0, 1}λ−1 and compute powers
of x+ 2. We can think of the construction as taking a subset of powers of x, we need to manually
exclude x = {0, 1} to ensure the function is one-to-one.

4. The group operations need to be in a group of size (6+τ)λ to ensure that operations do not overflow.
In the first construction this size is only 5λ.

We note that neither of these constructions make any attempt to prevent tampering of key.

1.2 Authenticating the key

We now describe how we authenticate a potential value c resulting from a (potentially tampered) sequence
of single bit digital lockers. Our authenticator uses seed-dependent condensers as a MAC [DRV12] and
non-malleable codes [DPW10] to bind together the MAC and key. Our goal is construct a string s that
is decodable to key and difficult to tamper. The construction proceeds as follows:

• First, we use the output of a seed-dependent condenser [DRV12], namely cond(val, seed) as a MAC on
key. That is we set c = key||cond(val; seed). A seed dependent condenser is an object that has a high
entropy output even if the distribution over val is adversarially dependent on the randomness seed.
Seed-dependent condensers for efficiently sampleable distributions are instantiable using collision-
resistant hash functions [DRV12, Theorem 4.1]. Since there is no requirement on the distribution
of val being independent of seed, the same seed can be used universally and be a system parameter.
It is possible to check tampering over cond(val; seed) since this value has high entropy.

• To ensure that any tampering on d (and thus key) results in tampering on cond(val; seed) we use
a nonmalleable code. Let F be some function class. A non-malleable code is a pair Enc and Dec
where for functions f ∈ F the value s̃ = Dec(f(Enc(s))) is independent of s. That is, we set
s = Enc(c) = Enc(key||cond(val; seed)).

However, there are problems with using a non-malleable code for this application:

1. In a non-malleable code, the adversary specifies the tampering function before seeing any
information about Enc(key). In our setting, the adversary sees obfuscations correlated to
Enc(key) before deciding how to tamper. We show that nonmalleable codes can be used a
nonstandard way where the tampering function is chosen after seeing the obfuscated values
(assuming a pseudorandomness condition, see Theorem 4.3).

2. Nonmalleable codes allow tampering to an independent value s̃. Having to match the output
of the condenser guarantees such an attack is likely to be detected.

Nonmalleable extractors [DW09, CRS14] and non-malleable one-way hashes [BCFW09, BFS11, CQZ+16]
also hold promise for creating this binding. These objects both guarantee that the adversary tampers to
an “independent” value like nonmalleable codes. We leave exploration of these objects as future work.
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Choosing a non-malleable code There are non-malleable codes that prevent the adversary from
permuting the bit vector, setting individual bits, and arbitrary functions that are applied separately to
different parts of the encoded value. This class of of adversary is called a “split-state” adversary. More
recently, Chattopadhyay and Li described a construction that prevents tampering in the class AC0 [CL17].
We recommend using a non-malleable code that prevents at least setting and flipping of individual bits
and permutations [AGM+15b, AGM+15a]. One concern about nonmalleable codes is that the adversary is
necessarily restricted to low complexity classes, not including the code’s encoding and decoding functions.
Note, we are encoding and decoding the code “in the clear” while the adversary is tampering “in the
exponent.”

Non-malleable codes with manipulation detection Recently, Kiayias et al. [KLT18] introduced
non-malleable codes with manipulation detection. Here, the adversary has low probability of producing
any codeword c̃ that successfully decodes. (Clearly, the class of tampering functions cannot contain
constant functions.) Kiayias et al. constructed a non-malleable code with manipulation detection but their
construction requires each symbol of the code to come from a polynomial size alphabet or equivalently
for each symbol to have logarithmic length. Thus, necessitating the multi-bit construction. With this
strengthened object our construction does not need the seed-dependent condenser in c. We do note
that Kiayias et al.’s construction does not include permutations which are efficiently computable by the
adversary in our construction. To the best of our knowledge, this is not an inherent restriction of the
definition.

Open Questions We present two main open questions resulting from this work. The first is whether
our construction can be modified to use other nonmalleable primitives such as extractors or one-way
hashes. The second open question in our multi-bit construction a different polynomial would allow for
a more compact group and thus more efficient operations. It seems necessary for the group size to scale
with τ if the linear independence argument is used. It may be possible to compress group size by allowing
imperfect correctness.

Organization The rest of this work is organized as follows Section 2 reviews definitions and compu-
tational assumptions, Section 3 introduces the single bit digital locker and shows security under com-
position for val, Section 4 describes the full construction with nonmallebility for both val and key using
non-malleable codes, lastly Section 5 shows how to support multiple bits in each pair of group elements,
enabling support for logarithmic size symbols.

2 Definitions and Background

For a random variables Xi over some alphabet Z we denote by X = X1, ..., Xn the tuple (X1, . . . , Xn).
For a set of indices J , XJ is the restriction of X to the indices in J . The minentropy of X is H∞(X) =
− log(maxx Pr[X = x]), and the average (conditional) minentropy [DORS08, Section 2.4] of X given Y is

H̃∞(X|Y ) = − log

(
E
y∈Y

max
x

Pr[X = x|Y = y]

)
.

The statistical distance between random variables X and Y with the same domain is

∆(X,Y ) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]|.
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For a distinguisher D, the computational distance between X and Y is δD(X,Y ) = |E[D(X)]− E[D(Y )]|
(we extend it to a class of distinguishers D by taking the maximum over all distinguishers D ∈ D). We
denote by Ds the class of randomized circuits which output a single bit and have size at most s. Logarithms
are base 2. Usually, we use capitalized letters for random variables and corresponding lowercase letters
for their samples.

Single Bit Digital Locker A point function is a function Ival: {0, 1}n 7→ {0, 1} outputs 1 on input x
and 0 elsewhere. The goal of an obfuscator is to preserve functionality while hiding the point val if val
is not provided as input to the program. We will build a function that outputs a single bit when val is
provided: Ival,b: {0, 1}n 7→ {⊥, 0, 1}. Here Ival,b(val) = b and Ival,b(val

′) =⊥ for all other points val′ 6= val.
We call this primitive a single-bit digital locker. We do not include condition of polynomial slowdown in
our definitions, but note the running time of our constructions throughout. We define a single-bit digital
locker by adapting Komargodski and Yogev’s definition [KY18]:

Definition 2.1. For security parameter λ ∈ N a single bit digital locker lock is a probabilistic
polynomial-time algorithm that inputs a point val ∈ {0, 1}λ−1 and a bit b ∈ {0, 1}, and outputs a cir-
cuit unlock such that the following two conditions are met with error γ:

1. Completeness: For all λ ∈ N, all x ∈ {0, 1}λ−1, and either b ∈ {0, 1}, it holds that Pr[unlock(·) ≡
Ix,b(·)|unlock← lock(x, b)] = 1, where the probability is over the randomness of lock.

2. Soundness: For every probabilistic polynomial-time algorithm A and any polynomial function p,
there exists a (possibly inefficient) simulator S and a polynomial q(λ) such that, for all large enough
λ ∈ N, all val ∈ {0, 1}λ−1, any single bit b, and for any P : {0, 1}λ 7→ {0, 1},∣∣∣Pr[A(lock(val, b)) = P(val, b)]− Pr[SIval,b(1λ) = P(val, b)]

∣∣∣ ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries to Ival,b and the probabilities are over the internal randomness
of A and lock, and of S, respectively. Here Ix,b is an oracle that returns b when provided input x
otherwise Ix,b returns ⊥.

We note the above definition is virtual grey-box obfuscation as the simulator is allowed unbounded time
but a limited number of queries. The definition of a point function is analagous with the removal of b and
a suitable change to the ideal oracle I.

