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Abstract

Ledger-based systems that enable rich applications often suffer from two limitations. First, validating
a transaction requires re-executing the state transition that it attests to. Second, transactions not only reveal
which application had a state transition but also reveal the application’s internal state. Unfortunately,
expensive re-execution and lack of privacy rule out many use cases.

We design, implement, and evaluate Zexe, a ledger-based system where users can execute offline
computations and subsequently produce transactions, attesting to the correctness of these computations,
that satisfy two main properties. First, transactions hide all information about the offline computations.
Second, transactions can be validated by anyone in constant time, regardless of the offline computation.

The core ofZexe is a protocol for a new cryptographic primitive that we introduce, decentralized private
computation (DPC). The security guarantees of DPC are concisely expressed via an ideal functionality,
which our protocol provably achieves. In order to achieve an efficient implementation of our protocol, we
leverage tools in the area of cryptographic proofs, including succinct zero knowledge proofs and recursive
proof composition. Overall, transactions in Zexe are 968 bytes regardless of the offline computation, and
generating them takes less than 2 minutes plus a time that grows with the offline computation.

To facilitate real-world deployments, Zexe also provides support for delegating the process of producing
a transaction to an untrusted worker, and support for threshold transactions and blind transactions.
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1 Introduction

Distributed ledgers are a mechanism that maintains data across a distributed system while ensuring that
every party has the same view of the data, even in the presence of corrupted parties. Ledgers can provide an
indisputable history of all “events” logged in a system, thereby offering a mechanism for multiple parties
to collaborate with minimal trust (any party can ensure the system’s integrity by auditing history). Interest
in distributed ledgers has soared recently, catalyzed by their use in cryptocurrencies (peer-to-peer payment
systems) and by their potential as a foundation for new forms of financial systems, governance, and data
sharing. In this work we study two limitations of ledgers, one about privacy and the other about scalability.
The privacy problem. The main strength of distributed ledgers is also their main weakness: the history of
all events is available for anyone to read. This severely limits a direct application of distributed ledgers.

For example, in ledger-based payment systems such as Bitcoin [Nak09], every payment transaction reveals
the payment’s sender, receiver, and amount. This not only reveals private financial details of individuals and
businesses using the system,1 but also violates fungibility, a fundamental economic property of money. This
lack of privacy becomes more severe in smart contract systems like Ethereum [Woo17], wherein transactions
not only contain payment details, but also embed function calls to specific applications. In these systems,
every application’s internal state is public, and so is the history of function calls associated to it.

This problem has motivated prior work to find ways to achieve meaningful privacy guarantees on ledgers.
For example, the Zerocash protocol [BCG+14] provides privacy-preserving payments, and Hawk [KMS+16]
enables general state transitions with data privacy, that is, an application’s data is hidden from third parties.

However, all prior work is limited to hiding the inputs and outputs of a state transition but not which
transition function is being executed. That is, prior work achieves data privacy but not also function privacy.
In systems with a single transition function this is not a concern.2 In systems with multiple transition
functions, however, this leakage is problematic. For example, Ethereum currently supports thousands of
separate ERC-20 “token” contracts [Eth18], each representing a distinct currency on the Ethereum ledger;
even if these contracts each individually adopted a protocol such as Zerocash to hide details about token
payments, the corresponding transactions would still reveal which token was being exchanged. Moreover, the
leakage of this information would substantially reduce the anonymity set of those payments.
The re-execution problem. Public auditability in the aforementioned systems (and many others) is achieved
via direct verification of state transitions. This creates two problems. First, validating a transaction involves
re-executing the associated computation and so, to discourage denial-of-service attacks whereby users send
transactions that take a long time to validate, current systems introduce mechanisms such as gas to make users
pay more for longer computations. Second, even with such mechanisms, validating an expensive transaction
may simply not be economically profitable, a problem known as the “Verifier’s Dilemma” [LTKS15]. These
problems have resulted in Bitcoin forks [Bit15] and Ethereum attacks [Eth16].

In sum, there is a dire need for techniques that facilitate the use of distributed ledgers for rich applications,
without compromising privacy (of data or functions) or relying on unnecessary re-executions. Prior works
only partially address this need, as discussed in Section 1.2 below.

1Even if payments merely contain addresses rather than, say, social security numbers, much information about individuals and
businesses can be gleaned by analyzing the flow of money over time between addresses [RH11, RS13, AKR+13, MPJ+13, SMZ14,
KGC+17]. There are even companies that offer analytics services on the information stored on ledgers [Ell13, Cha14].

2For example, in Zerocash the single transition function is the one governing cash flow of a single currency.
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1.1 Our contributions

We design, implement, and evaluate Zexe (Zero knowledge EXEcution), a ledger-based system that enables
users to execute offline computations and subsequently produce publicly-verifiable transactions that attest to
the correctness of these offline executions. Zexe simultaneously provides two main security properties.

• Privacy: a transaction reveals no information about the offline computation, except (an upper bound on)
the number of consumed inputs and created outputs.3 One cannot link together multiple transactions by the
same user or involving related computations, nor selectively censor transactions based on such information.

• Succinctness: a transaction can be validated in time that is independent of the cost of the offline
computation whose correctness it attests to. Since all transactions are equally cheap to validate (they are all
indistinguishable), there is no “Verifier’s Dilemma” nor a need for mechanisms such as gas.

Zexe also offers rich functionality, as offline computations in Zexe can be used to realize state transitions of
multiple applications (such as tokens, elections, markets) simultaneously running atop the same ledger. The
users participating in applications to do not have to trust, or even know of, one another. Zexe supports this
functionality by exposing a simple, yet powerful, shared execution environment with the following properties.

• Extensibility: users may execute arbitrary functions of their choice, without seeking anyone’s permission.

• Isolation: functions of malicious users cannot interfere with the computations and data of honest users.

• Inter-process communication: functions may exchange data with one another.

DPC schemes. The technical core of Zexe is a protocol for a new cryptographic primitive that we introduce,
decentralized private computation (DPC), a new approach to performing computations on a ledger. Informally,
DPC supports a simple, yet expressive, programming model in which units of data, which we call records,
contain within them scripts (arbitrary programs) that determine under what conditions they can be first created
and then consumed. The rules that dictate how these programs interact can be viewed as a “nano-kernel” that
provides a shared execution environment upon which to build applications. From a technical perspective, DPC
can be viewed as extending Zerocash [BCG+14] to the foregoing programming model, while still providing
strong privacy guarantees, not only within a single application (which is a straightforward extension) but also
across multiple co-existing applications (which requires new ideas that we discuss later on). The security
guarantees of DPC are concisely expressed via an ideal functionality, which our protocol provably achieves.
Techniques for efficient implementation. We devise a set of techniques to achieve an efficient implementa-
tion of our DPC protocol, by drawing upon recent advances in zero knowledge succinct cryptographic proofs
(namely, zkSNARKs) and in recursive proof composition (proofs attesting to the validity of other proofs).

Overall, transactions in Zexe with two input records and two output records are 968 bytes and can be
verified in tens of milliseconds, regardless of the offline computation; generating these transactions takes
less than 2 minutes plus a time that grows with the offline computation (inevitably so). This implementation
is achieved in a modular fashion via a collection of Rust libraries (see Fig. 15), in which the top-level one
is libzexe. Our implementation also supports transactions with any numberm of input records and n of
output records; transactions size in this case is 32m + 32n + 840 bytes (the transaction stores the serial
number of each input record and the commitment of each output record).

3One can fix the number of inputs and outputs (say, fix both to 2), or carefully consider side channels that could arise from
revealing bounds on the number of inputs and outputs.
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Delegating transactions. While verifying succinct cryptographic proofs is cheap, producing them can be
expensive. As the offline computation grows, the (time and space) cost of producing a cryptographic proof of
its correctness also grows, which could become infeasible for a user.

To address this problem, we further obtain delegable DPC. The user communicates to an untrusted worker
worker details about the desired transaction, then the worker produces the transaction, and finally the user
authorizes it via a cheap computation (and in a way that does not violate indistinguishability of transactions).
This feature is particularly relevant for prospective real-world deployments, because it enables support for
weak devices, such as mobile phones or hardware tokens.

In fact, our delegable DPC protocol also extends to support threshold transactions, which can be used
to improve operational security, and also to support blind transactions, which can be used to realize lottery
tickets for applications such as micropayments.

All of these extensions are also part of our Rust library libzexe.
A perspective on costs. Zexe provides tolerable efficiency but is by no means a lightweight construction.
We have, after all, set ambitious goals: data/function privacy and succinctness, for a rich functionality, in a
threat model that requires security against all efficient adversaries. Relaxing any of these goals (assuming
rational adversaries or hardware enclaves, or compromising on privacy) will lead to more efficient approaches.

In light of the foregoing ambitious goals, we have, in our opinion, managed to achieve excellent transaction
sizes (less than a kilobyte) and transaction verification times (tens of milliseconds).

The main undesirable cost in our system is, not surprisingly, the cost to generate the cryptographic proofs
to include in transactions. We have managed to keep this cost to under 2 minutes plus a cost that grows with
the offline computation, which is similar to what prior systems have achieved for more limited functionalities
[BCG+14]. But we are optimistic that this cost can be significantly reduced via more careful engineering.

1.2 Related work

Avoiding naive re-execution. TrueBit [TR17], Plasma [PB17], and Arbitrum [KGC+18] avoid naive
re-execution by having users report the results of their computations without any cryptographic proofs, and
instead putting in place incentive mechanisms wherein others can challenge reported results. The user and
challenger engage in a so-called refereed game [FK97, CRR11, CRR13, JSST16, Rei16], mediated by a smart
contract acting as the referee, that efficiently determines which of the two was “telling the truth”. In contrast,
in this work correctness of computation is ensured by cryptography, regardless of any economic motives; we
thus protect against all efficient adversaries rather than merely all rational and efficient ones. Also, unlike our
DPC scheme, the above works do not provide formal guarantees of strong privacy (challengers must be able
to re-execute the computation leading to a result and in particular must know its potentially private inputs).
Private payments. Zerocash [BCG+14], building on earlier work [MGGR13], showed how to use distributed
ledgers to achieve payment systems with strong privacy guarantees. Informally, users encrypt payment details
and prove their validity, without disclosing what the payment details are. The Zerocash protocol, with some
modifications, is now commercially deployed in several currencies, including Zcash [ZCa15]. In Zerocash,
however, there is no support for scripting, that is, specifying small programs that dictate how funds can be
spent. Even more so, in Zerocash there is no support for complex financial logic, and more generally for
programming arbitrary state transitions like in smart contract systems such as Ethereum.
Privacy beyond payments. Hawk [KMS+16], combining ideas from Zerocash and the notion of an
evaluator-prover for multi-party computation, enables parties to conduct offline computations and then report
their results via cryptographic proofs. The privacy guarantee that Hawk achieves, known as transactional
privacy, protects the private inputs used in a computation (directly so from the proofs’ zero knowledge
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property) but does not protect the information of which computation was carried out. That said, we view
Hawk as complementary to our work: a user in our system could in particular be a semi-trusted manager that
administers a multi-party computation and generates a transaction about its output. The privacy guarantees
provided in this work would hide which computation was carried out offline.
MPCwith ledgers. Several works [ADMM14b, ADMM14a, KMB15, KB16, BKM17] have applied ledgers
to obtain secure multi-party protocols that have security properties that are difficult to achieve otherwise,
such as fairness. These approaches are complementary to our work, as any set of parties wishing to jointly
compute a certain function via one of these protocols could run the protocol “under” our DPC scheme in such
a way that third parties would not learn any information that such a multi-party computation is happening.
Hardware enclaves. Ekiden [CZK+18] is a ledger-based system that uses hardware enclaves, such as Intel
Software Guard Extensions [MAB+13], to achieve various integrity and privacy goals for smart contracts.
Beyond ledgers, several systems explore privacy goals in distributed systems by leveraging hardware enclaves;
see for example M2R [DSC+15], VC3 [SCF+15], and Opaque [ZDB+17]. All of these works are able to
efficiently support rich and complex computations. In this work, we make no use of hardware enclaves, and
instead rely entirely on cryptography. This means that on the one hand our performance overheads are more
severe, while on the other hand we protect against a richer class of adversaries (all efficient ones).
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2 Techniques

We summarize the main ideas behind our contributions. Our goal is to design a ledger-based system in which
transactions attest to offline computations while simultaneously providing privacy and succinctness.

We begin by noting that privacy is the “harder” of the two goals, since there is a straightforward folklore
approach that provides succinctness alone: each user accompanies the result reported in a transaction with a
succinct cryptographic proof (i.e., a SNARK) attesting to the result’s correctness. Others who validate the
transaction can then simply verify the cryptographic proof, and do not have to re-execute the computation. In
light of this, we shall first discuss how to achieve privacy, and then how to additionally achieve succinctness.

The rest of this section is organized as follows. In Sections 2.1 and 2.2 we explain why achieving privacy
in our setting is challenging. In Section 2.3 we introduce the shared execution environment that we consider,
and in Section 2.4 we introduce decentralized private computation (DPC), a cryptographic primitive that
securely realizes it. In Section 2.5 we describe how we turn our ideas into an efficient implementation.

2.1 Achieving privacy for a single arbitrary function

Zerocash [BCG+14] is a protocol that achieves privacy for a specific functionality, namely, value transfers
within a single currency. Therefore, it is natural to consider what happens if we extend Zerocash from this
special case to the general case of a single arbitrary function that is known in advance to everybody.
Sketch of Zerocash. Money in Zerocash is represented via coins. The commitment of a coin is published
on the ledger when the coin is created, and its serial number is published when the coin is consumed. Each
transaction on the ledger attests that some “old” coins were consumed in order to create some “new” coins: it
contains the serial numbers of the consumed coins, commitments of the created coins, and a zero knowledge
proof attesting that the serial numbers belong to coins created in the past (without identifying which ones),
and that the commitments contain new coins of the same total value. A transaction is private because it
only reveals how many coins were consumed and how many were created, but no other information (each
coin’s value and owner address remain hidden). Also, revealing a coin’s serial number ensures that a coin
cannot be consumed more than once (the same serial number would appear twice). In sum, data in Zerocash
corresponds to coin values, and state transitions are the single invariant that monetary value is preserved.
Extending to an arbitrary function. One way to extend Zerocash to a single arbitrary function Φ (known
in advance to everybody) is to think of a coin as a record that stores some arbitrary data payload, rather than
just some integer value. The commitment of a record would then be published on the ledger when the record is
created, and its unique serial number would be published when the record is consumed. A transaction would
then contain serial numbers of consumed records, commitments of created records, and a proof attesting that
invoking the function Φ on (the payload of) the old records produces (the payload of) the new records.

Data privacy holds because the ledger merely stores each record’s commitment (and its serial number
once consumed), and transactions only reveal that some number of old records were consumed in order to
create some number of new records in a way that is consistent with Φ. Function privacy also holds but for
trivial reasons: Φ is known in advance to everybody, and every transaction is about computations of Φ.

Note that Zerocash is indeed a special case of the above: it corresponds to fixing Φ to the particular (and
publicly known) choice of a function Φ$ that governs value transfers within a single currency.

However the foregoing protocol supports only a single hard-coded function Φ, while instead we want to
enable users to select their own functions, as we discuss next.
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2.2 Difficulties with achieving privacy for user-defined functions

Wewant to enable users to execute functions of their choice concurrently on the same ledger, while maintaining
function privacy and without seeking prior permission from anyone. That is, when preparing a transaction, a
user may pick any function Φ of his choice for creating new records by consuming some old records.

This alone can be achieved via the approach sketched in Section 2.1 by fixing a single function that is
universal, and then interpreting data payloads as user-defined functions that are provided as inputs. Indeed,
zero knowledge would ensure function privacy in this case. However merely allowing users to define their
own functions does not by itself yield meaningful functionality, as we explain next.
The problem: malicious functions. Users could devise functions to attack or disrupt other users’ functions
and data, so that a particular user would not know whether to trust records created by other users; indeed,
due to function privacy, he would not know what functions were used to create those records. For example,
suppose that we wanted to realize the special case of value transfers within a single currency (i.e., Zerocash).
One may believe that it would suffice to instruct users to pick the function Φ$ (or similar). But this does not
work: a user receiving a record claiming to contain, say, 1 unit of currency does not know if this record was
created via the function Φ$ from other such records and so on. A malicious user could have used a different
function to create that record, for example, one that illegally “mints” records that appear valid to Φ$. More
generally, the lack of any enforced rules about how user-defined functions can interact precludes productive
cooperation between users that do not trust one another. We stress that this challenge arises specifically due to
function privacy, because if the function that created (the commitment of) a record was public knowledge,
users could decide for themselves if records they receive were generated by a “good” functions.
One way to address the foregoing problem would be to augment records with an attribute that must equal
the identity of the function that created them, and then impose the restriction that in a valid transaction only
records created by the same function may participate. This new attribute is never revealed on the ledger (just
like a record’s payload), and the zero knowledge proof is tasked with ensuring that records participating in the
same transaction are all of the same “type”. This approach now does suffice to realize value transfers within a
single currency, by letting users select the function Φ$. More generally, this approach generalizes that in
Section 2.1, and can be viewed as running multiple segregated “virtual ledgers” each with a fixed function.
Function privacy holds because one cannot tell if a transaction belongs to one virtual ledger or another.
The problem: limited functionality. The foregoing forbids any inter-process communication, and so one
cannot realize even simple functionalities like transferring value between different currencies on the same
ledger. This crude time sharing of the ledger is too limiting.

2.3 The records nano-kernel: a minimalist shared execution environment

The approaches in Section 2.2 lie at opposite extremes: unrestricted inter-process interactions cannot realize
even basic applications such as a single currency, while complete process segregation is too limiting.

