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Abstract. Side-channel attacks and evaluations typically utilize leak-
age models to extract sensitive information from measurements of cryp-
tographic implementations. Efforts to establish a true leakage model is
still an active area of research since Kocher proposed Differential Power
Analysis (DPA) in 1999. Leakage certification plays an important role in
this aspect to address the following question: ”how good is my leakage
model?”. However, existing leakage certification methods still need to
tolerate assumption error and estimation error of unknown leakage mod-
els. There are many probability density distributions satisfying given
moment constraints. As such, finding the most unbiased and most rea-
sonable model still remains an unresolved problem. In this paper, we
address a more fundamental question: ”what’s the true leakage model
of a chip?”. In particular, we propose Maximum Entropy Distribution
(MED) to estimate the leakage model as MED is the most unbiased, ob-
jective and theoretically the most reasonable probability density distribu-
tion conditioned upon the available information. MED can theoretically
use information on arbitrary higher-order moments to infinitely approx-
imate the true leakage model. It well compensates the theory vacancy
of model profiling and evaluation. Experimental results demonstrate the
superiority of our proposed method for approximating the leakage model
using MED estimation.

Keywords: information theory, maximum entropy, maximum entropy
distribution, leakage model, leakage certification, side channel attack

1 Introduction

Side-channel attacks, which aim to extract secret information that are uninten-
tionally leaked in a cryptographic implementation, have been regarded as one of
the most important threats against the security of embedded devices [27]. Power
attacks, the most classic one of this family, can be divided into two categories:
profiled attacks and non-profiled attacks. Non-profiled attacks such as Differen-
tial Power Analysis (DPA) [17], classify measurements (i.e. power traces) accord-
ing to the intermediate values, and then calculate the differences. The correct
key corresponds to the most obvious differential value (i.e. peak). The advantage



of non-profiled attacks is that the attacker does not require prior knowledge of
the leakage model.

Standard profiled attacks include Template Attacks (TA) [5, 26] and stochas-
tic models [30] as stated in [37]. They include two stages: leakage profiling and
exploiting. The attacker needs to profile a leakage model before exploiting the
leakage to recover the key. The true leakage of the cryptographic hardware is
unknown and difficult to derive, and normal distribution is often used as the
hypothetical model. Actually, the true leakage model may not well follow it.
Hypothetical models such as Hamming weight [4], Hamming distance [25] and
Switch [24], can also be used to approximate the leakage in other attacks such
as Correlation Power Analysis (CPA) [4] to improve the efficiency. Exploring a
true leakage model continues to be an active area of research.

In this paper, we aim to investigate the most unbiased, most reasonable
and realistic leakage model, in order to address the question: ”what’s the true
leakage model of a chip?”. Existing works in side-channel attacks and evalua-
tions (e.g. leakage detections and assessments) have also attempted to propose
such a model, but without thorough study and suitable answers. In the follow-
ing section, we will discuss these existing works along with leakage certification
methods, before describing the main contributions of our work.

1.1 Related Works

Side channel attacks. A good leakage model has a significant impact on the
effectiveness of side channel attacks. Many recent works have been undertaken to
accurately profile the leakage model. However, most of them only considered first-
and second-order moments (i.e. mean and variance) when profiling probability
density distribution. This typically happens in Template Attack [26], which takes
advantage of an off-line learning phase in order to estimate the leakage model.
Since the true leakage model is unknown, the profiling methods are typically
based on some assumptions on the leakage distribution (e.g. Gaussian noise) as
in [10], which is not representative of the true leakage. Flament et. al. discussed
probability density function estimation for side-channel attacks in [11]. They
compared parametric estimation and histogram estimation, but did not consider
information on higher-order moments.

Side channel evaluations. For attackers, the accuracy of the leakage model
affects the effectiveness of the attack. For evaluators, the accuracy of leakage
model affects the reliability of the evaluations (e.g. Success Rate (SR) and Guess-
ing Entropy (GE) [38]). Since model errors provide evaluators with a false secu-
rity level. Leakage detections, which relate to the concrete security level of an
implementation given a model, are very important tools for side-channel eval-
uation. Unlike the above-mentioned side-channel attacks that are based on an
assumption model, leakage detection tests such as Welch’s t-test [7, 28, 2], Nor-
malized Inter-Class Variance (NICV) [3], correlation ρ-test [8] and χ2 test [21],
use a bounded moment model [16]. They try to quantify the security of an im-
plementation, of which the model reflects the leakage of target device. Leakage
detection and assessment have been performed before cryptographic algorithms



are implemented on devices in [28] and [6]. These tests aim to detect the pres-
ence of leakage, without regards to whether the leakage can be exploited. Leakage
assessments seek a standard approach that enables a fast, reliable and robust
evaluation of the side-channel vulnerability of the given devices [31]. They can be
regarded as an extension of leakage detection, which also require a bounded mo-
ment model rather than a true leakage distribution model. The above-mentioned
works usually consider moments that are less than 4th order. Higher-order mo-
ments (larger than 4) leakage detection and assessments (e.g. [16, 23, 29] and
[31]) are seldom studied.

