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Abstract

A point obfuscator is an obfuscated program that indicates if a user enters a previously stored
password. A digital locker is stronger: outputting a key if a user enters a previously stored password.
The real-or-random transform allows one to build a digital locker from a composable point obfuscator
(Canetti and Dakdouk, Eurocrypt 2008).

Ideally, both objects would be nonmalleable, detecting adversarial tampering. Appending a non-
interactive zero knowledge proof of knowledge adds nonmalleability in the common random string
(CRS) model.

Komargodski and Yogev (Eurocrypt, 2018) built a nonmalleable point obfuscator without a CRS.
We show a lemma in their proof is false, leaving security of their construction unclear. Bartusek,
Ma, and Zhandry (Crypto, 2019) used similar techniques and introduced another nonmalleable point
function; their obfuscator is not secure if the same point is obfuscated twice. Thus, there was no
composable and nonmalleable point function to instantiate the real-or-random construction.

Our primary contribution is a nonmalleable point obfuscator that can be composed any polynomial
number of times with the same point (which must be known ahead of time). Security relies on the
assumption used in Bartusek, Ma, and Zhandry. This construction enables a digital locker that is
nonmalleable with respect to the input password.

As a secondary contribution, we introduce a key encoding step to detect tampering on the key. This
step combines nonmalleable codes and seed-dependent condensers. The seed for the condenser must be
public and not tampered, so this can be achieved in the CRS model. The password distribution may
depend on the condenser’s seed as long as it is efficiently sampleable. This construction is black box
in the underlying point obfuscation.

Nonmalleability for the password is ensured for functions that can be represented as low degree
polynomials. Key nonmalleability is inherited from the class of functions prevented by the nonmalleable
code.
Keywords: Digital lockers; Point obfuscation; Virtual black-box obfuscation; Nonmalleable codes;
Seed-dependent condensers; Nonmalleability

1 Introduction

Obfuscation hides the implementation of a program from all users of the program. This work is concerned
with virtual black-box obfuscation, where an obfuscator creates a program that reveals nothing about the
program other than its input and output behavior [BGI+01, BGI+12]. Barak et al. showed that a virtual
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black-box obfuscator cannot exist for all polynomial time circuits [BGI+01]. However, this leaves open
the possibility of virtual black-box obfuscators for interesting classes of programs [CD08, BC10, CRV10,
WZ17, BR17].1

We focus on obfuscated point functions [Can97] and digital lockers [CD08] [BC10]. A point func-
tion obfuscator is an algorithm lockPoint(val) which outputs a circuit unlockPointval(·). The circuit
unlockPointval(·) stores val and indicates when val is inputted to it. An obfuscated point function needs
to hide all partial information about val [Can97].

A digital locker obfuscator inputs a value, val, and key, key. The output is a program unlockval,key(·)
which outputs key if and only if the input is val. Soundness says unlockval,key should reveal nothing about
val or key if the adversary cannot guess val. Digital lockers have applications in password [Can97] and
biometric authentication [CFP+16, ABC+18].

It is possible to compose point functions to build a digital locker using the real-or-random construc-
tion [CD08]. It works as so: sample a random point r. For each bit of the key, either r (corresponding to
a 0 in key) or val (corresponding to a 1) is obfuscated. An obfuscation of val is prepended as a check value.
When running the program, if the check obfuscation opens, the user runs the other programs: failures to
open correspond to a key bit 0 and successes correspond to a key bit of 1. Crucially, the point function
must retain security when val is obfuscated multiple times.

Nonmalleability A desirable property of an obfuscated program is nonmalleability. A nonmalleable
obfuscator detects if an adversary attempts to tamper the obfuscation into a related program [CV09],
where being related is defined by some family of functions F . For example, it is desirable to prevent
unlockval,key from being mauled to unlockf(val),f ′(key) for f, f ′ ∈ F .

In the random oracle model, designing nonmalleable digital lockers and point functions is easy: For
a random oracle RO one outputs the program RO(val) ⊕ (key||RO′(key)), where RO and RO′ are two
independent random oracles of different output length. Similarly, using general non-interactive zero-
knowledge proofs of knowledge (NIZKPoKs) in the common random string (CRS) model one can achieve
nonmalleability. For unlockval,key(·), appending a NIZKPoK of key and val would prevent the adversary
from creating a valid obfuscation for any point related to the inputs.2

Komargodski and Yogev constructed a nonmalleable point obfuscator without resorting to these
tools [KY18a]. Their construction follows. Let g be a fixed group generator. To obfuscate the point
val, the obfuscator computes a random r and outputs

lockPoint(val) =

(
r, rg

∑4
i=1 vali

)
.

We observe that nonmalleability of Komargodski and Yogev’s scheme relies on an incorrect lemma in a
way that is not apparently repairable. We discuss this in detail below.

Bartusek, Ma, and Zhandry [BMZ19] using similar mathematical structure showed a nonmalleable
point function using random a, b, c:

lockPoint(val) = a, ga·val+(val)2+(val)3+(val)4+(val)5 , b, gb·val+(val)6 , c, gc·val+(val)7 .

The structure of the group element is similar to Komargodski and Yogev’s construction, but with a
random scalar in place of “double exponentiation.” The terms involving b and c ensure no incorrect

1We do not consider indistinguishability obfuscation in this work [GGH+13, GGH+16, SW14, PST14, GLSW15, AJ15].
2The adversary can always substitute an obfuscation on an unrelated point. Thus, it is possible to create obfuscations for

functions f where f(val) is easy to guess.
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point causes the obfuscation to unlock. In both constructions, g is assumed to be fixed; this means the
distribution of val may depend on generator g. Bartusek, Ma, and Zhandry [BMZ19] show security based
on new Diffie-Hellman variants and show these variants hold in the generic group model, using tools from
the auxiliary input generic group model [CDG18].

The natural nonmalleability definition is that, given unlockPointval, an adversary can only output the
same obfuscation or obfuscations of independent points. The above constructions use a weaker definition.
Given an obfuscation lockPointval, the adversary is required to output a function f and an obfuscation
lockPointf(val). That is, the definition requires the adversary to know what tampering function they
are applying. Both constructions consider f as a polynomial of bounded degree related to the assumed
hardness in the DDH assumptions. The definition considers the tampering functions prevented, not what
operations are performed by the adversary.

The goal of this work is to construct nonmalleable digital lockers. The real-or-random construction
instantiated with nonmalleable point functions would provides nonmalleability over val. Crucially, this
construction requires security to hold when the nonmalleable point functions are composed though only
with the same val. Both previous constructions have issues that prevent incorporation. The proof of
nonmalleability for [KY18a] relies on an untrue lemma and the proof does not seem easily repairable,
and the construction of [BMZ19] cannot be composed twice or more. We discuss these issues and then
introduce our contribution.

[KY18b, Lemma 4.6] is not true Let g be a fixed generator of a group. The version of Komargodski
and Yogev published in Eurocrypt 2018 [KY18a] relied on a fixed generator power DDH assumption
which says for any distribution x with super logarithmic entropy (here the distribution of x can depend
on generator g) that

g, gx, gx
2
, ..., gx

t ≈c g, gu1 , gu2 , ...., gut ,

for a truly random set of elements u1, ..., ut. This assumption is used in the proof by assuming that the
adversary sees

∑4
i=1 ui and arguing they can’t predict any linear combinations other than c

∑4
i=1 ui for

some constant c. However, Bartusek, Ma, and Zhandry [BMZ19] showed that for a fixed generator this
assumption cannot be true: x can be drawn from points where most bits of gx are fixed. As a result, a
revised version [KY18b] proposes a revised assumption called entropic power where

g, gx, gx
2
, ..., gx

t ≈c g, gz1 , gz2 , ...., gzt .

Where zi are independent and have some super logarithmic min-entropy. This assumption does not
appear to suffice. In particular, [KY18b, Lemma 4.6] is incorrect as stated. The lemma states it is hard
to predict linear combinations of zi other than c

∑4
i=1 zi for any constant c ∈ G, even knowing

∑4
i=1 zi.

However, even if each zi has entropy, the value
∑4

i=1 zi may uniquely determine each zi: let zi vary in
the ith quarter of bits and fix the rest of bits to be 0. The attack of [BMZ19] prevents arguing that zi
has any greater amount of entropy.