Balancing these extremes requires a shared execution environment, namely an operating system, that
manages user-defined functions: it provides process isolation, determines data ownership, handles inter-
process communication, and so on. Overall, processes must be able to concurrently share a ledger, without
violating the integrity or confidentiality of one another.

However, function privacy (one of our goals) dictates that user-defined functions are hidden, which means
that an operating system cannot be maintained publicly atop the ledger (as in current smart contract systems)
but, instead, must be part of the statement proved in zero knowledge. This is unfortunate because designing an
operating system that governs interactions across user-defined functions within a zero knowledge proof is not
only a colossal design challenge but also entails many arbitrary design choices that we should not have to take.
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In light of the above, we choose to take the following approach: we formulate a minimalist shared
execution environment that imposes simple, yet expressive, rules on how records may interact. This execution
environment can be viewed as a “nano-kernel” that manages records, and can be summarized as follows.

The records nano-kernel (RNK): In addition to a data payload, a record r will now contain two
user-defined functions, or more precisely two user-defined predicates (boolean functions). These
are a birth predicate Φb, which is executed when r is created, and a death predicate Φd, which is
executed when r is consumed. By suitably programming r’s birth and death predicates, a user
fully dictates the conditions under which r can be first created and later consumed.

As before, a transaction in the ledger attests that some old records were consumed in order to create
new records. However, now it also attests that the old records’ death predicates and the new records’ birth
predicates were all simultaneously satisfied when given a certain common input. This input is the transaction’s
local data, which includes: (a) every record’s contents (such as its payload and the identity of its predicates);
(b) a piece of shared memory that is publicly revealed, called transaction memorandum; (c) a piece of shared
memory that is kept hidden, called auxiliary input; and (d) other construction specifics. See Fig. 3.

In this way, each predicate can individually decide if the local data is valid according to its own logic. For
example, a record can protect itself from other records that contain “bad” birth or death predicates, because
the record’s predicates could refuse to accept when they detect (from reading the local data) that they are in a
transaction with records having bad predicates. At the same time, a record can interact with other records in
the same transaction when its predicates decide to accept, providing the flexibility that we seek.

In Example 2.1 below we illustrate this flexibility via a simple application. More generally, “applications”
arise as emergent systems on top of carefully designed sets of predicates. Records appearing in the same
transaction can use the shared memory to perform joint computation and communication. In fact, computation
and communication may span across multiple transactions, by storing suitable intermediate state/message data
in record payloads, or by publishing that data in transactions memoranda (as plaintext or ciphertext as needed).
Thus, an arbitrary computation may be either conducted within the scope of a single transaction, or instead it
could take place across many transactions, e.g., by thinking of transactions as realizing state transitions, with
consumed records viewed as data loaded from memory, and created records viewed as data stored back to
memory. These perspectives demonstrate that the records nano-kernel is a powerful model for computation.

Example 2.1 (user-defined tokens). We briefly explain how to use the records nano-kernel to realize an
application wherein users can define new tokens and then exchange them according to desired exchange rates.

We consider records whose payloads encode two pieces of information: a token identifier id and a value v.
We fix the birth predicate in all such records to be a function Φ?

b that is responsible for creating the initial
supply of a new token, and then subsequently conserving the value of the token across all transactions. In
more detail, Φ?

b can be invoked in one of two modes. In mint mode, given as input a desired initial supply v0,
Φ?

b deterministically derives a fresh unique identifier id for a new token (this can be done via information
unique to a transaction) and stores the pair (id, v0) in a newly created genesis record. In conserve mode, Φ?

b

inspects all records in a transaction whose birth predicates equal to Φ?
b and whose token identifiers equal the

identifier of the current record, and ensures that among these the token values are conserved.
Users can program death predicates of records to enforce conditions on how tokens can be consumed,

e.g., by realizing conditional exchanges with other counter-parties. Suppose that wants wishes to exchange
100 units of a token id1 for 50 units of another token id2, but does not have a counter-party for the exchange.
She creates a record r with 100 units of id1 whose death predicate enforces that any transaction consuming r
must also create another record, consumable by Alice, with 50 units of id1. She then publishes out of band
information about r, and anyone can subsequently claim it by creating a transaction doing the exchange.
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2.4 Decentralized private computation

A new cryptographic primitive. We introduce a new cryptographic primitive called decentralized private
computation (DPC) schemes, which capture the notion of a ledger-based system where privacy-preserving
transactions attest to offline computations that follow the records nano-kernel. See Section 3 for the definition
of DPC schemes, including the ideal functionality that we use to express security.

We construct a DPC scheme in Section 4, and prove it secure in Appendix A. We take Zerocash [BCG+14]
as a starting point, and then extend the protocol to support the records nano-kernel and also to facilitate
proving security in the simulation paradigm relative to an ideal functionality (rather than via a collection of
separate game-based definitions as in [BCG+14]). Below we sketch the construction.
Construction sketch. Each transaction in the ledger consumes some old records and creates new records in
a manner that is consistent with the records nano-kernel. To ensure privacy, a transaction only contains serial
numbers of the consumed records, commitments of the created records, and a zero knowledge proof attesting
that there exist records consistent with this information (and with the records nano-kernel). All commitments
on the ledger are collected in a Merkle tree, which facilitates efficiently proving that a commitment appears
on the ledger (by proving in zero knowledge the knowledge of a suitable authentication path). All serial
numbers on the ledger are collected in a list that cannot contain duplicates. This implies that a record cannot
be consumed twice because the same serial number is revealed each time a record is consumed. See Fig. 1.

The record data structure is summarized in Fig. 2. Each record is associated to an address public key,
which is a commitment to a seed for a pseudorandom function acting as the corresponding address secret key;
addresses determine ownership of records, and in particular consuming a record requires knowing its secret
key. A record consists of an address public key, a data payload, a birth predicate, a death predicate, and a serial
number nonce; a record commitment is a commitment to all of these attributes. The serial number of a record
is the evaluation of a pseudorandom function, whose seed is the secret key for the record’s address public key,
evaluated at the record’s serial number nonce. A record’s commitment and serial number, which appear on
the ledger when the record is created and consumed, reveal no information about the record attributes. This
follows from the hiding properties of the commitment, and the pseudorandom properties of the serial number.
The derivation of a record’s serial number ensures that a user can create a record for another in such a way that
its serial number is fully determined and yet cannot be predicted without knowing the other user’s secret key.

Lledger tx1 tx2 ... tx ... txt

all record commitments all serial numbers

sn1,...,snm cm1,...,cmn memo stL !
serial numbers 
of old records

commitments 
of new records

transaction 
memorandum

ledger 
digest

zkSNARK

...

ledger 
digest

...

Figure 1: Construction of a transaction.
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Figure 2: Construction of a record.
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In order to produce a transaction, a user selects some previously-created records to consume, assembles
some new records to create (including their payloads and predicates), and decides on other aspects of the
local data such as the transaction memorandum (shared memory seen by all predicates and published on the
ledger) and the auxiliary input (shared memory seen by all predicates but not published on the ledger); see
Fig. 3. If the user knows the secret keys of the records to consume and if all relevant predicates are satisfied
(death predicates of old records and birth predicates of new predicates), then the user can produce a zero
knowledge proof to append to the transaction. See Fig. 4 for a summary of the NP statement being proved.

In sum, a transaction only reveals the number of consumed records and number of created records, as
well as any data that was deliberately revealed in the transaction memorandum (possibly nothing).4

record 
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Figure 3: Predicates receive local data.
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each old record rold,i 
    - has a commitment that is in a ledger with digest stL 
    - is owned by secret key askold,i 
    - has serial number sni
each new record rnew,j has commitment cmj
each old death predicate Φold,d,i (in rold,i) is satisfied by local data 
each new birth predicate Φnew,b,j (in rnew,j) is satisfied by local data

∃ 

such that

Figure 4: The execute statement.

Achieving succinctness. Our discussions so far have focused on achieving (data and function) privacy.
However, we also want to achieve succinctness, namely, that a transaction can be validated in “constant time”.
This follows from a straightforward modification: we take the protocol that we have designed so far and use a
zero knowledge succinct argument rather than just any zero knowledge proof. Indeed, the NP statement being
proved (summarized in Fig. 4) involves attesting the satisfiability of all (old) death and (new) birth predicates,
and thus we need to ensure that verifying the corresponding proof can be done in time that does not depend
on the complexity of these predicates. While turning this idea into an efficient implementation requires more
ideas (as we discuss in Section 2.5), the foregoing modification suffices from a theoretical point of view.
Delegation to an untrusted worker. In our DPC scheme, a user must produce, and include in the transaction,
a zero knowledge succinct argument that, among other things, attests that death predicates of consumed
records are satisfied and, similarly, that birth predicates of created records are satisfied. This implies that the
cost of creating a transaction grows with the complexity (and number of) predicates involved in the transaction.
Such a cost can quickly become infeasible for weak devices such as mobile phones or hardware tokens.

We address this problem by enabling a user to delegate to an untrusted worker, such as a remote server,
the computation that produces a transaction. This notion, which we call a delegable DPC scheme, empowers
weak devices to produce transactions that they otherwise could not have produced on their own.

The basic idea is to augment address keys in such a way that the secret information needed to produce the
cryptographic proof is separate from the secret information needed to authorize a transaction containing that
proof. Thus, the user can communicate to the worker the secrets necessary to generate a cryptographic proof,
while retaining the remaining secrets for authorizing this (and future) transactions. In particular, the worker
has no way to produce valid transactions that have not been authorized by the user.

4By supporting the use of dummy records, we can in fact ensure that only upper bounds on the foregoing numbers are revealed.
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We use randomizable signatures to achieve the foregoing functionality, without violating either privacy or
succinctness. Informally, we modify a record’s serial number to be an unlinkable randomization of (part of)
the record’s address public key, and a user’s authorization of a transaction consists of signing the instance and
proof relative to every randomized key (i.e., serial number) in that transaction. See Section 5 for details.

2.5 Achieving an efficient implementation

Our system Zexe (Zero knowledge EXEcution) provides an implementation of two constructions: our “plain”
DPC protocol, and its extension to a delegable DPC protocol. Achieving efficiency in our system required
overcoming several challenges. Below we highlight some of these challenges, and explain how we addressed
them; see Sections 7 and 8 for details. The discussions below equally apply to both types of DPC protocols.
Avoiding the cost of universality. The NP statement that we need to prove involves checking user-defined
predicates, so it must support arbitrary computations that are not fixed in advance. However, state-of-the-art
zkSNARKs for universal computations rely on expensive tools [BCG+13, BCTV14, WSR+15, BCTV17].

We address this problem by relying on one layer of recursive proof composition [Val08, BCCT13]. Instead
of tasking the NP statement with directly checking user-defined predicates, we only task it with checking
succinct proofs attesting to this. Checking these inner succinct proofs is a (relatively) inexpensive computation
that is fixed for all predicates, which can be “hardcoded” in the statement. Since the single outer succinct
proof produced does not reveal information about the inner succinct proofs attesting to predicates’ satisfiability
(thanks to zero knowledge), the inner succinct proofs do not have to hide what predicate was checked, so they
can be for NP statements tailored to the computations of particular user-defined predicates.
A bespoke recursion. Recursive proof composition has been empirically demonstrated for pairing-based
SNARKs [BCTV17]. We thus focus our attention on these, and explain the challenges that arise in our setting.
Recall that if we instantiate a SNARK’s pairing via an elliptic curve E defined over a prime field Fq and
having a subgroup of prime order r, then (a) the SNARK supports NP statements expressed as arithmetic
circuits over Fr, while (b) proof verification involves arithmetic operations over Fq. Being part of the NP
statement, the SNARK verifier must also be expressed as an arithmetic circuit over Fr, which is problematic
because the verifier’s “native” operations are over Fq. Simulating Fq operations via Fr operations is expensive,
and picking E such that q = r is impossible [BCTV17]. Prior work thus uses multiple curves [BCTV17]: a
two-cycle of pairing-friendly elliptic curves, that is, two prime-order curves E1 and E2 such that the prime
size of one’s base field is the prime order of the other’s group, and orchestrating SNARKs based on these so
that fields “match up”. However, known cycles are inefficient at 128 bits of security [BCTV17, CCW18].

We address this problem by noting that we merely need “a proof of a proof”, and thus, instead of relying
on a cycle, we can use the Cocks–Pinch method [FST10] to set up a bounded recursion [BCTV17]. First we
pick a pairing-friendly elliptic curve that not only is suitable for 128 bits of security according to standard
considerations but, moreover, is compatible with efficient SNARK provers in both levels of the recursion.
Namely, letting p be the prime order of the base field and r the prime order of the group, we need that
both Fr and Fp have multiplicative subgroups whose orders are large powers of 2. The condition on Fr
ensures efficient proving for SNARKs over this curve, while the condition on Fp ensures efficient proving
for SNARKs that verify proofs over this curve. In light of the above, we select a curve EBLS from the
Barreto–Lynn–Scott (BLS) family [BLS02, CLN11] with embedding degree 12. This family not only enables
parameters that conservatively achieve 128 bits of security, but also enjoys properties that facilitate very
efficient implementation [AFK+12]. We ensure that both Fr and Fp have multiplicative subgroups of order
2α for α ≥ 40, by a suitable condition on the parameter of the BLS family.

Next we use the Cocks–Pinch method to pick a pairing-friendly elliptic curve ECP over a field Fq such
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that the curve group ECP(Fq) contains a subgroup of prime order p (the size of EBLS’s base field). Since the
method outputs a prime q that has about 2× more bits than the desired p, and in turn p has about 1.5× more
bits than r (due to properties of the BLS family), we only need ECP to have embedding degree of 6 in order
to achieve 128 bits of security (as determined from the guidelines in [FST10]).

In sum, a SNARK over EBLS is used to generate proofs of predicates’ satisfiability; after that a zkSNARK
over ECP is used to generate proofs that these prior proofs are valid along with the remaining NP statement’s
checks. The matching fields between the two curves ensure that the former proofs can be efficiently verified.
Minimizing operations over ECP. While the curve ECP facilitates efficient checking of SNARK proofs
over EBLS, operations on it are at least 2× more costly (in time and space) than operations over EBLS, simply
because ECP’s base field is twice the size of EBLS’s base field. This makes checks in the NP relationRe that
are not related to proof checking unnecessarily expensive.

To avoid this, we split Re into two NP relations, RBLS and RCP. The latter is responsible only for
verifying proofs of predicates’ satisfaction, while the former is responsible for all other checks. We minimize
the number of ECP operations by proving satisfaction of RBLS and RCP with zkSNARKs over EBLS and
ECP respectively. A transaction now includes both proofs.
Optimizing the NP statement. We note that the remaining NP statement’s checks can themselves be quite
expensive, as they range from verifying authentication paths in a Merkle tree to verifying commitment
openings, and from evaluating pseudorandom functions to evaluating collision resistant functions. Prior work
realizing similar collections of checks required upwards of four million gates [BCG+14] to express such
checks. This not only resulted in high latencies for producing transactions (several minutes) but also resulted
in large public parameters for the system (hundreds of megabytes).

Commitments and collision-resistant hashing can be expressed as very efficient arithmetic circuits if one
opts for Pedersen-type constructions over suitable Edwards elliptic curves (and techniques derived from these
ideas are now part of deployed systems [HBHW18]). To achieve this, we pick two Edwards curves, EEd/BLS

over the field Fr (thereby matching the group order of EBLS), and EEd/CP over the field Fp (thereby matching
the group order of ECP). This allows to realise very efficient circuits for various primitives used in our NP
relations, including commitments, collision-resistant hashing, and randomizable signatures. Overall, we
obtain highly optimized realizations of all checks in Fig. 4.
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3 Definition of decentralized private computation schemes

We define decentralized private computation (DPC) schemes, a cryptographic primitive in which parties with
access to an ideal append-only ledger execute computations offline and subsequently post privacy-preserving,
publicly-verifiable transactions that attest to the correctness of these offline executions. This primitive
generalizes prior notions [BCG+14] that were limited to proving correctness of simple financial invariants.

Belowwe introduce the data structures, interface, and security requirements for a DPC scheme: Section 3.1
describes the main data structures of a DPC scheme, Section 3.2 defines the syntax of the DPC algorithms, and
finally in Section 3.3 we describe the security requirements for DPC schemes via an ideal functionality. We
note that our definition of DPC schemes focuses on (correctness and) privacy, because we leave succinctness
as a separate efficiency goal that easily follows from suitable building blocks (see Remark 4.1).

3.1 Data structures

In a DPC scheme there are three main data structures: records, transactions, and the ledger.
Records. A record, denoted by the symbol r, is a data structure representing a unit of data. Records can
be created or consumed, and these events denote state changes in the system. For example, in a currency
application, records store units of the currency, and state changes represent the flow of units in that currency.

In more detail, a record r has the following attributes (see Fig. 5): (a) a commitment cm, which binds
together all other attributes of r while hiding all information about them; (b) an address public key apk, which
specifies the record’s owner; (c) a payload payload containing arbitrary application-dependent information;
(d) a birth predicate Φb that must be satisfied when r is created; (e) a death predicate Φd that must be
satisfied when r is consumed; and (f) other construction-specific information. Both Φb and Φd are arbitrary
non-deterministic boolean-valued functions. The payload payload contains a designated subfield isDummy
which denotes whether r is dummy or not.