We directly adapt the definition of nonmalleability from Komargodski and Yogev. We do note that
in their definition the adversary that is performing the mauling must output the mauling function f . See
Komargodski and Yogev for definitional considerations [KY18]. Their construction also depends on an
obfuscation being easy to recognize. Our constructions consist of pairs of group elements and are easy to
recognize.

Definition 2.2. A PPT algorithm V for a digital locker, lock, for val ∈ {0, 1}λ−1, b ∈ {0, 1} is called a
verifier if for all λ ∈ N and all val ∈ {0, 1}λ−1, b ∈ {0, 1}, it holds that Pr[V(lock(x, b)) = 1] = 1, (prob.
over the randomness of V and lock).

With this definition, we can define nonmalleability. Our definition includes the bit b, does not assume
a distribution over b, and does not assume hardness of the adversary tampering with b.
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Definition 2.3. Let lock be a single bit digital locker for val ∈ {0, 1}λ−1 with an associated verifier V. Let
F : {0, 1}λ−1 → {0, 1}λ−1 be a family of functions and let X be a family of distributions over {0, 1}λ−1. A
single bit digital locker lock is non-malleable for F and X if for any polynomial-time adversary A, there
exists a negligible function ε, such that for all b ∈ {0, 1} it holds that:

Pr
val←X

[
V(C) = 1, f ∈ F , (If(val),0 ≡ C ∨ If(val),1 ≡ C)|(C, f)← A(lock(val))

]
≤ ε.

Digital Locker Our full construction is a non-malleable digital locker. In this section we present
two definitions, the first ensures nonmalleability over just the encoded point val. The second provides
nonmalleability over both the encoded point val as well as key. These definitions are used in Section 3
and Section 4 respectively.

Definition 2.4. The algorithm lock with security parameter λ is secure digital locker if the following hold:

• Correctness For every key and val,

Pr[unlock(·) ≡ Ival,key(·)|unlock← lock(val, key)] = 1.

• Security For every PPT adversary A and every positive polynomial p, there exists a simulator
S and a polynomial q(λ) such that for any sufficiently large λ, any polynomially-long sequence of
values (vali, keyi) for i = 1, . . . , `, and for any predicate P,∣∣∣Pr [A (lock(val, key)) = P(val, key)]− Pr

[
SIval,key(1λ) = P(val, key)

]∣∣∣ ≤ 1

p(λ)

where S is allowed q(λ) oracle queries to the oracle Ival,key.

Definition 2.5. Let F : {0, 1}λ → {0, 1}λ be a family of functions and let X be a family of distributions
over {0, 1}λ. A digital locker, lock, with security parameter λ is point non-malleable for F if for any
PPT A there exists a negligible function ε such that for all key ∈ {0, 1}k it holds that:

Pr
x←X

[
(unlock′, f)← A(lock(val, key))

V(unlock′) = 1, f ∈ F ,∃key′ ∈ {0, 1}k ∧ (If(val),key′ ≡ unlock′)

]
≤ ε.

Definition 2.6. Let F : {0, 1}λ → {0, 1}λ,G : {0, 1}n → {0, 1}n be families of functions and let X be
a family of distributions over {0, 1}λ. A digital locker, (lock, unlock), with security parameter λ is point
non-malleable for F and key non-malleable for G if for any PPT A there exists a negligible function ε
such that for all key ∈ {0, 1}k it holds that for any key′{0, 1}k:

Pr
x←X

[
(unlock′, f, f ′)← A(lock(val, key))

V(unlock′) = 1, f ∈ F , f ′ ∈ G ∧ (I(f(val),f ′(key)) ≡ unlock′)

]
≤ ε.

2.1 Hardness Assumptions

Our constructions will rely on multiple decisional assumptions in suitable groups. The most well known
assumption is the decisional Diffie-Hellman (DDH) assumption which says that for a prime p for a gener-
ator g of Z∗p the tuple (g, gx, gy, gxy) is computationally indistinguishable from (g, gx, gy, gu) where x, y, u
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are uniform elements in Z∗p. We consider an ensemble of groups with efficient operations where Gλ is a

group of prime order p ∈ (2λ, 2λ+1).
The first assumption that we will use is the strong `-vector assumption introduced by Bitansky and

Canetti [BC10]. This strengthens the DDH assumption in two ways. First, the values x are not drawn
from uniform powers but rather from a well spread distribution. Second, the adversary is given multiple
samples from correlated distributions X1, ...,X`. The only guarantee is on the marginal distribution of
each Xi. Nothing is guaranteed about the joint distribution. In particular, each distribution could be
identically distributed. Here we introduce a new variant of this assumption where each distribution has
average min-entropy.

Definition 2.7. An ensemble of joint distributions (X ,Y) = {Xλ, Yλ}λ∈N, where Xλ is over {0, 1}λ, is
average case well-spread if

1. It is efficiently and uniformly samplable. That is, there exists a PPT algorithm given 1λ as input
whose output is identically distributed as (Xλ, Yλ).

2. For all large enough λ ∈ N, it has super-logarithmic min-entropy. Namely, H̃∞(Xλ|Yλ) = ω(log λ).

Assumption 2.1 (t-Strong Average Vector DDH). Let ` = poly(λ) be a parameter and let Gλ be an
ensemble of groups with efficient representation and operations. We say that the t-strong average vector
decision Diffie-Hellman assumption holds if for any vector X ,Y where X is a vector in Z∗p)t that is average
case well-spread it holds that for every ssec = poly(λ) there exists some ε = ngl(λ) such that :

δssec ((g1, g
x1
1 , y1, ..., gt, g

xt
t , yt), (g1, g

u1
1 , y1, ..., gt, g

ut
t , yt)) ≤ ε.

Where ((x1, y1), ..., (xt, yt)← (X ,Y) and ui is sampled uniformly from Z∗p.

We use this variant as it is conceptually cleaner but random variables with super logarithmic average
min-entropy have worst-case super-logarithmic min-entropy with overwhelming probability. Thus, there
is not a qualitative difference between the average case assumption and a worst case formulation.

The second assumption we will consider is a variant of the power DDH assumption. The t-power DDH
assumption (introduced in [GJM02]) says that increasing powers of a single element x are indistinguishable
from uniformly random. That is, (g, gx, gx

2
, ..., gx

t
) is pseudorandom for a uniformly random x. One can

naturally extend the power DDH assumption assumption to the strong setting:

Assumption 2.2 (t-Strong Average Power DDH). The t-strong average DDH assumption is said to hold
for an ensemble of groups Gλ with associated generator g if for any average-case well-spread distribution
ensemble X ,Y, the following holds for any ssec = poly(λ) there exists ε = ngl(λ) such that

δssec((g, gXλ , gX
2
λ , ..., gX

t
λ , Yλ), (g, gr1 , gr2 , ..., grt , Yλ)) ≤ ε.

where the distribution (Xλ, Yλ) are jointly sampled. Here the elements r1, ..., rt are sampled uniformly at
random from Z∗p.

3 Non-malleability for the locked value

Construction 3.1. Let λ ∈ N be a security parameter and let {0, 1}λ be the domain. Let Ft,poly
def
=

{f : {0, 1}λ → {0, 1}λ}λ∈N the ensemble of all functions that can be computed by polynomials of degree
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at most t except constant and identity functions. Let G = {Gλ}λ∈N be a group ensemble with efficient
representation and operations where each Gλ is a group of prime order q ∈ (2λ, 2λ+1). We assume that
for every λ ∈ N there is a canonical and efficient mapping between the elements of {0, 1}λ to Gλ. Let g
be a generator of a group G5λ. For known generator g ∈ G5λ, Our single bit digital locker gets an element
x ∈ {0, 1}λ−1, b ∈ {0, 1} and randomness r ∈ G5λ. and outputs:

lock(x, b; r)
def
=

(
r, rg

(2x+b)4+(2x+b)3+(2x+b)2+(2x+b)

)
.