Leakage certifications. The effectiveness of both side-channel attacks and
evaluations rely heavily on the true leakage model. However, this model is usu-
ally unknown. The following question underpins all the efforts that range from
assuming a good leakage model (e.g. Hamming weight model and Hamming dis-
tance model) to profiling a good leakage model (e.g. normal distribution model
and higher-order moments model used in higher-order attacks [20, 22]): How
good is the leakage model? The answer to this question can be traced back to
the complete evaluation framework proposed by Standaert et al. in [38]. The
authors used Mutual Information (MI) to quantify the leakage and encountered
the notoriously difficult problem of designing an unbiased and non-parametric
estimator. Renauld et al. improved the work by introducing Perceived Informa-
tion (PI) to estimate the MI biased by side-channel adversary’s model [27]. In
this case, the accuracy of the model determines the closeness of PI and MI. To
better answer the question above, Durvaux et al. in [10] proposed leakage certi-
fication, which attempted to solve the fundamental problem that all evaluations
were potentially biased by both assumption and estimation errors. They also
tried to quantify the leakage of a chip and certify that the amount of informa-
tion extracted was close to the maximum value that would be obtained with a
perfect model. This work was further improved in [9].

1.2 Our Contributions

Existing works on side-channel attacks and evaluations have incessantly pursued
a true leakage model. While existing leakage certification methods can provide
a reasonable leakage model, they do not alleviate the attacker or evaluator from
having to deal with model assumption error and estimation error. Moreover, the
probability density distribution model under higher-order moments has not been
discussed in existing works. Finally, even though there are numerous probability
density distributions satisfying given moment constraints, achieving the most
unbiased, most reasonable and least hypothetical leakage model still remains an
unresolved problem.

To address the shortcomings of existing work on leakage certification, we pro-
pose Maximum Entropy Distribution (MED) to estimate the true leakage model
of a chip. MED is the most unbiased, random, uniform and theoretically the
most reasonable probability density distribution conditioned upon the available
information. Here MED presents the probability density function assigned by
using principle of maximum entropy. MED can theoretically use information on



arbitrary higher-order moments to infinitely approximate the true distribution
of leakage, rather than assume a leakage model. To the best of our knowledge,
this is the first work that considers information on higher-order moments when
estimating probability density distribution. Experimental results demonstrate
the superiority of our proposed method for approximating the leakage model
using maximum entropy distribution estimation.

1.3 Organization

The rest of the paper is organized as follows. Information entropy, maximum en-
tropy and leakage certification are introduced in Section 2. In Section 3, MED,
including its estimation, parameter determination and fitting performance be-
tween estimated Probability Density Function (PDF) model and true leakage,
is given. Then, we use Newton-Raphson nonlinear programming optimization
method to fit MED with true distribution in Section 4. The specific algorithm
and the optimal choice of histogram bins are also given in this section. Exper-
iments are performed on simulated traces and measurements of ATMega644P
micro-controller provided in [9] in Sections 5 and 6 to demonstrate the efficiency
of our MED. Finally, we conclude the paper in Section 7.

2 Preliminaries

2.1 Information Entropy

Information entropy is a very important concept in information theory. Let X be
a discrete random variable consisting of n observations of x = (x1, x2, . . . , xn),
and the corresponding probabilities are p = (p1, p2, . . . , pn). Shannon defined
information entropy (or uncertainty) as

H(x) = −
n
∑

i=1

pilnpi (1)

in [35], which was also denoted as self-information. Here 0 ≤ pi ≤ 1, and ln

denotes the logarithmic function. If X is a continuous random variable, then the
Shannon entropy is

H(x) = −
∫ b

a

f(x)lnf(x)dx. (2)

Here [a, b] is the integral interval, and f(x) is the probability density function.
Information entropy is widely used in side-channel analysis such as Mutual In-
formation Analysis (MIA) [13]. Self information of measurements can be used to
quantify the leakage model of a chip.



2.2 Maximum Entropy Principle

Information theory provides a constructive criterion for setting up probability
distributions on the basis of partial knowledge and leads to a type of statistical
inference which is called the maximum entropy estimate [15]. Maximum en-
tropy estimation is the most unbiased or most uniform probability distribution
conditioned upon the available information [33]. Maximum entropy here means
maximizing information entropy in Eq. 1 or Eq. 2.

There is an implicit constraint in Eq. 1 where

n
∑

i=1

pi = 1. (3)

The direct problem is to determine p conditioned upon Eq. 3. As detailed by
Munirathnam et al. in [36], maximum entropy solved this problem by the maxi-
mization of Shannon entropy (uncertainty measure) of probabilities given in Eq.
1. By considering Lagrange multipliers, in order to maximize the entropy, the
probabilities p = (p1, p2, . . . , pn) should satisfy

ϕ (p1, p2, . . . , pn) = −
n
∑

i=1

pilnpi + λ

(

n
∑

i=1

pi − 1

)

. (4)

The purpose of this paper is to profile the true leakage model from the observed
samples. So, we use observer to represent side-channel attackers and evaluators.
By differentiating ϕ with respect to pi, the observer gets

∂ϕ

∂pi
= − (lnpi + 1) + λ = 0. (5)

That is, (lnpi + 1) = λ, we deduce that pi = eλ−1. When combined with Eq. 3,
we obtain

∑n
i=1 e

λ−1 = 1. So,

λ = ln

(

1

n

)

+ 1. (6)

Finally, we obtain pi =
1
n
. That is to say, if we don’t make any further assump-

tions on pi, we can maximize the entropy of probability density function. In this
case, the maximum entropy distribution is the most reasonable choice, any other
choice would mean that we add additional constraints or unreasonable assump-
tions that are not available based on the existing information. In other words,
maximum entropy contains minimum spurious information.

2.3 Leakage Certification

Side-channel attacks and evaluations require a perfect model to extract all in-
formation from the leakage measurements. However, the leakage model is never



perfect with errors arising from assumption and estimation. Durvaux et al. pro-
posed the pioneering leakage certification in [10] and improved it in [9]. Leakage
certification aims to bound and reduce the assumption and estimation errors,
thus providing a good enough leakage model for attacks and evaluations.