Informally, the “life” of a (non-dummy) record r is marked by two events: birth and death. The record r
is born (or is created) when its commitment cm is posted to the ledger as part of a transaction. Then the
record r dies (or is consumed) when its serial number sn appears on the ledger as part of a later transaction.
At each of these times (birth or death) the corresponding predicate (Φb or Φd) must be satisfied. Dummy
records, on the other hand, can be created freely, but consuming them requires satisfaction of their death
predicates. The purpose of dummy records is solely to enable the creation of new non-dummy records.

To consume r, one must also know the address secret key ask corresponding to r’s address public key apk
because the serial number sn to be revealed can only be computed from r and ask. The ledger forbids the
same serial number to appear more than once, so that: (a) a record cannot be consumed twice because it is
associated to exactly one serial number; (b) others cannot prevent one from consuming a record because it is
computationally infeasible to create two distinct records that share the same serial number sn but have distinct
commitments cm and cm′.

record record 
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data 
payload

birth 
predicate

death 
predicate

construction 
specifics

r cm apk payload Φb Φd ...

transaction serial numbers 
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memorandum

construction 
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ask
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Figure 5: Diagram of a record.
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Figure 6: Diagram of a transaction.
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Transactions. A transaction, denoted by the symbol tx, is a data structure representing a state change that
involves the consumption and creation of records (see Fig. 6). It is a tuple ([sni]

m
1 , [cmj ]

n
1 ,memo, ?) where

(a) [sni]
m
1 is the list of serial numbers of them old records, (b) [cmj ]

n
1 is the list of commitments of the n new

records, (c) memo is an arbitrary string associated with the transaction, and (d) ? is other construction-specific
information. The transaction tx reveals only the following information about old and new records: (i) the old
records’ serial numbers; (ii) the new records’ commitments; and (iii) the fact that the death predicates of all
consumed records and birth predicates of all new records were satisfied.

Anyone can assemble a transaction and append it to the ledger, provided that it is “valid” in the sense that
(all records are well-formed and) the death predicates of any consumed records and the birth predicates of any
created records are satisfied. Note that all transactions reveal the number of old records (m) and the number
of new records (n), but not how many of these were dummy or not.
Ledger. We consider a model where all parties have access to an append-only ledger, denoted L, that stores
all published transactions. Our definitions (and constructions) are agnostic to how this ledger is realized (e.g.,
the ledger may be centrally managed or a distributed protocol). When an algorithm needs to interact with the
ledger, we specify L in the algorithm’s superscript. The ledger exposes the following interface.

• L.Len: Return the number of transactions currently on the ledger.
• L.Push(tx): Append a (valid) transaction tx to the ledger.
• L.Digest→ stL: Return a (short) digest of the current state of the ledger.
• L.ValidateDigest(stL)→ b: Check that stL is a valid digest for some (past) ledger state.
• L.Contains(tx)→ b: Determine if tx (or a subcomponent thereof) appears on the ledger or not.
• L.Prove(tx)→ wL: If a transaction tx (or a subcomponent thereof) appears on the ledger, return a proof
of membership wL for it. If there are duplicates, return a proof for the lexicographically first one.

• L.Verify(stL, tx,wL)→ b: Check that wL certifies that tx (or a subcomponent thereof) is in a ledger with
digest stL.

We stress that only “valid” transactions can be appended to the ledger. While the full definition of a valid
transaction is implementation dependent, in all cases it must be that the commitments and serial numbers in a
transaction (including any appearing in the ? field of a transaction) do not already appear on the ledger.

3.2 Algorithms

A DPC scheme is a tuple of algorithms (some of which may read information from L):

DPC = (Setup,GenAddress,ExecuteL,VerifyL) .

The syntax and semantics of these algorithms are informally described below.

Setup: DPC.Setup(1λ)→ pp.

On input a security parameter 1λ, DPC.Setup outputs public parameters pp for the system. A trusted party
runs this algorithm once and then publishes its output; afterwards the trusted party is not needed anymore.
For some constructions, the trusted party can be replaced by an efficient multiparty computation that securely
realizes the DPC.Setup algorithm (see [BCG+15, ZCa16, BGG17] for how this has been done in some
systems); in other constructions, the trusted party may not be needed, as the public parameters may simply
consist of a random string of a certain length.
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Create address: DPC.GenAddress(pp,meta)→ (apk, ask).
On input public parameters pp and address metadata meta, DPC.GenAddress outputs an address key pair
(apk, ask). The address metadata is bound to apk so that it is computationally infeasible to create two equal
address public keys with different metadata. Any user may run this algorithm to create an address key pair.
Each record is bound to an address public key, and the corresponding secret key is used to consume it.

Execute: Any user may invoke DPC.Execute to consume records and create new ones.

DPC.ExecuteL



public parameters pp
old records [ri]

m
1

old address secret keys [aski]
m
1

new address public keys [apkj ]
n
1

new record payloads [payloadj ]
n
1

new record birth predicates [Φb,j ]
n
1

new record death predicates [Φd,j ]
n
1

auxiliary predicate input aux
transaction memorandum memo


→
(

new records [rj ]
n
1

transaction tx

)
.

Given as input a list of old records [ri]
m
1 with corresponding secret keys [aski]

m
1 , attributes for new records,

private auxiliary input aux to birth and death predicates of new and old records respectively,5 and an
arbitrary transaction memorandum memo, DPC.Execute produces new records [rj ]

n
1 and a transaction tx.

The transaction attests that the input records’ death predicates and the output records’ birth predicates are all
satisfied. The user subsequently pushes tx to the ledger by invoking L.Push(tx).

Verify: DPC.VerifyL(pp, tx)→ b.
On input public parameters pp and a transaction tx, and given oracle access to the ledger L, DPC.Verify
outputs a bit b denoting whether the transaction tx is valid relative to the ledger L.

3.3 Security

Informally, a DPC scheme achieves the following security goals.

• Execution correctness. Malicious parties cannot create valid transactions if the death predicate of some
consumed record or the birth predicate of some created record is not satisfied.

• Execution privacy. Transactions reveal only the information revealed in the memorandum field, a bound on
the number of consumed records, and a bound on the number of created records.6 All other information
is hidden, including the payloads and predicates of all involved records. For example, putting aside the
information revealed in the memorandum (which is arbitrary), one cannot link a transaction that consumes
a record with the prior transaction that created it.

• Consumability. Every record can be consumed at least once and at most once by parties that know its
secrets. Thus, a malicious party cannot create two valid records for another party such that only one of
them can be consumed. (This captures security against “faerie-gold” attacks [HBHW18].)

• Transaction non-malleability. Malicious parties cannot modify a transaction “in flight” to the ledger.

5In addition to the “global” auxiliary input aux, each predicate may also take as input a “local” auxiliary input that is not
(necessarily) shared with other predicates. For simplicity, we make these local inputs implicit.

6And any information implied by knowing that the birth (resp., death) predicates of consumed (resp., created) records are satisfied.
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Formally, we prove standalone security against static corruptions, in a model where every party has private
anonymous channels to all other parties [IKOS06].7 (In Appendix C we discuss how to prove security under
composition and against adaptive corruptions.) In more detail, we capture security of a DPC scheme via a
simulation-based security definition that is akin to UC security [Can01], but restricted to a single execution.

Definition 3.1. A DPC scheme DPC is secure if for every efficient real-world adversary A there exists an
efficient ideal-world simulator SA such that for every efficient environment E the following are computationally
indistinguishable:
• the output of E when interacting with the adversary A in a real-world execution of DPC in a model where
parties can communicate with other parties via private anonymous channels; and

• the output of E when interacting with the simulatorSA in an ideal-world execution with the ideal functionality
FDPC specified in Fig. 7 (and further described below).

We describe the data structures used by the ideal functionality FDPC, the internal state of FDPC, and the
interface offered by FDPC to parties in the ideal-world execution.
Ideal data structures. The ideal functionalityFDPC uses ideal counterparts of aDPC scheme’s data structures.
An address public key apk denotes the owner of an ideal record r, which is a tuple (cm, apk, payload,Φb,Φd),
where cm is its commitment, apk is its address public key, payload is its payload, and Φb and Φd are its birth
and death predicates. The record is also associated with a unique identifier (or serial number) sn. We require
that apk, cm, and sn are “globally unique”; this means that there cannot be two different ideal records r and
r
′ having the same commitments or serial numbers.

The distribution of these components is specified by the simulator S as follows. Before the ideal execution
begins, S specifies three functions (SampleAddrPk,SampleCm, SampleSn) that, on input a random string,
sample (apk, cm, sn) respectively. When FDPC needs to sample one of these, it invokes the respective
functions. (Note that FDPC cannot directly ask S to sample these because that would reveal to S when an
honest party was invoking FDPC.GenAddress or FDPC.Execute, and we cannot afford this leakage.)
Internal state. The ideal functionality FDPC maintains several internal tables.
• Addr, which maps an address public key to metadata.
• AddrUsers, which maps an address public key to the set of parties that are authorized to use it.
• Records, which maps a record’s commitment to that record’s information (address public key, payload,
birth predicate, and death predicates).

• RecUsers, which maps a record’s commitment to the set of parties that are authorized to consume it. Note
that, for a record r, the set RecUsers[r.cm] can be different from the set in AddrUsers[r.apk], but a party P
has to be in both sets to consume r.

• SerialNumbers, which maps a record’s commitment to that record’s (unique) serial number.
• State, which maps a record’s commitment to that record’s state, either alive or dead.
Ideal algorithms. The ideal functionality FDPC provides the following interface to parties.
• Address generation: FDPC.GenAddress outputs a new address public key apk.
• Execution: FDPC.Execute performs an execution that consumes old records and creates new records.
All parties are notified that an execution has occurred, and learn the serial numbers of input records,
commitments of output records, and the transaction memorandum memo. Concurrent FDPC.Execute calls
are serialized arbitrarily.

• Record consumption authorization: FDPC.ShareRecord allows a party P to authorize another party P ′ to
consume a record r (provided that P ′ is also authorized to use r’s address public key).

7Parties can, e.g., use these channels to communicate the contents of newly created records to other parties.
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Operation of honest parties. In both the real and ideal executions, the environment E can send instructions
to honest parties. These instructions can be one of GenAddress, Execute, or ShareRecord. In the real world
honest parties translate these instructions into corresponding invocations of DPC algorithms (or messages
sent via private anonymous channels as in the case of ShareRecord), while in the ideal world they translate
them into corresponding invocations of FDPC algorithms. In both worlds, honest parties immediately invoke
ShareRecord on records obtained from an Execute instruction. Finally, in the ideal world, when invoking
FDPC, honest parties do not provide any inputs marked as optional; instead, they let FDPC sample these.
Intuition. We explain how FDPC enforces the informal security notions described at this section’s beginning.

• Execution correctness. FDPC.Execute ensures that the death predicates of consumed records and birth
predicates of created records are satisfied by the local data. Note that each predicate receives its own
position as input so that it knows to which record in the local data it belongs.

• Execution privacy. Transactions contain serial numbers [sni]
m
1 of consumed records, commitments [cmj ]

n
1

of created records, and a memorandum memo. Serial numbers and commitments are sampled via SampleSn
and SampleCm, so they are independent of the contents of any record, and thus reveal no information about
them. Transactions thus reveal no information (beyond what is contained in memo).

• Consumability. From the point of view of FDPC, two records are different if and only if they have different
commitments. In such a case, both records can be consumed as long as their death predicates are satisfied.
If a DPC scheme realizes FDPC, then it must satisfy this same requirement: if two valid records have distinct
commitments, then they must both be consumable.

• Transaction non-malleability. The adversary has no power to modify the inputs to, or output of, an honest
party’s invocation of FDPC.Execute.
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FDPC.GenAddress[P]
(
address metadata meta
(optional) address public key apk

)
1. Sample randomness r for generating address public key.
2. If apk = ⊥ then apk← SampleAddrPk(r).
3. Check that apk is unique: Addr[apk] = ⊥.
4. Set Addr[apk] := (meta, r).
5. If P is corrupted: set S to be the set of corrupted parties.
6. If P is honest: set S := {P}.
7. Set AddrUsers[apk] := AddrUsers[apk] ∪ S.
8. Send to P: address public key apk.

FDPC.ShareRecord[P]
(
record r

recipient party P ′
)

1. If Records[r.cm] 6= ⊥:
(a) Check that P ∈ RecUsers[r.cm].
(b) Retrieve ((cm, apk, payload,Φb,Φd), r) := Records[r.cm].

2. If P ′ is corrupted: set S to be the set of corrupted parties.
3. If P ′ is honest: set S :=

{
P ′
}
.

4. Set RecUsers[r.cm] := RecUsers[r.cm] ∪ S.
5. If P is honest and P ′ isn’t, Send to P ′: (RecordAuth, (r, r)).
6. Else, Send to P ′: (RecordAuth, r).

FDPC.Execute[P]



old records [ri]
m
1

old address metadata [metai]
m
1

(optional) old serial numbers [sni]
m
1

(optional) new record commitments [cmj ]
n
1

new address public keys [apkj ]
n
1

new record payloads [payloadj ]
n
1

new record birth predicates [Φb,j ]
n
1

new record death predicates [Φd,j ]
n
1

auxiliary predicate input aux
transaction memorandum memo


1. For each i ∈ {1, . . . ,m}:

(a) Sample randomness ri.
(b) If sni = ⊥ then generate serial number: sni ← SampleSn(ri).
(c) Check that sni is unique: SerialNumbers[sni] = ⊥.

2. For each j ∈ {1, . . . , n}:
(a) Sample randomness rj .
(b) If cmj = ⊥ then generate commitment: cmj ← SampleCm(rj).
(c) Check that cmj is unique: Records[cmj ] = ⊥.
(d) Construct record: rj := (cmj , apkj , payloadj ,Φb,j ,Φd,j).

3. Define the local data ldata := ([ri]
m
1 , [sni]

m
1 , [metai]

m
1 , [rj ]

n
1 , aux,memo).

4. For each i ∈ {1, . . . ,m}:
(a) Parse ri as (cmi, apki, payloadi,Φb,i,Φd,i).
(b) Check that, for some randomness ri, old record ri exists: ((apki, payloadi,Φb,i,Φd,i), ri) = Records[cmi].
(c) Check that P is authorized to use apki: P ∈ AddrUsers[apki].
(d) If payloadi.isDummy = 0:

i. Check that record is unconsumed: State[ri] = alive.
ii. Check that P is authorized to consume ri: P ∈ RecUsers[cmi].
iii. Check that P is authorized to use apki: P ∈ AddrUsers[apki].

(e) Check that death predicate is satisfied: Φd,i(i‖ldata) = 1.
(f)Mark it as consumed: State[cmi] := dead.

5. For each j ∈ {1, . . . , n}:
(a) Check that birth predicate is satisfied: Φb,j(j‖ldata) = 1.
(b) Insert new record rj : Records[cmj ] := ((apkj , payloadj ,Φb,j ,Φd,j), rj).
(c)Mark new record as unconsumed: State[cmj ] := alive.

6. Send to P: ([rj ]
n
1 ).

7. Send to all parties: (Execute, [sni]
m
1 , [cmj ]

n
1 ,memo).

Figure 7: Ideal functionality FDPC of a DPC scheme.

19



4 Construction of decentralized private computation schemes

We describe our construction of a DPC scheme. In Section 4.1 we introduce the building blocks that we use,
and in Section 4.2 we describe each algorithm in the scheme. The security proof is provided in Appendix A.
We also describe some extensions of our construction, in functionality and in security, in Appendix C.

4.1 Building blocks

CRHs. A collision-resistant hash function CRH = (Setup,Eval) works as follows.
• Setup: on input a security parameter, CRH.Setup samples public parameters ppCRH.
• Hashing: on input public parameters ppCRH and messagem, CRH.Eval outputs a short hash h ofm.
Given public parameters ppCRH ← CRH.Setup(1λ), it is computationally infeasible to find distinct inputs x
and y such that CRH.Eval(ppCRH, x) = CRH.Eval(ppCRH, y).
PRFs. A pseudorandom function family PRF = {PRFx : {0, 1}

∗ → {0, 1}O(|x|)}x, where x denotes the
seed, is computationally indistinguishable from a random function family.
Trapdoor commitments. A trapdoor commitment scheme TCM = (Setup,Commit) enables a party to
generate a (perfectly) hiding and (computationally) binding commitment to a given message.
• Setup: on input a security parameter, TCM.Setup samples public parameters ppTCM.
• Commitment: on input public parameters ppTCM, messagem, and randomness rcm, TCM.Commit outputs
a commitment cm tom.

Auxiliary algorithms enable producing a trapdoor, and using it to open a commitment, originally to an empty
string, to an arbitrary message. These algorithms are used only in the proof of security, and so we introduce
them there (see Appendix A).
NIZKs. Non-interactive zero knowledge arguments of knowledge enable a party, known as the prover, to
convince another party, known as the verifier, about knowledge of the witness for an NP statement without
revealing any information about the witness (besides what is already implied by the statement being true).
This primitive is a tuple NIZK = (Setup,Prove,Verify) with the following syntax.
• Setup: on input a security parameter and the specification of an NP relationR, NIZK.Setup outputs a set
of public parameters ppNIZK (also known as a common reference string).

• Proving: on input ppNIZK and an instance-witness pair (x,w) ∈ R, NIZK.Prove outputs a proof π.
• Verifying: on input ppNIZK, instance x, and proof π, NIZK.Verify outputs a decision bit.
Completeness states that honestly generated proofs make the verifier accept; (computational) proof of
knowledge states that if the verifier accepts a proof for an instance then the prover “knows” a witness for it;
and perfect zero knowledge states that honestly generated proofs can be perfectly simulated, when given a
trapdoor to the public parameters. In fact, we require a strong form of (computational) proof of knowledge
known as simulation-extractability, which states that proofs continue to be proofs of knowledge even when
the adversary has seen prior simulated proofs. For more details, see [Sah99, DDO+01, Gro06].