Given a program unlock consisting of two group elements g1, g2 for test password x′ and obfuscated program
unlock, the user runs both unlock(x′, 0) and unlock(x′, 1). That is, the user computes:

unlock(x, 0) =

(
rg

(2x)4+(2x)3+(2x)2+(2x)

1
?
= g2.

)
unlock(x, 1) =

(
rg

(2x+1)4+(2x+1)3+(2x+1)2+(2x+1)

1
?
= g2.

)
If unlock(x, b) outputs 1 then the user outputs b. Otherwise, ⊥ is the output.

We will first show this construction is secure when the adversary receives a single instance and then
discuss nonmalleability when composed. Throughout our discussion we use h(y) = y4 + y3 + y2 + y
as shorthand for the polynomial being computed in the exponent. In order to prove security of this
construction for a single obfuscation we reduce to the construction of Komgrodski and Yogev which
computes lockPoint(x; r) = (r, rg

h(x)
) for input x ∈ {0, 1}λ. The proof is deferred to Appendix A.

Theorem 3.1. Suppose that lockPoint(x; r) = (r, rg
h(x)

) is a non-malleable point function obfuscator
for points x ∈ {0, 1}λ for all distributions X = Xλ such that H∞(X) = ω(log λ). Then lock(x, b) =
lockPoint(2x + b) is a single bit digital locker for inputs x ∈ {0, 1}λ−1, b ∈ {0, 1} for all distributions X
such that H∞(X) = ω(log λ).

3.1 Composing the Single Bit Construction

We now show this construction can be composed to built digital locker. This requires showing that
soundness, completeness, and nonmalleability are preserved when the adversary is provided with single
bit digital lockers that are correlated. There are two things that could go wrong when an adversary
receives single bit digital lockers on correlated points: 1) the inclusion of correlated points may allow
the adversary to maul and 2) having multiple samples of points under different randomness may break
privacy. To prevent against tampering, we show security against an adversary that obtains gh(2x) and
gh(2x+1). That is, we don’t rely on the generators ri in providing any protection against tampering. To
show that privacy is preserved we rely on the t-strong vector DDH assumption. Our construction is a
simple concatenation of the single bit digital locker but the proof is substantially more involved.

Construction 3.2. Let all variables be as in Construction 3.1 and let key ∈ {0, 1}n be some arbitrary
value. Then define lock(val, key) as follows (initialize Out =⊥): for i = 1 to n compute:

1. Sample ri ← G5λ.

2. Append Out = Out||(ri, (ri)g
(2val+keyi)

4+(2val+keyi)
3+(2val+keyi)

2+(2val+keyi)).
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Define unlock(val) as follows for input {ri, yi}ni=1:
For i = 1 to n compute:

γi,0 = (2val)4 + (2val)3 + (2val)2 + (2val)

γi,1 = (2val + 1)4 + (2val + 1)3 + (2val + 1)2 + (2val + 1)

P (x, 0, i) =
(
rg
γi,0

i
?
= yi.

)
P (x, 1, i) =

(
rg
γi,1

i
?
= yi.

)
If P (x, b, i) outputs 1 then the user sets keyi = b. Otherwise output ⊥.

Theorem 3.2. Suppose that

1. The n-strong vector DDH assumption holds,

2. The 4t-strong power DDH assumption holds,

3. The selected prime p 6∈ {2, 3, 5, 7, 11}. (As Gλ increases these primes will never be selected. We
include this condition as the proof does not apply for the listed p.)

4. X is a distribution over {0, 1}λ−1 such that H∞(X) = ω(log λ).

Then Construction 3.2 is point non-malleable for F = {f |deg(f) ≤ t} (excluding constant polynomials
and the identity polynomial).

Proof. We separately consider correctness, soundness, and nonmalleability. Correctness is a direct ex-
tension of correctness for the single bit digital locker whose correctness is shown in Theorem 3.1. (The
crucial fact is that gh(x,b) is a one-to-one function.)

Privacy Define the random variables ~X
def
= {Xi = (X||keyi)}ni=1. Since X is distribution where

H∞(X) = ω(log λ), ~X is a average-case well spread distribution (according to Definition 2.7). Since the
function

f(x, b) = g(2x+b)
4+(2x+b)3+(2x+b)2+(2x+b)

is one-to-one it is also true that gh(
~X) is average-case well spread. Komargodski and Yogev showed that a

one-to-one function can be applied before obfuscation without effecting privacy [KY18, Claim 3.1]. This
proof directly carries over to the single bit digital locker setting. Under the strong vector DDH assumption,
{ri, rXii }ni=1 ≈ {ri, ui}ni=1 for uniform group elements ui. This means the construction satisfies a weaker
notion called distributional indistinguishability [BC10, Definition 5.3], which says no adversary can tell
between obfuscations of related points and independent uniform points. Bitanski and Canetti [BC10]
show that this definition implies composition for virtual-grey box obfuscation. (Their proof is for point
obfuscators but can be modified for this setting.) Overall virtual grey box security then follows using
arguments from [CD08].

Nonmalleability We first recall that we use h(x) to denote x4 + x3 + x2 + x. In order to prove
nonmalleability is preserved, we will show how, given an adversary that can maul our obfuscation given
two distinct obfuscations with the same point x, we can create an algorithm that can break the String
Power DDH assumption. We assume that key is a value known to both the reduction and the adversary.
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(That is, we do not rely on any uncertainty with respect to key.) That is, we assume that there exists
some key and a PPT A such that for all negligible functions ε:

Pr
x←X

[
(unlock′, f)← A(lock(val, key))

V(unlock′) = 1, f ∈ F ,∃key′{0, 1}n ∧ (I(f(val),key′) ≡ C)

]
> ε.

We show how to construct A′ that breaks the τ = 4t strong power DDH assumption (Assumption 2.2).
Suppose we receive a sequence {g, gz1 , gz2 , ..., gzτ } where each zi either equals xi (sampled x← X where
X ∈ {0, 1}λ−1) or a random group element ri. We first compute two values:

y0 = g16z4+8z3+4z2+2z1 = g16∗z4 · g8∗z3 · g4z2 · g2z1 ,
y1 = g16z4+40z3+40z2+20z1+4.

A′ then computes a vector based on these values:

{ri
$← G, rykeyii }ni=1.

Then A is initialized based on these values and outputs a function f and a 2n vector of group elements
{rA,i, wA,i}ni=1. We assume f is specified by coefficients (if not, these coefficients can be interpolated using
points from the distribution X, see [KY18]). We can then use the f provided by A to check if each point
in the vector is a valid single bit digital locker of f(x) and a bit 0 or 1. Details for this check are in
Algorithm 1. We proceed to analyze the success of this algorithm in both the real case zi = xi and the
random case zi = ri.

The real case In the real case the adversary A sees pairs
(
ri, r

gh(2x+keyi)

i

)
. This is exactly the

distribution expected by A. Furthermore, A′ outputs 1 when the mauled obfuscation is a valid obfuscation
of x on some key′. Thus, given the real distribution A′ outputs 1 with probability at least ε.

The random case We now assume that each zi is a uniform and randomly distributed si for 1 ≤
i ≤ τ . We assume that the adversary is computationally unbounded and is provided with two points
c0 = 16s4 + 8s3 + 4s2 + 2s1 and c1 = 16s4 + 40s3 + 40s2 + 20s1 + 4. (We can provide the adversary also
with the values ri.) That is, we give the adversary direct access to the value in the exponent. Its clear if
no adversary can win in this game, then no adversary can win in the original game.