This does not seem to be an issue of just the proof technique. The point of the entropic power
assumption is to switch to an information-theoretic setting where the adversary cannot predict new powers
from a linear combination, but bounding the entropy of each zi may cause all powers to be predictable.
Repairing this scheme seems to require a new Diffie-Hellman assumption or a major change in analysis.

[BMZ19] is not composable One might try to compose the construction of Bartusek et al. [BMZ19].
However, this scheme is not secure even when used twice for the same val. The hardness of finding gx is
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the underlying assumption used to show nonmalleability [BMZ19, Assumption 4]. Since the distribution
of x may depend on g, one can construct distributions x where gx is distinguishable from a random group
element gr. If one can find gx, the scheme can not be secure. If one tries to obfuscate the same point x
twice, all the higher order terms can be removed by dividing two instances. That is, given

a1,g1 = ga1x+x
2+x3+x4+x5

a2,g2 = ga2x+x
2+x3+x4+x5

one can easily compute g(a1−a2)x = g1/g2, and so we recover

gx = (g1/g2)
(a1−a2)−1

.

1.1 Our Contribution

The primary contribution of this work is the first same-point composable nonmalleable point function
The composable, nonmalleable point function can instantiate the real-or-random construction providing
a nonmalleable digital locker that prevents tampering over val only. This construction is in the standard
model.

As a secondary contribution, we introduce a key encoding step to detect tampering on key. The key
encoding step allows us to achieve a digital locker that is nonmalleable over both val and key. However,
our key encoding step requires a public value that all distributions can depend on. This can be achieved
in the common random string (CRS) model. In our construction the distribution of val can depend
on the public value. In the CRS model, one can achieve nonmalleability in a non-black box way using
non-interactive zero knowledge proofs of knowledge [CV09].

Composable Same Point Nonmalleable Point Function Obfuscation We introduce a new non-
malleable point function that can be safely composed τ times as long as the same point is obfuscated each
time. The construction builds on the one time scheme of Bartusek et al. [BMZ19]. We include additional
randomized powers to prevent the above attack. The construction needs to know the desired composition
parameter τ ahead of time. The value τ would be known in the case when a point function is being used
to construct a digital locker. Let ~a,~b,~c be uniform vectors of length τ . The construction is as follows:

lockPoint(x;~a,~b,~c)
def
=

~a, g
∑τ
i=1 ~aix

i+
∑τ+5
i=τ+1 x

i
,

~b, g
~b1x+

∑τ
i=2

~bix
i+τ+5+x2τ+5

,

~c, g~c1x+
∑τ
i=2 ~cix

i+2τ+4+x3τ+5
.


The intuition for the formation of the first group element is that we need to randomize more powers to
prevent the adversary from removing the higher order powers and being able to linear solve for gx. Since
the adversary can create τ − 1 linearly independent pairs, τ randomized powers are necessary. We add a
fifth non-randomized power in the ~a term to deal with the additional flexibility created by τ . The crucial
step in the proof is showing that some linear system has no interesting solutions, the extra power is to
counteract the degree of freedom introduced by τ (see Theorem 3.2).

The intuition for the ~b and ~c terms is similar. Due to our proof technique, we need to randomize
different powers for the ~a term, the ~b term, and the ~c term, resulting in the above construction. All terms
have a randomized x1 coefficient so we can reduce to [BMZ19, Assumption 4].

We can instantiate the real-or-random construction with this construction to yield a nonmalleable
digital locker that only provides nonmalleability over the locked val.
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Detecting Key Tampering Our definition of nonmalleability for digital lockers uses two supplemental
algorithms called key verifier and value verifier, denoted as Vkey and Vval respectively. The value verifier
was defined for nonmalleable point functions (Definition 2.2). If the entire process could be controlled
by the adversary, they could output a circuit that says the key′ is always good. With these in hand, we
define the following game (Definition 2.7):

1. Before input to the digital locker the key is encoded, c = Enc(key, val) and placed in the digital
locker lock(val, c) (that doesn’t detect tampering of key). Note, we allow c to depend on val.

2. The adversary performs tampering, outputs functions fkey and fval, and a new obfuscation unlock′.

3. The adversary wins if

(a) unlock′ passes the value verifier. That is, Vval(unlock
′) 6=⊥,

(b) If c′
def
= unlock′(fval(val)) passes the key verifier. That is, Vkey(c

′, fval(val)) 6=⊥, and

(c) The obfuscation is consistent with the provided functions: c′ = fkey(unlock(fval(val)).

We require the adversary to output its tampering functions as in [KY18a] and [BMZ19]. This is a
limitation of the current definition, a stronger definition would keep the adversary from performing any
prohibited tampering function, even if they are not aware of what function they are applying. Our proof
techniques do not seem to extend to this stronger definition. The key verifier algorithm takes val as input
since it is available, however, the mauled val is provided.

The adversary tampers c, but the definition makes no claim whether a tampering class is easy or hard.
Since permutations and one directional bit flips (replacing an obfuscation with one of a random point) are
easily computable, the encoding strategy should prevent them. This is possible for our encoding strategy
(see below).

As mentioned above, one could prove knowledge (using a NIZKPoK) of just key to prevent modification
of this value. Such a method would inherently depend on the underlying point digital locker. Our goal is
to avoid general NIZKPoKs. Our strategy is to use a nonmalleable code [DPW10] to ensure an adversary
can only tamper to independent values and a seed-dependent condenser [DRV12] to ensure an independent
value is unlikely to pass the key verifier. We discuss the approach and alternative tools in Section 4.

Our construction requires seed to be public and not tampered. This can be achieved in the CRS
model. Importantly, our construction does not assume independence of distributions from the random
object. The CRS is only necessary for preventing tampering of key, the real-or-random construction
prevents tampering of val in the standard model.

Organization In Section 2, we present definitions. In Section 3, we introduce the composable nonmal-
leable point function. In Section 4, we present the real-or-random digital locker construction and add the
key encoding and verifier.

2 Preliminaries

For random variables Xi over some alphabet Z we denote by X = X1, ..., Xn the tuple (X1, . . . , Xn).
For a set of indices J , XJ is the restriction of X to the indices in J . The minentropy of X is H∞(X) =
− log(maxx Pr[X = x]), and the average (conditional) minentropy [DORS08, Section 2.4] of X given Y is

H̃∞(X|Y ) = − log

(
E
y∈Y

max
x

Pr[X = x|Y = y]

)
.
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For a distinguisher D, the computational distance between X and Y is δD(X,Y ) = |E[D(X)]− E[D(Y )]|
(we extend it to a class of distinguishers D by taking the maximum over all distinguishers D ∈ D). We
denote by Ds the class of randomized circuits which output a single bit and have size at most s. Logarithms
are base 2. In general, capitalized letters are used for random variables and the corresponding lowercase
letters for their samples. We say that two circuits, C and C ′, with inputs in {0, 1}λ are equivalent if
∀x ∈ {0, 1}λ, C(x) = C ′(x). We denote this as C ≡ C ′. For a matrix A let Ai,j denote the entry in the
ith row and the jth column. Let A(·,j) represent the jth column and A(i,·) represent the ith row.

Definition 2.1. An ensemble of distributions X = {Xλ}λ∈N, where Xλ is over {0, 1}λ, is well-spread if

1. It is efficiently and uniformly samplable. That is, there exists a PPT algorithm given 1λ as input
whose output is identically distributed as Xλ.

2. For all large enough λ ∈ N, it has super-logarithmic minentropy. Namely, H∞(Xλ) = ω(log λ).

2.1 Obfuscation Definitions

All obfuscation definitions include a requirement of polynomial slowdown, which says the running time
should be at most a polynomial factor larger than the original program. Running time of our constructions
can be easily verified. For all definitions, we include a tampering function F . The traditional definition can
be achieved by taking F = ∅. We adapt nonmalleability definitions from Komargodski and Yogev [KY18a].
See Komargodski and Yogev for definitional considerations [KY18a].

Our constructions require that the challenger can recognize a legitimate obfuscation. We call this
object a value verifier or Vval. It was called a verifier (without the word value) in [KY18a].

Definition 2.2 (Value Verifier). Let λ ∈ N be a security parameter. Let O be a program that takes inputs
x ∈ {0, 1}λ and outputs a program P. A PPT algorithm Vval is called a value verifier if for all x ∈ {0, 1}λ,
it holds that Pr[Vval(P) = 1|P ← O(x)] = 1, (prob. over the randomness of Vval and O).

Our constructions consist of tuples of group elements and strings. The obvious value verifier suffices
as long as group elements are recognizable.