Assumption error. Since the true leakage model of devices is unknown, the
observer has to establish an assumption leakage model before he performs attacks
or evaluations. For example, Gaussian model including mean and variance are
used in Template Attack [26], and Hamming weight model in CPA [4]. These
models include subjective assumptions and can easily lead to assumption error.
A good model should reflect the basic information of the leakage, but it is not
the real leakage model of the chip. The goodness of fit of these two models can
be quantified by hypothesis testing.

Estimation error. The estimation error is the difference between the esti-
mated parameters and true parameters of the leakage model. The main cause of
this error is that the number of measurements is insufficient, which makes the
probability density distribution estimation deviate from the true distribution.
Typical estimation error is shown in Fig. 1, where two models estimated from
samples deviate from the true distribution. It can be observed that Model 1 devi-
ates further from the true leakage model than Model 2. Estimation error can be
made arbitrarily small through more measurements and using cross validation
techniques [9].
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Fig. 1. Estimation errors in leakage model profiling.

Cross-validation. For each plaintext z, the observer randomly acquires sam-
ples and estimates the dth order mean µ̂d using cross validation. Suppose that
k-fold cross validation is used and n measurements are acquired. Measurements
are divided into k non-overlapping folds of approximately the same size as intro-
duced in [9]. The observer then selects the jth (1 ≤ j ≤ k) fold as the validation
set and other k− 1 folds as profiling set. The observer then randomly generates
samples from the estimated leakage model. Each repetition generates a dth order

moment estimate m̃
d,(j)
z . The dth order mean µ̃d of real samples is processed in



the same way. Thus,

µ̂d
z =Êj

(

m̂d,(j)
z

)

, σ̂d
z =

√

ˆvarj

(

m̂
d,(j)
z

)

,

µ̃d
z =Ẽj

(

m̃d,(j)
z

)

, σ̃d
z =

√

˜varj

(

m̃
d,(j)
z

)

.

(7)

Here E (·) and var denote the sample mean and variance operator. Then, Welch’s
t-test is performed as:

∆d
z =

µ̂d
z − µ̃d

z
√

(σ̂d
z
)2+(σ̃d

z
)2

k

. (8)

Let CDFt denote the Cumulative Distribution Function (CDF) in t-test, df
denote the number of freedom degrees (see Section 4.1 in [9]). The probability
of observed difference coming from the effects of estimation is:

p = 2×
(

1− CDFt

(
∣

∣∆d
z, df

∣

∣

))

. (9)

The probability p only indicates that the difference between true samples and
simulated samples has statistical significance. It doesn’t reflect how large the
difference is. The larger p is, the smaller the probability of estimation error.
Leakage certification test uses information on higher-order moments to profile
bounded moment leakage model [16], rather than making assumptions on the
leakage distribution.

3 Maximum Entropy Distribution Estimation

A perfect leakage model can accurately reflect the leakage of devices and improve
the effectiveness of side-channel attacks and security evaluations. However, such
perfect models are generally unknown. Density estimation techniques, such as
Maximum Entropy Distribution (MED) [41], have to be used to approximate
the leakage distribution.

3.1 Maximum Entropy Distribution

Suppose that geometrical moments are used, the maximum entropy of the ran-
dom variable X can be obtained by maximizing Shannon’s entropy (see Eq. 1)
subject to the constraints:

∫

xif(x)dx = µi, i = 0, . . . , N (10)

where µi is the expectation value calculated from samples (e.g. µ0 = 1). N
denotes that the first N +1 moment constraints (µ0, µ1, . . . , µN ) are used in our



side-channel attacks or evaluations. This can be expressed as the Lagrangian:

L =−
∫

f(x)lnf(x)dx + (λ0 + 1)

[
∫

f(x)dx − 1

]

+

m
∑

i=1

λi

[
∫

xif(x)dx − µi

]

.

(11)

Here, λ = (λ0, λ1, . . . , λm) are unknown Lagrange multipliers, and ln denotes
natural logarithm. The setting of coefficient (λ0 + 1) is to facilitate the solution
of λ. Maximum entropy usually occurs at the extreme point of function λ. By
differentiating L with respect to f(x), we have

∂L
∂f(x)

= −
∫

[lnf(x) + 1] dx+ (λ0 + 1)

∫

dx +

m
∑

i=1

λi

∫

xidx. (12)

We set ∂L
∂f(x) = 0 and obtain

− [lnf(x) + 1] + (λ0 + 1) +
m
∑

i=1

λix
i = 0. (13)

By transposition, we further get

lnf(x) = λ0 +
m
∑

i=1

λix
i. (14)

Finally, we derive the maximum entropy probability density function (MED) as

f(x) = exp

(

λ0 +

m
∑

i=1

λix
i

)

. (15)

Maximum entropy accommodates information on higher-order moments and
therefore facilitates a higher quality probability density function model. The ob-
server does not make any assumptions on the leakage model except the moment
information from the samples, which also shows the objectivity and rationality
of f(x).

