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Abstract

An obfuscated program reveals nothing about its design other than its input/output behavior. A
digital locker is an obfuscated program that outputs a stored cryptographic key if and only if a user
enters a previously stored password. A digital locker provides an adversary no information on either
with high probability. An ideal digital locker also detects if an adversary mauls one obfuscation into a
valid obfuscation of related values. Such a primitive is achievable in the random oracle model or using
general purpose non-interactive zero knowledge proofs of knowledge (NIZKPoK) in the common random
string (CRS) model. However, there are no known standard model constructions of nonmalleable digital
lockers.

Komargodski and Yogev (Eurocrypt, 2018) constructed a simpler primitive: a nonmalleable point
function. Security relies on variants of the strong and power DDH assumptions.

This work describes the first nonmalleable digital locker without resorting to generic NIZKPoKs.
This construction is built in three steps:

1. We construct a nonmalleable digital locker for short keys from any sufficiently nonmalleable point
function.

2. We introduce a new primitive called stocky lockers that augments this primitive to retain security
if composed with the same password and maintain pseudorandomness. We show Komargodski
and Yogev’s construction suffices to build stocky lockers under the average-case variants of the
same assumptions. This composed construction is nonmalleable with respect to the password.

3. We extend to polynomial length keys that additionally provides nonmalleability over the stored
key. This extension combines the digital locker for short keys, nonmalleable codes, and seed-
dependent condensers. The seed for the condenser must be public and not tampered.

The third step can be achieved in the CRS model. The password distribution can depend on the
condenser’s seed as long as it is efficiently sampleable. We view this as a midpoint in removing the
CRS. Prior works on nonmalleable hashes/one-way functions/extractors also assume a public random
object that is not tampered by the adversary. The other steps in our construction do not require a
CRS.

Nonmalleability for the password is ensured for functions that can be represented as low degree
polynomials. Key nonmalleability is inherited from the class of functions prevented by the nonmalleable
code.
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1 Introduction

Obfuscation hides the implementation of a program from all users of the program. This work is concerned
with virtual black-box obfuscation, where an obfuscator creates a program that reveals nothing about the
program other than its input and output behavior [BGIT01, BGIT12]. Barak et al. showed that a virtual
black-box obfuscator cannot exist for all polynomial time circuits [BGIT01]. However, this leaves open
the possibility of virtual black-box obfuscators for interesting classes of programs [CD08|, BC10, [CRV10,
WZ17, BRI7]. We do not consider indistinguishability obfuscation in this work |[GGH™13, GGH™16]
SW14l, [PST14, (GLSWI5, [AJ15].

Digital Lockers Our focus is on digital lockers. A digital locker obfuscator inputs a value, val, and key,
key. The output is a program unlockyaikey(-) Which outputs key if and only if the input is val. Privacy
says unlocky,|key should reveal nothing about val or key if the adversary cannot guess val. A digital
locker is also known as a multi-bit point obfuscation [CD08, BCI0]. Digital lockers have applications in
passwords [Can97] and biometric authentication |[CFPT16, [ABCT18§].

A simpler object to construct is a point function unlockPoint,,. Upon creation, unlockPoint,, stores
val, and from then on indicates when val exactly is inputted to it. An obfuscated point function only
needs to hide val [Can97]. It is possible to compose point functions to build a digital locker (if the point
function retains security when composed) [CDO08]. Traditionally, digital lockers have been constructed
using the real-or-random construction. It works as so: For each bit of the key, either a random point
(corresponding to a 0 in key) or val (corresponding to a 1) is obfuscated producing unlockPoint,,. When
running the program, the user runs each unlockPoint,,, and the program will either fail when a random
point was obfuscated or succeed when the true point was obfuscated.

Nonmalleability A desirable property of an obfuscated program is nonmalleability. A nonmalleable
obfuscator detects if an adversary attempts to tamper the obfuscation into a related program [CV(9],
where being related is defined by some family of functions F. For example, it is desirable to prevent
unlockPoint,, from being mauled to unlockPoint(,,)). In the random oracle model, designing nonmalleable
digital lockers and point functions is easy: For a random oracle RO one outputs the program RO(val) &
(key||RO(key)), where RO(key) is truncated.

While such nonmalleable objects are obvious in some models, Komargodski and Yogev constructed
the first nonmalleable point obfuscator in the standard model [KY18|]. Their construction follows. Let g
be a fixed group generator. To obfuscate the point val, the obfuscator computes a random r and outputs

h(val)

O(val) = (r,79"""), where h(z) = 2% + 22 + 22 4 2.

Note the nonstandard use of double exponentiation, ¢"¥2) is first computed and interpreted as an exponent
for the base group in which 7 resides. The function h is designed specifically to prevent mauling. Bartusek,
Ma, and Zhandry [BMZ18] also showed a nonmalleable point function using random a, b, c:

O(val) — a,ga(va|)+(va|)2+(va|)3+(va|)4+(va|)5’ b’gb(val)—i—(val)‘i,c7 gc(va|)+(va|)7‘

Both constructions rely on strong non-standard variants of the Decisional Diffie-Hellman (DDH) assump-
tion [DHT76]. Bartusek, Ma, and Zhandry [BMZI1§| show security of their assumptions in the auxiliary
input generic group model [CDGI8]|. In both constructions, g is assumed to be fixed; this means that the
distribution val may depend on generator g. For an obfuscated point val, these constructions detect if the



adversary creates an obfuscation of f(val) from an obfuscation of val for polynomials f of degree related
to the assumed hardness in the DDH assumptions.

The goal of this work is to construct nonmalleable digital lockers. A first attempt applies the real-or-
random construction using nonmalleable point functions like those above. However, that approach does
not ensure nonmalleability over the bits of key. It is easy to permute bits of key by reordering group
elements and to set individual bits of key to 0 by replacing a group element by a random group element.
Furthermore, these constructions are not known to be composable, and they require strong DDH variants
for one-time security. Consider a case when a user encrypts their files with key. If the adversary can create
locky,i key’ (), the user may use some cryptographic key that is known to the adversary or susceptible to
cryptanalytic attack [BCMI11].

1.1 Ouwur Contribution

We construct nonmalleable digital lockers in three steps:

Section [3] We show nonmalleable point obfuscators can be converted to nonmalleable digital lockers
with a single bit output b (in Theorem [3.1). Let b be the bit key, we obfuscate lockPoint(2 - val + b).
Opening proceeds by running unlockPoint with both values of b. This object is nonmalleable for val as
long as the tampering family F is closed under multiplication by 2,2~! and addition and subtraction of
1 (Theorem [3.1)). We introduce this new construction for two reasons:

1. With the real-or-random construction, an adversary can easily force an obfuscation of a random
point. This ensures that each point has only two points that evaluate to useful outputs.

2. It may be possible to extend the construction to longer keys. The real-or-random model cannot be
extended to other alphabets. In Section [5] we present a construction that supports log bits in a pair
of group elements.

Section [4] Ideally, one could compose a single bit digital locker to build a full digital locker. Unfor-
tunately, obfuscation is not generically composable. Instead, we introduce a new type of nonmalleable
digital locker we call stocky lockers. A stocky locker augments a nonmalleable digital locker with a short
output with the following properties:

1. Tt is composable (soundness and nonmalleability hold) as long as the same val is used as input in
each invocation.

2. A vector of obfuscations of val is indistinguishable from a vector of pseudorandom values.

Stocky lockers make no attempt to provide nonmalleability over key.

We show the construction of Komargodski and Yogev [KY18| directly yields a 1-bit stocky locker. The
core of the argument is showing nonmalleability for val when the adversary is given multiple copies of
stockLock(val,0) and stockLock(val, 1).

Unfortunately, the construction of Bartusek et al. [BMZIS] is not composable for the same val, as all the
higher order terms can be removed by dividing two instances. That is, given ay, g = gu@+e’ te’+at+a®
and ag, gg = 2@t T+ 2 one can easily compute ¢(1 7927 = g, /gy and ¢ = (gl/gg)(al_”)il. The
hardness of finding ¢* is the underlying assumption used to show nonmalleability [BMZ18, Assumption
4]. Tt is an open question if the construction of Bartusek et al. can be modified to be self-composable.

As mentioned above, we present a second stocky locker in Section [5| under similar assumptions. This
construction supports logarithmic length keys. Nonmalleability for this construction also relies on a



power type DDH assumptions. The essence of the nonmalleability argument is arguing that an unseen
val lies in a linearly independent space so it is hard to predict. However, since the adversary may have
access to more points (corresponding to different key) the points they “see” form a higher dimensional
space. To overcome this problem in our new construction we replace h with a new function where for
each val, different values of key lie in a low dimensional subspace. Let 7 = |key|, the new h is:

447 T—1
h(val, key) = (i(val + 2)i> + (Z key, - (val + 2)i> .

1=T1 =0

Section [6] We present a generic construction of a nonmalleable digital locker from a stocky locker. This
construction ensures nonmalleability over both val and key. This step uses several cryptographic tools
and requires a public random object. We make no requirement that the distribution of key or val is
independent of this object but it must be public, random, and not modified. These guarantees can be
achieved in the common random string (CRS) model. We remark on the model below and then explain
the used cryptographic techniques.