Remark 4.1. If NIZK is additionally succinct (i.e., it is a simulation-extractable zkSNARK) then the DPC
scheme constructed in this section is also succinct. This is the case in our implementation; see Section 8.

4.2 Algorithms

Pseudocode for our construction of a DPC scheme is in Fig. 8. The construction involves invoking zero
knowledge proofs for the NP relationRe described in Fig. 9. The text below is a summary of the construction.
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System setup. DPC.Setup is a wrapper around the setup algorithms of cryptographic building blocks. It
invokes TCM.Setup, CRH.Setup, and NIZK.Setup to obtain trapdoor commitment public parameters ppTCM,
CRH public parameters ppCRH, and NIZK public parameters for the NP relation Re (see Fig. 9). It then
outputs pp := (ppTCM, ppCRH, ppe).
Address creation. DPC.GenAddress, on input address metadata meta, constructs an address key pair as
follows. The address secret key ask is a tuple (skPRF,meta, rpk) consisting of a secret key skPRF for the
pseudorandom function PRF, the address metadata meta, and commitment randomness rpk. The address
public key apk is a commitment to skPRF‖meta with randomness rpk. Thus, apk binds together skPRF and
meta, while simultaneously hiding all information about them.
Execution. DPC.Execute produces a transaction attesting that some old records [ri]

m
1 were consumed

and some new records [rj ]
n
1 were created, and that their death and birth predicates were satisfied. First,

DPC.Execute computes a ledger membership witness and serial number for every old record. Then,
DPC.Execute invokes the following auxiliary function to create record commitments for the new records.

DPC.ConstructRecord(pp, apk, payload,Φb,Φd, ρ)→ (r, cm)
1. Sample new commitment randomness r.
2. Construct new record commitment: cm ← TCM.Commit(ppTCM, apk‖payload‖Φb,‖Φd,‖ρ; r).

3. Construct new record r :=

(
address public key apk payload payload comm. rand. r

serial number nonce ρ predicates (Φb,Φd) commitment cm

)
.

4. Output (r, cm).

Information about all records, secret addresses of old records, the desired transaction memorandum memo,
and desired auxiliary predicate input aux are collected into the local data ldata (see Fig. 9).

Finally, DPC.Execute produces a proof that all records are well-formed and that several conditions hold.

• Old records are properly consumed, namely, for every old record ri ∈ [ri]
m
1 :

– (if ri is not dummy) ri exists, demonstrated by checking a ledger membership witness for ri’s commitment;
– ri has not been consumed, demonstrated by publishing ri’s serial number sni;
– ri’s death predicate Φd,i is satisfied, demonstrated by checking that Φd,i(i‖ldata) = 1.

• New records are property created, namely, for every new record rj ∈ [rj ]
n
1 :

– rj’s serial number is unique, achieved by generating the nonce ρj as CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm);
– rj’s birth predicate Φb,j is satisfied, demonstrated by checking that Φb,j(j‖ldata) = 1.

The serial number sn of a record r relative to an address secret key ask = (skPRF,meta, rpk) is derived by
evaluating PRF at r’s serial number nonce ρ with seed skPRF. This ensures that sn is pseudorandom even to a
party that knows all of r but not ask (e.g., to a party that created the record for some other party). Note that
each predicate receives its own position as input so that it knows to which record in the local data it belongs.

21



DPC.Setup
Input: security parameter 1λ

Output: public parameters pp

1. Generate trapdoor commitment parameters:
ppTCM ← TCM.Setup(1

λ
).

2. Generate CRH parameters: ppCRH ← CRH.Setup(1
λ
).

3. Generate NIZK parameters forRe (see Figure 9):
ppe ← NIZK.Setup(1

λ
,Re).

4. Output pp := (ppTCM, ppCRH, ppe).

DPC.GenAddress
Input: public parameters pp and address metadata meta
Output: address key pair (apk, ask)

1. Sample secret key skPRF for pseudorandom function PRF.
2. Sample randomness rpk for commitment scheme TCM.
3. Set address public key

apk := TCM.Commit(ppTCM, skPRF‖meta; rpk).
4. Set address secret key ask := (skPRF,meta, rpk).
5. Output (apk, ask).

DPC.Execute
L

Input:
• public parameters pp

• old
{

records [ri]
m
1

address secret keys [aski]
m
1

• new


address public keys [apkj ]

n
1

record payloads [payloadj ]
n
1

record birth predicates [Φb,j ]
n
1

record death predicates [Φd,j ]
n
1

• auxiliary predicate input aux
• transaction memorandum memo

Output: new records [rj ]
n
1 and transaction tx

1. For each i ∈ {1, . . . ,m}, process the i-th old record as follows:

(a) Parse old record ri as
(

address public key apki payload payloadi comm. rand. ri
serial number nonce ρi predicates (Φb,i,Φd,i) commitment cmi

)
.

(b) If payloadi.isDummy = 1, set ledger membership witnesswL,i := ⊥.
If payloadi.isDummy = 0, compute ledger membership witness for commitment: wL,i ← L.Prove(cmi).

(c) Parse address secret key aski as (skPRF,i,metai, rpk,i).
(d) Compute serial number: sni ← PRFskPRF,i

(ρi).
2. For each j ∈ {1, . . . , n}, construct the j-th new record as follows:

(a) Compute serial number nonce: ρj := CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
(b) Construct new record: (rj , cmj)← DPC.ConstructRecord(ppTCM, apkj , payloadj ,Φb,j ,Φd,j , ρj).

3. Retrieve current ledger digest: stL ← L.Digest.
4. Construct instance xe forRe: xe := (stL, [sni]

m
1 , [cmj ]

n
1 ,memo).

5. Construct witnesswe forRe: we := ([ri]
m
1 , [wL,i]

m
1 , [aski]

m
1 , [rj ]

n
1 , aux).

6. Generate proof forRe: πe ← NIZK.Prove(ppe,xe,we).
7. Construct transaction: tx := ([sni]

m
1 , [cmj ]

n
1 ,memo, ?), where ? := (stL, πe).

8. Output ([rj ]
n
1 , tx).

DPC.Verify
L

Input: public parameters pp and transaction tx
Output: decision bit b

1. Parse tx as ([sni]
m
1 , [cmj ]

n
1 ,memo, ?) and ? as (stL, πe).

2. Check that there are no duplicate serial numbers
(a) within the transaction tx: sni 6= snj for every distinct i, j ∈ {1, . . . ,m};
(b) on the ledger: L.Contains(sni) = 0 for every i ∈ {1, . . . ,m}.

3. Check that the ledger state is valid: L.ValidateDigest(stL) = 1.
4. Construct instance for the relationRe: xe := (stL, [sni]

m
1 , [cmj ]

n
1 ,memo).

5. Check proof for the relationRe: NIZK.Verify(ppe,xe, πe) = 1.

Figure 8: Construction of a DPC scheme.
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xe =


ledger digest stL
old record serial numbers [sni]

m
1

new record commitments [cmj ]
n
1

transaction memorandum memo

 and we =


old records [ri]

m
1

old record membership witnesses [wL,i]
m
1

old address secret keys [aski]
m
1

new records [rj ]
n
1

auxiliary predicate input aux


where
• for each i ∈ {1, . . . ,m}, ri = (apki, payloadi,Φb,i,Φd,i, ρi, ri, cmi);
• for each j ∈ {1, . . . , n}, rj = (apkj , payloadj ,Φb,j ,Φd,j , ρj , rj , cmj).

Define the local data ldata :=

(
[cmi]

m
1 [apki]

m
1 [payloadi]

m
1 [Φd,i]

m
1 [Φb,i]

m
1 [metai]

m
1 [sni]

m
1

[cmj ]
n
1 [apkj ]

n
1 [payloadj ]

n
1 [Φd,j ]

n
1 [Φb,j ]

n
1 memo aux

)
.

Then, a witnesswe is valid for an instance xe if the following conditions hold:
1. For each i ∈ {i, . . . ,m}:

• If ri is not dummy,wL,i proves that the commitment cmi is in a ledger with digest stL: L.Verify(stL, cmi,wL,i) = 1.
• The address public key apki and secret key aski form a valid key pair:

apki = TCM.Commit(ppTCM, skPRF,i‖metai; rpk,i) and aski = (skPRF,i,metai, rpk,i).
• The serial number sni is valid: sni = PRFskPRF,i

(ρi).
• The old record commitment cmi is valid: cmi = TCM.Commit(ppTCM, apki‖payloadi‖Φb,i‖Φd,i‖ρi; ri).
• The death predicate Φd,i is satisfied by local data: Φd,i(i‖ldata) = 1.

2. For each j ∈ {1, . . . , n}:
• The serial number nonce ρj is computed correctly: ρj = CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
• The new record commitment cmj is valid: cmj = TCM.Commit(ppTCM, apkj‖payloadj‖Φb,j‖Φd,j‖ρj ; rj).
• The birth predicate Φb,j is satisfied by local data: Φb,j(j‖ldata) = 1.

Figure 9: The execute NP relationRe.

23



5 Delegating zero knowledge execution

The cost of creating a transaction in the DPC scheme from Section 4 grows with the complexity (and
number of) predicates involved in the transaction. The user must produce, and include in the transaction, a
cryptographic proof that, among other things, attests that death predicates of consumed records are satisfied
and, similarly, that birth predicates of created records are satisfied. This implies that producing transactions
on weak devices such as mobile phones or hardware tokens quickly becomes infeasible.

In Sections 5.1 to 5.3 we explain how to address this problem by enabling a user to delegate to an untrusted
worker, such as a remote server, the computation that produces a transaction. This empowers weak devices to
produce transactions that they otherwise could not have produced on their own. Then, in Section 5.4, we
explain how the ideas that we use for delegating transactions also yield solutions for achieving threshold
transactions and blind transactions in a DPC scheme, which are also valuable in applications. Techniques
derived from these ideas are now part of deployed systems [HBHW18].

5.1 Approach

A naive approach is for the user to simply ask the worker to produce the cryptographic proof on its behalf,
and then include this proof in the transaction. The intuition behind this idea is that the user can check that the
proof received from the worker is valid, by simply running the proof verification procedure. Indeed, whenever
the DPC scheme uses a succinct argument (see Remark 4.1), the verification procedure is succinct.

However, this approach is insecure, because the worker, in order to produce a proof, would have to learn
not only the instance but also the secret witness for the NP statement being proved. Since the secret witness
includes the user’s address secret key, if the worker learns this information then the worker can impersonate
the user, e.g., by producing further transactions that the user never authorized. This naive approach also fails
in prior proof-based ledger protocols, including Zerocash [BCG+14]. New ideas are needed.

Taking our construction of a DPC scheme from Section 4 as a starting point, we explain how to enable a
user to delegate the expensive proof computation to a worker in such a way that the worker cannot produce
valid transactions that have not been authorized by the user; see Fig. 11. (Additional security goals, such as
ensuring that the worker learns no information about the user, are left to future work.)

The basic idea is to augment address keys in such a way that the secret information needed to produce the
cryptographic proof is separate from the secret information needed to authorize a transaction containing that
proof. Thus, the user can communicate to the worker the secrets necessary to generate a cryptographic proof,
while retaining the remaining secrets for authorizing this (and future) transactions. In particular, the worker
has no way to produce valid transactions that have not been authorized by the user.

We stress that the simplistic solution in which the user authorizes the proof produced by the worker by
signing it via a secret key not shared with the worker does not work because it violates privacy. Indeed, others
would have to use the same public key to verify signatures across multiple transactions containing signatures
produced by the same secret key, thereby linking these transactions together.

The next two sub-sections explain how we achieve delegation: first, in Section 5.2, we describe a variant
of randomizable signatures, which we use as a building block; then, in Section 5.3, we provide a high-level
description of a delegable DPC scheme. The detailed construction is provided in Appendix B.

5.2 Additional building block: randomizable signatures

A randomizable signature scheme is a tuple of algorithms SIG = (Setup,Keygen, Sign,Verify,RandPk,
RandSig) that enables a party to sign messages, while also allowing randomization of public keys and
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signatures to prevent linking across multiple signatures. We first discuss the syntax of the usual algorithms.

• Setup: on input a security parameter, SIG.Setup samples public parameters ppSIG.
• Key generation: on input public parameters ppSIG, SIG.Keygen samples a key pair (pkSIG, skSIG).
• Message signing: on input public parameters ppSIG, secret key skSIG, and messagem, SIG.Sign produces a
signature σ.

• Signature verification: on input public parameters ppSIG, public key pkSIG, messagem, and signature σ,
SIG.Verify outputs a bit b denoting whether σ is a valid signature form under public key pkSIG.

In addition to the usual algorithms, SIG has two algorithms for randomizing public keys and signatures.

• Public key randomization: SIG.RandPk(ppSIG, pkSIG, rSIG) samples a randomized public key p̂kSIG.
• Signature randomization: SIG.RandSig(ppSIG, σ, rSIG) samples a randomized signature σ̂.

The signature scheme SIG must satisfy the following security properties.

• Existential unforgeability. Given a public key pkSIG, it is infeasible to produce a forgery under pkSIG or
under under any randomization of pkSIG. This notion strengthens the standard unforgeability notion, and is
similar to that of randomizable signatures in [FKM+16].

• Unlinkability. Given a public key pkSIG and a tuple (p̂kSIG,m, σ̂) where σ̂ is a valid signature form under
p̂kSIG, no efficient adversary can determine if p̂kSIG is a fresh public key and σ̂ a fresh signature, or if
instead p̂kSIG is a randomization of pkSIG and σ̂ a randomization of a signature for pkSIG. This property is a
computational relaxation of the perfect unlinkability property of randomizable signatures in [FKM+16].

• Injective randomization. Randomization of public keys is (computationally) injective with respect to
randomness. Informally, given public parameters ppSIG, it is infeasible to find a public key pkSIG and
r1 6= r2 such that SIG.RandPk(ppSIG, pkSIG, r1) = SIG.RandPk(ppSIG, pkSIG, r2).

5.3 A delegable DPC scheme

We describe how to construct a delegable DPC scheme, namely, a DPC scheme in which a user can delegate
to an untrusted worker the expensive computations associated with producing a transaction. The security goal
is that the worker should not be able to produce valid transactions that have not been authorized by the user.
Below we assume familiarity with our “plain” DPC construction (see Section 4).

The user will maintain (among other things) a key pair (pkSIG, skSIG) for a randomizable signature scheme
SIG (see Section 5.2). The public key pkSIG will be embedded in the user’s public key apk and also be used
to derive the serial numbers of records “owned” by apk. In contrast, the secret key skSIG will not be a part
of any data structures, and will only be used to authorize transactions by signing the cryptographic proofs
produced by untrusted workers.

In more detail, we first describe how addresses and records are generated (also see summary in Fig. 10).

• Addresses. In Section 4 an address public key apk was a trapdoor commitment to a secret key skPRF for a
pseudorandom function PRF and the address metadata meta. Now apk is a trapdoor commitment to this
same information as well as the public key of a key pair (pkSIG, skSIG) for SIG. The corresponding address
secret key ask consists of all the committed information and the commitment randomness.

• Records. The structure of a record, including how a record commitment is computed, is as in Section 4.
However, a record’s serial number sn is now derived in a different way: while previously sn := PRFskPRF

(ρ)
now we set sn := SIG.RandPk(ppSIG, pkSIG,PRFskPRF

(ρ)) where ρ is the record’s serial number nonce.
Namely, while before serial numbers were outputs of a pseudorandom function keyed by skPRF, now they
are randomizations of the authorization public key pkSIG when using suitable pseudorandomness.
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Note that the foregoing new derivation of serial numbers does not break important security properties.

– Unlinkability of serial numbers: serial numbers of different records that share the same authorization
public pkSIG are computationally indistinguishable. This follows rather directly from the fact sn, being a
randomization of pkSIG, does not reveal information (to efficient distinguishers) about pkSIG itself.

– No double spending: a user cannot “spend” (i.e., consume) r in two different transactions by revealing
different serial numbers because rSIG (and thus sn) is generated deterministically from r. Since SIG is
randomness-injective in SIG.RandPk, sn is (computationally) unique to r.

Having described the modified data structures of addresses and serial numbers, we now explain how a user
can task a worker to produce the cryptographic proofs that need to be included in a transaction. For simplicity,
in this high-level discussion we focus on the case where the transaction involves only one input (old) record
r and one output (new) record r′. In this case, the transaction contains a serial number sn (supposedly
corresponding to r), and a commitment cm′ (supposedly corresponding to r′).

Previously, the user had to generate a proof πe that sn is consistent with r, that cm′ can be opened to r′,
and that the death and birth predicates of r and r′ respectively are satisfied. Now the user can delegate to
a worker the generation of the proof πe because the modified derivation of apk and sn allows the user to
communicate to the worker only r, r′ and a part of the address secret key of r. Namely, the user sends to the
worker only the pseudorandom function key skPRF and the commitment randomness rpk. Crucially, the user
does not have to communicate to the worker the authorization secret key skSIG.

After receiving the proof πe from the worker, the user uses the authorization secret key skSIG to sign
πe (along with the instance that πe attests to), and then randomizes the resulting signature σ to obtain σ̂.
The final transaction tx not only includes the serial number sn (consuming the old record), the commitment
cm′ (creating the new record), and πe (attesting to the correct state transition) as before, but also includes σ̂.
Transaction verification involves checking the proof πe and also checking that σ̂ is valid with respect to the
randomized public key sn.

This completes our high-level description of our delegable DPC scheme; see Appendix B for details.