Point Obfuscators A point function is a function Ival: {0, 1}n 7→ {0, 1} that outputs 1 on input val
and 0 elsewhere. An obfuscator preserves functionality while hiding the point val if val is not provided as
input to the program. In this work we consider a version that allows for the same point to be obfuscated
multiple times while retaining security.

Definition 2.3 (τ -Same Point Nonmalleable Point Function). For security parameter λ ∈ N, let F :
{0, 1}λ → {0, 1}λ be a family of functions, let X be a family of distributions over {0, 1}λ. A (F ,X )-non
malleable point function obfuscation lockPoint is a PPT algorithm that inputs a point val ∈ {0, 1}λ, and
outputs a circuit unlockPoint. Let Vval be a value verifier for lockPoint as defined in Definition 2.2. The
following properties must hold:

1. Completeness: For all val ∈ {0, 1}λ, it holds that

Pr[unlockPoint(·) ≡ Ival(·)|unlockPoint← lockPoint(val)] ≥ 1− ngl(λ),

where the probability is over the randomness of lockPoint.
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2. Soundness: For every PPT A and any polynomial function p, there exists a simulator S and
a polynomial q(λ) such that, for all large enough λ ∈ N, all val ∈ {0, 1}λ and for any predicate
P : {0, 1}λ 7→ {0, 1},

|Pr[A({unlockPointi}τi=1) = P(val)|{unlockPointi}τi=1 ← lockPoint(val)]

−Pr[SIval(·)(1λ) = P(val)]| ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries to Ival and the probabilities are over the internal randomness
of A and lockPoint, and of S, respectively. Here Ival(·) is an oracle that returns 1 when provided
input val and 0 otherwise.

3. Nonmalleability For any X ∈ X , for any PPT A, there exists ε = ngl(λ), such that:

Pr
val←X

[
Vval(C) = 1, f ∈ F , (If(val) ≡ C)

∣∣∣∣∣ {unlockPointi}τi=1 ← lockPoint(val)

(C, f)← A({unlockPointi}τi=1)

]
≤ ε.

In the above unlockPointi are τ outputs of lockPoint on the same input point val and independent
randomness. Note that the simulator is still only provided with a single oracle. In usual composition
definitions the simulator has τ oracles. Since we consider the same point being obfuscated multiple times,
all of these oracles would have the same functionality and can be reduced to a single oracle.

In addition to the above traditional definition of soundness, we’ll use two auxiliary definitions of
privacy for nonmalleable point functions. These are known as distributional indistinguishability and
oracle indistinguishability (both first defined in [Can97]).

Definition 2.4 ((Same Point) Distributional Indistinguishability). An algorithm lockPoint is called a good
distributional indistinguishable (DI) obfuscator if for any PPT A with binary output and any well-spread
distribution X over points in {0, 1}λ then there exists some negligible function ε such that

| Pr
val←X

[A({unlockPointi}τi=1) = 1|unlockPointi ← lockPoint(val)]

− Pr
u

$←{0,1}λ
[A({unlockPointi}τi=1) = 1|unlockPointi ← lockPoint(u)]| ≤ ε.

In the previous definition [BC10] of composable distributional indistinguishability in the random case the
adversary is provided with τ different random points. Here because we focus on obfuscating multiple
copies of the same random point, we require indistinguishability from τ copies of a random point.

Definition 2.5 ((Same point) Oracle Indistinguishability). An algorithm lockPoint is a oracle indistin-
guishable (OI) obfuscator if for any PPT adversary A and any polynomial function p, there exists a
polynomial size family of sets {Lλ}λ∈N such that for all sufficiently large λ and for all val 6∈ Lλ,

|Pr[A({unlockPointi}τi=1) = 1|unlockPointi ← lockPoint(val)]

− Pr
val′

$←{0,1}n
[A({unlockPointi}τi=1) = 1|unlockPointi ← lockPoint(val′)]| ≤ 1

p(λ)
.

Bitanski and Canetti [BC10] previously showed that τ -distributional indistinguishability implies τ -composable
virtual gray box obfuscation (for point functions). They then showed that for τ = O(1) this implies virtual
black box obfuscation. We will need super constant composition. To overcome this barrier we restrict to
composition of the same point and directly show their result works for virtual black box obfuscation in
this case. These proofs are similar to the original proofs of Canetti [Can97].
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Theorem 2.1. Any τ same point distributional indistinguishable point obfuscator is a τ -composable same
point VBB obfuscator.

Proof. [BC10, Lemma 3.1] shows distributional indistinguishability implies oracle indistinguishability. We
need to modify this proof slightly because our versions of distributional indistinguishability and oracle
indistinguishability consider the same point.

Lemma 2.1. Suppose that a point obfuscator lockPoint satisfies τ -distributional indistinguishability (for
the same point) then it satisfies τ -oracle indistinguishability (for the same point).

Proof of Lemma 2.1. Consider some binary PPT A and a polynomial function p. We demonstrate the
existence of the family Lλ. Define by Xλ the set of all values val ∈ Xλ such that

|Pr[A({unlockPointi}τi=1) = 1|unlockPointi ← lockPoint(val)]

− Pr
val′

$←{0,1}λ
[A({unlockPointi}τi=1) = 1|unlockPointi ← lockPoint(val′)]| > 1

p(λ)
. (1)

Define X+
λ as the set of points where Eq (1) is true without the absolute values. Define X−λ as the

set of points where the negative of Eq (1) is greater than 1/p(λ). Assume towards a contradiction that
|Xλ| = ω(poly(λ)). This means that for infinitely many λ it is either true that |X+

λ | or |X−λ | is super
polynomial size. Without loss of generality assume that the first case holds. We construct a well-spread
distribution ensemble Zλ such that A distinguishes τ obfuscations of points from Zλ and τ obfuscations
of a uniform point. Define the distribution Zλ as the uniform distribution over X+

λ . Note that Zλ is a
well spread distribution. Then it must be the case that

| Pr
val←Zλ

[A({unlockPointi}τi=1) = 1|unlockPointi ← lockPoint(val)]

− Pr
u

$←{0,1}λ
[A({unlockPointi}τi=1) = 1|unlockPointi ← lockPoint(u)]| ≥ 1

p(λ)
.

This contradicts the τ -distributional indistinguishability of lockPoint.

Lemma 2.2. Suppose that a point obfuscator, lockPoint satisfies same point τ -oracle indistinguishability
then it satisfies VBB when composed τ times.

Proof of Lemma 2.2. Let A be some PPT adversary. Furthermore, suppose that lockPoint satisfies τ -
oracle indistinguishability. Define Lλ as the polynomial size set in Definition 2.5. Define the simulator
SA:

1. Query the oracle I on each point x ∈ Lλ. If the oracle returns 1 go to next step and set val = x.

2. If val =⊥ set val
$← {0, 1}λ.

3. Run and output A({lockPoint(val)}λi=1).

Note that Lλ may differ for each adversary and length λ. Fix some predicate P. We now analyze the
quality of SA suppose that val ∈ Lλ then SA outputs exactly the distribution A({unlockPointi}λi=1) so the
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simulation is perfect. In the case when val 6∈ Lλ by the definition of oracle indistinguishability

Pr[A({unlockPointi}τi=1) = P(val)|unlockPointi ← lockPoint(val)]

−Pr[SIval(·)A (1λ) = P(val)] ≤
|Pr[A({unlockPointi}τi=1) = 1|unlockPointi ← lockPoint(val), val 6∈ Lλ]

− Pr
val′

$←{0,1}λ
[A({unlockPointi}ti=1) = 1|unlockPointi ← lockPoint(val′)]| ≤ 1

p(λ)
.

Thus, in all cases for an arbitrary polynomial p(λ) the VBB condition is satisfied.

The application of Lemma 2.1 and 2.2 proves Theorem 2.1.

We now present our definition of a nonmalleable digital locker. Our notation for digital lockers adds
a key verifier which checks if the key should be accepted. This is analogous to the value verifier in the
previous subsection:

Definition 2.6 (Key Verifier). Let λ ∈ N be a security parameter and let n = n(λ) be a parameter. Let
O be a program that takes inputs x ∈ {0, 1}λ, y ∈ {0, 1}k and outputs a program P. A PPT algorithm
Vkey (with inputs in {0, 1}λ+n and outputs in {0, 1}k∪ ⊥) for program class O is called a key verifier if it
holds that

Pr[Vkey(x, z) 6=⊥ |P ← O(x, y), z ← P(x)] = 1,

Where the probability is over the randomness of Vkey and O).