Remark: A nonmalleable digital locker can be constructed from a digital locker using generic non-
interactive zero-knowledge proofs of knowledge (NIZKPoK) in the common random string (CRS) model.
Boldyreva et al. considered this idea to build a nonmalleable hash function [BCEW09]. A nonmalleable
hash function is a family of functions h € H such that an adversary given h(x) (sampled h <+ H)
cannot find h(f(x)) for f in some function class F. Subsequent constructions removed general purpose
non-interactive zero-knowledge [BESTI] [CQZT16|. Several of these works claim to be “standard model”
but all require h is random and not tampered by the adversary. Similar issues arise with nonmalleable
extractors [DW09, [CRS14].

Importantly, our construction does not assume independence of distributions from the random object
or any programmability in the proof. Furthermore, nonmalleable digital lockers have more stringent
security definitions than nonmalleable hashes (such as leaking no partial information). We view our
construction as a midpoint towards removing the CRS. We also stress the CRS is only necessary for
preventing tampering of key. The stocky locker construction is in the standard model.

Key authentication Composing stocky lockers enable a construction of a digital locker that places
each bit of key in a separate stocky locker. This approach does not detect mauling of key. One could
prove knowledge of key to keep the adversary from modifying the program. Alternatively, one could
append a nonmalleable hash, obfuscating key’ = key||h(key||val). However, there are two concerns with
this approach:

1. This approach assumes that the function instance h is assumed to random and independently
sampled from key and val.

2. Any information leaked by h(key||val) makes it more difficult to show security of the digital locker.

Our strategy is to use a nonmalleable code [DPW10] to ensure an adversary can only tamper to inde-
pendent values and a seed-dependent condenser [DRVI12] to ensure an independent value is unlikely to
authenticate. In more detail:

1. We compute cond(val; seed) where cond is a seed-dependent condenser. A seed-dependent condenser
has a high entropy output even if the distribution over val is adversarially dependent on the ran-
domness seed. Seed-dependent condensers for efficiently sampleable distributions are instantiable



using collision-resistant hash functions [DRV12] Theorem 4.1]. We note that val can be correlated
to seed as long as it is efficiently sampleable. Importantly, seed does need to be randomly sampled
and be publicly known.

We then compute s = key||cond(val;seed). An adversary outputting any fixed § that does not
depend on the received obfuscated programs is unlikely to match the output of the condenser.

2. To ensure that an adversary is limited to “independent” tampering, we use a nonmalleable code.
Let F be some function class. A nonmalleable code is a pair Enc and Dec where for functions f € F
the value § = Dec(f(Enc(s))) is independent of s. We set

Enc(s) = Enc(key||cond(val;seed)).

In a nonmalleable code, the adversary specifies the tampering function before seeing any information
about Enc(s). In our setting, the adversary sees obfuscations correlated to Enc(s) before deciding
how to tamper. We show that nonmalleable codes can be used in a nonstandard way where the
tampering function is chosen after seeing the obfuscated values.

Nonmalleable codes provide guarantees when the adversary tampers “obliviously.” We show a tech-
nical result that the adversary’s success probability when given the obfuscations does not deviate from
oblivious tampering. This also provides obvious modularity in choosing a code.

Constructions using nonmalleable extractors [DW09, [CRS14] or one-way hashes [BCEFW09, [BEFS11]
CQZ™16] (in place of the nonmalleable code) seem possible. In our approach, the only public randomness
required is for seed of the condenser. Using a nonmalleable extractor or hash seems to require a second
public value (the extractor seed or hash function description). Furthermore, security definitions for these
primitives do not consider the case when the distribution of val depends on the description of the function.

Bitwise nonmalleable codes We recommend using a nonmalleable code that detects at least permu-
tations [AGM™15a] [AGM™15b|. This is important for ensuring nonmalleability of key, as permutations
are otherwise easily computable in polynomial time. One concern about nonmalleable codes is that the
adversary is necessarily restricted to low complexity classes, not including the code’s encoding and de-
coding functions. Note, the construction encodes and decodes the code “in the clear” while the adversary
is tampering “in the exponent.”

Nonmalleable codes with manipulation detection Recently, Kiayias et al. [KLT18|] introduced
nonmalleable codes with manipulation detection. Here, the adversary has low probability of producing
any codeword ¢ that successfully decodes. (Clearly, the class of tampering functions cannot contain
constant functions.) Kiayias et al. constructed a nonmalleable code with manipulation detection, but their
construction requires each symbol of the code to come from a polynomial-sized alphabet or equivalently
for each symbol to have logarithmic length. We show in Section [5| a new stocky locker with multiple
output bits. With this strengthened object our construction does not need the seed-dependent condenser.
However, Kiayias et al.’s construction does not exclude functions which are efficiently computable against
our construction such as permutations. If stronger nonmalleable codes with manipulation detection are
discovered, we recommend using such codes. Such a result would yield a fully nonmalleable digital locker
in the standard model.



Open Questions We present two main open questions resulting from this work. The first is whether
stocky lockers can be generically construction from nonmalleable point functions. The second is whether
the CRS can be removed from the full construction.

2 Preliminaries

For random variables X; over some alphabet Z we denote by X = Xi,..., X,, the tuple (Xy,...,X,).
For a set of indices J, X is the restriction of X to the indices in J. The minentropy of X is Hoo(X) =
—log(max, Pr[X = z]), and the average (conditional) minentropy [DORS08| Section 2.4] of X given Y is

T

I:IOO(X|Y) = —log ( E maxPr[X =z|Y = y]> )
yey

The statistical distance between random variables X and Y with the same domain is

A(X,Y) = %Z]Pr[X = z] — Pr[Y = ]|.

For a distinguisher D, the computational distance between X and Y is 6 (X,Y) = [E[D(X)] — E[D(Y)]|
(we extend it to a class of distinguishers D by taking the maximum over all distinguishers D € D). We
denote by D; the class of randomized circuits which output a single bit and have size at most s. Logarithms
are base 2. In general, capitalized letters are used for random variables and the corresponding lowercase

letters for their samples. We say that two circuits, C' and C’, with inputs in {0,1}* are equivalent if
Vo € {0,1}*, C(x) = C'(x). We denote this as C = C".

Definition 2.1. An ensemble of joint distributions (X,Y) = {Xx, Yx}ren, where Xy is over {0,1}*, is
average case well-spread if

1. It is efficiently and uniformly samplable. That is, there exists a PPT algorithm given 1* as input
whose output is identically distributed as (X, Y)).

2. For all large enough A € N, it has super-logarithmic conditional minentropy. Namely, I;IOO(X/\]Y)\) =
w(log A).

3 Nonmalleable Obfuscation Definitions

All obfuscation definitions include a requirement of polynomial slowdown, which is omitted for space
considerations. Running time of our constructions can be easily verified. For all definitions, we include
a tampering function F. The traditional definition can be achieved by taking F = (). We directly adapt
the definition of nonmalleability from Komargodski and Yogev. We do note their definition requires the
adversary that is performing the mauling to output the mauling function f. See Komargodski and Yogev
for definitional considerations [KY18].

The following definitions use wvirtual grey-box obfuscation, which means the simulator is allowed un-
bounded time but a limited number of queries. Bitanski and Canetti [BC10] showed virtual grey-box
obfuscation and virtual black-box obfuscation are equivalent for digital lockers and point functions. Fre-
quently in this work, we use distributional versions of soundness, which are also equivalent for point
functions and digital lockers [Can97].

Our constructions require that the challenger can recognize a legitimate obfuscation.



Definition 3.1 (Verifier). Let A € N be a security parameter. Let O be a program that takes inputs
x € {0,1}* and outputs a program P. A PPT algorithm Vo for program class O is called a verifier if all
z € {0,1}, it holds that Pr[Vo(P) = 1|P < O(x)] = 1, (prob. over the randomness of V and O).

Our constructions consist of tuples of group elements and strings. As such, the obvious verifier suffices.

Point Obfuscators A point function is a function I ,: {0,1}" — {0,1} that outputs 1 on input =
and 0 elsewhere. An obfuscator preserves functionality while hiding the point val if val is not provided as
input to the program.

Definition 3.2 (Nonmalleable Point Function). For security parameter A € N, let F : {0,1}* — {0,1}*
be a family of functions, let X be a family of distributions over {0,1}*. A (F, X)-non malleable point
function obfuscation lockPoint is a PPT algorithm that inputs a point val € {0, 1}A, and outputs a circuit
unlockPoint. Let V be a verifier for lockPoint as defined in Definition[3.1. The following properties must
hold:

1. Completeness: For all val € {0,1}*, it holds that
Pr[unlockPoint(-) = I,4(+)|unlockPoint < lockPoint(val)] = 1 — ngl(\),

where the probability is over the randomness of lockPoint.