Plain DPC Delegable DPC

Address secret key (skPRF,meta, rpk) (skSIG, skPRF,meta, rpk)

Address public key apk := TCM.Commit

(
ppTCM,

skPRF‖meta
; rpk

)
apk := TCM.Commit

(
ppTCM,

pkSIG‖skPRF‖meta
; rpk

)
Serial number
derivation

sn← PRFskPRF
(ρ) 1. rSIG ← PRFskPRF

(ρ)
2. sn← SIG.RandPk(ppSIG, pkSIG, rSIG)

Transaction
construction

tx := ([sni]
m
1 , [cmj ]

n
1 ,memo, ?),

where ? := (stL, πe).
1. Sign transaction contents:

(a) σi ← SIG.Sign(ppSIG, skSIG,i,xe‖πe).
(b) σ̂i ← SIG.RandSig(ppSIG, σi, rSIG,i).

2. tx := ([sni]
m
1 , [cmj ]

n
1 ,memo, ?),

where ? := (stL, πe, [σ̂i]
m
1 ).

Transaction
verification

Check that serial numbers do not appear on
ledger, that the ledger state digest is valid,
and that the NIZK proof verifies.

As in plain DPC, but additionally check that each
signature verifies:
SIG.Verify(ppSIG, tx.sni,xe‖πe, σi) = 1.

Figure 10: Summary of differences between plain DPC and delegable DPC (highlighted).
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5.4 Threshold transactions and blind transactions

We explain how the delegable DPC scheme described above can be modified, in a straightforward way, to
achieve additional features: threshold transactions or blind transactions.
Threshold transactions. A DPC scheme has threshold transactions if the power to authorize transactions
can be vested unto any t out of n parties, for any desired choice of t and n (as opposed to a single user as
discussed thus far, which corresponds to the special case of t = n = 1); see Fig. 12. Threshold transactions
are useful in many settings, e.g., to enhance operational security by realizing two-factor authentication.

We can achieve threshold transactions by simply using, in our delegable DPC scheme, a randomizable
signature scheme SIG that also supports threshold key generation and threshold signing algorithms [DF91].
Such a threshold signature scheme distributes signing ability among n parties such that at least t of them
are needed to authorize a signature. Threshold key generation would then be used to create an address, and
threshold signing would be used to authorize a transaction by signing the corresponding cryptographic proof.
Blind transactions. ADPC scheme has blind transactions if there is a way for a user to authorize a transaction
without learning of its contents; see Fig. 13. Blind transactions, in conjunctionwith prior techniques [CGL+17],
can be used to construct efficient lottery tickets and thereby probabilistic micropayments.

We can achieve blind transactions by simply using, in our delegable DPC scheme, a randomizable
signature scheme SIG that has a blind signing algorithm, which can then be used for signing the relevant
cryptographic proof in order to authorize a transaction.
Instantiating randomizable threshold and blind signatures. Aswe explain in Appendix B.1, we construct
randomizable signature schemes by modifying Schnorr signatures. To further construct threshold or blind
randomizable signatures, it is enough to note that public key and signature randomization occurs after the
public key or signature has been created. Thus one can use existing protocols for threshold key-generation
and signing [SS01, NKDM03, Dod07], and blind signing [PS00, SJ99] to obtain public keys and signatures,
and then use the algorithms from Appendix B.1 to randomize these. A nice feature of this approach is that all
these types of delegated transactions (regular, threshold, blind) cannot be distinguished from one another.

userworker

request

proof tx

usersworker

request

proof tx

authorizeruser

request 
w/ proof

tx

Figure 11: Delegable transactions.

userworker

request

proof tx

usersworker

request

proof tx

authorizeruser

request 
w/ proof

tx

Figure 12: Threshold transactions.

userworker

request

proof tx

usersworker

request

proof tx

authorizeruser

authtx

blinded proof

Figure 13: Blind transactions.
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6 A simple example: user-defined assets

In this section we provide several example applications of Zexe, and demonstrate how these can be
“programmed” within the records nano-kernel. In this section we draw inspiration from current applications
for smart contract systems such as Ethereum, which are largely focused on financial applications. We note
that in these settings, privacy of contract inputs can be particularly valuable, given the monetary advantage
that information asymmetry provides traders.
Payments and user-defined assets. One of the most basic applications of smart contract systems like
Ethereum is the construction of assets (or “tokens”) that can be used for financial applications. For example,
the Ethereum ERC20 specification [VB15] defines a general framework for such assets. These assets have
two phases: asset minting (creation), and asset conservation (expenditure).

In more detail, the birth predicate Φ?
b can be invoked in two modes, mint mode or conserve mode.

When invoked in mint mode, Φ?
b creates the initial supply v of the asset in, say, a single output record, by

deterministically deriving a fresh unique identifier id for the asset,8 and storing the pair (id, v) in the record’s
payload. The predicate Φ?

b also ensures that in the given transaction there are no input records or other output
records (dummy records are allowed). If Φ?

b is invoked in mint mode in other transactions, a different identifier
id is created, ensuring that multiple assets can be reliably distinguished even though anyone can run Φ?

b.
When invoked in conserve mode, Φ?

b inspects all records in a transaction whose birth predicates all equal
Φ?

b (i.e., all the transaction’s user-defined assets) and whose asset identifiers all equal to the identifier of the
current record. For these records it ensures that the no new value is created: that is, the sum of the value
across all output records is less than or equal to the sum of the value in all input records.
Custom access to assets. We can further refine the above application by noting that users can program death
predicates to dictate access controls to their funds. This akin to how in Bitcoin scripts specify conditions on
how funds can be spent (except that in Bitcoin scripts have limited expressivity). Access control mechanisms
could vary from saying that the transaction must be authorized by two of three public keys, is valid only after
a given amount of time, or must reveal the pre-image of a hash function. For example, this can be used to
create so-called hash-timelock transactions that enable payment channels or enforce that a transaction must be
authorized by multiple parties. We work out a concrete example next.
Conditional exchange of assets. In this application we want to enable users to exchange user-defined assets.
For example, suppose that Alice owns 100 units of an asset with identifier id1, and wishes to exchange them
for 50 units of an asset with identifier id2, but does not have a counter-party for the exchange. She could
create a record r containing 100 units of id1 that is consumable (i.e. payable to) anyone provided that it is
done in a transaction that pays Alice 50 units of id2. She can do so by simply setting the death predicate
to require that the transaction consuming r also creates a record r′ belonging to Alice for 50 units of asset
id2. Alice then publishes a transaction creating r and out-of-band announces the offer along with the details
needed to claim it (including the contents of the record and the secret of of the address owning it). Anyone
with this knowledge can take on Alice’s offer by creating a transaction that: (a) consumes the 100 units of id1

in r from Alice; (b) consumes 50 units of id2 in some other records; (c) creates 50 units of id2 in r
′ for Alice;

(d) creates 100 units of id1 in some other records.

8One can securely generate this unique identifier by setting it to be the serial number of a dummy record that is consumed during
the creation of the initial supply; since serial numbers are globally unique, so is the identifier.

28



7 Implementation strategy

The straightforward approach to implement our construction of a DPC scheme (described in Section 4) is
to instantiate the proof system via a simulation-extractable zkSNARK (e.g., [GM17]) and then select the
other cryptographic building blocks so that the circuit (more precisely, constraint system) for deciding the NP
relation Re has as small a size as possible. While the straightforward approach sounds promising, closer
inspection reveals significant costs that we need to somehow reduce. In this section we discuss, in a “problem
and solution” format, the challenges that we encountered and how we addressed them. (The implementation
strategy for plain DPC schemes directly ports over to delegable DPC schemes so we do not discuss them.)

Problem 1: universality is expensive. The NP relationRe involves checking arbitrary predicates, which
means that one must rely on proof systems for universal computations. However, checking universal
computations via state-of-the-art zkSNARKs involves expensive tools for universal circuits/machines
[BCG+13, BCTV14, WSR+15, BCTV17]. These tools would not only yield an expensive solution but would
also penalize users who only produce transactions that attest to simple inexpensive predicates, because these
users would have to incur the costs of using these “heavy duty” proof systems.
Solution 1: recursive proof verification. We address this problem by relying on one layer of recursive
proof composition [Val08, BCCT13]. Instead of taskingRe with checking satisfiability of general predicates,
we only task it with checking succinct proofs attesting to this. Checking succinct proofs is a (relatively)
inexpensive computation that is universal for all predicates, which can be “hardcoded” in Re. Crucially,
since the “outer” succinct proofs produced forRe do not reveal information about the “inner” succinct proofs
attesting to predicates’ satisfiability (thanks to zero knowledge), the inner succinct proofs do not have to hide
what predicate was checked, removing the need for expensive universal circuits; in fact, inner proofs do not
even have to be zero knowledge. Rather, these inner succinct proofs can be for NP relations tailored to the
computations needed by particular birth and death predicates. Furthermore, this approach ensures that a
user only has to incur the cost of proving satisfiability of the specific predicates involved in his transactions,
regardless of the complexity of predicates used by other users in their transactions.

In more detail, taking the case of one input and one output record as an example, we modify DPC.Execute
to additionally take as input SNARK proofs πd and πb, and also modify the NP relationRe so that, instead of
directly checking that Φd and Φb are satisfied, it instead checks that πd and πb attest to the satisfaction of Φd

and Φb. That is,Re checks that NIZK.Verify(ppΦd
,xe, πd) = 1 and NIZK.Verify(ppΦb

,xe, πb) = 1, where
ppΦd

are public parameters for the NP relationRΦd
:= {(xe,we) s.t. Φd(xe,we) = 1} and similarly for Φb.

The public parameters ppΦd
and ppΦb

are stored in the record, in place of (a description of) the predicates.9
More generally, we modify DPC.Execute to additionally take as input SNARK proofs [πd,i]

m
1 attesting

that the old records’ death predicates are satisfied and SNARK proofs [πb,j ]
n
1 attesting that the new records’

birth predicates are satisfied. Moreover, we similarly modify the NP relationRe to check that these proofs are
valid, instead of directly checking that the relevant predicates are satisfied.

In sum,Re is not tasked with checking general predicates. Instead, it merely has to check SNARK proofs,
a fixed computation of size Oλ(m+ n). Separately, a user wishing to prove that a predicate Φ is satisfied will
invoke a SNARK on an NP statement of size |Φ| (tailored for Φ).10 The approach described so far, however,
hides additional costs that we need to overcome.

9More precisely, to verify a proof for a predicate Φ, the proof verifier does not need to read all of ppΦ, which has size Oλ(|Φ|) in
some zkSNARKs (i.e., it is large). Rather, the proof verifier only needs to read Oλ(|xe|) bits of ppΦ, which are collectively known as
the verification key. The record would then store this verification key (or a hash thereof) rather than ppΦ.

10An additional benefit of each predicate Φ having its own public parameters ppΦ is flexible trust: users are not obliged to trust
parameters used in each others’ transactions and, moreover, if some parameters are known to be compromised, predicates can safely
refuse to interact with records associated with them. We view this isolation mechanism as a novel and valuable feature in practice.
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Problem 2: recursion is expensive. Recursive proof composition has so far been empirically demonstrated
for pairing-based SNARKs [BCTV17], whose proofs are extremely short and cheap to verify. We thus focus
our attention on these, and explain the efficiency challenges that we must overcome in our setting.

Recall that pairings are instantiated via elliptic curves of small embedding degree. If we instantiate a
SNARK’s pairing via an elliptic curve E defined over a prime field Fq and having a subgroup of large prime
order r, then (a) the SNARK supports NP relationsR expressed as arithmetic circuits over Fr, while (b) proof
verification involves arithmetic operations over Fq. This means that we need to express Re via arithmetic
circuits over Fr. In turn, since the SNARK verifier is part ofRe, this means that we need to also express the
verifier via an arithmetic circuit over Fr, which is problematic because the verifier’s “native” operations are
over Fq. Simulating Fq operations via Fr operations introduces significant overheads, and picking E such
that q = r, in order to avoid simulation, is impossible [BCTV17].

Prior work thus suggests using multiple curves [BCTV17], such as a two-cycle of pairing-friendly elliptic
curves, that is, two prime-order curves E1 and E2 such that the prime size of one’s base field is the prime
order of the other’s group, and orchestrating SNARKs based on these so that fields always “match up”.
Unfortunately, known curves with these properties are inefficient at 128 bits of security [BCTV17, CCW18].
Solution 2: tailored set of curves. In our setting we merely need “a proof of a proof”, with the latter proof
not itself depending on further proofs. This implies that we do not actually need a cycle of pairing-friendly
elliptic curves (which enables recursion of arbitrary depth) and, in particular, we can use the Cocks–Pinch
method [FST10] to set up a bounded recursion [BCTV17]. We now elaborate on this.

First we pick a pairing-friendly elliptic curve that not only is suitable for 128 bits of security according
to standard considerations (involving, e.g., its embedding degree and the ratio of the sizes of its base field
and prime order group) but, moreover, is compatible with efficient SNARK provers in both levels of the
recursion. Namely, letting p be the prime order of the base field and r the prime order of the group, we
need that both Fr and Fp have multiplicative subgroups whose orders are large powers of 2. The condition
on Fr ensures efficient proving for SNARKs over this curve, while the condition on Fp ensures efficient
proving for SNARKs that verify proofs over this curve. In light of the above, we select a curve EBLS from the
Barreto–Lynn–Scott (BLS) family [BLS02, CLN11] with embedding degree 12. This family not only enables
parameters that conservatively achieve 128 bits of security, but also enjoys properties that facilitate very
efficient implementation [AFK+12]. We ensure that both Fr and Fp have multiplicative subgroups of order
2α for α ≥ 40, by choosing the parameter x of the BLS family to satisfy x ≡ 1 mod 3 · 2α; indeed, for such a
choice of x both r(x) = x4 − x2 + 1 and p(x) = (x− 1)2r(x)/3 + x are divisible by 2α. This also ensures
that x ≡ 1 mod 3, which ensures that there are efficient towering options for the relevant fields [Cos12].

Next we use the Cocks–Pinch method to pick a pairing-friendly elliptic curve ECP over a field Fq such
that the curve group ECP(Fq) contains a subgroup of prime order p (the size of EBLS’s base field). Since the
method outputs a prime q that has about 2× more bits than the desired p, and in turn p has about 1.5× more
bits than r (due to properties of the BLS family), we only need ECP to have embedding degree 6 in order to
achieve 128 bits of security (as determined from the guidelines in [FST10]).

In sum, proofs of predicates’ satisfiability are produced via a SNARK over EBLS, and proofs for the NP
relationRe are produced via a zkSNARK over ECP. The matching fields between the two curves ensure that
the former proofs can be efficiently verified.

Problem 3: Cocks–Pinch curves are costly. While the curveECP was chosen to facilitate efficient checking
of proofs over EBLS, the curve ECP is at least 2× more expensive (in time and space) than EBLS simply
because ECP’s base field has about twice as many bits as EBLS’s base field. Checks in the NP relationRe

that are not directly related to proof checking are now unnecessarily carried over a less efficient curve.
Solution 3: split relations across two curves. We split Re into two NP relations RBLS and RCP (see
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Fig. 14), with the latter containing just the proof check and the former containing all other checks. We can
then use a zkSNARK over the curve EBLS (an efficient curve) to produce proofs forRBLS, and a zkSNARK
over ECP (the less efficient curve) to produce proofs forRCP. This approach significantly reduces the running
time of DPC.Execute (producing proofs for the checks inRBLS is more efficient over EBLS than over ECP),
at the expense of a modest increase in transaction size (a transaction now includes a zkSNARK proof over
EBLS in addition to a proof over ECP). An important technicality that must be addressed is that the foregoing
split relies on certain secret information to be shared across the NP relations, namely, the identities of relevant
predicates and the local data. We can store this information in suitable commitments that are part of the NP
instances for the two NP relations (doing this efficiently requires some care as we discuss below).

Problem 4: the NP relations have many checks. Even if we moved all checks not tied to the curve ECP to
the more efficient curve EBLS, the NP relationRe (more precisely, its split intoRBLS andRCP) collectively
involves many checks that range from verifying authentication paths in a Merkle tree to verifying commitment
openings, and from evaluating pseudorandom functions to evaluating collision resistant functions. NP
relations with similar structure, such as those used in Zerocash [BCG+14], required upwards of four million
gates to express all of these checks. This not only resulted in high latencies for producing transactions (several
minutes) but also resulted in large public parameters for the system (hundreds of megabytes).
Solution 4: efficient EC primitives. Commitments and collision-resistant hashing can be expressed as very
efficient arithmetic circuits if one opts for Pedersen-type constructions over suitable Edwards elliptic curves
(and techniques derived from these ideas are now part of deployed systems [HBHW18]). To do this, we pick
two Edwards curves, EEd/BLS over the field Fr (matching the group order of EBLS) and EEd/CP over the field
Fp (matching the group order of ECP). This enables us to achieve very efficient circuits for primitives used in
our NP relations, including commitments, collision-resistant hashing, and randomizable signatures. (Note that
EEd/BLS and EEd/CP do not need to be pairing-friendly as the primitives only rely on their group structure.)