In order for A to succeed she needs to compute cα =
∑τ

i=0 αisi or cβ =
∑τ

i=0 βisi (the vectors ~α and
~β are defined in Algorithm 1). If the degree of the polynomial f is greater than 1 this requires computing
a linear combination with some si where i > 4 that is independent of the adversary’s view. In this case,
both the distribution of both random variables Cα and Cβ has entropy log |Gλ| = λ conditioned on the
adversary’s view [KY18, Claim 4.4]. By a union bound the probability of matching either Cα or Cβ for
some i is at most Pr[success] ≤ 2

2−λ
= 1

2λ−1 .
We now move to the case where the polynomial f is of degree 1. That is, f(x) = µx + ν. If the

function f is a linear one, then we will show how an accurate obfuscation of h(2f(x′) + b) cannot be
formed from the inputs. To do this, we will look at what information about the points that the adversary
receives. The adversary receives a multiple linear combinations of s1, s2, s3, s4.

16 8 4 2 0
16 40 40 20 4
0 0 0 0 1



s4
s3
s2
s1
1

 =

c0c1
1

 .
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input : g, gz1 , ..., gτ

output: P(x)

1. Sample key← {0, 1}n.

2. Compute y0 = g16z4+8z3+4z2+2z1 and y1 = g16z4+40z3+40z2+20z1+4.

3. Compute {ri
$← G, rykeyii }ni=1..

4. Run (f, {rA,i, wA,i}ni=1)← A({ri, r
ykeyi
i }ni=1). If the output is not a function followed by

2n group elements output 0.

5. Compute coefficients αi of h(2f(x)) and βi of h(2 ∗ f(x) + 1).

6. For i = 1 to n

(a) Check if wA,i
?
= r

(
∑τ
i=0 αizi)

A,i or wA,i
?
= r

(
∑τ
i=0 βizi)

A,i .

(b) If neither check is true, output 0.

7. Output 1.

Algorithm 1: Construction of A′ from A

The first row of the above matrix corresponds to the linear combination used when keyi = 1, the second
row when keyi = 0 and the last row is the constant group element. As stated, the function f can be
rewritten as f(x) = µ ∗ x′ + ν. By substituting and simplifying, f can finally be rewritten as:

2f(x) + b′ = 2 ∗ (µx+ ν) + b′ = 2µx+ 2ν + b′ = 2ax+ b

for some b ∈ {0, 1} and a is a field element. Note we consider this as an existential argument so a so
a = (µx+ ν)x−1 = µ+ νx−1 is a valid assignment for a. We can write the desired linear combination as
follows: 

16a4

32a3b+ 8a3

20a2b2 + 16a2b+ 4a2

6ab3 + 6ab2 + 6ab+ 2a
b4 + b3 + b2 + b


ᵀ 
s4
s3
s2
s1
1

 .
We now show that even for an unbounded A, this value is information theoretically hidden (given c0, c1, 1).

Lemma 3.1. Let S1, S2, S3, S4 be uniformly distributed in G5λ then define C0 = 16S1 + 8S2 + 4S3 + 2S4
mod G5λ and C1 = 16S1 + 40S2 + 40S3 + 20S4 + 4 mod G5λ Define for a ∈ G5λ, b ∈ {0, 1},

C∗a,b = 16a4S4 + (32a3b+ 8a3)S3 + (20a2b2 + 16a2b+ 4a2)S2

+ (6ab3 + 6ab2 + 6ab+ 2a)S1 + (b4 + b3 + b2 + b).

Then the value H∞(C∗a,b|C0, C1) ≥ λ− 1 if a 6= 0, 1 and p 6∈ {2, 3, 5, 11, 17}.
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Proof of Lemma 3.1. We first show that when a 6= 0, 1, the value ca,b is linearly independent of the values
c0, c1, 1. That is, we show the following system has no solutions α0c0 + α1c1 + α2c2 = ca,b. To show
linear independence we consider the following system of equations: Since A only has access to linear
combinations of these variables in order for A to properly output some correct mauled obfuscation, they
must find a solution to the following:

16 8 4 2 0
16 40 40 20 4
0 0 0 0 1

ᵀ α0

α1

α2

 =


16a4

32a3b+ 8a3

20a2b2 + 16a2b+ 4a2

6ab3 + 6ab2 + 6ab+ 2a
b4 + b3 + b2 + b


where α0, α1, α2 are field elements. Because b is a single bit (i.e. either 0 or 1), we will examine the
existence of solutions under these two possibilities. In both cases we assume that the adversary can
exactly solve the last equation using α2 as a free variable and consider the following reduced system:

16 16
40 8
40 4
20 2

[α0

α1

]
=


16a4

32a3b+ 8a3

20a2b2 + 16a2b+ 4a2

6ab3 + 6ab2 + 6ab+ 2a


Case 1: b = 0 Considering the two by two system formed by the second and third equation yields that:

40α0 = 8a2 − 8a3,

4α1 = 8a3 − 4a2.

Substituting these values into the fourth equation yields a quadratic for a:

4a2 − 2a = 0

This has solutions of a = 0, 2−1. Substituting the solutions for α0, α1 into the constraint from the first
equation yields the quartic:

16a4 − (32 + 16 ∗ 5−1)a3 + (16− 16 ∗ 5−1)a2 = 0

This equation is consistent with the solutions where a = 0. However, when a = 2−1, the first equation is
only satisfied when 3 ≡ 0 mod p. Thus, it suffices for p 6= 3. Since the solution when a = 0 is considered
trivial, nontrivial solutions exist in this case only when p = 3.

Case 2: b = 1 Again starting with the second and third linear constraints we have that:

α0 = 2a2 − a3,
α1 = 10a3 − 10a2.

Substituting these values into the fourth equation yields 180a3 − 160a2 − 20a = 0. Which has the trivial
solutions of a = 0, 1 and nontrivial solution a = −1 ∗ 9−1. However, when a = −1 ∗ 9−1, the first equation
is only satisfied when 11968 ≡ 0 mod p. Thus, it suffices for p 6∈ {2, 11, 17}. Since the solution when
a = 0 is considered trivial, nontrivial solutions exist only when p ∈ {2, 11, 17}.
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Putting things together So, regardless of choice of b, if a is nontrivial, the value ca,b is linearly
independent of c0, c1 and 1. Consider the following system of equations:

16 16 0 16a4

8 40 0 32a3b+ 8a3

1 40 0 20a2b2 + 16a2b+ 4a2

2 20 0 6ab3 + 6ab2 + 6ab+ 2a
0 4 1 b4 + b3 + b2 + b


ᵀ 
s4
s3
s2
s1
1

 =


c0
c1
1
ca,b


This system of equations is rank 4 (in the case when a is nontrivial). This means for any particular

c0, c1 there are at least 2λ tuples of S1, S2, S3, S4 that produce any particular value of ca,b. In particular,
the probability that Pr[Ca,b = c|C0, C1] = 1

2λ
. Since the adversary has to match one of two values by

union bound they succeed with probability at most 2−λ+1. This completes the proof of Lemma 3.1.

Thus, in both random cases the probability of mauling is at most 2−(λ−1). This allows us to state the
distinguishing capability of A:

Pr[A({gxi}τi=1) = 1]− Pr[A({gri}τi=1) = 1] ≥ ε− 1

2λ−1
.

This is a contradiction and completes the proof of Theorem 3.2.

4 Non-malleability for the key

In this section, we extend our construction to prevent tampering over both val and key. We need several
new tools including non-malleable codes and seed-dependent condensers. We first introduce these in turn.