2. Soundness: For every PPT A and any polynomial function p, there exists a (possibly inefficient)
simulator S and a polynomial q(\) such that, for all large enough X\ € N, all val € {0,1}* and for
any predicate P : {0,1}* = {0,1},

Pr[A(lockPoint(val)) = P(val)] — Pr[S™()(1%) = P(val)]| < O

where S is allowed q(\) oracle queries to I, and the probabilities are over the internal randomness
of A and lockPoint, and of S, respectively. Here I,(-) is an oracle that returns 1 when provided
mput x and 0 otherwise.

3. Nonmalleability For any X € X, for any PPT A, there exists ¢ = ngl(\), such that:
Pr [V(C)=1,f€F,Isuay = C)|(C, f) + A(lockPoint(val))] <.

val«—X

Single Bit Digital Locker We introduce a new primitive in order to create nonmalleable digital lockers.
We will build a (nonmalleable) single bit digital locker: Iya5: {0,1}" — {L,0,1}. Here I 4 (val) = b and
Laip(val’) =L for all other points val’ # val.

Definition 3.3 (Single Bit Digital Locker). For security parameter A € N, let F : {0, 1}*~1 — {0, 1}2~1
be a family of functions, let X be a family of distributions over {0,13}1. A (F, X)-nonmalleable single
bit digital locker lock is a probabilistic polynomial-time algorithm that inputs a point val € {0, 1})‘_1 and
bit b € {0,1} and outputs a circuit unlock. Let V be a verifier for lock as defined in Definition , The
following conditions must be met:

1. Completeness: For all val € {0,1}*1,b € {0,1} it holds that
Prlunlock(-) = Lya4(+)|unlock < lock(val,b)] > 1 —ngl()),

where the probability is over the randomness of lock.



2. Soundness: For every PPT A and any polynomial function p, there exists a (possibly inefficient)
simulator S and a polynomial q(\) such that, for all large enough X\ € N, for any val € {0,1} 1 b €
{0,1}, and for any P : {0,1}* — {0,1},

1
p(\)’

where S is allowed g(\) oracle queries to Iy, and the probabilities are over the internal randomness
of A and lock, and of S, respectively. Here I, is an oracle that returns b when provided input val
and Iy, p outputs L otherwise.

3. Nonmalleability For any distribution X € X, for any PPT A, there exists € = ngl(\) such that:

Pr[A(lock(val, b)) = P(val,b)] — Pr[Sh'b(1*) = P(val, b)]| <

Pr [V(C’) =1,f€eF, (If(val),() =0V iy = ON(C, f) + A(Iock(val))] <e.

val<—X

As stated in the introduction, we present a new generic construction of a nonmalleable single bit
digital locker from a nonmalleable point function (assuming a rich enough tampering class).

Theorem 3.1. Let lockPoint be (Fpoint, X)-nonmalleable point function obfuscator where X is the set of
all X such that Hoo(X) > w(logX). Then for lock(z,b) = lockPoint(x||b) is a (Fpoint, X)-nonmalleable
single bit digital locker if Fpoimnt 15 closed under multiplication by 2, 2~ and addition and subtraction of 1.

Proof. We separately argue completeness, soundness, and nonmalleability. We substitute val for = for
legibility.

Completeness First note that 2z + b is injective in both variables. Completeness immediately follows.

Soundness Note no distribution is assumed on the bit b. Fix some b € {0,1}. Let Z) be the set of
distributions Z over {0, 1}* where Hy,(Z) = w(log \) and similarly define the set of distributions X_; as
the set of distributions X over {0,1}*~! where Ho(X) = w(log \). Lastly, define the set of distributions
Y ={2X +b|X € X\_1} where we understand 2X + b to be a distribution created by sampling = < X
and computing 2x + b. Then ) C Z,. That is, for each distribution that lock is intended to secure it is
contained in the set of distributions that lockPoint’ is intended to secure.

We show soundness by contradiction. First assume that the construction described lockPoint(z) is
sound. That is, for all ¢ € ZT there exists some ), . such that for A > ), . for all PPT A,, there exists a
simulator S, such that:

1
< —.
= e

Pr [Ay(lockPoint(z)) =1] — Pr [Sl=(1*) =1
_Pr MAyllockpaint() = 1] = _Pr IS0 = 1]
In addition, suppose lock(z, b) = lockPoint(2z + b) is insecure, that is, there exists some ¢ € Z" such that
for all \. 4 there exists a A > A, g such that there exists a PPT Ay where for all Sg using a polynomial
number of queries

Ipb 1 0¥ 1
P Aq1(lock(z =1]- P S0 (1 =1 .
Q:E{O,Il‘}** [ dl( oc ( ’ b)) ] J?E{O,rl})‘[ dl ( ) ] ‘ > ¢

For a fixed ¢ € Z*, denote by Amax,c = max{A,c, Agic}. There must exist some A\ > A pqp where
the distance between A, and S, is less than 1/\° while there exists some Ag such that for all Sy the



input : Oracle access to I
output: P(z,b)

Initialize Sp.

Receive query y from Sp, send zo,..x—2 to Iy p.
If response b, check if zx_1 = b, if so return 1.
Otherwise return L to S’.

Output Sg’s output.

Algorithm 1: Construction of Sy from S,

distance between Ay and Sy is greater than 1/A°. Denote by AY, one such adversary, that is for A3,
and all Sy making a polynomial number of queries their statistical distance is at least 1/\°. With the
goal of arriving at a contradiction we use A7 to construct an adversary A7 for lockPoint that cannot be
effectively simulated.

This adversary A% works as follows, on input lockPoint(z) where = € {0,1}*, A% initializes A% with
input lockPoint(z). Note this is equivalent to initializing A%, with input lock(z’,b) = lockPoint(z) for
x = 2'||b. Any predicate P(a'||b) = P(x) output by AY, is a valid predicate on on x. So, this predicate
can be immediately output. Thus, A7 implies the existence of an Aj that outputs 1 with the same
probability. That is,

Pr[Aj[(lockPoint(z)) = 1] = Pr[Aj (lock(z’,b)) = 1].

By assumption for each A, there exists S, such that for A > Apax.c,
1
Pr [Ay(lockPoint(2)) = P(z)] = Pr [ DY) =P)| < G

This S, implies the existence of an Sy that computes any predicate P on (z,b). Sg initializes S, and
for every query from S, it drops the last bit and asks its oracle the query. It only returns a match to
Sy, if the returned bit matches the last bit of S),’s query. A formal description is in Algorithm [1, So, the

existence of S, directly leads to the simulator Sy that computes a 1 with the same probability. That is,
Pr[S[= (1Y) = 1] = Pr[Sr* (1) = 1].

These three equations allow us to state:

r
e’

* _ _ Ia:,b A%y
P Lilock(z ) = 1] = Py (S50 = 1] <

This is a contradiction and completes the argument of soundness.

Nonmalleability We proceed by contradiction assuming that there exists some ensemble X} where
Hoo (X)) = w(log A), some Ay, and some bit b € {0,1} such that there exists some ¢ where

(lock’, f) <= Aai(lock(a’, b))

x/EI)'(j\ |: V('OCI(/) - 17f S .Fv (If(iﬂ/),o = lOCk/ v If(xl)vl = IOCk/)‘ :| g 1/)\

We build an mauling adversary for the original obfuscation lockPoint. We consider the ensemble of
distributions Z) = X,||b, that is the distribution of X with the bit b appended. Note that this is a valid
ensemble for the obfuscator lockPoint. We design A, as follows:



Receive lockPoint(z) as input (equivalently receive lock(z’,b) where x = 22’ +b).
Initialize Ay with lock(2/, b).

Receive lock’, f.

Set fo(x) =271 (x — b) and fo(z) = 2 * (x). Compute f3 = foo f o fo.

Flip r <& {0,1}. Set f' = f3 +r.

Output lock’, f'.