Here we note the three different values x, y, z. The value x is the input value, y is the input key, and
z as an encoded version of the key. The output of the locker is z which is then checked. There most be
value and key independent algorithm that checks z otherwise no manipulation detection is possible. A
definition for traditional digital lockers is found in Canetti and Dakdouk [CD08]. Our definition considers
tampering on both key and val.

Definition 2.7 (Nonmalleable Digital Locker). For security parameter λ ∈ N, Let F : {0, 1}λ →
{0, 1}λ,G : {0, 1}n → {0, 1}n be families of functions and X be a family of distributions over {0, 1}λ.
A (F ,G,X )-nonmalleable digital locker lock is a PPT algorithm that inputs a point val ∈ {0, 1}λ and
string key ∈ {0, 1}n. Let Vval be a value verifier for lock and let Vkey be a key verifier for lock. The
following conditions must be met:

1. Completeness: For a circuit unlock define the circuit unlock′(x) = Vkey(x, unlock(x)). For all
val ∈ {0, 1}λ, key ∈ {0, 1}n it holds that

Pr[unlock′(·) ≡ Ival,key(·)|unlock← lock(val, key)] ≥ 1− ngl(λ),

where the probability is over the randomness of lock.

2. Soundness: For every PPT A and any polynomial function p, there exists a simulator S and a
polynomial q(λ) such that, for all large enough λ ∈ N, all val ∈ {0, 1}λ, all key ∈ {0, 1}k, and for
any P : {0, 1}λ+k 7→ {0, 1},∣∣∣Pr[A(lock(val, key)) = P(val, key)]− Pr[SIval,key(1λ) = P(val, key)]

∣∣∣ ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries to Ival,key and the probabilities are over the internal randomness
of A and lock, and of S, respectively. Here Ival,key is an oracle that returns key when provided input
val, otherwise Ival,key returns ⊥.

9



3. Nonmalleability For any distribution X ∈ X , for any PPT A, for any key ∈ {0, 1}n, there exists
ε = ngl(λ) such that:

Pr
val←X


Vval(C) = 1, f ∈ F , g ∈ G,

y = C(f(val)),

y = g(unlockval,key(val)),

Vkey(f(val), y) 6=⊥,
∃α s.t. If(val),α ≡ C

∣∣∣∣∣∣∣∣∣∣∣∣
unlockval,key ← lock(val, key)

(C, f, g)← A(unlockval,key)

 ≤ ε.

where at most one of f and g may be the identity function.

If nonmalleability is not a requirement a traditional digital locker can be obtained by outputting
unlock′(x) = Vkey(x, unlock(x)) instead of unlock(x).

3 A composable nonmalleable point function

In this section, we introduce a new construction of a nonmalleable point function that can be composed
as long as the same point is used each time. Our construction draws on ideas from [BMZ19] and is secure
under the same assumptions. Their construction is as follows for randomly sampled a, b, c:

lockPoint(val) = a, ga·val+(val)2+(val)3+(val)4+(val)5 , b, gb·val+(val)6 , c, gc·val+(val)7 .

The first group element is the key to nonmalleability, the second two group elements are there to provide
correctness. Security of their construction and ours relies on two assumptions (they showed security
of these assumptions in the generic group model even if the distribution of val depends on the chosen
generator of the group).

Assumption 3.1. [BMZ19, Assumption 3] Let G = {Gλ}λ∈N be a group ensemble with efficient repre-
sentation and operations where each Gλ is a group of prime order p ∈ (2λ, 2λ+1). We assume that for
every λ ∈ N there is a canonical group (and efficiently computable) and canonical and efficient mapping
between the elements of {0, 1}λ to Gλ. Let {Xλ} be a family of well-spread distributions over {0, 1}λ.
Then for any ` = poly(λ) for any PPT A:∣∣∣Pr[A({ki, gkix+x

i}i∈[2,...,`] = 1]− Pr[A({ki, gkir+r
i}i∈[2,...,`]

∣∣∣ = ngl(λ).

where x← Xλ, r ← Zp(λ), ki ← Zp(λ).

The second assumption can be proved from Assumption 3.1, see [BMZ19, Lemma 8], and is useful for
arguing nonmalleability:

Assumption 3.2. [BMZ19, Assumption 4] Let G and Xλ be defined as in Assumption 3.1. Then for
any ` = poly(λ) for any PPT A:

Pr[gx ← A({ki, gkix+x
i}i∈[2,..,`] = ngl(λ).

where x← Xλ and ki ← Zp(λ).
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We now introduce our main construction. The intuition behind the construction is to increase the number
of randomized powers to deal with the additional constraints on val that the adversary gains by seeing
multiple copies; it will be proved secure under Assumptions 3.1 and 3.2.

Construction 3.1. Let λ ∈ N be a security parameter. Let G = {Gλ}λ∈N be a group ensemble with
efficient representation and operations where each Gλ is a group of prime order p ∈ (2λ, 2λ+1). We
assume that for every λ ∈ N there is a canonical and efficient mapping between the elements of {0, 1}λ

to Gλ. Let g be a generator of the group Gλ. For some parameter τ ∈ Z+, let ~a,~b,~c
$← Gλ be input

randomness and define the algorithm lockPoint as:

lockPoint(val;~a,~b,~c)
def
=

~a, g
∑τ
i=1 ~aix

i+
∑τ+5
i=τ+1 x

i

~b, g
~b1x+

∑τ
i=2

~bix
i+τ+4+x2τ+5

,

~c, g~c1x+
∑τ
i=2 ~cix

i+2τ+4+x3τ+5
.


Given a program unlockPoint consisting of three vectors ~a,~b,~c and group elements g1, g2, g3 and input val
compute:

g
∑τ
i=1 ~aival

i+
∑τ+5
i=τ+1 val

i ?
= g1

g
~b1val+

∑τ
i=2

~bival
i+τ+4+val2τ+5 ?

= g2

g~c1val+
∑τ
i=2 ~cival

i+2τ+4+val3τ+5 ?
= g3.

If all of these checks pass, output 1. Otherwise, output 0.

In order to add same point composability, we extend from three scalars to 3τ scalars (while keeping
3 group elements). We note that this scheme is that of [BMZ19] if we let τ = 1.

Lemma 3.1. For any τ = poly(λ) Construction 3.1 satisfies completeness.

Proof. This argument is analogous to the functionality preservation argument in [BMZ19]. The only
difference is that polynomials are higher degree due to composition. Fix some point x ∈ Zp(λ). It suffices
to argue that over the randomness of unlockPoint ← lockPoint(x) that the probability that there exists
some y such that unlockPoint(y) = 1 is ngl(λ).

Recall that the randomness used to construct unlockPoint is the vectors ~a,~b,~c. Fix some x ∈ Zp(λ).

Fix some value ~a and define α
def
=
∑τ

i=1 x
i+
∑τ+5

i=τ+1 x
i. For some other value y, since G is prime order the

only way for the first element to match is for α =
∑τ

i=1 y
i+
∑τ+5

i=τ+1 y
i. Since this is a polynomial of degree

τ + 5 there are at most τ + 4 such values y (excluding the original value x). Consider one such value y.

Then, consider the polynomial P (~b)
def
= ~b1(x− y) +

∑τ
i=2

~bi(x
i+τ+4− yi+τ+4) + (x2τ+5− y2τ+5). Fix some

values of ~bi for i = 2, ..., τ . Then this is a linear polynomial in ~b1 that is zero with probability at most
1/p(λ). A similar argument holds for the second check value. Thus, a candidate y is a solution to both
equations with probability 1/p(λ)2. Thus means for a fixed x the probability of one of the y’s working is
at most (τ + 5)/p(λ)2 by union bound. With a second application of union bound, the probability across
all x of some y existing is at most (τ + 5)/p(λ) = ngl(λ) as desired.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then for any τ = poly(λ), Construction 3.1 satisfies
virtual black box security (when composed up to τ times).
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Proof. We show that Construction 3.1 satisfies distributional indistinguishability (Definition 2.4). Virtual
black box security then follows by Theorem 2.1.