Non-malleable codes We first need to introduce the notion of non-malleable codes introduced by
Dziembowski, Pietrzak, and Wichs [DPW10].

Definition 4.1. A pair of algorithms (Enc,Dec) is called a coding scheme if for Enc : {0, 1}k → {0, 1}n
is randomized and Dec : {0, 1}n → {0, 1}k∪ ⊥ is deterministic and for each s ∈ {0, 1}k it holds that
Pr[Dec(Enc(s)) = s] = 1.

Definition 4.2. A coding scheme, (Enc,Dec) is called (εnmc, snmc,F)-non-malleable if for each f ∈ F
and each s ∈ {0, 1}k there exists a distribution Df () over {{0, 1}k, same} that is efficiently samplable given
oracle access to f such that the following holds:

δsnmc({c← Enc(s); c← f(c), s = Dec(c) : Output s},
{s̃← Df , Output s if s̃ = same else s̃}) ≤ εnmc.

Seed Dependent Condensers Seed dependent condensers were introduced by Dodis, Ristenpart, and
Vadhan [DRV12]. The goal of a condenser is similar to a traditional randomness extractor except that
rather than considering a uniform output, the output only has to be statistical close to a distribution
with min-entropy. Importantly, it is possible to construct condensers where the adversary is allowed to
output the chosen distribution after seeing the seed (called seed-dependent).

14



Definition 4.3. Let cond : {0, 1}λ×{0, 1}d → {0, 1}α is a (k, k′, s, ε) seed-dependent condenser if for all
probabilistic adversaries of size at most s who take a random seed seed ← Ud and output a distribution
Xseed ← A(seed) of entropy H∞(X|seed) ≥ k. Define the joint distribution (X,Ud) as the joint distribution
over Xseed arising from a random seed ← Ud. Then there exists a distribution Y such that H̃∞(Y |Ud)
such that

∆((Y, Ud), (cond(X;Ud), Ud)) ≤ ε.

Dodis, Ristenpart, and Vadhan showed that seed-dependent condensers can be constructed using the
standard tool of collision resistant hash functions:

Definition 4.4. A family of hash functions H = {h : {0, 1}λ → {0, 1}α is (t, δ)-collision resistant if for
any circuit A of size at most t,

Pr
h←H∧(x1,x2)←A(h)

[h(x1) = h(x2) ∧ x1 6= x2] ≤ δ.

The following theorem states that collision-resistance translates into a seed-dependent condenser:

Theorem 4.1. [DRV12, Theorem 4.1] Let H be a (2s, δ)-collision-resistant hash function family, then

cond(x;h) = h(x) for h← H is a (− log(δ), − log(δ)−1
2 , s, 0)-seed-dependent condenser.

4.1 The Construction

Intuitively, we can combine non-malleable codes and seed-dependent condensers to check if the adversary
tampers over the key value. We use the locked point val as input to a seed dependent condenser as part
of the value encoded in the nonmalleable code. If the adversary tampers to an independent value there
are unlikely to match the output of the condenser on the real val.

Construction 4.1. Let λ ∈ N be a security parameter and let {0, 1}λ be the domain.

1. Let Ft,poly be as above.

2. Let (Enc,Dec) be a coding scheme where Enc : {0, 1}k+β → {0, 1}n.

3. Let G = {Gλ}λ∈N be a group ensemble with efficient representation and operations where each G5λ

is a group of prime order q ∈ (25λ, 25λ+1).

4. X is a distribution such that H∞(X) ≥ µ = ω(log λ). There is no requirement that X is independent
of system parameters (in particular seed) as long as it is efficiently samplable.

5. Suppose for any s = poly(λ) there exists β = ω(log λ) such cond : {0, 1}λ × {0, 1}d → {0, 1}α is a
(µ, β, s, 0)-seed-dependent condenser (instantiable using Theorem 4.1).

6. Let a description of G5λ, a generator g for G5λ and seed← {0, 1}d be system parameters.

Define the algorithms (lock, unlock) as in Figure 1.

Theorem 4.2. Suppose that

1. The n-strong average vector DDH assumption holds,

2. The 4t-strong average power DDH assumption holds,

3. The selected prime p 6∈ {2, 3, 5, 7, 11}.
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lock(val, key), input in {0, 1}λ+k:

1. Compute y = cond(val, seed).

2. Compute z = Enc(key||y).

3. Initialize Out =⊥.

4. For i = 1 to n compute:

(a) Sample random generator
ri ← G5λ.

(b) Compute

γi = (2val + zi)
4 + (2val + zi)

3

+ (2val + zi)
2 + (2val + zi).

(c) Append Out =
Out|| (ri, (ri)

gγi ).

5. Output Out.

unlock(val), input in {0, 1}λ:

1. Compute y = cond(val, seed).

2. For i = 1 to n, input ri, yi compute:

γi,0 = (2val)4 + (2val)3 + (2val)2 + (2val)

γi,1 = (2val + 1)4 + (2val + 1)3

+ (2val + 1)2 + (2val + 1)

P (x, 0, i) =
(
rg
γi,0

i
?
= yi.

)
, P (x, 1, i) =

(
rg
γi,1

i
?
= yi.

)
(a) If P (x, b, i) outputs 1 then set zi = b. Other-

wise output ⊥.

3. Run decode key′ = Dec(z).

4. If key′k...k+n 6= y output ⊥.
Else output key′0...k−1.

Figure 1: Non-malleable digital locker preventing tampering over both val and key. A group generator g and a
seed of a seed-dependent condenser are global system parameters.

4. Suppose that µ− β = ω(log λ).

5. The code (Enc,Dec) is an (εnmc, snmc,Fnmc) non-malleable code.

Then (lock, unlock) in Construction 4.1 is point non-malleable for Fpoly,t and key nonmallable Fnmc.

Proof. We note a couple of key differences between the above theorem and Theorem 3.2 that provided
non-malleable only over the point val. First, the condition on the distribution X is changed. We now
require that X|(cond(X;S), S) has min-entropy (recalling that X can be chosen dependent on S). Note
that if the output length β is a constant fraction of H∞(X) this condition is implied by the entropy of X
using standard entropy arguments [DORS08, Lemma 2.2b].

Correctness, privacy, and point nonmalleability follow using the same arguments as Theorem 3.2 under
the strengthened average case vector and power DDH assumptions. The core of our proof is a theorem
(which may be of independent interest) that allows us to use non-malleable codes in a nontraditional
way where the adversary is provided with pseudorandom information that is correlated to the encoded
codeword before choosing which function f ∈ F to tamper with. We first define an adaptive tampering
experiment as follows for arbitrary distributions X,Y, Z and binary predicate Test:

Experiment Expad−nmc
Fnmc,X,Y,Z,A,Test:

Sample (x, y, z)← (X,Y, Z)
Sample f ← A(x).
If f 6∈ Fnmc output 0.
If f(y) = y output 0.
If Test(f(y), z) output 1.
Else output 0.
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Theorem 4.3. Let Z ∈ {0, 1}α be a distribution such that H∞(Z) ≥ β. Let (Enc,Dec) be a (εnmc, snmc,F)
non-malleable code and Enc : {0, 1}k → {0, 1}n where k = α+ γ. Let key ∈ {0, 1}γ, define the distribution
Ykey by sampling z ← Z and computing Enc(key, z). For inputs y and z, define Test(y, z) = 1 if and only
if Dec(y)γ...(γ+α−1) = z. Suppose that

1. For all f ∈ F it is possible to compute f in a circuit of size at most sF ,eval.

2. It is possible to evaluate Test using a circuit of size at most |Test| and snmc > |Test|.
3. For a function f it is possible to check if f ∈ F in size at most sF ,check. Furthermore, this check is

correct with probability 1.