AR el S

A, is trying to produce a tampering function on x € {0,1}*, while Ay is tampering on 2’ contained in
2'[|b. The manipulations fy and fy are to create a valid tampering function on z ignoring the last bit.
Secondly, A, output a new z* = f(x)||b* where b* € {0,1}. Since A, does not know if the last bit of z*
it outputs each possibility with probability 1/2. Together these facts allow us to conclude:

(lockPoint’, f) « A, (lockPoint(z))

ac<—P]CZA [ V(lockPoint’) = 1, f € F, (I = lockPoint’)
lockPoint’, f) + A, (lockPoint(z’
= Pr{f =] xuf—)gg [ V(IoclEPoint’) = 1{0)f € ]-",p((lf(x/)J, = I(ocL)Point) }
1 . [ (lock’, f) < Aa(lock(z’, ) }
C 22X, | V(lock') =1, f € F, (I = lock’ V Iy(yn) 1 = lock’)
1
> N

This contradicts the nonmalleability of lockPoint and completes the proof of nonmalleability. This com-
pletes the proof of Theorem
O

3.1 Stocky Lockers and full nonmalleable digital lockers

We now present our two main building blocks, an augmented digital locker for short keys that we call
a stocky locker and a full digital locker. Our notation for digital lockers is nonstandard as we add an
additional step to check if the key should be accepted. Towards this, we introduce a verifier for the output
key of the digital locker called the key checker:

Definition 3.4 (Key Checker). Let A € N be a security parameter and let n = n(\) be a parameter. Let
O be a program that takes inputs x € {0,1}, y € {0,1}* and outputs a program P. A PPT algorithm
KCo (with inputs in {0,1}*™ and outputs in {0,1}*U L) for program class O is called a key checker if
it holds that

Pr[KCo(z,2) #L |P « O(z,y),z + P(z)] =1,

Where the probability is over the randomness of KC and O).

We introduce the digital locker first. The nonmalleable definition appeared in Canetti and Dak-
douk [CDO§].

Definition 3.5 (Nonmalleable Digital Locker). For security parameter A\ € N, Let F : {0,1}* —
{0,1}*,G : {0,1}™ — {0,1}" be families of functions and X be a family of distributions over {0,1}.
A (F,G,X)-nonmalleable digital locker lock is a PPT algorithm that inputs a point val € {0,1}* and
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string key € {0,1}™. Let V be a verifier for lockPoint and let KC be a key checker for lockPoint. The
following conditions must be met:

1. Completeness: For a circuit unlock define the circuit unlock’(z) = KC(z,unlock(z)). For all
val € {0,1}*, key € {0,1}" it holds that

Prlunlock’(:) = I aikey()|unlock < lock(val, key)] > 1 — ngl(\),

where the probability is over the randomness of lock.

2. Soundness: For every PPT A and any polynomial function p, there exists a (possibly inefficient)
simulator S and a polynomial q()\) such that, for all large enough A € N, all val € {0,1}*, all
key € {0,1}", and for any P : {0,1}*" + {0,1},

1
p(\)’

where S is allowed q(\) oracle queries to Iy, ey and the probabilities are over the internal randomness
of A and lock, and of S, respectively. Here I, key i an oracle that returns key when provided input
val, otherwise I ;) key Teturns L.

3. Nonmalleability For any distribution X € X, for any PPT A, for any key € {0,1}", there exists
€ =ngl(\) such that:

Pr[A(lock(val, key)) = P(val, key)] — Pr[Shatker (1) = P(val, key)]| <

V(C)=1,feF,geg,y=C(f(val),
Valf(’_rX g(y) = g(unlock(f(val))),|(C, f,g) < A(lock(val)) | <e.
KC(f(val),y) #L,3a s.t. Irnalya =C

where at most one of f and g may be the identity function.

If nonmalleability is not a requirement a traditional digital locker can be obtained by adding keycheck
as part of unlock.

Stocky Lockers A stocky locker is a digital locker with a short key, that is composable with the
same val, provides nonmalleability over val, and produces obfuscations that are indistinguishable from
obfuscations of random points.

Definition 3.6 (Stocky Locker). For security parameter A € N, let F : {0,1}* — {0,1}* be a family
of functions, let X be a family of distributions over {0,1}*. A (F,X,p,7)-nonmalleable stocky locker
stockLock is a probabilistic polynomial-time algorithm that inputs a point val € {0, 1}>‘ and string key €
{0,1}" and outputs a circuit stockUnlock. Let V be a verifier for lock. The following conditions must be
met:

1. Completeness: For all val € {0,1}* key € {0,1}7 it holds that
Pr[stockUnlock(-) = Iyal key(-)|stockUnlock < stockLock(val, key)] > 1 — ngl(\),

where the probability is over the randomness of stockLock.
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2. Soundness: For every PPT A and any polynomial function p, there exists a (possibly inefficient)
simulator S and a polynomial q(\) such that, for all large enough A € N, for any x € {0,1}*, {key; €
{0,1}7}2_,, and for any P : {0,1}2F7 — {0,1},

L
p(\)’

where S is allowed q()\) (overall) oracle queries to Lyal ey, and the probabilities are over the internal
randomness of A and lock, and of S, respectively. Here Iz key, i an oracle that returns key; when
provided input val, otherwise Lya| ey, Teturns L.

PrlA({stockLock(val, key;)}/_) = P(val, {key;}/_,)] — Pr[Sthaoi=i (1) = P(val, {key}{_,)]| <

3. Nonmalleability For any distribution X € X, for any PPT A, there exists ¢ = ngl(\) such that:
Pr [V(C)=1,f¢€F,ye{0,1}7,I1yayy = C|(C, f) < A({stockLock(val, key;)}!_,)] <.

val«—X
where f is not the identity function.

4. Pseudorandomness Let Uy be the uniform distribution. For any distribution X € X, for all
z € X, {key; € {0,1}7}_, and any PPT D, there exists ¢ = ngl(\) such that:

Pg{ [D(lock(z, key;) = 1] = Pr [D(lock(y;, key;) = 1] <.
T

y,-<—U§

4 Building Stocky Lockers from Komargodski and Yogev [KY18§]

In this section, we show that Komargodski and Yogev’s point function obfuscator suffices to build a
stocky locker. Our assumptions are slightly modified to use average minentropy. That is, we assume
the adversary may have some side information Y that is correlated with val. This modification is made
because the distribution of val that depends on a seed of a seed-dependent condenser still has average
minentropy conditioned on the output (see Section @

Construction 4.1. Let A € N be a security parameter and let {0, 1}>‘_1 be the domain. Let Fipory def

{f {0,132 = {0,1}* 1} ren the ensemble of all functions that can be computed by polynomials of degree
at most t except constant and identity functions. Let G = {Gx}xen be a group ensemble with efficient
representation and operations where each Gy is a group of prime order p € (2*,2’1). We assume that
for every X\ € N there is a canonical and efficient mapping between the elements of {0,1}* to Gy. Let g
be a generator of a group Gsy. For known generator g € Gsy, Our single bit digital locker gets an element
val € {0,1}*1,b € {0,1} and randomness r € Gsy. It then outputs:

de (2val+b)4 + (2val+b)3 + (2val+b)2 + (2val+b)
lock(val, b; ) e <r, rd .

Given a program unlock consisting of two group elements r',y’ for test password val’, the user computes:

(2val” )4 +(2val’ )3+ (2val’ )2+ (2val’) ?
unlock(val’, 0) = ((r/)g ’ ’ ’ =y

(2val’ +1)%+(2val’ +1)3 +(2val’ +1)2 +(2val’ +1) ?
unlock(val’, 1) = ((r’)g =y

If unlock(val’, b) outputs 1 (for either b= 0 or b= 1), then the user outputs b. Otherwise, L is the output.
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Throughout our discussion we use h(z) = z* + 23 + 22 + z as shorthand for the polynomial being
computed in the exponent. We now introduce the relevant hardness assumptions. We consider an ensemble
of groups with efficient operations where G} is a group of prime order p € (2*, 2 1),

The first assumption we will use is the ¢-strong vector DDH introduced by Bitanski and Canetti [BCI0].
This strengthens the DDH assumption in two ways. First, the exponents are not drawn from uniform pow-
ers but rather from a well spread distribution. Second, the adversary is given multiple samples z1, ..., zy,
each from correlated distributions X7, ..., X;. The only guarantee is on the marginal distribution of each
AX;; nothing is guaranteed about the joint distribution. As an example, each distribution could be identi-
cally distributed. Here we introduce a new variant of this assumption where each distribution has average
minentropy. Note this change is largely syntactic, as the probability of the worst case minentropy being
a w(log A) factor lower than the average minentropy is negligible (by [DORS08, Lemma 2.2al).

Assumption 4.1 (t-Strong Average Vector DDH). Let t = poly()\) be a parameter and let Gy be an
ensemble of groups with efficient representation and operations. We say that the t-strong average vector
decision Diffie-Hellman assumption holds if for any vector X,Y (we elide the subscript ) where X is
a vector in (Z3)" and each X; is average-case well-spread (conditioned on'Y'), it holds that for every
Ssec = poly(\) there exists some € = ngl(\) such that:

dosee ((glvgfl7y17 "'7gt7gfta yt)a (9179?17y17 '-'7gt7g§t7yt)) <e
Where ((z1,91), -, (2, 9t)) < (X, Y) and u; is sampled uniformly from Z,.

The second assumption we will consider is a variant of the power DDH assumption. The t-strong
entropic power DDH assumption (introduced by Komargodski and Yogev [KY18§]) says that increasing
powers of a single element = are indistinguishable from a coordinate wise well-spread distribution.