3.2 Parameter Determination

We have derived the maximum entropy probability density function in Section
3.1. We can get the corresponding expression after solving the Lagrange Multi-
pliers in f(x). Since

∫

f(x)dx =

∫

exp

(

λ0 +

m
∑

i=1

(

λix
i
)

)

dx = 1, (16)



by multiplying both sides of the equality by e−λ0 , we obtain

e−λ0 =

∫

exp

(

m
∑

i=1

(

λix
i
)

)

dx. (17)

The first unknown Lagrange multiplier can be expressed as:

λ0 = −ln

∫

exp

(

m
∑

i=1

(

λix
i
)

)

dx. (18)

By differentiating λ0 with respect to λi (see Eq. 17), we can also get

∂λ0

∂λi

=

∫

xiexp

(

m
∑

i=1

λix
i

)

dx. (19)

This means, ∂λ0

∂λi

= µi. Since
∫

exp
(
∑m

i=1 λix
i
)

dx = 1, the Lagrange multipliers
can be defined by the sum of residuals:

ri = 1−
∫

xiexp
(
∑m

i=1 λix
i
)

dx

µi

∫

exp (
∑m

i=1 λixi) dx
(20)

for i = 1, 2, . . . ,m. The minimum residual can be expressed as:

min R =
m
∑

i=1

ri. (21)

Suppose that ǫ is the permissible error of the observer. IfR < ǫ, then R converges,
he accepts the corresponding Lagrange multipliers λ = (λ0, λ1, . . . , λm) and
recovers the probability density function f(x). The problem of Shannon entropy
maximization is a convex minimization problem.

3.3 Fitting Performance Metrics

Maximum entropy is a monotonic decreasing function, which means that the
observer obtains smaller maximum entropy when the algorithm iterates. The
probability density function MED is obtained after R < ǫ. This will be followed
by testing whether the profiled model can accurately reflect the true leakage of
device (i.e. test of goodness of fit).

According to the report ”Guide to Expression of Uncertainty in Measure-
ment (GUM)” (see [14]), standard uncertainty of the result of measurement
corresponding to maximum entropy is expressed as a standard deviation. By
performing maximum entropy estimation on the observations, the expectation
and deviation are

µ̂ =

∫

xf̂(x)dx (22)



and

σ̂ =

∫

[x− x̂ (x)]
2
f̂(x)dx. (23)

If f(x) approximates the true distribution, µ̂ → µ1 and σ̂ → µ2.
Actually, to test whether this model is consistent with the real leakage model,

the leakage certification test of Durvaux et al. (see [9] and [10]) can be employed.
This work performed hypothesis tests on samples generated from the estimated
leakage model and real samples to determine if the model can be accepted based
on the test results. Other tests such as Chi-square χ2 [21] and Root Mean Square
Error (RMSE) [34], can also be used to test maximum entropy probability den-
sity distribution. In principle, the more moments are used, the more accurate
the model is, and the smaller the error.

In our paper, we combine GUM’s test and Welch’s t-test introduced by Dur-
vaux et al. in [10] to detect estimation error. Specifically, referring to the leakage
certification test of Durvaux et al., we divide the collected measurements into
k-folds of approximately the same size. Each iteration selects a new validation
fold and uses other k−1 folds as training set. We first find the interval of training
set and calculate µ̂ and σ̂ in GUM’s test. We then randomly generate samples
of the same size as the validation set from this model. Referring to Eq. 8 and
Eq. 9, we carry out Welch’s t-test to quantify the probability of the difference
caused by the estimation error.

4 Nonlinear Programming Optimization

The minimum residual given by Eq. 21 can be solved using nonlinear program-
ming optimization, which minimizes residual by calculating the least squares of
error. If ri is a linear function for all i, R can be solved by linear least square
method. R here is a non-linear function that can be solved using nonlinear least
square method. This is based on the basic principle of using a series of linear
least squares to solve nonlinear least square problems.

4.1 Newton-Raphson Method

By combining Eq. 10 and Eq. 15, the ith order moment can be expressed as:

Gi (λ) =

∫

xiexp

(

λ0 +

m
∑

i=1

λix
i

)

dx = µi (24)

if Eq. 10 is regarded as a function of λ = (λ0, λ1, . . . , λm). According to [42, 19],
one can expand Gi (λ) in Taylor’s series around trial values of λ0, dropping the
second and higher-order moments

µ
′

i =Gi (λ)

∼=Gi

(

λ0
)

+
(

λ− λ0
)T

[grad Gi (λ)]λ=λ0

(25)



and solving them iteratively. Here the symbol ’T’ indicates vector or matrix
transposition and symbol ’grad’ indicates gradient function. If the first five mo-
ments are taken into consideration, then m = 4. Mean, variance, skewness and
kurtosis [22] are often used in side-channel attacks. However, very a few papers
discussed very higher-order moments (e.g. [16]). Obviously, for nonlinear func-
tions like R, the observer can solve them using higher-order Taylor expansions,
of which µ

′

i is closer to µi.
The work in [19] defined two vectors

δ = λ− λ0 (26)

and

v =
[

µ
′

0 −G0

(

λ0
)

, . . . , µ
′

N −GN

(

λ0
)

]T

. (27)

Here the superscript 0 of λ0 represents the number of iterations. The authors
then defined a matrix G by

G =



gnk



 =





∂Gn(λ)
∂λk





(λ−λ0)

. (28)

G is a Hankel matrix, of which

gnk =

∫

xnxkexp

(

m
∑

i=1

λix
i

)

dx

=

∫

xn+kexp

(

m
∑

i=1

λix
i

)

dx

=gn+k.