4. X be an arbitrary distribution over M such that

δDspr ((X,Ykey, Z), (UM, Ykey, Z)) ≤ εpr.

Then for all A of size s it holds that

Pr
[
Expad−nmc

F ,X,Y,Z,A = 1
]
≤ 2−β + εnmc + εpr.

Here s = min{spr − |Test| − sF ,eval − sF ,check, snmc}.

The above lemma says that provided an adversary with some information X that may be correlated
to the encoded codeword Y is not harmful as long as X is pseudorandom in the presence of Y . Crucially,
it must be possible to test if the adversary tampers to an independent codeword. This necessitates the
use of the auxiliary distribution Z that is part of the value encoded in Y . (In our construction Z is the
output of a seed-dependent condenser applied to val.)

Proof. We begin by defining a standard non-malleable code experiment with a simulator for a function f
defined by a distribution Df (·):

Experiment Expsim
f,Z,Df

:

Sample s̃← Df (·), z ← Z
If s̃ = same output 0.
If Test(s̃, z) = 1 output 1.
Else output 0.

Lemma 4.1. Suppose that H∞(Z) ≥ β, for any f , Pr[Expsim
f,Z,Df

(k) = 1] ≤ 2−β.

Proof of Lemma 4.1. We note that whenever s̃ = same the output of the experiment is 0. Thus, we can
restrict our attention to cases when s̃ 6= same. Then Pr[Z = s̃k−α...k] ≤ 2−H∞(Z) = 2−β. This completes
the proof of Lemma 4.1.

We will now argue that the adversary in the adaptive adversary does not perform substantially better
than in the simulated experiment. We use a hybrid argument with two intermediate games, Exp1

F ,Y,Z,A
and Exp2

F ,X,Y,Z,A. In moving from Expad−nmc
F ,X,Y,Z,A to Exp1

F ,Y,Z,A we will replace the distribution X with a

random distribution that is uncorrelated to Y,Z. In Exp2
f,Y,Z we will eliminate the uniform distribution

as input and move from the adversary picking a function to defining the experiment for a particular
function f . Finally in moving to Expsim

f,Z,Df
(k) we will rely on the hardness of non-malleable codes. The

two experiments are described formally below.
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Experiment Exp1
F ,Y,Z,A:

Sample (y, z)← (Y,Z)
Sample u←M.
Sample f ← A(u).
If f 6∈ F output 0.
If f(y) = y output 0.
Output Test(f(y), z).

Experiment Exp2
f,Y,Z :

Sample (y, z)← (Y,Z)
If f(y) = y output 0.
Output Test(f(y), z).

We now show each of these games are computationally close.

Lemma 4.2. Suppose that

1. For each f ∈ F , the function f is computable in size at most sF .

2. For f it is possible to correctly check f ∈ F in size sF ,check.

3. That δDspr ((X,Ykey, Z), (UM, Ykey, Z)) ≤ εpr.

Then for A of size at most spr − |Test| − sF ,eval − sF ,check,∣∣∣Pr
[
Expad−nmc

F ,X,Y,Z,A(k) = 1
]
− Pr[Exp1

F ,Y,Z,A(k) = 1]
∣∣∣ ≤ εpr.

Proof of Lemma 4.2. Suppose not. That is, suppose that there exists an A of size at most spr − |Test| −
sF ,eval − sF ,check such that

|Pr[Expad−nmc
F ,X,Y,Z,A = 1]− Pr[Exp1

F ,Y,Z,A = 1]| > εpr.

Then the following program D (of size at most spr) is a distinguisher for ((X,Y, Z) and (UM, Y, Z)):

1. On input x, y, z.

2. Run f ← A(x).

3. If f 6∈ F or f(y) = y output 0.

4. Else output Test(f(y), z).

That is,

|Pr[D(X,Y, Z) = 1]− Pr[D(UM, Y, Z) = 1]|

=
∣∣∣Pr[Expad−nmc

F ,X,Y,Z,A = 1]− Pr[Exp1
F ,Y,Z,A = 1]

∣∣∣ > εpr.

This contradicts the pseudorandomness of X|(Y,Z) and completes the proof of Lemma 4.2.

Lemma 4.3. There exists some f ∈ F such that for any A (here A need not be computationally bounded):

Pr[Exp2
f,Y,Z(k) = 1] ≥ Pr[Exp1

F ,Y,Z,A(k) = 1].
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Proof of Lemma 4.3. First we consider the circuits A that always output f ∈ F . Given any A that
outputs an f 6∈ F we can design another A′ that runs f ← F and simply outputs a fixed f ′ ∈ F whenever
f 6∈ F . This A′ does not perform worse in Exp1 than A.

Now consider some A that always outputs functions f ∈ F . There is a distribution DA that outputs
exactly the distribution that is output by A. Note that this distribution is independent of y. Note that

Pr[Exp1
F ,Y,Z,A = 1] =

∑
f∈F

Pr [DA = f ] Pr
(y,z)←(Y,Z)

[f(y) 6= y ∧ Test(y, z) = 1] .

Now suppose that for all f ∈ F ,

Pr[Exp2
f,Y,Z(k) = 1] < Pr[Exp1

F ,Y,Z,A(k) = 1].

Then one has

Pr[Exp1
F ,Y,Z,A = 1] =

∑
f∈F

Pr [DA = f ] Pr
(y,z)←(Y,Z)

[f(y) 6= y ∧ Test(y, z) = 1]

=
∑
f∈F

Pr [DA = f ] Pr[Exp2
f,Y,Z = 1]

<
∑
f∈F

Pr [DA = f ] Pr[Exp1
F ,Y,Z,A = 1]

= Pr[Exp1
F ,Y,Z,A = 1]

This is a contradiction and completes the proof of Lemma 4.3.

Before showing distinguishability of the last two games we consider the definition of non-malleable
codes where the encoded secret is drawn from a distribution instead of considering a single point:

Lemma 4.4. Let (Enc,Dec) be a (εnmc, snmc)-non-malleable code for functions in F . Then for any
distribution Z over points in {0, 1}k it holds that

δDsnmc ( ({c← Enc(Z); c← f(c), s = Dec(c) : Output s}, Z) ,

({s̃← Df , Output Z if s̃ = same else s̃}, Z))

≤ εnmc.

Proof of Lemma 4.4. Suppose not, that is there exists some Z for which the statement is not true. In
particular, there must be some z ∈ Z where Pr[Z = z] > 0 such that there exists Dsnmc ,

δDsnmc ( ({c← Enc(z); c← f(c), s = Dec(c) : Output s}, z) ,
({s̃← Df , Output z if s̃ = same else s̃}, z)
> εnmc.

This contradicts security of the non-malleable code.

With this distributional version of security for non-malleable codes we can turn to indistinguishability of
the last two games.
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Lemma 4.5. For every f ∈ F , if snmc ≥ |Test| then∣∣∣Pr[Expsim
f,Z,Df

= 1]− Pr[Exp2
f,Y,Z = 1]

∣∣∣ ≤ εnmc.
Proof of Lemma 4.5. Suppose not, that is suppose that there exists some f ∈ F such that∣∣∣Pr[Expsim

f,Z,Df
(k) = 1]− Pr[Exp2

f,Y,Z(k) = 1]
∣∣∣ > εnmc.

Then we have a distinguisher D (of size |Test|) for the distributional version of non-malleable code security
guarantee 1) input s̃, z and 2) Compute Test(s̃, z). This completes the proof of Lemma 4.5.

Combining Lemmas 4.1, 4.2, 4.3 and 4.5 completes the proof of Theorem 4.3.