Assumption 4.2 (¢t-Strong Entropic Power DDH). The t-strong average DDH assumption is said to hold
for an ensemble of groups Gy with associated generator g if for any average-case well-spread distribution
ensemble X,Y (we elide the subscript \), there exists a family of independent distributions Z1 ,, ..., Zy,
giving rise to independent distributions (Z;,Y) that are average-case well-spread (Definition , such
that for any ssec = poly(\) there exists ¢ = ngl(A) such that

2 t
5%((g,9%,9% 9%, Y), (9,971,972, ..., g7, 7)) < e.

where the distribution (X,Y") is jointly sampled and Z; are sampled conditioned on y < Y.

We now show that Construction [4.1]is a stocky locker. There are two things that could go wrong when
an adversary receives single bit digital lockers on correlated points: 1) seeing obfuscations with b = 0
and b = 1 may allow the adversary to maul, and 2) having multiple samples of points under different
randomness may break privacy. To detect tampering, we show security against an adversary that obtains
") and ¢M2valtl) - That is, we don’t rely on the generators r; in providing any protection against
tampering. This argument has two parts (relying on the entropic power assumption): First, predicting
polynomials of degree greater than 1 predicts an unseen power and can thus distinguish between powers
and random group elements. Then, predicting linear polynomials corresponds to finding a value that
is outside the linear span of provided values (which is information theoretically hard in the random
case). To show that soundness and pseudorandomness are preserved, we rely on the t-strong vector DDH
assumption.

Theorem 4.1. Suppose that
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1. The n-strong vector DDH assumption holds,

2. The 4t-entropic power DDH assumption holds,

3. The selected prime p & {2,3,5,11,17}. (As Gy increases these primes will never be selected.)
4. X is a distribution over {0,131 such that Hoo(X) = w(log \).

Then Construction[{.1]is a (F, X, n, 1)-nonmalleable stocky locker, where F = { f|f is a polynomial, deg(f) <
t} (excluding constant polynomials and the identity polynomial).

Proof. We separately consider completeness, soundness, pseudorandomness and nonmalleability under
composition. We substitute x for val for legibility.

Completeness This is a direct extension of completeness for underlying point function and the generic
transform that is shown in Theorem m (The crucial fact is that ¢"(2**b) is a one-to-one function.)

Soundness and Pseudorandomness Define the random variables X </ {Xi = (X]||key;) },. Since

X is distribution where Hoo (X) = w(log ), X is a average-case well spread distribution (according to
Definition . Since the function

Flz,b) = g(2x+b)4+(2x+b)3+(2x+b)2+(2x+b)
is one-to-one it is also true that gh(X ) is average-case well spread. A one-to-one function can be applied
before obfuscation without affecting privacy [KY18, Claim 3.1]. This proof directly carries over to the sin-
gle bit digital locker setting. The strong vector DDH assumption then says that {r;, riXi oA, uly
for uniform group elements u;. This means the construction satisfies a weaker notion called distribu-
tional indistinguishability [BCI0, Definition 5.3], which says no adversary can tell between obfuscations
of related points and independent uniform points. Bitanski and Canetti [BC10] show that this definition
implies composition for virtual-grey box obfuscation. (Their proof is for point obfuscators but can be
modified for this setting.) Overall virtual black box security then follows using arguments from [CDOS].
This argument also suffices to show that obfuscations are pseudorandom.

Nonmalleability We first recall that we use h(x) to denote x* + 2% + 22 + 2. In order to prove
nonmalleability is preserved, we will show how, given an adversary that can maul our obfuscation given
two distinct obfuscations with the same point z, we can create an algorithm that can break the Strong
Power DDH assumption. We assume that key is a value known to both the reduction and the adversary.
(That is, we do not rely on any uncertainty with respect to key.) That is, we assume that there exists
some key and a PPT A such that for all negligible functions e:

Pr (unlock’, f) + A(lock(val, key))

X V(unlock’) = 1, f S f7 Elkey’{(), 1}” A (I(f(val),key’) = C) > €

We show how to construct A’ that breaks the 7 = 4¢ entropic power DDH assumption (Assumption [4.2)).
Suppose we receive a sequence {g, g**, g*2, ..., g*" } where each z; either equals ' (sampled x < X where

X € {0,1}*71) or a random group element r;. We first compute two values:
Yo = 91624+8z3+4z2+231 _ 916*24 _98*23 . g4z2 X 9231’
y]_ — 91624+4023+40Z2+2021+4'
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Zr

input :g,9°,...,9
output: P(x)

1. Sample key < {0,1}".
2' Compute yo — glﬁz4+8Z3+4Z2+2Z1 and yl — 916Z4+40Z3+40Z2+2021+4.

Ykey; \n
7 =1

3. Compute {r; & G,r

4. Run (f, {raiwai}ti—y) < A({r, r?key" ?_1). If the output is not a function followed by
2n group elements output 0.

5. Compute coefficients «; of h(2f(x)) and S; of h(2* f(x) + 1).
6. Fori=1ton

(a) Check if WA, ; r;%zz@ @;z;) Or WA, ; T(ZZ:O 51%)

A,
(b) If neither check is true, output 0.

7. Output 1.

Algorithm 2: Construction of A’ from A

A’ then computes a vector based on these values:

tre & G
Then A is initialized based on these values and outputs a function f and a 2n vector of group elements
{rai,wa;}?,. We assume f is specified by coefficients (if not, these coefficients can be interpolated using
points from the distribution X, see [KY18]). We can then use the f provided by A to check if each point
in the vector is a valid single bit digital locker of f(z) and a bit 0 or 1. Details for this check are in
Algorithm 2, We proceed to analyze the success of this algorithm in both the real case z; = x* and the
random case z; = ;.

gh(2z+keyi

. ) .. C . .
The real case In the real case the adversary A sees pairs (ri, T ) This is exactly the distribution

expected by A. Furthermore, A’ outputs 1 when the mauled obfuscation is a valid obfuscation of x on
some key’. Thus, given the real distribution A’ outputs 1 with probability at least e.

The random case We now assume that each z; is a uniform and randomly distributed s; for 1 <
i < 7. We assume that the adversary is computationally unbounded and is provided with two points
co = 1684 + 8s3 + 4sa + 281 and ¢y = 16s4 + 40s3 + 4082 + 2051 + 4. (We can provide the adversary also
with the values r;.) That is, we give the adversary direct access to the value in the exponent. Its clear if
no adversary can win in this game, then no adversary can win in the original game.

In order for A to succeed she needs to compute ¢, = ZZ:O Qjs; OT cg = Z;O Bisi (the vectors @ and
E are defined in Algorithm . If the degree of the polynomial f is greater than 1 this requires computing
a linear combination with some s; where ¢ > 4 that is independent of the adversary’s view. In this case,
both the distribution of both random variables C, and Cg has entropy log|Gy| = X conditioned on the
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adversary’s view [KY18, Claim 4.4]. By a union bound the probability of matching either C,, or Cp for
some i is at most Pr[success] < 2% = 2%1

We now move to the case where the polynomial f is of degree 1. That is, f(z) = pz + v. If the
function f is a linear one, then we will show how an accurate obfuscation of h(2f(z’) + b) cannot be
formed from the inputs. To do this, we will look at what information about the points that the adversary

receives. The adversary receives a multiple linear combinations of si, so, s3, 4.

S4
16 8 4 2 0 S3 )
16 40 40 20 4 S22 = |C1
0 0 0 0 1f |s1 1
1

The first row of the above matrix corresponds to the linear combination used when key, = 1, the second
row when key, = 0 and the last row is the constant group element. As stated, the function f can be
rewritten as f(x) = p* 2’ + v. By substituting and simplifying, f can finally be rewritten as:

2f(x) +b0 = 2% (uxr +v) +0 =2ux +2v + b = 2ax + b

for some b € {0,1} and a is a field element. Note we consider this as an existential argument so a =
(px +v)z~! = p+vax~! is a valid assignment for a. We can write the desired linear combination as

follows:
16a* T S4
32a3b + 8a3 S3
20a2b2 + 16a2b + 4a? S9
6ab>® + 6ab? + 6ab + 2a s1
b4+ 02+ 0% + b 1

We now show that even for an unbounded A, this value is information theoretically hidden (given co, c1,1).
Lemma 4.1. Let Sy, 59,53,S54 be uniformly distributed in Gsy then define Cy = 1651 4+ 855 + 453 + 254
mod G5y and C1 = 1657 + 4052 + 40535 4+ 20S4 +4 mod G5y Define for a € Gsy, b € {0, 1},
Cyp = 16a*Sy + (32a°b + 8a®) S5 + (20a°b° + 16a°b + 4a*) S,
+ (6ab® + 6ab® + 6ab + 2a)S; + (b + b +b? +b).