Suppose for the aim of arriving at a contradiction that there exists some well-spread distribution Xλ
such that there exists a PPT adversary A and a polynomial q(·) such that

|Pr[A({lockPoint(x)}τi=1) = 1]− Pr[A({lockPoint(r)}τi=1) = 1]| > 1

q(λ)
,

where x ← Xλ and r ← Zp(λ). We then show how to build an adversary B that breaks Assumption 3.1
(with respect to distribution family Xλ) receiving ` = 3τ + 4 elements (corresponding to a maximum
power of 3τ + 5). That is, B will receive 3τ + 4 pairs of the form

{ki, gkiz+z
i}i∈{2,...,3τ+5},

where z is either distributed according to Xλ or uniformly in Zp(λ). Denote by {ki, ghi}i=2,...,3τ+5 the

received values, defining hi = kiz + zi. Then, B samples three matrices A,B,C uniformly in Zτ×(τ−1)p(λ) .

Our goal is to produce τ obfuscations (either of x or r). B compute the matrices A′,B′,C′ ∈ Zτ×τp(λ) as
follows:

A′i,j =

{∑τ−1
α=1 Ai,αkα+1 +

∑τ+4
α=τ kα+1 j = 1

Ai,j−1 otherwise.

B′i,j =

{∑τ−1
α=1 Bi,αkα+τ+5 + k2τ+5 j = 1

Bi,α−1 otherwise.

C′i,j =

{∑τ−1
α=1 Ci,αkα+2τ+5 + k3τ+5 j = 1

Ci,j−1 otherwise.

Then B computes the ith value to be fed into A as:

lockPointi =


A′(i,·), g

∑τ−1
j=1 Ai,jhj+1+

∑τ+5
j=t hj+1 ,

B′(i,·), g
∑τ−1
j=1 Bi,jhj+τ+4+h2τ+5 ,

C′(i,·), g
∑τ−1
j=1 Ci,jhj+2τ+4+h3τ+5 .

The above group elements can be formed linearly from the received values {ki, ghi}i∈[2,...,3τ+5] and A,B,C.
For the ith obfuscation, the values produced in the exponent are (omitting the exponential notation):

τ−1∑
j=1

Ai,jhj+1 +

τ+5∑
j=τ+1

hj =

τ−1∑
j=1

Ai,jkj+1 +

τ+4∑
j=τ

kj+1

 z +

τ−1∑
j=1

Ai,jz
j+1 +

τ+5∑
j=τ+1

zj ,

τ−1∑
j=1

Bi,jhj+τ+5 + h2τ+5 =

τ−1∑
j=1

Bi,jki+τ+5 + k2τ+5

 z +
τ−1∑
j=1

Bi,jz
j+τ+5 + z2τ+5,

t−1∑
j=1

Ci,jhj+2τ+5 + h3τ+5 =

τ−1∑
j=1

Ci,jki+2τ+5 + k3τ+5

 z +
τ−1∑
j=1

Ci,jz
j+2τ+5 + z3τ+5.
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From the above equations, it is apparent that the matrices A′,B′,C′ are consistent with the group
elements. Furthermore it is clear for j > 1 that the coefficients for zj are appropriately formed. It
remains to show that the 3τ coefficients of z are uniformly random. Denote by ζi for i = 1, ..., 3τ
coefficients of z respectively. Let 1i,j represent an all 1 matrix of dimension i×j and define 0i×j similarly.
Define the matrix of coefficients:

D
def
=

 A(·,1) A(·,2,...,t−1) 1τ×5 0τ×τ−5 0τ×1 0τ×τ−1 0τ×1

B(·,1) 0τ×τ−1 0τ×5 B(·,2,...,t−1) 1τ×1 0τ×τ−1 0τ×1

C(·,1) 0τ×τ−1 0τ×5 0τ×τ−5 0τ×1 C(·,2,...,t−1) 1τ×1

 .

The set of values received by the adversary can be described by:

D


k2
k2
...

k3t+5

 =


ζ1
ζ2
...
ζ3t


The matrix D has dimension 3τ × 3τ + 5. For each coefficient ζj to be random it suffices for the matrix
D to have row rank of 3τ . For D to have rank 3τ it suffices for each A||1,B|1,C||1 to have rank of τ .
Since each matrix is random this occurs with probability at most τ/p = ngl(λ). If one these matrices is
not full rank, B aborts and outputs a random value. Conditioning on these matrices being full rank the
obfuscation are properly prepared for A. Denote by

DistingA
def
= |Pr[A({lockPoint(x)}τi=1) = 1]− Pr[A({lockPoint(r)}τi=1) = 1]|.

Then one has that

∣∣∣Pr[B({ki, gkix+x
i}i∈[2,...,3τ+4] = 1]− Pr[B({ki, gkir+r

i}i∈[2,...,3τ+4]

∣∣∣ =

Pr[A ∨B ∨C not full rank] + Pr[A ∧B ∧C full rank] · DistingA =

ngl(λ) + (1− ngl(λ)
1

q(λ)
=

1

q′(λ)

for some polynomial function q′(λ). This completes the proof of Theorem 3.1.

Theorem 3.2. Let λ be a security parameter Let {Xλ} be a well-spread distribution ensemble and let
m, τ ∈ Z+ be parameters that are both poly(λ). Let Fpoly be the ensemble of functions fλ where fλ
is the set of non-constant, non-identity polynomials in Zp(λ)[x] with degree at most m. Suppose that
Assumption 3.1 holds for ` = m(3τ + 5). Then, the above obfuscator is non-malleable for τ -compositions
for Fpoly and distribution ensemble {Xλ}.

Proof. We look to contradict Assumption 3.2, which follows from Assumption 3.1. Consider a mauling ad-
versary A that, given τ obfuscations of a point x, can output a new obfuscation of f(x) for f ∈ Fpoly. Con-

sider m to be the degree of f . We build an adversary B which given the ensemble {ki, gkix+x
i}i=2...,m(3τ+5)

and access to A recovers gx with noticeable probability.
First, we consider the case when m > 1. We set up the reduction as so: upon receiving the ensemble

{ki, gkix+x
i}i=2...,m(3τ+5), we create τ obfuscations of x as detailed in Theorem 3.1. We send these to A,

which returns
(f,~a,~b,~c, ja, jb, jc)

13



where ~a,~b,~c ∈ Zτp(λ) and ja, jb, jc ∈ Gλ. Define the vector ~l as the coefficients of:

~c1(f(x)) +

τ∑
i=2

~ci(f(x))i+2τ+4 + (f(x))3τ+5 =

m(3τ+5)∑
i=0

~lix
i.

In order for the adversary to succeed, this value must equal the exponent of jc with noticeable probability.
B computes and returns jc

gl0 · m(3τ+5)∏
i=2

hlii

−11/(l1−
m(3τ+5)∑
i=2

kili)

.

Since B has properly prepared the set of obfuscations to A, A returns a valid obfuscation of f(x) with
probability at least 1/poly(λ). In this case then

jc = gl0+l1x+...+lm(3τ+3)x
m(3τ+5)

with the same probability. In this case, we see that the value in parenthesis is

g
x(l1−

m(3τ+5)∑
i=2

kili)
.

Since all li, ki are known, this can be computed unless

l1 −
m(3τ+5)∑
i=2

kili = 0.

Since f(x) is of degree m, lm(3τ+5) must be nonzero. A’s view is independent of km(3τ+5). So, the
probability that the sum is equal to l1 is 1/(p(λ) − 1). So, B returns the correct value with probability
1/poly(λ)− 1/(p(λ)− 1) = 1/poly(λ) contradicting Assumption 3.2.

We now consider the case where m = 1, or for linear functions f . In this case, we are given the
ensemble {ki, gkix+x

i}i=2,...,3τ+5. This time, upon receiving

(f,~a,~b,~c, ja, jb, jc)

from A, B instead computes the coefficients ~l of

τ∑
i=1

~aif(x)i +
τ+5∑
i=τ

f(x)i =

τ+5∑
i=0

~lix
i

as in the nonlinear case. In this case, B computes and outputs:

ja(gl0 · τ+5∏
i=2

hlii

)−11/(l1−
τ+5∑
i=2

kili)

.

Because A outputs the value
g
∑τ
i=1 ~aif(x)

τ+(f(x))τ+1+...+(f(x))τ+5
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with noticeable probability, B’s computation evaluates to gx unless

l1 −
τ+5∑
i=2

kili = 0.

Let R be a random Zτ×τ−1p(λ) and let 1τ×5 be a τ × 5 matrix of all 1s. To see that this happens with

negligible probability, for the first group element of each obfuscation received the coefficient of x1 are as
follows:

~a1 =
[
R|1τ×5

]
·


k2
k3
. . .
kτ+5


As shown in the proof of Theorem 3.1 the values of R are uniformly random conditioned on the other
values seen by the adversary.