(29)

This means gnk = gkn. This also means that in order to calculate the first five
moments (m = 4) of f(x), we have to calculate G0, . . . ,G8. Solving Eq. 21 is
equivalent to solving the linear system of equations:

Gδ = v. (30)

The above is the first iteration of λ0. The observer obtains the error δ0 of λ0 in
probability density function f(x). Then λ0 is replaced by λ1 = λ0 + δ0 and the
next iteration is executed. The iteration continues until δ becomes appropriately
small (i.e. R < ǫ). In principle, the smaller the ǫ, the better f(x) fits the true
leakage distribution.

4.2 Algorithm Implementation

We have described the principle of nonlinear programming optimized MED es-
timation in the previous sub-section. Here we provide the detailed algorithm



in Algorithm 1. In our algorithm, the samples and accuracy serve as inputs, λ
and maximum entropy MaxEnt are the outputs. There are no other param-
eters to set, which indicates that our algorithm is very simple and does not
need to handle the complex parameter optimization problem. The algorithm
first estimates the optimal number of bins hn using function BinsEstimation

(as detailed in Section 4.3). Then, it estimates the probability density function
using histogram, where the corresponding inputs include the samples and hn.
The outputs of function Histogram include the probability density distribution
p and the mid-points of all bins x.

Algorithm 1: Nonlinear programming optimized MED estimate.

Input: samples x and ǫ

Output: estimated parameters λ and MaxEnt

1 the number of bins hn = BinsEstimation(x) ;
2 estimate PDF (p, x) = Histogram(x, hn) ;
3 calculate moments G1, . . . , GN using p and x ;
4 λ0 = max(x)−min(x) ;
5 while 1 do

6 calculate v ;
7 solve Gδ = v ;
8 update λ = λ+ δ;
9 update f(x) and R;

10 if R < ǫ then

11 MaxEnt = −

∑hn

j=1
f(xj)ln f(xj);

12 break;

13 end

14 update G1, . . . , GN using f(x) and x ;

15 end

The purpose of Algorithm 1 is to fit p and f(x) and find the parameters in λ

that satisfies the fitness condition. It is worth noting that our algorithm does not
need to set λ. We only initialize λ0 = max(x) − min(x) as suggested in [19].
All λ-s will be adjusted in the following repetitions. Our algorithm initializes
moments G1, . . . , GN using p and x. It then calculates v, solves Gδ = v and
updates λ = λ+δ. It then updates f(x) using λ. λ and R will gradually stabilize
after a number of iterations. In this case, f(x) approximates the distribution p,
and the measurement uncertainty in Eq. 22 and Eq. 23 approaches the mean
and variance of true samples.

For Newton-Raphson method, one of the conditions for iterative convergence
is that G is a non-singular matrix. If G is singular, then nonlinear program-
ming optimizations such as damped least square (i.e. Levenberg-Marquardt)
method, can also be taken into consideration. Unlike Newton-Raphson method,
Levenberg-Marquardt method needs to set several parameters. To optimize these
parameters, we need to consider the specific samples and model, which is not



easy. Moreover, the algorithm may return a local optimal solution during itera-
tion. In order to find the global optimal solution, Algorithm 1 can be combined
with Simulated Annealing (SA) [12] or Genetic Algorithm (GA) [41].

4.3 Optimal Bin Width in Histogram

Probability density estimation is a widely-used method for estimating the dis-
tribution model of samples. It can be broadly classified to parametric estimation
and non-parametric estimation. Parametric estimation is utilized If we have al-
ready known what kind of probability density distribution the observed samples
follow and only need to determine its parameters. The most commonly used
parametric estimation methods are Maximum Likelihood Estimation (MLE) and
Bayesian estimation. If we do not know the true distribution of the observed
samples, we can only use the non-parametric estimation method to estimate its
probability density distribution model. The non-parametric estimation meth-
ods mainly include histogram estimation and Kernel Density Estimation (KDE)
[39]. Since the true leakage model of a chip is unknown, we consider the non-
parametric estimation method in Algorithm 1. Specifically, we use histogram to
estimate the probability density distribution in this paper.

Let κ denote the number of bins in histogram, and x denote the mid-points
of bins. The mid-point xj of each interval (1 ≤ j ≤ κ) is often selected as rep-
resentative value of this bin [36]. To derive the probability density distribution,
the observer needs to calculate the frequency of each bin. Suppose that he ob-
tains the frequency distribution of x as (f1, f2, . . . , fκ) (see [36]). In this case,
the expectation value of the ith order moment of samples can be expressed as:

µi = E
(

xi
) ∼= 1

κ

κ
∑

j=1

fjx
i
j . (31)

In order to avoid overflow, the domain of x can also be transformed into interval
[0, 1] using equation x

′

= (x−xmin)/(xmax−xmin). Here xmin and xmax denote
the minimum and maximum values of x.

It is difficult to determine the optimal bin width when constructing a his-
togram. To illustrate this, we simulate the normal distribution N

(

0, 52
)

and
randomly generate 1000 measurements from this model. The probability density
distributions when the number of bins is set to 5, 10, 20 and 200 are shown in
Fig. 2. As can be observed, it will be unreasonable to set the number of bins
to 5 and 200, as this will lead to the number of bins being either too small or
too large. As a result, profiling will lose a lot of information of the distribution.
On the other hand, determining whether 10 bins or 20 bins are reasonable is
not straightforward. The authors in [40] suggested that the bin width should be
chosen so that the histogram displays the essential structure of the data, without
giving too much credence to the data set at hand.

Sample size is an important indicator for side-channel evaluations. The im-
plicit prerequisite in profiling stage is that the observer can capture a sufficient
number of measurements so that he can profile a sufficiently accurate leakage
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Fig. 2. Probability density distribution under different numbers of bins.

model. However, the fewer power traces he uses in the attack stage, the more
powerful and higher efficiency is the scheme. It is desirable if he can profile an
accurate leakage model under a small sample size. Therefore, deriving an optimal
bin width is an important issue that must be considered.