Then the value Hoo(Cy 4|Co, C1) > A — 1 ifa # 0,1 and p & {2,3,5,11,17}.

Proof of Lemma[{.1 We first show that when a # 0, 1, the value ¢, is linearly independent of the values
co,c1, 1. That is, we show the following system has no solutions agco + e + aaca = ¢qp. Since A only

has access to linear combinations of these variables in order for A to properly output some correct mauled
obfuscation, they must find a solution to the following:

16a*
16 8 4 2 0] [ag 32a3b + 8a?
16 40 40 20 4| |ai| = |20a%b? + 16a%b + 4a?
0 0 0 0 1| | 6ab® + 6ab® + 6ab + 2a

V4P +02+0b
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where ag, a1, a9 are field elements. Because b is a single bit (i.e. either 0 or 1), we will examine the
existence of solutions under these two possibilities. In both cases we assume that the adversary can
exactly solve the last equation using «i as a free variable and consider the following reduced system:

16 16 16a*

40 8| [ao 32a3b + 8a3
il o)
2

40 arl = 204202 + 16a2b + 442

20 6ab® 4 6ab® + 6ab + 2a

Case 1: b =0 Considering the two by two system formed by the second and third equation yields that:
400 = 8a% — 8a3,
4o = 8a3 — 4a°.
Substituting these values into the fourth equation yields a quadratic for a:
4a®> =24 =0

This has solutions of @ = 0,271, Substituting the solutions for ag,a; into the constraint from the first
equation yields the quartic:

16a* — (324165 1a® + (16 — 16 x5 1)a? =0

This equation is consistent with the solutions where a = 0. However, when a = 27!, the first equation is
only satisfied when 3 =0 mod p. Thus, it suffices for p # 3. Since the solution when a = 0 is considered
trivial, nontrivial solutions exist in this case only when p = 3.

Case 2: b=1 Again starting with the second and third linear constraints we have that:

ap = 2a% — a3,

ay = 10a® — 10a°.

Substituting these values into the fourth equation yields 180a® — 160a? — 20a = 0. Which has the trivial
solutions of a = 0, 1 and nontrivial solution a = —1x9~!. However, when a = —1%*9~!, the first equation
is only satisfied when 11968 = 0 mod p. Thus, it suffices for p ¢ {2,11,17}. Since the solution when
a = 0 is considered trivial, nontrivial solutions exist only when p € {2,11,17}.

Putting things together So, regardless of choice of b, if a is nontrivial, the value ¢, is linearly
independent of ¢y, c; and 1. Consider the following system of equations:

16 16 0 16a*77 [s4
8 40 0 32a3b + 8a3| |s3 €0
1 40 0 204262+ 16a2b + 4a2| |so ‘311
2 20 0 6ab>+ 6ab®+ 6ab + 2a 1
0 4 1 Vv rp?+b| |1 Cab

This system of equations is rank 4 (in the case when «a is nontrivial). This means for any particular
co, ¢1 there are at least 2* tuples of Sy, Sa, S35, S, that produce any particular value of Cq,p- In particular,
the probability that Pr[Cy,, = ¢|Cy, C1] = 2% Since the adversary has to match one of two values by

union bound they succeed with probability at most 2-**!. This completes the proof of Lemma O
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Thus, in both random cases the probability of mauling is at most 2~ (A1) This allows us to state the
distinguishing capability of A:

PrlA({g” }y) = 1] = PrlA({g"}o) = 1] 2 e = o5
This yields that A is a distinguisher between entropic powers and random exponents. This contradicts
Assumption [4.2] and so completes Theorem O

5 A stocky locker with multiple key bits

We also construct a stocky locker that outputs a logarithmic number of bits using the same assumptions
as the nonmalleable point function of Komargodski and Yogev [KY18]. Encoding a logarithmic number
of bits at a time has important implications for ensuring nonmalleability of key (described next). Many
nonmalleable primitives consider non-binary symbols.

Suppose that we wish to encode 7 bit symbols in each group element. The most natural idea is to
extend our first construction by computing h(27 * val + key;). As stated above, in the single bit case,
nonmalleability requires showing that given h(2val) and h(2val+1) it was difficult to compute h(2val’ +¥').
Under the entropic power DDH assumption (Assumption this requires one to show that h(2val’ + b)
is linearly independent of h(2val) and h(2val + 1). Roughly, this corresponds to an adversary being given
r1 + ro + r3 + r4 and being asked to predict a sum with different weights. Since there are only 4 r; with
four (linearly independent) constraints, the adversary will be able to predict any value. To address this
problem, we introduce a new hash function for symbols y € {0,1}":

447 ' r—1 ‘
h(z,y) = (Z(x + 2)1> + <Z yi - (v + 2)Z> .
1=0

=T

This construction ensures that all 27 different values of y span at most a 7 dimensional subspace and
cannot be used to predict the value of the hash function for any x’ # .

Construction 5.1. Let all variables be as in Construction let key € {0,1}™ be some arbitrary value,
and let T = O(log \). Then define lock(val, key) as follows: for i =1 to n/T compute:

1. Sample i <= Ggr)a-
2. Set z=x+ 2.

z4+7’+z3+7'+22+7'+21+T+ZT+ZZ;(;[ keyizi

3. Output (14, (1;)? ).

Define unlock(val) as follows: fori =1 ton/t, input r;,y; for each vj € [0,27) compute:

@424+ (242)3F T (@42) 2 T (@42) T @42 TH T D) vy (2 )

P($,Uj,i) = <’l“f =i

If P(z,vj,1) outputs 1 then the user sets key, = v;. Otherwise output L.

There are a few notes about this new construction:
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Opening checks each possible y value, running time is proportional to 27 making this construction
efficient when 7 = O(log(\)).

Our single bit construction used a polynomial that included four nonzero powers. This construction
has 5 powers that are not multiplied by part of y. If only 4 powers are not multiplied by a bit of
1y, there are three values of 7 where nonmalleability is not guaranteed. This is because the choice
of 7 introduces a new degree of freedom to the linear system. The three values of 7 are solutions
to 72 — 1572 — 527 — 12 = 0 mod p. It would be possible to avoid these 7 by checking when 7 is
a solution for a particular p. Instead, our construction adds another power of x, which retains a
single bad 7 which is 7 = p — 5 mod p. This value of 7 never occurs for logarithmic 7.

To ensure the construction is correct and one-to-one, we restrict = € {0, 1})‘*1 and compute powers
of x + 2. We can think of the construction as taking a sum of a subset of powers of x, we need to
manually exclude z € {0,1} to ensure the function is one-to-one.

. The group operations need to be in a group of size (647)\ to ensure that operations do not overflow.

In the first construction this size is only 5.

The construction allows a weaker vector DDH assumption at the cost of a stronger power DDH
assumption. It thus allows a tradeoff between these two parameters.

In the theorem below we only consider nonmalleability over the locked val and assume no distribution
over key.

Theorem 5.1. Suppose that

1.
2.
3.

4.

The Z-Strong average vector DDH assumption holds,
The (5 + 7)t-Strong entropic power DDH assumption holds,

The selected prime p & {2,31,41,73}. (As Gy increases these primes will never be selected. We
include this condition as the proof does not apply if p € {2,31,41,73}.)

X is a distribution over {0,131 such that Hoo(X) = w(log \).

Then the (lock, unlock) in Construction is n/T-composable point obfuscation that is nonmalleable for
F = {f|deg(f) <t} (excluding constant polynomials and the identity polynomial).

Proof. As before we separately consider completeness, soundness, and nonmalleability.

Completeness For completeness first note that

44T
@+ )"+ @+ )+ @+ DT+ @+ DT @+ )T > ) 2
=0

In particular, the binomial expansion of (z + 1)4+T has nonzero coefficients on every power ¢ < 4 4 7.
This shows that for any key, key’ € {0,1}7 and any x > 2’ it is true that

g(x+2>4+f+<x+2>3+f+<m+2>2+f+<w+2>1*T+(w+2)f+2{3 keyi(a+2)"

g($/+2)4+r+($/+2)3+T+($/+2)2+7—+($/+2)1+r+($/+2)‘r+zzz—ol key;(w’+2)i

19



That is, the value of key cannot cause the obfuscation to unlock on a different point. Furthermore, the
function is one-to-one as long as x ¢ {0, 1}. These cases are avoiding by computing z+ 2 before computing
the polynomial. Note that since z € {0,1}*~! it always holds that (x + 2) € {0,1}*.

Soundness The privacy argument for this construction is exactly the same as in Theorem since the

function

f(z, key,) = g(x+2)4+7+x3+7+(33+2)2+7+(m+2)1+7+(3;+2)7+2;:—& key; ; (z+2)27

is a one-to-one function.