Problem 5: sharing information between NP relations is costly. We have said that splittingRe into two
NP relations RBLS and RCP relies on sharing secret information via commitments across NP statements;
namely, a commitment cmΦ to the identities of predicates and a commitment cmldata to the local data. But if
both relations open these commitments, we cannot make an efficient use of Pedersen commitments because
the two NP relations are over different fields: RBLS is over Fr, while RCP is over Fp. For example, if we
used a Pedersen commitment over the order-r subgroup of the Edwards curve EEd/BLS, then: (a) opening
a commitment in RBLS would be cheap, but (b) opening a commitment in RCP would involve expensive
simulation of Fr-arithmetic via Fp-arithmetic. (And similarly if we used a Pedersen commitment over the
order-p subgroup of the Edwards curve EEd/CP.) To make matters worse, the predicate identities and the local
data are large, so an inefficient solution for committing to these would add significant costs toRBLS andRCP.
Solution 5: hash predicate verification keys and commit to local data. In a record, instead of storing
predicate verification keys, we store collision-resistant hashes of these. This reduces the cost of producing the
commitment cmΦ in RBLS and RCP, as cmΦ contains hashes that are much smaller than verification keys.
We realize cmΦ via Blake2s, a boolean primitive of modest cost in Fr and Fp. Crucially, onlyRCP needs to
access the verification keys themselves, so we can efficiently use a Pedersen hash over the Edwards curve
EEd/CP to letRCP check the keys (supplied as non-deterministic advice) against the hashes inside cmΦ.

We realize the local data commitment cmldata via a Pedersen commitment over EEd/BLS, and assume that
predicates take cmldata as input rather than local data in the clear. Since bothRBLS and the predicate relations
are defined over the field Fr (the prime-order subgroup of the curve EBLS), non-deterministically opening
cmldata is efficient in both relations. This approach significantly reduces costs becauseRCP no longer needs
to reason about the contents of cmldata, and can simply pass cmldata as input to the SNARK verifier.
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The NP relationRBLS has instances xBLS and witnesseswBLS of the form

xBLS =


ledger digest stL
old record serial numbers [sni]

m
1

new record commitments [cmj ]
n
1

predicate commitment cmΦ

local data commitment cmldata

transaction memorandum memo

 and wBLS =



old records [ri]
m
1

old record membership witnesses [wL,i]
m
1

old address secret keys [aski]
m
1

new records [rj ]
n
1

predicate comm. randomness rΦ

local data randomness rldata

auxiliary predicate input aux


where
• for each i ∈ {1, . . . ,m}, ri = (apki, payloadi, hb,i, hd,i, ρi, ri, cmi);
• for each j ∈ {1, . . . , n}, rj = (apkj , payloadj , hb,j , hd,j , ρj , rj , cmj).

Define the local data ldata :=

(
[cmi]

m
1 [apki]

m
1 [payloadi]

m
1 [hd,i]

m
1 [hb,i]

m
1 [metai]

m
1 [sni]

m
1

[cmj ]
n
1 [apkj ]

n
1 [payloadj ]

n
1 [hd,j ]

n
1 [hb,j ]

n
1 memo aux

)
.

A witnesswBLS is valid for an instance xBLS if the following conditions hold:
1. For each i ∈ {i, . . . ,m}:

• If ri is not dummy,wL,i proves that the commitment cmi is in a ledger with digest stL: L.Verify(stL, cmi,wL,i) = 1.
• The address public key apki and secret key aski form a valid key pair:

apki = TCM.Commit(ppTCM, skPRF,i‖metai; rpk,i) and aski = (skPRF,i,metai, rpk,i).
• The serial number sni is valid: sni = PRFskPRF,i

(ρi).
• The old record commitment cmi is valid: cmi = TCM.Commit(ppTCM, apki‖payloadi‖hb,i‖hd,i‖ρi; ri).

2. For each j ∈ {1, . . . , n}:
• The serial number nonce ρj is computed correctly: ρj = CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
• The new record commitment cmj is valid: cmj = TCM.Commit(ppTCM, apkj‖payloadj‖hb,j‖hd,j‖ρj ; rj).

3. The predicate commitment cmΦ is valid: cmΦ = b2s([hd,i]
m
1 ‖ [hb,j ]

n
1 ‖ rΦ).

4. The local data commitment cmldata is valid: cmldata = CM.Commit(ppCM, ldata; rldata)

The NP relationRCP has instances xCP and witnesseswCP of the form

xCP =

(
predicate commitment cmΦ

local data commitment cmldata

)
and wCP =


old death pred. ver. keys [vkd,i]

m
1

old death pred. proofs [πd,i]
m
1

new birth pred. ver. keys [vkb,j ]
n
1

new birth pred. proofs [πb,j ]
n
1

predicate comm. randomness rΦ


A witnesswCP is valid for an instance xCP if the following conditions hold:
1. For each i ∈ {i, . . . ,m}:

• The death predicate hash hd,i is computed correctly: hd,i = CRH.Eval(ppCRH, vkd,i).
• The death predicate proof πd,i is valid: NIZK.Verify(vkd,i, i‖cmldata, πd,i).

2. For each j ∈ {1, . . . , n}:
• The birth predicate hash hb,j is computed correctly: hb,j = CRH.Eval(ppCRH, vkb,j).
• The birth predicate proof πb,j is valid: NIZK.Verify(vkb,j , j‖cmldata, πb,j).

3. The predicate commitment cmΦ is valid: cmΦ = b2s([hd,i]
m
1 ‖ [hb,j ]

n
1 ‖ rΦ).

Figure 14: Splitting the NP relationRe into two NP relationsRBLS andRCP, over Fr and Fp respectively.
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8 System implementation

We implemented our “plain” DPC scheme (Section 4) and our delegable DPC scheme (Section 5), by following
the strategy described in Section 7. The resulting system, named Zexe (Zero knowledge EXEcution), consists
of several Rust libraries: (a) a library for finite field and elliptic curve arithmetic, adapted from [Bow17b]; (b) a
library for cryptographic building blocks, including zkSNARKs for constraint systems (using components
from [Bow17a]); (c) a library with constraints for many of these building blocks; and (d) a library that realizes
our constructions of plain and delegable DPC. Our code base, like our construction, is written in terms of
abstract building blocks, which allows to easily switch between different instantiations of the building blocks.
In the rest of this section we describe the efficient instantiations used in the experiments reported in Section 9.

libzexe

constraints for building blocks

zkSNARK
cryptographic
building blocks

algebra

Figure 15: Stack of libraries comprising Zexe.

Ledger. The ledger L in our prototype is simply an ideal ledger, i.e., an append-only log of valid transactions
that is stored in memory. Of course, in a real-world deployment, this ideal ledger would be replaced by a
distributed protocol that realizes (a suitable approximation of) an ideal ledger. Recall from Section 3.1 that we
require the ledger L to provide a method to efficiently prove and verify membership of a transaction, or one of
its subcomponents, in L. For this, we maintain a Merkle tree [Mer87] atop the list of transactions, using the
collision-resistant hash function CRH described below. This results in the following algorithms for L.
• L.Push(tx): Append tx to the transaction list and update the Merkle tree.
• L.Digest→ stL: Return the root of the Merkle tree.
• L.Prove(tx)→ wL: Return the authentication path for tx in the Merkle tree.
• L.Verify(stL, tx,wL)→ b: Check that wL is a valid authentication path for tx in a tree with root stL.
Our prototype maintains the Merkle tree in memory, but a real-world deployment would have to maintain it
via a distributed protocol. (Such data structures atop distributed ledgers are used in existing systems [ZCa15].)
Pseudorandom function. Fixing key length and input length at 256 bits, we instantiate PRF using the
Blake2s hash function [ANWW13]: PRFk(x) := b2s(k‖x) for k, x ∈ {0, 1}256.
Elliptic curves. Our implementation strategy (see Section 7) involves several elliptic curves: two pairing-
friendly curves EBLS and ECP, and two “plain” curves EEd/BLS and EEd/CP whose base field respectively
matches the prime-order subgroup of EBLS and ECP. Details about these curves are in Figure 16; the
parameter used to generate the BLS curve EBLS is x = 3 · 246 · (7 · 13 · 499) + 1 (see Section 7 for why).
NIZKs. We instantiate the NIZKs used for the NP relationRe via zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARKs), which makes our DPC schemes succinct (see Remark 4.1). Concretely,
we rely on the simulation-extractable zkSNARK of Groth and Maller [GM17], used over the pairing-friendly
elliptic curves EBLS (for proving predicates’ satisfiability) and ECP (for proving validity of these latter proofs).
DLP-hard group. Several instantiations of cryptographic primitives introduced below rely on the hardness
of extracting discrete logarithms in a prime order group. We generate these groups via a group generator
SampleGrp, which on input a security parameter λ (represented in unary), outputs a tuple (G, q, g) that
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name curve type embedding
degree

size of prime-order
subgroup

size of base
field

size of compressed group elements
(rounded to multiples of 8 bytes)
G1 G2

EEd/BLS twisted Edwards — s r 32 —
EBLS BLS 12 r p 48 96
EEd/CP twisted Edwards — t p 48 —
ECP short Weierstrass 6 p q 104 312

prime value size in bits 2-adicity

s 0x4aad957a68b2955982d1347970dec005293a3afc43c8afeb
95aee9ac33fd9ff

251 1

r 0x12ab655e9a2ca55660b44d1e5c37b00159aa76fed0000001
0a11800000000001

253 47

t 0x35c748c2f8a21d58c760b80d94292763445b3e601ea271e1
d75fe7d6eeb84234066d10f5d893814103486497d95295

374 2

p 0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1
ef3622fba094800170b5d44300000008508c00000000001

377 46

q 0x3848c4d2263babf8941fe959283d8f526663bc5d176b746a
f0266a7223ee72023d07830c728d80f9d78bab3596c8617c57
9252a3fb77c79c13201ad533049cfe6a399c2f764a12c4024b
ee135c065f4d26b7545d85c16dfd424adace79b57b942ae9

782 3

Figure 16: The elliptic curves EBLS, ECP, EEd/BLS, EEd/CP.

describes a group G of prime order q generated by g. The discrete-log problem is hard in G. In our prototype
we fix G to be the largest prime-order subgroup of either EEd/BLS or EEd/CP, depending on the context.
Trapdoor commitments. We instantiate trapdoor commitments via Pedersen commitments over G, as
defined in Figure 17; note that the setup algorithm takes as additional input the message length n. Pedersen
commitments are perfectly hiding, and are computationally binding if the discrete-log problem is hard in G.
Collision-resistant hashing. We instantiate CRH via a Pedersen hash function over G, as specified in
Figure 18. Note that the setup algorithm takes as additional input the message length n. Collision resistance
follows from hardness of the discrete-logarithm problem [MRK03].

Remark 8.1. Hopwood et al. [HBHW18] note that projecting a twisted Edwards curve point (x, y) to its
x-coordinate is injective when the point is in the curve’s largest prime-order subgroup. Our implementation
uses this fact to reduce the output size of TCM and CRH by projecting their output to its x-coordinate.

TCM.Setup(1
λ
, n)→ ppTCM:

1. Sample a group: (G, q, g)← SampleGrp(1
λ
).

2. For i ∈ {1, . . . , n}, sample generator hi:
ri ← Zq;hi := g

ri .
3. Output ppTCM := (G, q, g, [hi]

n
1 ).

TCM.Commit(ppTCM,m ∈ {0, 1}
n
; rcm)→ cm:

1. Parse ppTCM as (G, q, g, [hi]
n
1 ).

2. Output cm := g
rcm
∏n
i=1 h

mi
i .

Figure 17: Pedersen commitment scheme.

CRH.Setup(1
λ
, n)→ ppCRH:

1. Sample a group: (G, q, g1)← SampleGrp(1
λ
).

2. For i ∈ {2, . . . , n}, sample generator gi:
ri ← Zq; gi := g

ri .
3. Output ppCRH := (G, q, [gi]

n
1 ).

CRH.Eval(ppCRH,m ∈ {0, 1}
n
)→ h:

1. Parse ppCRH as (G, q, [gi]
n
1 ).

2. Output h :=
∏n
i=1 g

mi
i .

Figure 18: Pedersen collision-resistant hash.
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9 System evaluation

In Section 9.1 we evaluate individual cryptographic building blocks. In Section 9.2 we evaluate the cost of
NP relations expressed as constraints, as required by the underlying zkSNARK. In Section 9.3 we evaluate the
running time of DPC algorithms. In Section 9.4 we evaluate the sizes of DPC data structures. All reported
measurements were taken on a machine with an Intel Xeon 6136 CPU at 3.0GHz with 252GB of RAM.

9.1 Cryptographic building blocks

We are interested in two types of costs associated with a given cryptographic building block: the native
execution cost, which are the running times of certain algorithms on a CPU; and the constraint cost, which
are the numbers of constraints required to express certain invariants, to be used by the underlying zkSNARK.
Native execution cost. The zkSNARK dominates native execution cost, and the costs of all other building
blocks are negligible in comparison. Therefore we separately report only the running times of the zkSNARK,
which in our case is a protocol due to Groth and Maller [GM17], abbreviated as GM17. When instantiated
over the elliptic curve EBLS, the GM17 prover takes  µs per constraint (with 12 threads), while the GM17
verifier takes  n µs + 9.5ms on an input with n field elements (with 1 thread). When instantiated over the
elliptic curve ECP, the respective prover and verifier costs are 147 µs per constraint and . nms + 34ms.
Constraint cost. There are three building blocks that together account for the majority of the cost of NP
statements that we use. These are: (a) the Blake2s PRF, which requires 21792 constraints to map a 64-byte
input to a 32-byte output; (b) the Pedersen collision-resistant hash, which requires 5n constraints for an input
of n bits; and (c) the GM17 verifier, which requires 14n+ 52626 constraints for an n-bit input.

9.2 The execute NP relation

In many zkSNARK constructions, including the one that we use, one must express all the relevant checks
in the given NP relation as (rank-1) quadratic constraints over a certain large prime field. The goal is to
minimize the number of such constraints because the prover’s costs grow (quasi)linearly in this number.

In our DPC scheme we use a zkSNARK for the NP relationRe in Fig. 9 and, similarly, in our delegable
DPC scheme we use it for the NP relationRdel

e in Fig. 23. More precisely, for efficiency reasons explained in
Section 7, we splitRe into the two NP relationsRBLS andRCP in Fig. 14, which we prove via zkSNARKs
over the pairing-friendly curves EBLS and ECP, respectively. (We also similarly splitRdel

e .)
Table 3 reports the number of constraints that that we use to expressRBLS, as a function of the number of

input (m) and output (n) records, and additionally reports its primary contributors. Table 4 does the same for
RCP. These tables show that for each input record costs are dominated by verification of a Merkle tree path
and the verification of a (death predicate) proof; while for each output record costs are dominated by the
verification of a (birth predicate) proof.

9.3 DPC algorithms

In Table 1 we report the running times of algorithms in our plain DPC and delegable DPC implementations
for two input and two output records. Note that for Execute and Verify, we have excluded costs of ledger
operations (such as retrieving an authentication path or scanning for duplicate serial numbers) because these
depend on how a ledger is realized, which is orthogonal to our work. Also, we assume that Execute receives
as inputs the SNARK proofs checked by the NP relation. Producing each of these proofs requires invoking the
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GM17 prover, over the elliptic curve EBLS, for the relevant birth or death predicate; we provide the amortized
time per constraint for this in Section 9.1.

Observe that the overhead incurred by delegable DPC over plain DPC is negligible, and that, as expected,
Setup and Execute are the most costly algorithms, as they invoke costly zkSNARK setup and proving
algorithms. To mitigate these costs, Setup and Execute are executed on 12 threads; everything else is executed
with 1 thread. Overall, we learn that Execute takes less than 2 minutes, and Verify takes tens of milliseconds.

9.4 DPC data structures

Addresses. An address public key in a DPC scheme is a point on the elliptic curve EEd/BLS, which is 32
bytes when compressed (see Fig. 16); the corresponding secret key is 96 bytes and consists of a PRF seed (32
bytes), address metadata (32 bytes), and commitment randomness (32 bytes). In a delegable DPC scheme,
address public keys do not change, but address secret keys are 128 bytes, because they additionally contain
the 32-byte secret key of a randomizable signature scheme over the elliptic curve EEd/BLS (see Fig. 10).
Transactions. A transaction in a DPC scheme, with two input and two output records, is 968 bytes. It
contains two zkSNARK proofs: πBLS, over the elliptic curve EBLS, and πCP, over the curve ECP. Each proof
consists of two G1 and one G2 elements from its respective curve, amounting to 192 bytes for πBLS and 520
for πCP (both in compressed form). In general, form input records and n output records, transactions are
32m+ 32n+ 840 bytes. In a delegable DPC scheme, a transaction additionally contains a 64-byte signature
for each input record. See Table 2 for a detailed break down of all of these costs.
Record contents. We set a record’s payload to be 32 bytes long; if a predicate needs longer data then it can
set the payload to be the hash of this data, and use non-determinism to access the data. The foregoing choice
means that all contents of a record add up to 224 bytes, since a record consists of an address public key (32
bytes), the 32-byte payload, hashes of birth and death predicates (48 bytes each), a serial number nonce (32
bytes), and commitment randomness (32 bytes).

Plain DPC Delegable DPC

Setup 188.63 s 187.76 s
GenAddress 14ms 24ms

Execute 86.9 s 87.02 s

Verify 46ms 69ms

Table 1: Cost ofDPC algorithms for 2 inputs
and 2 outputs.

Plain DPC Delegable DPC

2 inputs and 2 outputs 968 1096
m inputs and n outputs 32m+ 32n+ 840 96m+ 32n+ 840

Per input record:
Serial number 32 32
Signature — 64

Per output record:
Commitment 32 32

Memorandum 32 32
zkSNARK proof over ECP 520 520
zkSNARK proof over EBLS 192 192
Predicate commitment 32 32
Local data commitment 32 32
Ledger digest 32 32

Table 2: Size of a DPC transaction (in bytes)
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Plain DPC Delegable DPC

Total with 2 inputs and 2 outputs 454122 467737

Below we provide a breakdown of the number of constraints withm input and n output records.