The authors in [32] indicated that the formula for determining the opti-
mal histogram bin width should asymptotically minimize the integrated mean
squared error. They proposed the following to determine the bin width:

hn =
3.49s

3
√
n

, (32)

where s was an estimate of the standard deviation and n was the sample size. In
side-channel attacks, we often assume that the leakage follows Gaussian distri-
bution. However, this assumption may be incorrect, or at least inaccurate, since
the true leakage model is unknown. Although Eq. 32 is established on the basis of
Gaussian density, fortunately, it can be also used for non-Gaussian data. Thanks
to Scott’s solution, the problem of estimating the bin width in our side-channel
attacks can be resolved.



5 Simulated Experiments

5.1 Leakage Function

Our first experiment is performed on simulated measurements. Let HW (·) de-
note the Hamming weight function, SBOX (·) denote the SubBytes operation
of AES-128, zi denote the ith plaintext byte and k∗ denote the encryption key
byte. The leakage function is defined as:

li = HW (SBOX (zi ⊕ k∗)) + θ, (33)

where ⊕ denotes the XOR operation, li denotes the corresponding leakage sam-
ple and θ denotes the noise component [18] that follows normal distribution
N
(

0, 102
)

.

5.2 Information on Higher-order Moments

Maximum entropy decreases with increase in moment constraints. Since each
moment contains information, the uncertainty of the model is reduced if a new
moment is added. However, this conclusion is not always established when mea-
surements are limited (as shown in Table.1). Here 800 measurements are used, ǫ
is set to 10−8 and Ci denotes the i

th order moment. The maximum entropy under
the constraint of natural moment (C0) is about 14.6171 and changes to 14.6460
after adding the first-order moment constraint. This means that the maximum
uncertainty of distribution varies by 0.0289 after adding the first-order moment.
The second-order moment makes the maximum uncertainty decrease the most
followed by the first-order moment. MaxEnt changes very little after reach-
ing 9.8123. In this case, the fitting performance also gradually approaches the
optimum.

Table 1. Maximum entropy under different constraint sets.

Constraint sets MaxEnt

{N} 14.6171
{N,C1} 14.6460

{N,C1,C2} 9.4689
{N,C1,C2,C3} 9.8123

{N,C1,C2,C3,C4} 9.8123
{N,C1,C2,C3,C4,C5} 9.8123

Since we only initialize λ0 in our MED, the fitting performance of f(x) and
true leakage distribution is not good at the initial iterations. As the number of it-
erations increases, the variables in λ are constantly updated, f(x) also converges
to the true distribution (as shown in Fig. 3(1)). Finally, the required accuracy
is achieved after 10 iterations.

The information entropy on different moments is different, as with the fitting
performance. We analyse the different moments on f(x) of the above 800 traces
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Fig. 3. MED under different iterations and fitting performance under different mo-
ments.

and consider the moments with orders higher than 3. Let MaxEnt2 denotes a
set of moments including {N,C1,C2}, and MaxEnt3 denotes a set of moments
including {N,C1,C2,C3}. Similar notations apply for MaxEnt4 and MaxEnt5. It
can be observed from the experimental results in Fig. 3(2) that the higher the
orders use, the better the fitting performance of f(x) and the true distribution.
When considering MaxEnt2 and MaxEnt3, f(x) still deviates from the true
distribution of the leakage, and the two have a good fit in MaxEnt4. The fitting
performance in MaxEnt5 is better and f(x) almost passes through the middle
of all bins. On one hand, this indicates that to fit the real leakage distribution,
we need to combine the information on all six moments in MaxEnt5. On the
other hand, this indicates that the information on higher-order moments are
limited. It is obvious that there is still a deviation between the estimated model
f(x) and the true leakage model. This is mainly due to the small number of
samples we use and the large deviation between the sample distribution and real
leakage distribution in our experiment. In order to better fit the real leakage
distribution, we can further reduce ǫ or consider higher-order moments, or even
use more measurements.



5.3 Fitting Performance

The evaluator can encrypt any number of plaintexts and collect their leakage to
profile sufficiently accurate PDF model. Compared to evaluator, the number of
measurements obtained by the attacker is limited, so it is important to make full
use of the information on them. The number of measurements is also the most
important factor in our MED estimation. So, estimating the most reasonable,
most unbiased leakage model from the limited model is a very important issue
that they needs to be taken into consideration. Here we also compare fitting
performance of our MED estimation under different numbers of measurements.
The experimental results corresponding to Hamming weight 0 are shown in Fig.
4, Fig. 5 and Table 2.
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(c) MED6
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(d) MED7
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Fig. 4. MED under different iterations using 200 simulated measurements.

First, considering the fitness between MED and the real distribution under
different moments, we simulate 200 power traces and fit the corresponding dis-
tribution with its first 5 ∼ 8 moments (the corresponding Maximum Entropy
Distribution is expressed as MED4∼MED7). The experimental results are shown
in Fig. 4. Since we only initialize λ0, f(x) deviates from the true distribution at
the initial iterations. So, the MED corresponding to iterations less than 8 is not
given. f(x) appears to exhibit a complex distribution under different moments. It
gradually fits to the real distribution as the number of iterations increases. How-
ever, the fitting performance under different moments is very different, MED6
and MED7 fit better than MED4 and MED5. Moreover, the number of iterations
is closely related to the complexity of distribution of samples. The more complex
this is, the more iterations are required to achieve a better fitness.
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(b) MED5
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(c) MED6
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(d) MED7
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Fig. 5. MED under different iterations using 500 simulated measurements.