Nonmalleability The analysis for the random case when the mauling function has degree greater than
1 are exactly the same as in Theorem We focus on showing that the adversary cannot find a function
linear f using linear combinations of the known values. We can think of the adversary being given values

of following type:

1 1 1 1 1 keyg
1 11 1 1 keyg
1 111 1 keyyrg

keyO,Tfl
keyo 1

ke)In/T,T—l

T447
347
247
T147
rr

1

Cn/tau

Without loss of generality, we assume that an adversary can perfectly set/predict the powers 2/ where
j < 7. However, to change the obfuscated point they will also need to change the higher order powers.
We can think of the adversary having to find «, 3, such that

4 4
Z(am+ﬂ)i+‘r :,sziJrT.
i=0 i=0
We can write the desired linear combination as follows:
‘a4+7 9T
a3tT ((741r4)ﬁ + (733)) 7"4(-)‘,-7' T:S-T

o’ (Z?:o

Substituting, one has that

o and ((7——54) 62 + (T—{—3)I3 + (7-6-2)) 0
2 (52, (CEe)) | |0 o
0

((4598+))

0 Ta+r
0 T3+r
0 =7v|rer
0 T+r
Tr Tr

1. If B = 0 then this implies o™t = a™™3 = a™™2 = o ! = o which only has solutions if & = 0 or
« = 1. These are both considered trivial solutions.

2. y=«

T+4 (

using first equation),

3. (1+4)8+ 1=« (using second equation),

4. (1 4+ 4)8 = 2 (using third equation, and relying on 8 # 0).
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5. a = 3 (substitution of third constraint into second equation)
6. v = 81 (substitution of « in first equation)
7. 7=—5or 7 = —114 % 317! (solving fourth equation using prior constraints).

Thus, using the first four equations we are able rule out all solutions unless 7 = —5 or 7 = —114 % 3171
Using the last equation we can almost always rule out this second possibility for 7. Namely, the fifth
equation (recalling that = 2/(7 4+ 4))

(V) (37) () + (37) () eemgens

This solution is only satisfied for 7 = —114 % 317! if 191552 = 0 mod p. Thus, it suffices to choose
p & {2,31,41,73}. This allows us to conclude that the adversary’s value in the random case is linearly
independent, which again leads to this value having entropy A. Since the adversary only has to match
a single value for each index by union bound their overall probability may be as high as 7/2*. Thus, in
both random cases the probability of mauling is at most x/ 2(M) We note that since 7 = O(log A) for large
enough X one can be sure that 7 %2 —5 mod G). This allows us to state the distinguishing capability of

A:

PrlA({g" 1)) = 1] - PrlA({g"} i) = 1] > e — ¢

22
Asin Theorem this breaks the (5+7)t-Strong entropic power DDH assumption. This is a contradiction
and so completes the proof of Theorem O

6 Nonmalleable digital lockers from stocky lockers

We now use stocky lockers to construct a nonmalleable digital locker. We combine nonmalleable codes and
seed-dependent condensers to check if the adversary tampers over the key value. We use the locked point
val as input to a seed-dependent condenser as part of the value encoded in the nonmalleable code. If the
adversary tampers to an independent value, they are unlikely to match the output of the condenser on the
real val. We introduce these tools and then our construction. We first present the notion of nonmalleable
codes, introduced by Dziembowski, Pietrzak, and Wichs [DPW10].

Definition 6.1. A pair of algorithms (Enc,Dec) is called a coding scheme if Enc : {0,1}* — {0,1}"
is randomized and Dec : {0,1}" — {0,1}*U L is deterministic and for each s € {0,1}* it holds that
Pr[Dec(Enc(s)) = s] = 1.

Definition 6.2. A coding scheme (Enc, Dec) is called (€nme, Snme, F )-nonmalleable if for each f € F and
each s € {0,1}F, there ewists a distribution Ds() over {{0,1}* same} that is efficiently samplable given
oracle access to f such that the following holds:

d°mme({c <= Enc(s);¢ < f(c),5 = Dec(¢) : Output 5}, {5 < Dy, Output s if 5§ = same else 5}) < €pme.

Seed-dependent condensers were introduced by Dodis, Ristenpart, and Vadhan [DRV12|]. Their goal
is similar to a traditional randomness extractor, except that the output only has to be statistical close
to a distribution with minentropy rather than considering a uniform output. Importantly, it is possible
to construct condensers where the adversary is allowed to output the chosen distribution after seeing the
seed.
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lock(val, key), input in {0, 1}***:  unlock(val), input in {0, 1}*: KC(val, z), input in {0, 1}

1. Compute z = cond(val,seed). 1. For i = 1 to n, input r;: 1. Compute z = cond(val, seed).
2. Compute y = Enc(key||2). compute: 2. Run decode key’ = Dec(y).
3. Initialize Out =L. , @g T St:CkU”'“k(”’Va') 3. 1f keyj, .1 7# 2 Output L.
4. For i = 1 to n compute: - uput g Else output key,  ,_;-

r; = stockLock(val, y;),
append Out = Qut||r;.

5. Output Out.

Figure 1: Nonmalleable digital locker preventing tampering over both val and key. A seed of a seed-dependent
condenser must be public and global.

Definition 6.3. Let cond : {0,1}* x {0,1}¢ — {0,1}* be a (k,k', s,¢) seed-dependent condenser if for
all probabilistic adversaries of size at most s who take a random seed seed < Uy and output a distri-
bution Xseed < A(seed) of entropy Hoo(X|seed) > k, then for the joint distribution (X,Ug) over Xseed
arising from a random seed < Uy, there exists a distribution Y such that Hoo(Y|Uy) > k' such that
A((Y,Uy), (cond(X;Uy),Uy)) < e.

Dodis, Ristenpart, and Vadhan showed that seed-dependent condensers can be constructed using
collision resistant hash functions. Furthermore, this construction works for ¢ = 0. That is, the output
has entropy instead of being close to a distribution with entropy. For our construction, we will require
k' = w(log \). Furthermore, for key-nonmalleability we require that H.,(X|cond(X; seed)) > w(log ).

With all of this in mind, we now present the construction.

Construction 6.1. Let (stockLock,stockUnlock) be a stocky locker. Let (Enc,Dec) be a coding scheme
where Enc : {0,1}FT* — {0,1}". Let cond : {0,1}* x {0,1}¢ — {0,1}® be a seed-dependent condenser.
Define the algorithms (lock, unlock, KC) as in Figure [}

Theorem 6.1. Let A € N be a security parameter and let {0, 1}* be the domain. Let (stockLock, stockUnlock)
be a (Fsingle, X, p, T)-nonmalleable stocky locker that is nonmalleable for val.

1. Suppose for any s = poly(\) there exists p, B = w(log \) such cond : {0,1}* x {0,1}% — {0,1}* is
a (u, B, s,0)-seed-dependent condenser.

Let seed < {0,1}? be a public parameter.

x X (seed) be an s-samplable distribution so Huo(X|seed, cond(seed, X)) > .

Let a description of Gsy, a generator g for Gsy and seed < {0,1}¢ be system parameters.

SN

Let Fpme be a function class. Suppose for any Spme = poly(\) there exists €pme = ngl(\) such that
(Enc, Dec) is an (€pme, Snmes Fnme) nonmalleable code.

Then (lock, unlock) in Construction is point nonmalleable for Fsngie and key nonmallable for Fpme.
In particular, (lock, unlock) is a (Fsingie, Frme, X )-nonmalleable digital locker.

Proof. Completeness and soundness follow from the underlying properties of the stocky locker. Suppose
that €y, is the negligible function for the pseudorandomness condition of the stocky locker and €sock nm is
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the negligible function for the nonmalleable condition of the stocky locker. We will show that the overall
malleability denoted by € is at most

€ < €pr + Estock,nm + 275 + €nme-

Let M be a mauling adversary for the overall digital locker. Note that for f output by M the probability
that f € Fgingie and f is not the identity is at most €siock nm- Suppose not, then there is some key”
where this is the case. Omne can construct a mauling adversary M’ for stocky lockers by computing
y = Enc(key®||z) where z = cond(val, seed), running M on the collection of stocky lockers and picking an
arbitrary stocky locker that is output by M and forwarding the function f.

Thus, if the probability that M succeeds in breaking the nonmalleability condition is greater than e
this implies that it outputs f that is the identity and g € F,me and not the identity with probability
greater than e — €stock,pr = €stock,pr + 278 + €nme-

We now show that this contradicts the security of the nonmalleable code. We show this through a
theorem (which may be of independent interest) that allows us to use nonmalleable codes in a nontra-
ditional way where the adversary is provided with pseudorandom information that is correlated to the
encoded codeword before choosing which function g € Fy,c to tamper with. We first define an adaptive
tampering experiment as follows for arbitrary distributions X, Y, Z and binary predicate Test:

. ad—nmc .
Experiment EXp]—‘nm,X,Y,Z,A,Test :

Sample (x,y,2) + (X,Y, Z)
Sample f « A(x).