We note that, as all ki are uniformly chosen, the only information A learns about kτ+1, ..., kτ+5 is in
the vector ~a1 Furthermore R is independent of these values. Thus, we can see that A receives items of
the form

~a1,j =

τ∑
i=2

kiRi,j +

τ+5∑
i=τ+1

ki.

Without loss of generality, we assume that an adversary knows the values k2, ..., kτ . To change the
obfuscated point they will also need to change the higher order powers xτ+1, ..., xδ+5. The only value they

have seen that involves the values kτ+1, ..., kτ+5 are terms of the form c +
(∑5

i=1 kτ+i

)
x for some value

c. Since the function is linear, we can represent f(x) = αx+ β. So, the adversary must find α, β, γ such
that

4∑
i=0

(αx+ β)i+τ+1 = γ

4∑
i=0

xi+τ+1.

Define δ = τ + 1. We can write the desired linear combination as follows:

α4+δ

α3+δ
((

δ+4
1

)
β +

(
δ+3
0

))
α2+δ

((
δ+4
2

)
β2 +

(
δ+3
1

)
β +

(
δ+2
0

))
α1+δ

(∑3
i=0

((
δ+4−i
3−i

)
β3−i

))
αδ
(∑4

i=0

((
δ+4−i
4−i

)
β4−i

))



ᵀ 
k4+δ 0 0 0 0

0 k3+δ 0 0 0
0 0 k2+δ 0 0
0 0 0 k1+δ 0
0 0 0 0 kδ

 = γ


k4+δ
k3+δ
k2+δ
k1+δ
kδ



Substituting, one has that

1. If β = 0 then this implies αδ+4 = αδ+3 = αδ+2 = αδ+1 = αδ which only has solutions if α = 0 or
α = 1. These are both considered trivial solutions.

2. Otherwise, γ = αδ+4 (using first equation),

3. (δ + 4)β + 1 = α (using second equation),

4. (δ + 4)β + 2 = 0 or δ = −5 (using third equation, relying on β 6= 0).

5. Assume that δ 6= −5, then α = −1 (substitution of third constraint into second equation)
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lock(val, key) :

1. Sample r ← Zp(λ).
2. Compute ~z1 = lockPoint(val).

3. For i = 1 to n:

(a) If keyi = 1,
set unlockPointi+1 = lockPoint(val).

(b) Else, set ~zi+1 = lockPoint(r).

4. Output ~z.

unlock({zi}n+1
i=1 , val):

1. If unlockPoint1(val) =⊥ output ⊥.

2. Initialize key = ~0.

3. For i = 1 to n:

(a) If unlockPointi+1(val) 6=⊥
set keyi = 1.

4. Output key.

Figure 1: Nonmalleable digital locker preventing tampering over only val

6. γ = (−1)δ (substitution of α in first equation). Note that γ = 1 corresponds to no tampering. Thus,
we consider γ = −1.

7. δ ≡ −5 or δ ≡ −6 (solving fourth equation using prior constraints) and thus τ ≡ −6 or τ ≡ −7.

We note that since τ = poly(λ) for large enough λ one can be sure that τ 6≡ {−6,−7} mod |Gλ|. So,
the only functions that A can maul to are the constant and identity functions, neither of which are in

Fpoly. This means that A returns a solution where l1 −
τ+5∑
i=2

kili = 0. with negligible probability. So, with

non-negligible probability, B can break Assumption 3.2.

4 Nonmalleable digital lockers

We now use the nonmalleable point function from Construction 3.1 to construct a nonmalleable digital
locker that does not prevent any tampering over the stored key. We use the well known real-or-random
construction of digital-lockers [CD08]. The basic real or random construction is in Figure 1. We do not
argue security of this basic construction, as long as lockPoint is n + 1 same point composable then this
construction provides a digital locker that provides nonmalleability over val. The argument is the same
as in [CD08] with the worst case for nonmalleability being when all of key is 1 since this provides the
adversary with n+ 1 obfuscations of val.

4.1 Detecting tampering over key

With the ability to instantiate the real or random construction with nonmalleable point functions, we
turn to detecting tampering over the encoded key. As mentioned in the introduction, this construction
requires a public object that all parties can depend on (as long as the distribution is efficiently sampleable)
which can be achieved in the CRS model. However, the construction is black box in the underlying digital
locker (unlike a construction from NIZKs).

We combine nonmalleable codes and seed-dependent condensers to check if the adversary tampers
over the key value. We use the locked point val as input to a seed-dependent condenser as part of the
value encoded in the nonmalleable code. If the adversary tampers to an independent value, they are
unlikely to match the output of the condenser on the real val. We introduce these tools and then our
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construction. We first present the notion of nonmalleable codes, introduced by Dziembowski, Pietrzak,
and Wichs [DPW10].

Definition 4.1. A pair of algorithms (Enc,Dec) is called a coding scheme if Enc : {0, 1}k → {0, 1}n
is randomized and Dec : {0, 1}n → {0, 1}k∪ ⊥ is deterministic and for each s ∈ {0, 1}k it holds that
Pr[Dec(Enc(s)) = s] = 1.

Definition 4.2. A coding scheme (Enc,Dec) is called (εnmc, snmc,F)-nonmalleable if for each f ∈ F and
each s ∈ {0, 1}k, there exists a distribution Df () over {{0, 1}k, same} that is efficiently samplable given
oracle access to f such that the following holds:

δsnmc({c← Enc(s); c← f(c), s = Dec(c) : Output s}, {s̃← Df , Output s if s̃ = same else s̃}) ≤ εnmc.

Seed-dependent condensers were introduced by Dodis, Ristenpart, and Vadhan [DRV12]. Their goal is
similar to a traditional randomness extractor, except the output only has to be statistically close to a
distribution with minentropy. Importantly, it is possible to construct condensers where the adversary is
allowed to output the chosen distribution after seeing the seed.

Definition 4.3. Let cond : {0, 1}λ × {0, 1}d → {0, 1}α be a (k, k′, s, ε) seed-dependent condenser if for
all probabilistic adversaries of size at most s who take a random seed seed ← Ud and output a distri-
bution Xseed ← A(seed) of entropy H∞(X|seed) ≥ k, then for the joint distribution (X,Ud) over Xseed

arising from a random seed ← Ud, there exists a distribution Y such that H̃∞(Y |Ud) ≥ k′ such that
∆((Y, Ud), (cond(X;Ud), Ud)) ≤ ε.

Dodis, Ristenpart, and Vadhan showed that seed-dependent condensers can be constructed using collision
resistant hash functions. Furthermore, this construction works for ε = 0. That is, the output has entropy
instead of being close to a distribution with entropy. For our construction, we will require k′ = ω(log λ).

The encoding We now present the construction. Instead of directly locking the value key we instead
lock the value

c = Enc(key||cond(val; seed)),

where Enc is the encoding function for a nonmalleable code and cond is a seed dependent condenser.
Notionally, the nonmalleable code prevents tampering to independent points and the condenser detects if
the adversary tampers to an independent point.

Construction 4.1. Let (lock′, unlock′) be defined as in Figure 1. Let (Enc,Dec) be a coding scheme where
Enc : {0, 1}k+α → {0, 1}n. Let cond : {0, 1}λ × {0, 1}d → {0, 1}α be a seed-dependent condenser. Define
the algorithms (lock′, unlock′,Vkey) as in Figure 2.

However, security of this construction is not straightforward as we are using nonmalleable codes in a
nonstandard way. In a nonmalleable code, the adversary specifies the tampering function before seeing any
information about c. In our setting, the adversary sees obfuscations that have c embedded before deciding
how to tamper. The crucial part to our argument is that the set of obfuscations is pseudorandom condition

on c and s
def
cond(val; seed). If an adversary is able to tamper substantially better given obfuscations of val

from some entropic distribution than with uniformly random val we can check whether they tampered
properly and use this to break distributional indistinguishability.