We also show the fitting performance of MED and true distribution under
different moments when 500 simulated measurements are used. With increas-
ing number of measurements, the maximum entropy decreases gradually. The
leakage model becomes simpler and more definite, and the fitting performance
between MED and the true leakage function becomes better (see Fig. 5). This
indicates that the higher-order moments make full use of information on mea-
surements. MED6 and MED7 better reflect the true distribution than MED4
and MED5, and pass through the middle of most of bins. The GUM test in
Table 2 also illustrates this. Moreover, the distribution of samples reflects the
leakage function better and is more conducive to the fitness of f(x). As such,
the number of iterations in Algorithm 1 also decreases.

Table 2. Parameters under different numbers of measurements.

measurements iteration MaxEnt
GUM

µ̂ σ̂

200 14 12.1936 4.4432 10.7905
400 13 9.5870 5.3772 9.3680
800 12 8.8991 4.9424 9.8951
1600 11 7.7859 4.9751 9.9917
3200 9 6.5737 5.1266 9.9241
6400 9 5.8106 4.8918 10.1207

It is noteworthy that both f(x) and true leakage function do not success-
fully pass through the middle of all the bins. This would have been unrealistic
especially when there are many bins which are not well distributed. This is not



a concern as f(x) has already approximated the true leakage model. Although
the true leakage model of cryptographic devices is unknown. It is therefore not
necessary to make f(x) pass through the middle of all bins, as long as the fitness
requirements in leakage certification test is met.
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Fig. 6. Leakage certification tests on simulated measurements.

We use the MATLAB source code provided by Durvaux et. al. in [1] to
perform our leakage certification test. Specifically, we randomly generate 1000
samples from the leakage model given in Eq. 33 for each possible intermediate
value and train 256 leakage models independently. Each leakage model can be
expressed as N

(

µ̂, σ̂2
)

, the first six moments and cross validation are used.
Samples with same size of validation set are randomly generated from this model.
We then perform leakage certification test on them, of which the experimental
results are shown in Fig. 6. The p-values output by our different t-tests are in
grey-scale, for four statistical moments (i.e. the mean, variance, skewness and
kurtosis). The results show that our MED model fits the measured leakages
quite accurately. We only consider the first six order of moments MED5 in this
experiment. In order to achieve better fitting performance, higher-order moments
can also be taken into consideration. Actually, the results of leakage certification
tests using MED5 are better than those using MED4 in our experiments.

6 Experiments on ATMega644P Microcontroller

6.1 Measurement Setup

Our second experiment is performed on the measurements provided by Durvaux
et al. in their leakage certification code [1]. These measurements are leaked from
an AES Furious algorithm implemented on an 8-bit Ateml AVR (ATMega644P)
microcontroller. Let z and k denote the target input plaintext byte and subkey,
and y = z⊕ k. For each possible value of y, 1000 encryptions and measurements
are collected. Then, leakage certification tests are performed on them.



6.2 Low Discretization of Leakage Samples

Compared with real leakage, measurements sampled from simulated leakage
model are more random. They also have higher discretization and better sat-
isfy the given distribution. Moreover, we know the specific leakage function (i.e.
real leakage model) in simulation experiments. In order to compare the fitting
performance between MED and real model, we can simply compare MED with
leakage function. However, the real leakage model of cryptographic devices is
unknown and can only be measured by other methods such as hypothesis tests.

It is worth noting that the leakage samples of ATMega644P microcontroller
provided by Durvaux et al. in [1] is with low discretization. We have tested a
lot of y-s under all 1000 measurements and give the probability density func-
tions corresponding to y = 0, . . . , 3 in Fig. 7. The probability density values
close to the middle of distribution are 0, but some others close to the edges are
significantly high. We also carry out experiments on AT89S52 micro-controller
and obtain similar conclusions. The randomness of leakage model reflected by
these low discrete samples is also reduced. There could be three reasons for this
phenomenon: (1) the leakage of the device is not normally distributed, (2) the
size of measurements is too small, and (3) the measurement limitations of the
oscilloscope.
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Fig. 7. Low data discretization of leakage from ATMega644P micro-controller.

The matrix G is close to singularity if we use Newton-Raphson method to fit
MED and true leakage distribution under the condition that the leakage samples
are with low discretization. We change the accuracy ǫ in our iteration to 10−6. It
is worth noting that, although we reduce the accuracy in our iteration in Table
3 (y=1), the number of iterations increase compared to Table 2. The algorithm



needs to iterate about 16 times. Moreover, the uncertainty of distribution de-
creases when we use more measurements. We also show the experimental results
of GUM tests in Table 3, which indicates that the mean of these samples is about
0.0249 and the variance is about 0.0050.

Table 3. Parameters under different numbers of measurements.

measurements iteration MaxEnt
GUM

µ̂ σ̂

200 15 5.7612 0.0247 0.0050
400 16 5.2089 0.0249 0.0051
600 16 4.6202 0.0257 0.0049
800 17 4.4929 0.0249 0.0052
1000 16 4.2925 0.0249 0.0050

6.3 Fitting Performance

We use the first six moments to analyse the measurements corresponding to
y = 1. The number of bins in histogram varies with the size of measurements
used according to Eq. 32. Considering the first 200 and the first 300 measure-
ments, hn is 9 and 11 respectively. Unlike Fig. 7, the new divisions do not exhibit
the complex phenomenon that the probability density is almost 0 in the middle
and high on both two sides, which is also amenable to MED fitness. However,
the histogram shows another complex distribution when n = 200: the probabil-
ity density is low in the middle and high on both two sides. Obviously, normal
distribution considering skewness and kurtosis is not enough to fit this distribu-
tion. To solve this, the observer can increase or decrease the number of bins, or
improve the algorithm so that f(x) can still fit the complex distribution.
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(b) MED5
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Fig. 8. MED4 and MED5 under different iterations.