Application of Theorem 4.3 yields Theorem 4.2.

5 Encoding multiple key bits in each digital locker

In this section, we transform Construction 3.2 to support encoding multiple bits in each group element.
The reason for this extension is to support non-malleable codes where Fnmc allows tampering over nonbi-
nary symbols. An example of this type of non-malleable code is the recent work by Kiayias et al. [KLT18].
We show how to support τ bits in each obfuscation at the cost of running time proportional to 2τ . This
increase in running time is due to exhaustively checking each possible value of the symbol. In addition, it
allows a weaker vector DDH assumption at the cost of a stronger power DDH assumption. It thus allows
a tradeoff between these two parameters.

Construction 5.1. Let all variables be as in Construction 3.1, let key ∈ {0, 1}n be some arbitrary value,
and let τ = O(log λ). Then define lock(val, key) as follows: for i = 1 to n/τ compute:

1. Sample ri ← G(6+τ)λ.

2. Set z = x+ 2.

3. Output (ri, (ri)
g
z4+τ+z3+τ+z2+τ+z1+τ+zτ+

∑τ−1
i=0

key(i mod τ)z
i

).

Define unlock(val) as follows: for i = 1 to n/τ , input ri, yi for each vj ∈ [0, 2τ ) compute:

P (x, vj , i) =

(
rg

(x+2)4+τ+(x+2)3+τ+(x+2)2+τ+(x+2)1+τ+(x+2)τ+
∑τ−1
j=0

vj(x+2)j

i
?
= yi

)
.

If P (x, vj , i) outputs 1 then the user sets keyi = vj. Otherwise output ⊥.

Nonmalleability over keys This construction can be augmented using a seed-dependent condenser
and a non-malleable code in the same method as in Construction 4.1. In theorem below we only consider
nonmalleability over the locked val and assume no distribution over key.

Theorem 5.1. Suppose that
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1. The n
τ -strong average vector DDH assumption holds,

2. The (5 + τ)t-strong average power DDH assumption holds,

3. The selected prime p 6∈ {2, 31, 41, 73}. (As Gλ increases these primes will never be selected. We
include this condition as the proof does not apply if p ∈ {2, 31, 41, 73}.)

4. X is a distribution over {0, 1}λ−1 such that H∞(X) = ω(log λ).

Then the (lock, unlock) in Construction 5.1 is point non-malleable for F = {f | deg(f) ≤ t} (excluding
constant polynomials and the identity polynomial).

Proof of Theorem 5.1. As before we separately consider correctness, soundness, and nonmalleability.

Correctness For correctness first note that

(x+ 1)4+τ + (x+ 1)3+τ + (x+ 1)2+τ + (x+ 1)1+τ + (x+ 1)τ >

4+τ∑
i=0

xi

In particular, the binomial expansion of (x + 1)4+τ has nonzero coefficients on every power i ≤ 4 + τ .
This shows that for any key, key′ ∈ {0, 1}τ and any x > x′ it is true that

g(x+2)4+τ+(x+2)3+τ+(x+2)2+τ+(x+2)1+τ+(x+2)τ+
∑τ−1
i=0 keyi(x+2)i 6=

g(x
′+2)4+τ+(x′+2)3+τ+(x′+2)2+τ+(x′+2)1+τ+(x′+2)τ+

∑τ−1
i=0 key′i(x

′+2)i .

That is, the value of key cannot cause the obfuscation to unlock on a different point. Furthermore, the
function is one-to-one as long as x 6∈ {0, 1}. These cases are avoiding by computing x+2 before computing
the polynomial. Note that since x ∈ {0, 1}λ−1 it always holds that (x+ 2) ∈ {0, 1}λ.

Privacy The privacy argument for this construction is exactly the same as in Theorem 3.2 since the
function

f(x, keyi) = g(x+2)4+τ+x3+τ+(x+2)2+τ+(x+2)1+τ+(x+2)τ+
∑τ−1
j=0 keyi,j(x+2)xj

is a one-to-one function.

Nonmalleability The analysis for the random case when the mauling function has degree greater than
1 are exactly the same as in Theorem 3.2. We focus on showing that the adversary cannot find a function
linear f using linear combinations of the known values. We can think of the adversary being given values
of following type:


1 1 1 1 1 key0,0 ... key0,τ−1
1 1 1 1 1 key0,0 ... key0,τ−1
...
1 1 1 1 1 keyn/τ,0 ... keyn/τ,τ−1





r4+τ
r3+τ
r2+τ
r1+τ
rτ
...
r1


=


c0
c2
...

cn/tau


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Without loss of generality, we assume that an adversary can perfectly set/predict the powers xj where
j < τ . However, to change the obfuscated point they will also need to change the higher order powers.
We can think of the adversary having to find α, β, γ such that

4∑
i=0

(αx+ β)i+τ = γ

4∑
i=0

xi+τ .

We can write the desired linear combination as follows:

α4+τ

α3+τ
((
τ+4
1

)
β +

(
τ+3
0

))
α2+τ

((
τ+4
2

)
β2 +

(
τ+3
1

)
β +

(
τ+2
0

))
α1+τ

(∑3
i=0

((
τ+4−i
3−i

)
β3−i

))
ατ
(∑4

i=0

((
τ+4−i
4−i

)
β4−i

))



ᵀ 
r4+τ 0 0 0 0

0 r3+τ 0 0 0
0 0 r2+τ 0 0
0 0 0 r1+τ 0
0 0 0 0 rτ

 = γ


r4+τ
r3+τ
r2+τ
r1+τ
rτ


Substituting one has that

1. If β = 0 then this implies ατ+4 = ατ+3 = ατ+2 = ατ+1 = ατ which only has solutions if α = 0 or
α = 1. These are both considered trivial solutions.

2. γ = ατ+4 (using first equation),

3. (τ + 4)β + 1 = α (using second equation),

4. (τ + 4)β = 2 (using third equation, and relying on β 6= 0).

5. α = 3 (substitution of third constraint into second equation)

6. γ = 81 (substitution of α in first equation)

7. τ = −5 or τ = −114 ∗ 31−1 (solving fourth equation using prior constraints).

Thus, using the first four equations we are able rule out all solutions unless τ = −5 or τ = −114 ∗ 31−1.
Using the last equation we can almost always rule out this second possibility for τ . Namely, the fifth
equation (recalling that β = 2/(τ + 4))(

τ + 4

4

)(
2

τ + 4

)4

+

(
τ + 3

3

)(
2

τ + 4

)3

+

(
τ + 2

2

)(
2

τ + 4

)2

+ (τ + 1)
2

τ + 4
+ 1 = 81

This solution is only satisfied for τ = −114 ∗ 31−1 if 191552 ≡ 0 mod p. Thus, it suffices to choose
p 6∈ {2, 31, 41, 73}. This allows us to conclude that the adversary’s value in the random case is linearly
independent, which again leads to this value having entropy λ. Since the adversary only has to match
a single value for each index by union bound their overall probability may be as high as τ/2λ. Thus, in
both random cases the probability of mauling is at most χ/2(λ). We note that since τ = O(log λ) for large
enough λ one can be sure that τ 6≡ −5 mod Gλ. This allows us to state the distinguishing capability of
A:

Pr[A({gxi}4ti=1) = 1]− Pr[A({gri}4ti=1) = 1] ≥ ε− τ

2λ
.