Theorem 4.1. Let λ ∈ N be a security parameter and let {0, 1}λ be the domain. Let (lockPoint, unlockPoint)
be a (n+ 1)-same point composable and Fsingle-nonmalleable.
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lock′(val, key),
input in {0, 1}λ+k:

1. Compute z = cond(val, seed).

2. Compute y = Enc(key||z).
3. Output lock(val, y).

unlock′(val′)
def
= unlock(val′)

Vkey(val
′, y),

input in {0, 1}λ+n:

1. Compute z = cond(val′, seed).

2. Run decode key′ = Dec(y).

3. If key′k...k+n 6= z output ⊥.
Else output key′0,...,k−1.

Figure 2: Nonmalleable digital locker preventing tampering over both val and key. A seed of a seed-dependent
condenser must be public and global.

1. Suppose for any s = poly(λ) there exists µ, β = ω(log λ) such cond : {0, 1}λ × {0, 1}d → {0, 1}α is
a (µ, β, s, 0)-seed-dependent condenser.

2. Let seed← {0, 1}d be a public parameter.

3. X
def
= X(seed) be an s-samplable distribution so H̃∞(X|seed, cond(seed, X)) ≥ β.3

4. Let a description of Gλ, a generator g for Gλ and seed← {0, 1}d be system parameters.

5. Let Fnmc be a function class. Suppose for any snmc = poly(λ) there exists εnmc = ngl(λ) such that
(Enc,Dec) is an (εnmc, snmc,Fnmc) nonmalleable code.

Then (lock′, unlock′) in Construction 4.1 and Figure 4.1 is point nonmalleable for Fsingle and key non-
mallable for Fnmc. In particular, (lock′, unlock′) is a (Fsingle,Fnmc,X )-nonmalleable digital locker.

Before proving Theorem 4.1 we make some notes about the construction and alternative approaches.

Choice of nonmalleable code We recommend using a nonmalleable code that detects at least per-
mutations and 1 → 0 bit tampers, such as [AGM+15a, AGM+15b], as these transforms are otherwise
easily computable in polynomial time. One concern about nonmalleable codes is that the adversary is
necessarily restricted to low complexity classes, not including the code’s encoding and decoding functions.
Note, the construction encodes and decodes the code “in the clear” while the adversary is tampering “in
the exponent.”

Recently, Kiayias et al. [KLT18] introduced nonmalleable codes with manipulation detection. Here,
the adversary has low probability of producing any codeword c̃ that successfully decodes. Kiayias et
al. constructed a nonmalleable code with manipulation detection, unfortunately, their standard model
result requires logarithmic length symbols. Furthermore, the primitive cannot exclude constant functions.
It is an open problem if this primitive can simplify our construction.

Alternative tools Constructions using nonmalleable extractors [DW09, CRS14] or one-way hashes
[BCFW09, BFS11, CQZ+16] may be possible. However, they are not immediate, we use the primitive of
nonmalleable hashes to illustrate. A nonmalleable hash function is a family of functions h ∈ H such that
an adversary given h(x) (sampled h← H and x from some distribution) cannot find h(f(x)) for f in some

3In the previous sections, we consider X that have worst case min-entropy. However, if H̃∞(X|seed, cond(seed, X)) ≥ β for
some β = ω(log λ) then there exists some β′ = ω(log λ) such that with Prseed[H∞(X|seed, cond(seed, X)) ≥ β′] ≥ 1− ngl(λ).
Thus, this change does not effect the set of distributions assumed to be secure in Assumption 3.1.
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function class F . Several of these works claim to be “standard model” but all require h is random and not
tampered by the adversary. One could append a nonmalleable hash, obfuscating key′ = key||h(key||val).
The concerns are:

1. This approach assumes that the function instance h is assumed to be independently sampled from
key and val. In our approach, the public randomness required is for seed of the condenser, and the
distribution of val (and key) can depend on this value.

2. Non malleable hashes are analyzed with the adversary only knowing the output value h(x). It is
not clear that security would hold in the presence of multiple correlated obfuscations.

Similar issues arise with nonmalleable extractors [DW09, CRS14].

4.2 Proof of Theorem 4.1

Completeness and soundness follow from the underlying properties of nonmalleable point function. (The
only additional issue with correctness is if in the real or random construction the sampled value r = val
this occurs with negligible probability for any input val.)

Since the point function satisfies VBB when composed n+1 times it also satisfies (n+1)-distributional
indistinguishability [Var10, Theorem 3.18]. Suppose that εpr is the negligible function for the distributional
indistinguishability condition and εnm is the negligible function for the nonmalleable condition of the point
function. We will show that the overall malleability denoted by ε is at most

ε ≤ εpr + εnm + 2−β + εnmc.

LetM be a mauling adversary for the overall digital locker. Note that for f output byM the probability
that f ∈ Fsingle and f is not the identity is at most εnm. Suppose not, then there is some key∗ where this
is the case. One can construct a mauling adversary M′ for lock by:

1. Sampling a random seed,

2. Computing z = cond(val, seed), y = Enc(key∗||z),

3. Running the real or random construction with key
def
= z and val,

4. Outputting M’s outputs when provided with the real-or-random values.

Thus, if the probability that M succeeds in breaking the nonmalleability condition is greater than ε this
implies that it outputs f that is the identity and g ∈ Fnmc and not the identity with probability greater
than ε− εnm = εpr + 2−β + εnmc.

We now show that this contradicts the security of the nonmalleable code. The key difference be-
tween traditional application of nonmalleable codes is that the adversary is provided with a set of values
{lockPointi}ni=1 that are correlated with the encoded value c before deciding how to tamper. We show
that this is not a problem with the following argument:

1. The values {lockPointi}ni=1 are pseudorandom conditioned on the encoded value c. (This is the case
in the real or random construction.)

2. There is a mechanism to check if the decoded value s̃ = Dec(c′) is good. Here we use matching the
output of the seed dependent condenser.
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3. If the adversary is provided with random obfuscations (uncorrelated to c) and replaces c with some
new value c′, by security of the nonmalleable code, c′ depends on c with low probability and if c′ is
independent of c, s̃ = Dec(c′) passes the test with low probability.

4. If the adversary tampers and passes the test with higher probability with the pseudorandom values,
we can use this to break the pseudorandomness condition.

To make the above intuition formal we define an adaptive tampering experiment as follows for random
variables LP, C, CD and binary predicate Test:

Experiment Expad−nmc
Fnmc,LP,C,CD,A,Test:

Sample (obf, c, cond)← (LP, C, CD)
Sample f ← A(obf).
If f 6∈ Fnmc output 0.
If f(c) = c output 0.
If Test(f(c), cond) output 1.
Else output 0.

We define LP, C, CD, Test as

• LP: the set of obfuscations output by the real or random construction,

• CD the output of the seed dependent condenser on val.

• C: the encoded codeword c = Enc(key||cond(val; seed)).

• Test: if Dec(c)k...k+α
?
= z.

We now show that in the above experiment the adversary can’t tamper substantially better than when
specifying the tampering function with no information.

Theorem 4.2. Let CD ∈ {0, 1}α be a distribution such that H∞(CD) ≥ β. Let (Enc,Dec) be a (εnmc, snmc,F)
nonmalleable code and Enc : {0, 1}k+α → {0, 1}n. Let key ∈ {0, 1}k, define the distribution Ckey by sam-
pling cond ← CD and computing Enc(key||cond). For inputs c and cond, define Test(c, cond) = 1 if and
only if Dec(y)k...(k+α) = cond. Suppose that

1. For all f ∈ F it is possible to compute f in a circuit of size at most sF ,eval.

2. It is possible to evaluate Test using a circuit of size at most |Test| and snmc > |Test|.
3. For a function f it is possible to check if f ∈ F in size at most sF ,check. Furthermore, this check is

correct with probability 1.

4. LP be an distribution overM that is correlated to Ckey and CD and let R be a sampleable distribution
independent of of LP, Ckey, CD such that

δDspr ((LP, Ckey, CD), (R,Ckey, CD)) ≤ εpr.

Then for all A of size s it holds that

Pr
[
Expad−nmc

F ,LP,C,CD,A = 1
]
≤ 2−β + εnmc + εpr.

Here s = min{spr − |Test| − sF ,eval − sF ,check, snmc}.
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Before proving Theorem 4.2, we show how Theorem 4.1 follows from Theorem 4.2. Let A be some
adversary. Let W = W (seed) be some efficiently distribution such that

H̃∞(W |seed, cond(seed,W )) ≥ β.

Define the random variables LP def
= lock′(W,C). With overwhelming probability, the conditional distri-

bution LP|C, CD is in the class X . By (n+ 1)-distributional indistinguishability of the point function one
has that for any PPT A,

δDspr ((LP, Ckey, CD), (R,Ckey, CD)) ≤ εpr.