Per input record Total 141045 147211

Enforce validity of:
Merkle tree path 98208 98208
Address key pair 6663 9740
Serial number computation 22301 25390
Record commitment 13873 13873

Per output record Total 20828 20828

Enforce validity of:
Serial number nonce 6697 6697
Record commitment 14131 14131

Other: Enforce validity of:
Predicate commitment 21792 · d 3

4
(m+ n) + 1

2
e 21792 · d 3

4
(m+ n) + 1

2
e

Local data commitment 10240 ·m+ 7680 · n 10240 ·m+ 7680 · n
Miscellaneous 7368 8651

Table 3: Number of constraints forRBLS.

Plain DPC Delegable DPC

Total with 2 inputs and 2 outputs 556678 556930

Below we provide a breakdown of the number of constraints withm input and n output records.

Per input record Total 116902 116902

Enforce validity of:
Death predicate ver. key 56797 56797
Death predicate proof 60105 60105

Per output record Total 116902 116902

Enforce validity of:
Birth predicate ver. key 56797 56797
Birth predicate proof 60105 60105

Other Enforce validity of:
Predicate commitment 21792 · d 3

4
(m+ n) + 1

2
e 21792 · d 3

4
(m+ n) + 1

2
e

Miscellaneous 1902 2154

Table 4: Number of constraints forRCP.
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A Proof of security for our DPC scheme

We prove that our DPC construction (see Section 4) satisfies the security definition in Section 3.3. To do this,
for every real-world (efficient) adversary A, we construct an ideal-world (efficient) simulator S such that the
ideal-world and real-world executions are computationally indistinguishable with respect to any (efficient)
environment E . We proceed in three parts: in Appendix A.1 we describe building blocks used to construct
the simulator S; in Appendix A.2 we describe the simulator S; in Appendix A.3 we argue that the ideal-world
and the real-world executions are computationally indistinguishable.

A.1 Building blocks for the simulator

We describe various algorithms that are used as sub-routines in the simulator S.
Trapdoor commitments. Recall from Section 4.1 that a trapdoor commitment scheme is a commitment
scheme with auxiliary algorithms (SimSetup,Equivocate) that enable one to open a commitment cm to any
chosen message. Below we restrict cm to be a commitment to the empty string ε because this is sufficient for
the proof of security of our DPC scheme.

• Trapdoor setup: on input a security parameter, TCM.SimSetup samples public parameters ppTCM and a
trapdoor tdTCM such that ppTCM is indistinguishable from public parameters sampled by TCM.Setup.

• Equivocation: on input public parameters ppTCM, trapdoor tdTCM, commitment cm to ε, corresponding
commitment randomness rcm (so that TCM.Commit(ppTCM, ε; rcm) = cm), and target message m′,
TCM.Equivocate outputs commitment randomness r′cm such that TCM.Commit(ppTCM,m

′; r′cm) = cm.
Moreover, if rcm is uniformly random then r′cm is statistically close to uniformly random.

In Figure 19 we instantiate these algorithms for the Pedersen commitment scheme. Note that the real and
simulated public parameters are identical; moreover, the trapdoor randomness r′cm is the real randomness rcm

shifted by uniformly random field elements, and is hence statistically close to rcm.

TCM.SimSetup(1
λ
, n)→ (ppTCM, tdTCM)

1. Sample a group: (G, q, g)← SampleGrp(1
λ
).

2. For i ∈ {1, . . . , n}:
sample ri uniformly from Zq , and set hi := g

ri .
3. Output (ppTCM := (G, q, g, [hi]

n
1 ), tdTCM := [ri]

n
1 ).

TCM.Equivocate(ppTCM, tdTCM, cm, rcm,m
′ ∈ {0, 1}n)→ r

′
cm

1. Parse ppTCM as (G, q, g, [hi]
n
1 ).

2. Parse tdTCM as [ri]
n
1 .

3. Output r′cm := rcm −
∑n
i=1 rim

′
i mod q.

Figure 19: Simulated setup and equivocation algorithms for the Pedersen commitment scheme.

NIZKs. The scheme NIZK = (Setup,Prove,Verify) is a simulation-extractable non-interactive zero
knowledge argument. Formally stating the properties of this scheme involves several auxiliary algorithms.
– Trapdoor setup: on input a security parameter and a description of an NP relation R, NIZK.SimSetup

outputs a set of public parameters ppNIZK and a trapdoor tdNIZK.
– Simulation: on input public parameters ppNIZK, trapdoor tdNIZK, NP instance x, and (optionally) auxiliary
information aux, NIZK.Simulate outputs a simulated proof π.

– Extraction: on input public parameters ppNIZK, trapdoor tdNIZK, NP instance x, and proof π, NIZK.Extract
outputs a witness w such that (x,w) ∈ R (allegedly).

We can now state the properties satisfied by NIZK.
• Completeness: for every NP relationR and instance-witness pair (x,w) ∈ R,

Pr

[
NIZK.Verify(ppNIZK,x, π) = 1

∣∣∣∣ ppNIZK ← NIZK.Setup(1λ,R)
(x, π)← NIZK.Prove(ppNIZK,x,w)

]
= 1 .
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• Perfect zero knowledge: for every relationR and efficient adversary A,

Pr

[
ppNIZK ← NIZK.Setup(1λ,R)
AS1(·,·)(ppNIZK, aux) = 1

]
= Pr

[
(ppNIZK, tdNIZK)← NIZK.SimSetup(1λ,R)
AS2(·,·)(ppNIZK, aux) = 1

]
where the two oracles are defined as follows
– S1(x,w) := “if (x,w) ∈ R then NIZK.Prove(ppNIZK,x,w), else abort”;
– S2(x,w) := “if (x,w) ∈ R then NIZK.Simulate(ppNIZK, tdNIZK,x), else abort”.

• Simulation extractability: for every relationR and efficient adversary A,

Pr

 (x, π) 6∈ Q
(x,w) 6∈ R
NIZK.Verify(ppNIZK,x, π) = 1

∣∣∣∣∣∣∣
(ppNIZK, tdNIZK)← NIZK.SimSetup(1λ,R)

(x, π)← AS(·)(ppNIZK)
w← NIZK.Extract(ppNIZK, tdNIZK,x, π)

 = negl (λ) ,

where S(x) := NIZK.Simulate(ppNIZK, tdNIZK,x) and Q is the set of query-answer pairs between the
adversary A and the simulated-proof oracle S.

A.2 The ideal-world simulator

The ideal-word simulator S will interact with the ideal functionality FDPC and with the environment E . Note
that for UC security it suffices to show security against a dummy real-world adversary A that simply forwards
all instructions from the environment E [Can01]. Since our security definition is a special case of UC security,
we inherit this simplification, and thus only consider such an adversary A. The pseudocode for S is provided
below; auxiliary subroutines are provided in Figure 20.
Setup.

1. Initialize an empty table S.Records that maps record commitments to their contents.
2. Initialize an empty table S.AddrPk that maps address public keys to their secret keys.
3. Initialize an empty transaction ledger L.
4. Sample simulated public parameters and trapdoor: (pp, td)← DPC.SimSetup(1λ). (See Fig. 20.)
5. Define

SampleAddrPk(·) := TCM.Commit(ppTCM, ε; ·) ,
SampleCm(·) := TCM.Commit(ppTCM, ε; ·) ,
SampleSn(·) := “sample uniformly random string of correct length” .

6. Start ideal-world execution with the above (SampleAddrPk, SampleCm,SampleSn).

At this point, the simulator will receive messages notifying it of transactions and of messages sharing contents
of newly-created records. The simulator handles each case separately.

Transaction notifications.

• From environment. When E instructs a corrupted party to invoke L.Push(tx):
1. If DPC.VerifyL(pp, tx) 6= 1, abort.
2. Parse the real-world transaction tx as ([sni]

m
1 , [cmj ]

n
1 ,memo, ?).

3. Compute ([ri]
m
1 , [aski]

m
1 , [rj ]

n
1 , aux)← DPC.ExtractExecute(pp, td, tx). [See Figure 20.]

4. For every i ∈ {1, . . . ,m}:
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(a) Parse the real-world record ri as (apki, payloadi,Φb,i,Φd,i, ρi, ri, cmi).
(b) Parse the address secret key aski as (skPRF,i,metai, rpk,i).
(c) If S.Records[cmi] 6= ri, abort. (Note: Captures binding property of the commitment.)
(d) If L.Contains(cmi) = 0, abort. (Note: Captures existence of record.)
(e) Create the ideal-world record ri := (cmi, apki, payloadi,Φb,i,Φd,i).
(f) If S.AddrPk[apki] = ⊥:

i. Invoke FDPC.GenAddress(metai, apki).
ii. Insert apki into S.AddrPk: S.AddrPk[apki] := aski.

(g) Else, if S.AddrPk[apki] 6= aski, abort. (Note: Captures uniqueness of secret key.)
5. For every j ∈ {1, . . . , n}:

(a) Parse the real-world record rj as (apkj , payloadj ,Φb,j ,Φd,j , ρj , rj , cmj).
(b) If the serial number nonce ρj was seen in a prior extracted transaction, or if ρj = ρk for k 6= j,

abort. (Note: Captures uniqueness of nonce.)
(c) Set S.Records[cmj ] := rj .

6. Construct instance forRe: xe := (stL, [sni]
m
1 , [cmj ]

n
1 ,memo).

7. Construct witness forRe: we := ([ri]
m
1 , [wL,i]

m
1 , [aski]

m
1 , [rj ]

n
1 , aux).

8. If (xe,we) 6∈ Re, abort.
9. InvokeFDPC.Execute([ri]

m
1 , [metai]

m
1 , [sni]

m
1 , [cmj ]

n
1 , [apkj ]

n
1 , [payloadj ]

n
1 , [Φb,j ]

n
1 , [Φd,j ]

n
1 , aux,memo).

10. Receive from FDPC: [rj ]
n
1 .

11. Receive from FDPC: (Execute, [sni]
m
1 , [cmj ]

n
1 ,memo).

12. Append the real-world transaction tx to the ledger L.
• From ideal functionality. When FDPC broadcasts (Execute, [sni]

m
1 , [cmj ]

n
1 ,memo):

1. Compute ([rj ]
n
1 , tx)← DPC.SimExecuteL(pp, td, [sni]

m
1 , [cmj ]

n
1 ,memo). (See Fig. 20.)

2. For each j ∈ {1, . . . , n}, set S.Records[cmj ] := rj .
3. Append the real-world transaction tx to the ledger L.

Record authorization notification.

• From environment. When E instructs a corrupted party to send (RecordAuth, r,P) to P:
1. Parse the real-world record r as (apk, payload,Φb,Φd, ρ, r, cm).
2. Invoke FDPC.ShareRecord(r,P) with r := (cm, apk, payload,Φb,Φd).

• From ideal functionality. When FDPC sends (RecordAuth, r, r):
1. Parse the ideal record r as (cm, apk, payload,Φb,Φd).
2. Retrieve the real-world record r = S.Records[cm], and set the serial number nonce ρ := r.ρ.
3. Define new record commitment messagem := (apk‖payload‖Φb‖Φd‖ρ).
4. Compute new commitment randomness r′ ← TCM.Equivocate(ppTCM, tdTCM, cm, r,m).
5. Construct the new real-world record r′ := (apk, payload,Φb,Φd, ρ, r

′, cm).
6. Set S.Records[cm] := r′.
7. Send to A: (RecordAuth, r′) .
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DPC.SimSetup
Input: security parameter 1λ

Output: simulated public parameters pp and trapdoor td

1. Sample simulated parameters for trapdoor commitment: (ppTCM, tdTCM)← TCM.SimSetup(1λ).
2. Sample parameters for CRH: ppCRH ← CRH.Setup(1λ).
3. Sample simulated parameters for NIZK forRe: (ppe, tde)← NIZK.SimSetup(1λ,Re).
4. Set pp := (ppTCM, ppCRH, ppe).
5. Set td := (tdTCM, tde).
6. Output (pp, td).

DPC.SimExecute
L

Input:
• public parameters pp and trapdoor td
• old serial numbers [sni]

m
1

• new record commitments [cmj ]
n
1

• transaction memorandum memo
Output: new records [rj ]

n
1 and transaction tx

1. For j ∈ {1, . . . , n}:
(a) Set new serial number nonce ρj := CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
(b) Set address public key, payload, predicates, and commitment randomness to be the empty string:

apkj , payloadj ,Φb,j ,Φd,j , rj := ε.
(c) Construct dummy record: rj := (apkj , payloadj ,Φb,j ,Φd,j , ρj , rj , cmj).

2. Retrieve current ledger digest: stL ← L.Digest.
3. Construct instance for relationRe: xe := (stL, [sni]

m
1 , [cmj ]

n
1 ,memo).

4. Generate simulated proof forRe: πe ← NIZK.Simulate(ppe, tde,xe).
5. Construct transaction: tx := ([sni]

m
1 , [cmj ]

n
1 ,memo, ?), where ? := (stL, πe).

6. Output ([rj ]
n
1 , tx).

DPC.ExtractExecute
Input:
• public parameters pp and trapdoor td
• transaction tx
Output:

• old
{

records [ri]
m
1

address secret keys [aski]
m
1

• new records [rj ]
n
1

• auxiliary predicate input aux

1. Parse tx as ([sni]
m
1 , [cmj ]

n
1 ,memo, ?) and ? as (stL, πe).

2. Construct instance for relationRe: xe := (stL, [sni]
m
1 , [cmj ]

n
1 ,memo).

3. Obtain witness: we ← NIZK.Extract(ppe, tde,xe, πe).
4. Parse the witness we as ([ri]

m
1 , [wL,i]

m
1 , [aski]

m
1 , [rj ]

n
1 , aux).

5. Output ([ri]
m
1 , [aski]

m
1 , [rj ]

n
1 , aux).

Figure 20: Several subroutines used by the ideal-world simulator S.
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A.3 Proof of security by hybrid argument

We use a sequence of hybrids, each identified by a game Gi, to prove that the outputs of the environment E when
interacting with the real-world (dummy) adversary A and the ideal-world simulator S are computationally
indistinguishable. We denote by Outputi(E) the output of E in game Gi, and by G0 the real-world execution.

• G1 (sample parameters):
This game is the real-world execution modified as follows.
– E interacts with S instead of A.
– S uses DPC.Setup to generate public parameters pp, and gives these to E .
– S maintains the ledger L for E (it appends to L any pushed transaction passing the checks in DPC.Verify).
– S forwards messages from E to L and other parties.
– S forwards messages from other honest parties to E .
Output1(E) is perfectly indistinguishable from Output0(E) since S samples the public parameters honestly,
maintains the ledger identically to the ideal ledger, and otherwise behaves like the dummy adversary.

• G2 (simulate setup):
S invokes DPC.SimSetup instead of DPC.Setup. Output2(E) is perfectly indistinguishable from
Output1(E) since NIZK is perfect zero knowledge.

• G3 (simulate proofs):
In all honest party transactions, S replaces NIZK proofs with simulated proofs produced via NIZK.Simulate.
Output3(E) is perfectly indistinguishable from Output2(E) since NIZK is perfect zero knowledge.

• G4 (simulate serial numbers):
In all honest party transactions, S replaces all serial numbers with uniformly random elements sampled
from PRF’s codomain. Since PRF is a pseudorandom function, and E does not know the secret key used to
compute it, Output4(E) is computationally indistinguishable from Output3(E).

• G5 (simulate commitments and equivocate commitment openings):
In all honest party transactions, S replaces record commitments with commitments to the empty string
ε. In all messages from honest parties to corrupted parties containing record contents, S replaces the
actual commitment randomness with randomness produced by TCM.Equivocate. Output5(E) is perfectly
indistinguishable from Output4(E) since TCM is perfectly hiding and equivocation produces commitment
randomness that is statistically close to uniform.

• G6 (handle adversarial transactions):
For every corrupted party transaction, S extracts an NP instance xe and witnesswe forRe from the included
proof and then proceeds as follows.
– If (xe,we) 6∈ R, S aborts. If NIZK is simulation-extractable, this occurs with negligible probability.
– For all i ∈ {1, . . . ,m}, if the contents of any ri are different from those seen in any RecordAuth from
an honest party or in the output of a previously extracted transaction, S aborts. If TCM is a binding
commitment scheme, then this occurs with negligible probability.

– For all i ∈ {1, . . . ,m}, if the extracted secret key aski for apki differs from the secret key extracted for
apki in a prior transaction, S aborts. If TCM is a binding commitment scheme, then this occurs with
negligible probability.

42



– For all j ∈ {1, . . . , n}, if the serial number nonce ρj matches one extracted in a prior transaction, S
aborts. If CRH is a collision-resistant hash, then this occurs with negligible probability because the serial
number nonce is the output of CRH evaluated (in part) over the serial numbers of the input records. If
this input is distinct across two different invocations of CRH, then collision resistance guarantees that a
nonce collision happens with negligible probability. Now for the transaction to be valid, it must contain
serial numbers not seen before on the ledger. Therefore, the inputs to CRH are never repeated.

Output6(E) is therefore computationally indistinguishable from Output5(E).

The final game is distributed identically to the operation of S from the point of view of E . We have thus
shown that E’s advantage in distinguishing the interaction with S from the interaction with A is negligible.
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B Construction of a delegable DPC scheme

We provide more details on the delegable DPC scheme discussed in Section 5. First we give details on
randomizable signatures (Appendix B.1), and then give pseudocode for the DPC construction (Appendix B.2).

B.1 Definition and construction of a randomizable signature scheme

A randomizable signature scheme is a tuple of algorithms SIG = (Setup,Keygen, Sign,Verify,RandPk,
RandSig) that enables a party to sign messages, while also allowing randomization of public keys and
signatures to prevent linking across multiple signatures.