Fortunately, one advantage of our MED is that it can theoretically fit com-
plex distributions by making full use of information on arbitrary higher-order



moments. f(x) gradually fits the sample distribution in iterations under first
five and six moments (see MED4 and MED5 in Fig. 8). Specifically, the irregu-
lar probability density distribution of samples has been found after 11 iterations
in our MED. f(x) shows the same characteristics as the probability density dis-
tribution of samples in the twelfth iteration: low in the middle, high on the left
and low on the right. Although the error ǫ reduces, MED-s almost coincide in
the 13th, 14th and 15th iterations. It is very difficult to distinguish them in Fig.
8(2). f(x) passes through the middle of most of bins, which shows very good fit-
ness performance with the distribution of measurements. Since the distribution
is complex under these 200 measurements, we also consider MED6 and MED7,
of which the experimental results are shown in Fig. 9. In order to fit bins, both
two ends of MED6 and MED7 are higher than those of MED4 and MED5 at the
initial iterations. Fortunately, they decrease rapidly and converge quickly as the
number of iterations increases. In other words, the fitting performance converges
to the optimum quickly. Compared to MED4 and MED5, the fitting curves of
MED6 and MED7 are more complex and curved, which implies that the fitting
performance is much better.

The number of iterations of MED6 and MED7 is also higher than that of
MED4 and MED5 under the same accuracy. Moreover, the higher order moments
fit better than the lower order moments under the same number of iterations.
We also obtain similar conclusions in Section 5.3. λ in Fig. 9 and Fig. 10 changes
slightly as the iteration reaches a certain point. Maximum entropy distributions
f(x) also change very little, and they eventually overlap in the last a few itera-
tions.
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(b) MED7
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Fig. 9. MED6 and MED7 under different iterations.

It is noteworthy that the observer is likely to obtain different f(x) when
using varying numbers of measurements, or different measurement sets of the
sample size. However, f(x) can well reflect the true distribution of current mea-
surements. MED represents the most unbiased, most objective and most reason-
able distribution estimation of the observed measurements. When the number
of power traces increases, the observer gets a better sample distribution and



a decreasing maximum entropy (as shown in Table 3). We also test our MED
under more measurements. For example, the MED of first 300 measurements
corresponding to y = 1, of which the probability follows a distribution with left
side up but the right side sloping down smoothly. Therefore, f(x) first ascends
at both ends and finally the left-end ascends to fit the high probability density
while the right-end gradually descends to fit the low probability density on the
right. Finally, f(x) fits well to the true distribution of measurements. Similar
conclusions and fitting process can also be obtained from Fig. 4, Fig. 5, Fig. 8
and Fig. 9.
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Fig. 10. Leakage certification of leakage from ATMega644P Microcontroller.

Fig. 8 and Fig. 9 fully embody the super fitness ability of our MED. We
use the first six moments (MED5) in our leakage certification test and obtain
very good fitting performance in our leakage certification tests (as shown in Fig.
10). However, due to the pre-mentioned low data dispersion of the leakage of
ATMega644P microcontroller, many MED models cannot fit the distribution of
measurements on the model N

(

µ̂, σ̂2
)

and pass the leakage certification tests
(see horizontal blank lines in Fig. 10). Moreover, p value in Welch’s t-test is
in function of the number of measurements used for certification as stated by
Durvaux et al. in [9]. This also indicates that the information on the first six
moments (MED5) is insufficient to ensure that f(x) accurately fits the distri-
bution of measurements. Therefore, in order to fit the distribution, we need to
take information on higher-order moments into consideration. For example, the
first seven or eight moments (MED6 and MED7) in Fig. 9, or even using the
information on moments with orders larger than 7. We also carry out leakage
certification tests on MED4, of which the results show that p values on MED5
look ’whiter’. This also shows that the fitting performance of the higher-order
moments is better.



7 Conclusion and Future Works

The accuracy of a leakage model plays a very important role in side-channel
attacks and evaluations. In this paper, we aim to determine the true leakage
model of a chip. To achieve this, we performed Maximum Entropy Distribution
(MED) estimation on higher-order moments of measurements to approximate
the true leakage model of devices rather than assume a leakage model. Then,
non-linear programming is used to solve the Lagrange multipliers. The MED
is the most unbiased, objective and reasonable probability density distribution
estimation that is built on known moment information. It does not include the
profiler’s subjective knowledge of the model. MED can well approximate the true
distribution of the leakage of devices, thus reducing the model assumption error
and estimation error. It can also well approximate the complex distribution (e.g.
non-gaussian distribution). Both theoretical analysis and experimental results
verify the feasibility of our proposed MED.

MED can theoretically use information on arbitrary higher-order moments
to infinitely approximate the true distribution of leakage. In this case, more mo-
ments mean more information. However, more moments also necessitate more
computation. In our future work, we will explore methods to accurately measure
the amount of information on each moment and make MED choose the right mo-
ments for each iteration. We also plan to improve our MED to make it converge
faster, thereby reducing the number of iterations and computation time.
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