In particular, this breaks the (5 + τ)t-strong average power DDH assumption. This is a contradiction and
completes the proof of Theorem 5.1.
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A Analysis of One Time Security

Proof of Theorem 3.1. We separately argue completeness, soundness, and nonmalleability.
Completeness For completeness, it suffices to show that the pair (r, rg

h(2x+b)
) is unique for each

choice of x and b is unique for each pair x, b. First note that 2x + b is injective in both variables. Then
h(x) = x4 + x3 + x2 + x is injective, thus the value h(2x + b) will also be unique for each x, b. Let p
be the prime corresponding to the chosen group G5λ. Then, it holds that h(2x + b) ≤ 25λ and thus, the

value of gh(2x+b) is one-to-one. This ensures the pair (r, rg
h(2x+b)

) is unique for unique x, b. Completeness
immediately follows.

Soundness Note no distribution is assumed on the bit b. Fix some b ∈ {0, 1}. Let Zλ be the set of
distributions Z over {0, 1}λ where H∞(Z) = ω(log λ) and similarly define the set of distributions Xλ−1 as
the set of distributions X over {0, 1}λ−1 where H∞(X) = ω(log λ). Lastly, define the set of distributions
Y = {2X + b|X ∈ Xλ−1} where we understand 2X + b to be a distribution created by sampling x ← X
and computing 2x + b. Then Y ⊆ Zλ. That is, for each distribution that lock is intended to secure it is
contained in the set of distributions that lockPoint′ is intended to secure. Similarly, let Z ∈ Zλ and define
the distribution X using the probability density function Pr[X = x] = Pr[Z = (2x+0)]+Pr[Z = (2x+1)].
Then H∞(X) ≥ ω(log λ), thus X ∈ Xλ−1.

We show soundness by contradiction. First assume that the construction described lockPoint(x) =

(r, rg
h(x)

) is sound. That is, for all c ∈ Z+ there exists some λp,c such that for λ > λp,c for all PPT Ap,
there exists a simulator Sp such that:∣∣∣∣ Pr

x∈{0,1}λ
[Ap(lockPoint(x)) = 1]− Pr

x∈{0,1}λ
[SIxp (1λ) = 1]

∣∣∣∣ ≤ 1

λc
.
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input : Oracle access to Ix,b
output: P(x, b)

Initialize Sp.
Receive query y from Sp, send x0,...λ−2 to Ix,b.
If response b, check if xλ−1 = b, if so return 1.
Otherwise return ⊥ to S′.
Output Sdls output.

Algorithm 2: Construction of Sdl from Sp

In addition, suppose our construction is insecure, that is, there exists some c ∈ Z+ such that for all λc,dl
there exists a λ > λc,dl such that there exists a PPT Adl where for all Sdl using a polynomial number of
queries ∣∣∣∣ Pr

x∈{0,1}λ∗
[Adl(lock(x, b)) = 1]− Pr

x∈{0,1}λ
[SIx,bdl (1λ

∗
) = 1]

∣∣∣∣ > 1

λc
.

For a fixed c ∈ Z+, denote by λmax,c = max{λp,c, λdl,c}. There must exist some λ > λc,max where
the distance between Ap and Sp is less than 1/λc while there exists some Adl such that for all Sdl the
distance between Adl and Sdl is greater than 1/λc. Denote by A∗dl one such adversary, that is for A∗dl and
all Sdl making a polynomial number of queries their statistical distance is at least 1/λc. With the goal
of arriving at a contradiction we use A∗dl to construct an adversary A∗p for lock that cannot be effectively
simulated.

This adversary A∗p works as follows, on input lockPoint(x) where x ∈ {0, 1}λ, A∗p initializes A∗dl with
input lockPoint(x). Note this is equivalent to initializing A∗dl with input lock(x′||b) for x = x′||b. Any
predicate P(x′||b) = P(x) output by A∗dl is a valid predicate on on x. So, this predicate can be immediately
output.

Thus, A∗dl implies the existence of an A∗p that outputs 1 with the same probability, and in particular
they succeed with the same probability because we have exactly produced the probability distribution
that A∗dl is expecting. That is,

Pr[A∗p[(lockPoint(x)) = 1] = Pr[A∗dl(lock(x′, b)) = 1].

By assumption for each Ap there exists Sp such that for λ > λmax,c,∣∣∣∣ Pr
x∈Zλ

[Ap(lockPoint(x)) = P(x)]− Pr
x∈Zλ

[SIx(·)p (1λ) = P(x)]

∣∣∣∣ ≤ 1

λc
.

This Sp implies the existence of an Sdl that computes any predicate P on (x′, b). Sdl initializes Sp and
for every query from Sp it drops the last bit and asks its oracle the query. It only returns a match to Sp
if the returned bit matches the last bit of Sp’s query. A formal description is in Algorithm 2.

So, the existence of Sp directly leads to the simulator Sdl that computes a 1 with the same probability.
That is,

Pr[SIxp (1λ) = 1] = Pr[SIx,bdl (1λ) = 1].

These three equations allow us to state:
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∣∣∣∣ Pr
x←X

[A∗dl(lock(x, b)) = 1]− Pr
x←X

[SIx,bdl (1λ
∗
) = 1]

∣∣∣∣ ≤ 1

λc
.

This is a contradiction and completes the argument of soundness.

Nonmalleability We proceed by contradiction assuming that there exists some ensemble X ′λ where
H∞(Xλ) = ω(log λ), some Adl, and some bit b ∈ {0, 1} such that there exists some c where

Pr
x′←X′λ

[
(lock′, f)← Adl(lock(x′, b))

V(lock′) = 1, f ∈ F , (If(x′),0 ≡ lock′ ∨ If(x′),1 ≡ lock′)|

]
> 1/λc

We build an mauling adversary for the original obfuscation lockPoint. We consider the ensemble of
distributions Zλ = Xλ||b, that is the distribution of Xλ with the bit b appended. Note that this is a
valid ensemble for the obfuscator lockPoint In showing non-malleability, we are able to inherit the non-
malleability guarantees of the underlying obfuscation, with a slight adjustment for bounds. This follows
both for polynomial functions of x as well as for bit flipping on b. We design Ap as follows:

1. Receive lockPoint(x) as input (equivalently receive lock(2x′ + b)).

2. Initialize Adl with lockPoint(x).

3. Receive lock′, f .

4. Set f0(x) = 2−1(x− b) and f2(x) = 2 ∗ (x) + b. Compute f3 = f2 ◦ f ◦ f0.

5. Flip r
$← {0, 1}. If r = 0 set f ′ = f3 − b. Else set f ′ = f3 − b+ 1.

6. Output lock′, f ′.

There are two pieces to how Ap is using Adl. First, Ap is trying to produce a tampering function on
x ∈ {0, 1}λ, while A∗ is tampering on x′ contained in x′||b. Consider the example when f(x) = 3x + 1
is output by the adversary. This is akin to the adversary producing a valid obfuscation of 6x + 2 + 1
or 6x + 2. The two functions f0 and f2 are for this difference. The second main difference is that the
Adl does not know if the last bit of x will be 0 or 1 so they output each possibility with probability 1/2.
Together these facts allow us to conclude:

Pr
x←Zλ

[
(lockPoint′, f)← Ap(lockPoint(x))

V(lockPoint′) = 1, f ∈ F , (If(x) ≡ lockPoint′)

]
= Pr[R = r] Pr

x′←Xλ

[
(lockPoint′, f)← Ap(lockPoint(x′))

V(lockPoint′) = 1, f ∈ F , (If(x′),r ≡ lockPoint)

]
=

1

2
Pr

x′←Xλ

[
(lock′, f)← Adl(lock(x′, b)

V(lock′) = 1, f ∈ F , (If(x′),0 ≡ lock′ ∨ If(x′),1 ≡ lock′)

]
>

1

2λc
.

This contradicts the nonmalleability of lockPoint and completes the proof of nonmalleability. This com-
pletes the proof of Theorem 3.1.
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