If f & Fome output 0.

If f(y) =y output 0.

If Test(f(y), z) output 1.
Else output 0.

Theorem 6.2. Let Z € {0,1}* be a distribution such that Hoo(Z) > 5. Let (Enc, Dec) be a (énme, Snme, F)
nonmalleable code and Enc : {0,1}¥ — {0,1}" where k = a+ . Let key € {0,1}", define the distribution
Yiey by sampling z <— Z and computing Enc(key, z). For inputs y and z, define Test(y, z) = 1 if and only
if Dec(y)s...(v4a—1) = 2. Suppose that

1. For all f € F it is possible to compute f in a circuit of size at most Sr eya1.
2. It is possible to evaluate Test using a circuit of size at most |Test| and Spme > |Test|.

3. For a function f it is possible to check if f € F in size at most SF check- Furthermore, this check is
correct with probability 1.

4. X be an arbitrary distribution over M such that

6P (X, Yieys Z), (Unmt, Yey, Z)) < €pr.
Then for all A of size s it holds that

Pr Exp?}“{?} A= } <27 4+ epme + Epr-

Here s = min{s,, — |Test| — Sf eval — SF,check, Snme}-
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The above theorem says that providing an adversary with some information X that may be correlated
to the encoded codeword Y is not harmful as long as X is pseudorandom in the presence of Y. Crucially,
it must be possible to test if the adversary tampers to an independent codeword. This necessitates the
use of the auxiliary distribution Z that is part of the value encoded in Y. (In our construction Z is the
output of a seed-dependent condenser applied to val.)

Before proving Theorem [6.2] we show how Theorem follows from Theorem Let W be some
distribution with entropy at least u. Set the random variables as follows:

Z difcond(seed, W),
Y “Enc(key||2),
X “iock(W,Y)

Then by security of the seed dependent condenser Hoo (WY, Z) > Hoo (W |seed, cond(seed, W)) > S.
Thus, the conditional distribution WY, Z is in the class X'. By pseudorandomness of the stocky locker
one has that for any s = poly(\) there exists some €gock pr = ngl(A) such that,

5DS((X7 }/a Z)v (Ua Yva Z)) < €stock,pr-
Thus, the assumptions of Theorem are satisfied. One can then conclude that
Pr [Exp}d;{n{}i%A = 1} <278 4 €pme + Epr-

It remains to show that

V(IC)=1,f e F,geG,y=C(f(val),
Pro 9(y) = g(unlock(f(val))),|(C, f,g) + A(lock(val)) | < 27" + €pme + €pr,
) KC(f(val),y) #1,3a st. Ijaya =C

when f is the identity function and g is not. Suppose that there exists some A that wins the above game
with probability greater than ¢ = 278 4 e + €pr- Note that Test outputs 1 with the same probability
as KC outputting a value other than L. Thus, we can build an adversary A’ that breaks the conditions
of Theorem by running 4 on input lock(val) receiving the outputs C, f, g and outputting just g. This
adversary is a valid adversary for Exp?_g)_(n;l% 4+ This completes the proof of how Theorem follows
from Theorem We now proceed to the proof of Theorem

Proof of Theorem [6.3. We begin by defining a standard nonmalleable code experiment with a simulator
for a function f defined by a distribution D(-):

Experiment Expsfi,? D

Sample 5 < D¢(-),z + Z
If § = same output 0.

If Test($, z) = 1 output 1.

Else output 0.
Lemma 6.1. Suppose that Hoo(Z) > B, for any f, Pr[Expi}EDf(k‘) =1] <278,

Proof of Lemmal[6.1. We note that whenever § = same the output of the experiment is 0. Thus, we can
restrict our attention to cases when § # same. Then Pr[Z = 5;_, ;] < 2 Hoo(Z2) — 98 This completes
the proof of Lemma [6.1} O
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We will now argue that the adversary in the adaptive adversary does not perform substantially better

than in the simulated experiment. We use a hybrid argument with two intermediate games, Exp}x Z.A

and Exp%_-’ xv.z.A- In moving from Exp%i;(n{/n% 4 to Exp}_—x 7.4 we will replace the distribution X with a

random distribution that is uncorrelated to Y, Z. In Exp?cx , we will eliminate the uniform distribution
as input and move from the adversary picking a function to defining the experiment for a particular
function f. Finally in moving to Exp}7; D; (k) we will rely on the hardness of nonmalleable codes. The
two experiments are described formally below.

Experiment Explﬁy’ ZA
Sample (y, 2) < (Y, 2)
Sample u < M.

Sample f + A(u).

If f & F output 0.

If f(y) =y output 0.
Output Test(f(y), 2).

Experiment EXP%K P
Sample (y,z) < (Y, Z)
If f(y) =y output 0.
Output Test(f(y), z).

We now show each of these games are computationally close.

Lemma 6.2. Suppose that

1. For each f € F, the function f is computable in size at most sr.
2. For f it is possible to correctly check f € F in size SF check-
3. That 5DSPT ((X7 Ykew Z), (UMa Ykey7 Z)) < €pr-

Then for A of size at most Sy — |Test| — S£ eval — SF,check;

)Pr [Exp;ﬂ};(?gg (k) = 1] = Pr[Expky (k) = 1]| < epr.

Proof of Lemma[6.4 Suppose not. That is, suppose that there exists an A of size at most s, — |Test| —
SF,eval — SF,check such that

|Pr[Expf;§i,;él{,i12A =1] - Pr[Exp}_—sz = 1]| > €.

Then the following program D (of size at most s,,) is a distinguisher for ((X,Y, Z) and (Unm, Y, 2)):

1. On input z,v, z.
2. Run f « A(z).
3. If f ¢ For f(y) =y output 0.
4. Else output Test(f(y), 2).
That is,
[Pr[D(X,Y, Z) = 1] = Pr[D(Up, Y, Z) = 1]|
= [PrExpE V5 4 = 1] = Pr[Expry s 4 = 1]| > e
This contradicts the pseudorandomness of X |(Y, Z) and completes the proof of Lemma O
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Lemma 6.3. There exists some f € F such that for any A (here A need not be computationally bounded):

Pr[Exp?y. ;(k) = 1] > Pr[Expk y 5 (k) = 1].

Proof of Lemmal6.3 First we consider the circuits A that always output f € F. Given any A that
outputs an f ¢ F we can design another A’ that runs f + F and simply outputs a fixed f’ € F whenever
f & F. This A’ does not perform worse in Exp' than A.

Now consider some A that always outputs functions f € F. There is a distribution D 4 that outputs
exactly the distribution that is output by A. Note that this distribution is independent of y. Note that

Pr{Bxplyza=1= D PrlDa=fl Pr [f(s)#yATestly2)=1].
feFr ’ ’

Now suppose that for all f € F,

Pr[Exp}y ; (k) = 1] < Pr[Expjy 7 4(k) = 1].

Then one has

PrExp)yza=1= Y PriDa=fl Pr  [f(s) #yATese(y.s) =1

fer (y,2)+(Y,Z)

= Z Pr [DA = f] PI‘[EXP?Y’Z = 1]
feF

< PelDa f]PrBxphy s 1
feF

= PrlExpry 7z 4 = 1]
This is a contradiction and completes the proof of Lemma O

Before showing distinguishability of the last two games we consider the definition of nonmalleable
codes where the encoded secret is drawn from a distribution instead of considering a single point:

Lemma 6.4. Let (Enc,Dec) be a (€nme, Snme)-nonmalleable code for functions in F. Then for any dis-
tribution Z over points in {0,1}* it holds that

§Psmme (({c < Enc(Z);¢ < f(c),5 = Dec(¢) : Output 5}, 7),
({5 < Dy, Output Z if § = same else 5}, 7))

< €nme-

Proof of Lemmal[6.4 Suppose not, that is there exists some Z for which the statement is not true. In
particular, there must be some z € Z where Pr[Z = z] > 0 such that there exists D

§Psnme (({c + Enc(z);¢ < f(c),5 = Dec(¢) : Output 5}, 2),
({5 < Dy, Output z if 5 = same else 5}, 2)
> €nmec-
This contradicts security of the nonmalleable code. O
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With this distributional version of security for nonmalleable codes we can turn to indistinguishability of
the last two games.

Lemma 6.5. For every f € F, if Spme > |Test| then

Pr[Exp?}?Df =1]— Pr[Exp%Y’Z = 1]‘ < €nme-

Proof of Lemmal6.5 Suppose not, that is suppose that there exists some f € F such that

Pr[Exp?E’Df(k:) =1]— Pr[Exp%KZ(k‘) = 1]’ > €nme-

Then we have a distinguisher D (of size |Test|) for the distributional version of nonmalleable code security

guarantee 1) input §, z and 2) Compute Test(8$, z). This completes the proof of Lemma O
Combining Lemmas and completes the proof of Theorem and completes the proof of
Theorem [6.1] O
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