We have already described the syntax of the scheme’s algorithms, and summarized its security properties,
in Section 5.2. Now we discuss in more detail the security properties, and the construction used in our code.
Security properties. The signature scheme SIG satisfies the following security properties.

• Existential unforgeability under randomization (EUR). For every efficient adversary A, the following
probability is negligible:

Pr


(
m∗ 6∈ Q and SIG.Verify(ppSIG, pkSIG,m

∗, σ∗)
)

or(
m∗ 6∈ Q and SIG.Verify(ppSIG, p̂kSIG,m

∗, σ∗)
)
∣∣∣∣∣∣∣∣∣

ppSIG ← SIG.Setup(1λ)
(pkSIG, skSIG)← SIG.Keygen(ppSIG)

(m∗, σ∗, r∗SIG)← A
S(·)(ppSIG, pkSIG)

p̂kSIG ← SIG.RandPk(ppSIG, pkSIG, r
∗
SIG)


where S(m) := SIG.Sign(ppSIG, skSIG,m) and Q are the queries made by A to the signing oracle S.

• Unlinkability. Every efficient adversary A = (A1,A2) has at most negligible advantage in guessing the bit
b in the IND-RSIG game below.

IND-RSIG
SIG
A (1

λ
):

1. Generate public parameters: ppSIG ← SIG.Setup(1
λ
).

2. Generate key pair: (pkSIG, skSIG)← SIG.Keygen(ppSIG).
3. Obtain message from adversary: m← ASIG.Sign(ppSIG,skSIG,·)

1 (ppSIG, pkSIG).
4. Sample a bit b uniformly at random.
5. If b = 0:

(a) Sample new key pair: (pk
′
SIG, sk

′
SIG)← SIG.Keygen(ppSIG).

(b) Sign message: σ ← SIG.Sign(ppSIG, sk
′
SIG,m).

(c) Set c := (pk
′
SIG, σ).

6. If b = 1:
(a) Sign message: σ ← SIG.Sign(ppSIG, skSIG,m).
(b) Sample randomness rSIG.
(c) Randomize public key: p̂kSIG ← SIG.RandPk(ppSIG, pkSIG, rSIG).
(d) Randomize signature: σ̂ ← SIG.RandSig(ppSIG, σ, rSIG).
(e) Set c := (p̂kSIG, σ̂).

7. Output ASIG.Sign(ppSIG,skSIG,·)
2 (ppSIG, pkSIG, c).

• Injective randomization. For every efficient adversary A, the following probability is negligible:

Pr

[
r1 6= r2

SIG.RandPk(ppSIG, pkSIG, r1) = SIG.RandPk(ppSIG, pkSIG, r2)

∣∣∣∣ ppSIG ← SIG.Setup(1λ)
(pkSIG, r1, r2)← A(ppSIG)

]
.
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Construction. In Fig. 21 we provide a modification of the Schnorr signature scheme [Sch91] that is
randomizable. We briefly explain why this modification satisfies the security properties above.

• Existential unforgeability under randomization (EUR). Given an efficient adversary A that breaks EUR of
randomizable Schnorr signatures, we construct an efficient adversaryA′ that breaks existential unforgeability
of standard Schnorr signatures. In detail, A′ forwards signature queries from A to its own signing oracle
and returns the answers to A and then, when A outputs a tuple (m∗, σ∗, r∗SIG), A

′ outputs the tuple (m∗, σ)
where σ is computed as follows. If σ∗ is a valid signature form∗ under pkSIG then σ := σ∗. Otherwise, A′

“undoes” the randomization of σ∗ = (s, e) by setting σ := (s+ e · r∗SIG, e); thus if A outputs a forgery for
a randomization of pkSIG, A

′ translates it back into a forgery for pkSIG. In sum, since standard Schnorr
signatures are secure in the random oracle model assuming hardness of discrete logarithms [PS00], so is
the randomizable variant under the same assumptions.

• Unlinkability of public keys. Public keys are unlinkable because SIG.RandPk multiplies the public key pk
(which is a group element) by a random group element; the result is statistically independent of pk.

• Unlinkability of signatures. The only part of a Schnorr signature that depends on the public or secret key
is the scalar s. Since SIG.RandSig adds a random shift to s, the result is statistically independent of the
signature’s original key pair.

• Injective randomization. Fixing all inputs but for rSIG, SIG.RandPk is a permutation overG. Hence, finding
collisions over the randomness is not possible.

SIG.Setup(1
λ
)→ ppSIG

1. Sample a group: (G, q, g)← SampleGrp(1
λ
).

2. Sample cryptographic hash functionH .
3. Output ppSIG := (G, q, g,H).
SIG.Keygen(ppSIG)→ (pkSIG, skSIG)
1. Parse ppSIG as (G, q, g,H).
2. Sample a scalar x uniformly from Zq .
3. Output (pkSIG, skSIG) := (g

x
, x).

SIG.Verify(ppSIG, pkSIG,m, σ)→ b
1. Parse ppSIG as (G, q, g,H).
2. Parse σ as (s, e).
3. Set rv := g

s
pk
e
SIG = g

s+xe.
4. Set ev := H(rv‖m).
5. Check if e = ev .

SIG.Sign(ppSIG, skSIG,m)→ σ
1. Parse ppSIG as (G, q, g,H).
2. Sample a scalar k uniformly from Zq .
3. Set r := g

k and e := H(r‖m).
4. Set s := k − xe.
5. Output σ := (s, e).

SIG.RandPk(ppSIG, pkSIG, rSIG)→ p̂kSIG

1. Parse ppSIG as (G, q, g,H).
2. Output p̂kSIG := pkSIG · g

rSIG .
SIG.RandSig(ppSIG, σ, rSIG)→ σ̂
1. Parse ppSIG as (G, q, g,H).
2. Parse σ as (s, e).
3. Output σ̂ := (s− e · rSIG, e).

Figure 21: Construction of a randomizable signature scheme based on the Schnorr signature scheme [Sch91].

B.2 Construction of a delegable DPC scheme

Fig. 22 provides pseudocode that, together with the modified NP relationRdel
e given in Fig. 23, formalizes the

high-level description of a delegable DPC scheme from Section 5.3. In both figures, we highlighted changes
from the “plain” DPC scheme in Section 4.2. The only step in DPC.Execute that must be performed by the
delegator is Step 7a; all other steps can be performed by the worker without knowing the signature secret key.
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DPC.Setup
Input: security parameter 1λ

Output: public parameters pp

1. Generate trapdoor commitment parameters:
ppTCM ← TCM.Setup(1

λ
).

2. Generate CRH parameters: ppCRH ← CRH.Setup(1
λ
).

3. Generate signature parameters: ppSIG ← SIG.Setup(1
λ
).

4. Generate NIZK parameters forRdel
e (Fig. 23):

ppe ← NIZK.Setup(1
λ
,Rdel

e ).
5. Output pp := (ppTCM, ppCRH, ppSIG, ppe).

DPC.GenAddress
Input: public parameters pp and address metadata meta
Output: address key pair (apk, ask)

1. Generate authorization key pair:
(pkSIG, skSIG)← SIG.Keygen(ppSIG) .

2. Sample secret key skPRF for pseudorandom function PRF.
3. Sample randomness rpk for commitment scheme TCM.
4. Set address public key

apk := TCM.Commit(ppTCM, pkSIG‖skPRF‖meta; rpk).
5. Set address secret key

ask := (skSIG, skPRF,meta, rpk).
6. Output (apk, ask).

DPC.Execute
L

Input:
• public parameters pp

• old
{

records [ri]
m
1

address secret keys [aski]
m
1

• auxiliary predicate input aux
• transaction memorandum memo

• new


address public keys [apkj ]

n
1

record payloads [payloadj ]
n
1

record birth predicates [Φb,j ]
n
1

record death predicates [Φd,j ]
n
1

Output: new records [rj ]
n
1 and transaction tx

1. For each i ∈ {1, . . . ,m}, process the i-th old record as follows:

(a) Parse old record ri as ri =
(

address public key apki payload payloadi comm. rand. ri
serial number nonce ρi predicates (Φb,i,Φd,i) commitment cmi

)
.

(b) If payloadi.isDummy = 1, set ledger membership witnesswL,i := ⊥.
If payloadi.isDummy = 0, compute ledger membership witness for commitment: wL,i ← L.Prove(cmi).

(c) Parse address secret key aski as (skSIG,i, skPRF,i,metai, rpk,i) and derive pkSIG,i from skSIG,i.
(d) Compute signature randomness: rSIG,i ← PRFskPRF,i

(ρi).
(e) Compute serial number: sni ← SIG.RandPk(ppSIG, pkSIG,i, rSIG,i).

2. For each j ∈ {1, . . . , n}, construct the j-th new record as follows:
(a) Compute serial number nonce: ρj := CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
(b) Construct new record: rj ← DPC.ConstructRecord(pp, apkj , payloadj ,Φb,j ,Φd,j , ρj).

3. Retrieve current ledger digest: stL ← L.Digest.
4. Construct instance for relationRdel

e : xe := (stL, [sni]
m
1 , [cmj ]

n
1 ,memo).

5. Construct witness for relationRdel
e : we := ([ri]

m
1 , [wL,i]

m
1 , [skPRF,i]

m
1 , [pkSIG,i]

m
1 , [metai]

m
1 , [rpk,i]

m
1 , [rj ]

n
1 , aux).

6. Generate proof for relationRdel
e : πe ← NIZK.Prove(ppe,xe,we).

7. For each i ∈ {1, . . . ,m}:
(a) Sign message: σi ← SIG.Sign(ppSIG, skSIG,i,xe‖πe).
(b) Randomize signature: σ̂i ← SIG.RandSig(ppSIG, σi, rSIG,i).

8. Construct transaction: tx := ([sni]
m
1 , [cmj ]

n
1 ,memo, ?), where ? := (stL, πe, [σ̂i]

m
1 ).

9. Output ([rj ]
n
1 , tx).

DPC.Verify
L

Input: public parameters pp and transaction tx
Output: decision bit b

1. Parse tx as ([sni]
m
1 , [cmj ]

n
1 ,memo, ?) and ? as (stL, πe, [σ̂i]

m
1 ).

2. Check that there are no duplicate serial numbers
(a) within the transaction tx: sni 6= snj for every distinct i, j ∈ {1, . . . ,m};
(b) on the ledger: L.Contains(sni) = 0 for every i ∈ {1, . . . ,m}.

3. Check that the ledger state is valid: L.ValidateDigest(stL) = 1.
4. Construct instance for the relationRdel

e : xe := (stL, [sni]
m
1 , [cmj ]

n
1 ,memo).

5. Check proof for the relationRdel
e : NIZK.Verify(ppe,xe, πe) = 1.

6. For every i ∈ {1, . . . ,m}, check that signature verifies: SIG.Verify(ppSIG, sni,xe‖πe, σ̂i) = 1.

Figure 22: Construction of a delegable DPC scheme. Highlights denote differences from Figure 8.
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The NP relationRdel
e has instances xe and witnesseswe of the following form.

xe =


ledger digest stL
old record serial numbers [sni]

m
1

new record commitments [cmj ]
n
1

transaction memorandum memo

 and we =



old records [ri]
m
1

old record membership witnesses [wL,i]
m
1

old record authorization public keys [skPRF,i]
m
1

old record serial number secret keys [pkSIG,i]
m
1

old record address metadata [metai]
m
1

old record address randomness [rpk,i]
m
1

new records [rj ]
n
1

auxiliary predicate input aux


where
• for each i ∈ {1, . . . ,m}, ri = (apki, payloadi,Φb,i,Φd,i, ρi, ri, cmi);
• for each j ∈ {1, . . . , n}, rj = (apkj , payloadj ,Φb,j ,Φd,j , ρj , rj , cmj).

Define the local data ldata :=

(
[cmi]

m
1 [apki]

m
1 [payloadi]

m
1 [Φd,i]

m
1 [Φb,i]

m
1 [metai]

m
1 [sni]

m
1

[cmj ]
n
1 [apkj ]

n
1 [payloadj ]

n
1 [Φd,j ]

n
1 [Φb,j ]

n
1 memo aux

)
.

A witnesswe is valid for an instance xe if the following conditions hold:
1. For each i ∈ {i, . . . ,m}:

• If ri is not dummy,wL,i proves that the commitment cmi is in a ledger with digest stL: L.Verify(stL, cmi,wL,i) = 1.
• The address public key apki matches the authorization public key pkSIG,i and the serial number secret key skPRF,i:

apki = TCM.Commit(ppTCM, pkSIG,i‖skPRF,i‖metai; rpk,i) .
• The serial number sni is valid: rSIG,i = PRFskPRF,i

(ρi) and sni = SIG.RandPk(ppSIG, pkSIG,i, rSIG,i).
• The old record commitment cmi is valid: cmi = TCM.Commit(ppTCM, apki‖payloadi‖Φb,i‖Φd,i‖ρi; ri).
• The death predicate Φd,i is satisfied by the local data: Φd,i(i‖ldata) = 1.

2. For each j ∈ {1, . . . , n}:
• The serial number nonce ρj is computed correctly: ρj = CRH.Eval(ppCRH, j‖sn1‖ . . . ‖snm).
• The new record commitment cmj is valid: cmj = TCM.Commit(ppTCM, apkj‖payloadj‖Φb,j‖Φd,j‖ρj ; rj).
• The birth predicate Φb,j is satisfied by the local data: Φb,j(j‖ldata) = 1.

Figure 23: The NP relationRdel
e . Highlights denote differences from Figure 9.
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C Extensions in functionality and in security

We summarize some natural extensions of our DPC construction that give richer functionality, as well as
methods to prove security notions beyond standalone non-adaptive security.
On-ledger encryption. A user can store an encryption public key in the metadata of one of its addresses.
Others can then use this public key to encrypt information about records created for the user, and store the
resulting ciphertext in the transaction’s memorandum. This method, used for example in Zerocash [BCG+14],
gives users the option to not use other out-of-band secure communication channels.
Ledger position. In some applications it may be useful to know the unique ledger position of a record,
i.e., to have this information be part of the local data ldata given as input to predicates. For example, one
can use a record’s ledger position to implement a “time lock” that prevents the record’s consumption until
a pre-specified amount of time has passed since the record’s creation. However, the ledger interface we
described in Section 3.1 does not expose this functionality: L.Prove only returns a proof that a transaction (or
a subcomponent thereof) appears on the ledger, and not its position. One can augment L.Prove to instead
output the transaction’s ledger position posL, and a proof that posL is the transaction’s position on the ledger.
Our instantiation of the ledger with a Merkle tree supports this augmentation inherently: the path to the
transaction in the Merkle tree is also its position the tree.
Composable security. The security definition in Section 3.3 is a restriction of UC security definitions to a
single execution at any given time. We can avoid this restriction and prove our construction UC-secure by
replacing our simulation-extractable NIZKs with UC-secure NIZKs. The remainder of the proof would go
through unchanged, and this would achieve composition of multiple protocol instances.
Adaptive security. We can prove adaptive security, with a minor modification to our protocol in Section 4.
The barrier to proving security against adaptive corruptions (even in a standalone setting) is a lack of
forward-secure privacy. Namely, when the adversary corrupts a party P , it gets access to P’s state, which
includes contents of records held by P and address secret keys belonging to P . The adversary can then use
this information to break unlinkability of P’s transactions by deriving the serial numbers of consumed records
and matching these against those present on the ledger.

In the proof, this problem is reflected in how the simulator S handles serial numbers in honest party
transactions (see Appendix A.2). For honest party transactions, serial numbers are sampled uniformly
at random via SampleSn. When the environment E corrupts an honest party, it can attempt to carry out
the aforementioned linking attack by computing serial numbers via the PRF. Since serial numbers already
published in transactions were derived randomly, they would not match the output of the PRF, allowing E to
distinguish the ideal world from the real world.

We address this issue as follows. First, we work in the secure-erasure model and ensure that honest
parties delete (a) all records output from Execute (after sending their contents to the intended recipients),
and (b) all records that have been consumed. Hence, at the time a party is corrupted, the state revealed to
the adversary does not contain secrets of past records, so the adversary cannot derive those records’ serial
numbers. However this by itself is not enough. Consider the following scenario: the adversary corrupts
an honest user and learns her secret key. For every transaction in the ledger, it computes the serial number
nonces of the output records from the serial numbers of the input records. The adversary can then use these
nonces along with the secret key to derive candidate serial numbers for the output records. If these candidate
serial numbers appear on the ledger, then the adversary learns that the record has been consumed.

To prevent this, we randomize the serial number nonces of all records output by Execute by deriving them
as ρj := CRH(j‖rρ,j‖sn1‖ · · · ‖snm) for some randomness rρ,j that is deleted after invoking Execute. This
randomization ensures that the serial number nonce of an output record cannot be derived deterministically
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from the (publicly visible) serial numbers of the input records.
The above measures, however, are still insufficient: the adversary still knows the secrets of records that

a corrupted party sent to an honest party. After corrupting this honest party, the adversary can learn its
address secret key and therefore derive the serial number of those records. To overcome this obstacle, one can
replace the PRF with a programmable PRF [PS18], for which the owner of the secret key can “program” the
PRF to output pre-determined values on specific inputs: for all polynomial-sized sets S = {(xi, yi)}i, the
owner of a PRF secret key sk can derive a second key skS such that PRFsks

(xi) = yi for each (xi, yi) ∈ S,
while PRFskS

(x) = PRFsk(x) for other inputs x. This fixes the foregoing issue because S can now give E
a programmed PRF secret key for the set S = {(ρi, sni)}i, where ρi is the serial number nonce of the i-th
record received from a corrupted party.
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