Thus, the assumptions of Theorem 4.2 are satisfied. One can then conclude that

Pr
[
Expad−nmc

F ,LP,C,CD,A = 1
]
≤ 2−β + εnmc + εpr.

It remains to show that for all A, key

Pr
val←X


V(C) = 1, f ∈ F ,

g ∈ G, y = C(f(val)),

y = g(unlock(f(val))),

Vkey(f(val), y) 6=⊥,
∃α s.t. If(val),α ≡ C

∣∣∣∣∣∣∣∣∣∣∣∣
(C, f, g)← A(lock(val, key))

 ≤ 2−β + εnmc + εpr,

when f is the identity function and g is not. Towards the sake of arriving at a contradiction, suppose
that there exists some A that wins the above game with probability greater than ε′ = 2−β + εnmc + εpr.
Note that Test outputs 1 with the same probability as Vkey outputting a value other than ⊥. If the above
is true, it must hold for some key∗. Thus, we can build an adversary A′ that breaks the conditions of

Theorem 4.2 for the distribution LP def
= lock(val, key) where val is sampled from X by:

1. Receiving lock

2. Running A on input lock.

3. Receive outputs C, f, g.

4. Output g. (Corresponding to a tampering function on c.)

This adversary A′ is a valid adversary for Expad−nmc
F ,LP,C,CD,A. This completes the proof of how Theorem 4.1

follows from Theorem 4.2. We now proceed to the proof of Theorem 4.2.

Proof of Theorem 4.2. We begin by defining a standard nonmalleable code experiment with a simulator
for a function f defined by a distribution Df (·):

Experiment Expsim
f,CD,Df :

Sample s̃← Df (·), cd← CD
If s̃ = same output 0.
If Test(s̃, cd) = 1 output 1.
Else output 0.

Lemma 4.1. Suppose that H∞(CD) ≥ β, for any f , Pr[Expsim
f,Z,Df

(k) = 1] ≤ 2−β.
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Proof of Lemma 4.1. We note that whenever s̃ = same the output of the experiment is 0. Thus, we can
restrict our attention to cases when s̃ 6= same. Then Pr[CD = s̃k−α...k] ≤ 2−H∞(CD) = 2−β. This completes
the proof of Lemma 4.1.

We will now argue that the adversary in the adaptive adversary does not perform substantially better than
in the simulated experiment. We use a hybrid argument with two intermediate games, Exp1

F ,R,C,CD,A
and Exp2

F ,LP,C,CD,A. In moving from Expad−nmc
F ,LP,C,CD,A to Exp1

F ,R,Y,Z,A we will replace the distribution

LP with a distribution R that is uncorrelated to C, CD. In Exp2
f,C,CD we will eliminate the distribution

R as input and move from the adversary picking a function to defining the experiment for a particular
function f . Finally in moving to Expsim

f,CD,Df (k) we will rely on the hardness of nonmalleable codes. The
two experiments are described formally below.

Experiment Exp1
F ,R,C,CD,A:

Sample (c, cd)← (C, CD)
Sample r ← R.
Sample f ← A(r).
If f 6∈ F output 0.
If f(y) = y output 0.
Output Test(f(c), cd).

Experiment Exp2
f,C,CD:

Sample (c, cd)← (C, CD)
If f(c) = c output 0.
Output Test(f(c), cd).

We now show each of these games are computationally close.

Lemma 4.2. Suppose that

1. For each f ∈ F , the function f is computable in size at most sF .

2. For f it is possible to correctly check f ∈ F in size sF ,check.

3. That δDspr ((LP, Ckey, CD), (R,Ckey, CD)) ≤ εpr.

Then for A of size at most spr − |Test| − sF ,eval − sF ,check,∣∣∣Pr
[
Expad−nmc

F ,LP,C,CD,A(k) = 1
]
− Pr[Exp1

F ,R,C,CD,A(k) = 1]
∣∣∣ ≤ εpr.

Proof of Lemma 4.2. Suppose not. That is, suppose that there exists an A of size at most spr − |Test| −
sF ,eval − sF ,check such that∣∣∣Pr

[
Expad−nmc

F ,LP,C,CD,A(k) = 1
]
− Pr[Exp1

F ,R,C,CD,A(k) = 1]
∣∣∣ > εpr.

Then the following program D (of size at most spr) is a distinguisher for ((LP, C, CD) and (R,C, CD)):

1. On input p, c, cd.

2. Run f ← A(p).

3. If f 6∈ F or f(c) = c output 0.

4. Else output Test(f(c), cd).
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That is,

|Pr[D(LP, C, CD) = 1]− Pr[D(R,C, CD) = 1]|

=
∣∣∣Pr[Expad−nmc

F ,LP,C,CD,A = 1]− Pr[Exp1
F ,R,C,CD,A = 1]

∣∣∣ > εpr.

This contradicts the indistinguishability of (LP, C, CD) and (R,C, CD) and completes the proof of Lemma 4.2.

Lemma 4.3. There exists some f ∈ F such that for any A (here A need not be computationally bounded):

Pr[Exp2
f,C,CD(k) = 1] ≥ Pr[Exp1

F ,R,C,CD,A(k) = 1].

Proof of Lemma 4.3. First we consider the circuits A that always output f ∈ F . Given any A that
outputs an f 6∈ F we can design another A′ that runs f ← F and simply outputs a fixed f ′ ∈ F whenever
f 6∈ F . This A′ does not perform worse in Exp1 than A.

Now consider some A that always outputs functions f ∈ F . There is a distribution DA that outputs
exactly the distribution that is output by A. Note that this distribution is independent of y. Note that

Pr[Exp1
F ,R,C,CD,A = 1] =

∑
f∈F

Pr [DA = f ] Pr
(c,cd)←(C,CD)

[f(c) 6= c ∧ Test(c, cd) = 1] .

Now suppose that for all f ∈ F ,

Pr[Exp2
f,C,CD(k) = 1] < Pr[Exp1

F ,R,C,CD,A(k) = 1].

Then one has

Pr[Exp1
F ,R,C,CD,A = 1] =

∑
f∈F

Pr [DA = f ] Pr
(c,cd)←(C,CD)

[f(c) 6= c ∧ Test(c, cd) = 1]

=
∑
f∈F

Pr [DA = f ] Pr[Exp2
f,C,CD = 1]

<
∑
f∈F

Pr [DA = f ] Pr[Exp1
F ,R,C,CD,A = 1]

= Pr[Exp1
F ,C,CD,A = 1]

This is a contradiction and completes the proof of Lemma 4.3.

Before showing distinguishability of the last two games we consider the definition of nonmalleable
codes where the encoded secret is drawn from a distribution instead of considering a single point:

Lemma 4.4. Let (Enc,Dec) be a (εnmc, snmc)-nonmalleable code for functions in F . Then for any dis-
tribution Z over points in {0, 1}k it holds that

δDsnmc ( ({c← Enc(Z); c← f(c), s = Dec(c) : Output s}, Z) ,

({s̃← Df , Output Z if s̃ = same else s̃}, Z))

≤ εnmc.
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Proof of Lemma 4.4. Suppose not, that is there exists some Z for which the statement is not true. In
particular, there must be some z ∈ Z where Pr[Z = z] > 0 such that there exists Dsnmc ,

δDsnmc ( ({c← Enc(z); c← f(c), s = Dec(c) : Output s}, z) ,
({s̃← Df , Output z if s̃ = same else s̃}, z)
> εnmc.

This contradicts security of the nonmalleable code.

With this distributional version of security for nonmalleable codes we can turn to indistinguishability of
the last two games.

Lemma 4.5. For every f ∈ F , if snmc ≥ |Test| then∣∣∣Pr[Expsim
f,CD,Df = 1]− Pr[Exp2

f,C,CD = 1]
∣∣∣ ≤ εnmc.

Proof of Lemma 4.5. Suppose not, that is suppose that there exists some f ∈ F such that∣∣∣Pr[Expsim
f,CD,Df (k) = 1]− Pr[Exp2

f,C,CD(k) = 1]
∣∣∣ > εnmc.

Then we have a distinguisher D (of size |Test|) for the distributional version of nonmalleable code security
guarantee 1) input s̃, z and 2) Compute Test(s̃, z). This completes the proof of Lemma 4.5.

Combining Lemmas 4.1, 4.2, 4.3 and 4.5 completes the proof of Theorem 4.2 and completes the proof of
Theorem 4.1.
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