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Abstract. Attribute-Based Encryption (ABE) is a versatile one-to-many encryption primitive, which
enables fine-grained access control over encrypted data. Due to its promising applications in practice,
ABE has been attracting much attention in the community and schemes with high efficiency, high
security and access policy expressivity have been continuously emerging. On the other hand, due to
the nature of ABE, namely, different users may share some common decryption privilege, a malicious
user may abuse its decryption privilege for financial gain or other incentives. Therefore, being able to
identify such a malicious user is crucial towards the practicality of ABE. Although some specific ABE
schemes with appealing properties (e.g. full security, large universe) in the literature enjoys the tracing
function, they are only proceeded case by case. Most of the ABE schemes do not support traceability. It
is thus meaningful and important to have a generic way of equipping any ABE scheme with traceability.
In this work we partially solve the aforementioned problem. Namely, we propose a way of transform-
ing (non-traceable) ABE schemes satisfying certain requirements to fully collusion-resistant black-box
traceable ABE schemes. The transformation keeps all the appealing features of the underlying schemes,
such as fine-grained access control over encrypted data, high expressivity of access policy, short cipher-
text and etc. Compared with other transformations based on collusion resistant fingerprinting codes,
our approach adds only O(\/E) elements to the ciphertext where K is the number of users in the
system, but keeps the private key size unchanged (instead of expanding it by O(Kz) times). Finally,
to demonstrate the practicability of our transformation, we show how to convert a couple of existing
non-traceable ABE schemes to support traceability.
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1 Introduction

Attribute-Based Encryption (ABE), introduced by Sahai and Waters [32], is a versatile one-to-many encryp-
tion primitive which enables fine-grained access control over encrypted data. Due to its promising applications
in practice, ABE has been attracting much attention in the community and undergoing a significant devel-
opment. Among the recently proposed ABE schemes [B2IT6I5IT2ITHB34221300T7I3I23I35/TRIBTITII], progress
has been made on the schemes’ security, access policy expressivity, and efficiency. For example, Lewko et al.
[22] proposed the first fully secure ABE schemes, Lewko and Waters [23] proposed a new proof technique for
achieving full security for ABE, Attrapadung et al. [3] proposed the first expressive Key-Policy ABE (KP-
ABE) with constant-size ciphertexts, Rouselakis and Waters [31] proposed the first large universe ABE E|
schemes which impose no limitations on the attribute sets or the access policies, Waters [35] proposed the
first ABE scheme supporting regular languages to be the access policy while the previous works support at
most boolean formulas, and Attrapadung [I] proposed a series of fully secure ABE schemes which support
regular languages, constant size ciphertexts, or large universe.

4 In a large universe ABE scheme, the attribute universe could be exponentially large, so that any string can be used
as an attribute, and attributes do not need to be pre-specified during setup.



As security, access policy expressivity, and efficiency are the three preliminary directions for ABE research,
traitor tracing is a compulsory requirement for practical ABE schemes. In particular, using Ciphertext-
Policy ABE (CP-ABE) [16l5] as an example, ciphertext access policies do not have to contain any receivers’
identities, and more commonly, a CP-ABE policy is role-based and attributes are shared between multiple
users. For example, the user with attributes {Bob, Mathematics, PhD Student} and the user with attributes
{Carl, Mathematics, PhD Student} are sharing the attributes {Mathematics, PhD Student} and both of
them can decrypt the ciphertext with policy “(Mathematics AND (PhD Student OR Alumni))”. In practice,
a malicious user, with attributes shared with multiple other users, might leak a decryption blackbox/device,
which is made of the user’s decryption key, for the purpose of financial gain or some other forms of incentives,
as the malicious user has little risk of being identified out of all the users who can build a decryption blackbox
with identical decryption capability. Being able to identify this malicious user (refer to as ‘traitor’) is crucial
towards the practicality of an ABE system.

With a series of work [25I2412728], Liu et al. formalized the problem of traitor tracing for ABE well
and proposed the counterparts supporting traitor tracing for some existing appealing ABE schemes. For
example, [24127] add fully collusion-resistant blackbox traceabilityﬂ to the fully secure CP-ABE scheme in
[22], and [28] adds fully collusion-resistant blackbox traceability to the large universe CP-ABE scheme in
[31]. Note that fully collusion-resistant blackbox traceability provides more solid confidence to security and
applicability than ¢-collusion-resistant traceabilityﬁ does, this paper focuses on the fully collusion-resistant
blackbox traceability in ABE.

While Liu et al. [25124]2728] transformed several existing appealing ABE schemes to their traceable
counterparts, there are still many other appealing ABE schemes for which no traceable counterparts are
proposed, for example, the fully secure ABE schemes in [I] which support regular languages, large universe,
or constant size ciphertexts. Furthermore, we believe that in the future more and newer ABE schemes with
better security, expressivity, efficiency and other appealing features will appear, and to be practical, these
existing and future ABE schemes also need to be traceable against traitors. Investigating these schemes and
proposing the traceable counterparts one by one will be a heavy workload.

In this paper, we make an attempt to propose a framework to transform ABE schemes to their traceable
counterparts in a generic manner. In particular, by specifying some requirements on the structure of the
ABE constructions, we propose an ABE template, and show that any ABE scheme satisfying this template
can be transformed to a fully collusion-resistant blackbox traceable ABE scheme in a generic manner, at the
cost of sublinear overhead, while keeping the appealing properties of the underlying ABE schemes, such as
fine-grained access control on encrypted data, highly expressive access policy, short ciphertext, and so on.
The contributions of our framework are two folds as below.

— For the existing ABE schemes satisfying the template, the traceable counterparts can be obtained directly
by applying the transformation framework.

— For the existing ABE schemes not satisfying the template and ABE schemes to be proposed in the future,
this framework provides a ‘target’ which they can try to achieve and then could be transformed to a
traceable version.

1.1 Our Results

To enable ABE schemes to be fully collusion-resistant blackbox traceable, we follow the approach in [24I27],
namely, as shown in Fig. [I| converting a non-traceable ABE scheme to an Augmented ABE scheme, and
then applying a generic transformation from Augmented ABE to traceable ABE. As shown in the dash line
part of the Fig. [1} Liu et al. [24127] introduced the concept of Augmented ABE and established a generic

5 Fully collusion-resistant traceability means that the number of colluding users in constructing a decryption device
is not limited and can be arbitrary, and the system remains traceable no matter how many keys are at the disposal
of the device.

6 A t-collusion-resistant scheme has a limitation that the number of colluding users could not exceeds a predefined
system parameter ¢, i.e., once the number of colluding users exceeds t, the scheme will not be secure any more.
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transformation from Augmented ABE to traceable ABE. While Liu et al. [24126127I28] proposed several ad
hoc Augmented ABE constructions from existing non-traceable ABE schemes, in this paper, we propose
an ABE template which covers a major branch of (non-traceable) ABE designs, and propose a generic
transformation from this ABE template to Augmented ABE, as shown in the bold line part of Fig. [} Thus,
following our ABE template and generic transformation from the ABE template to Augmented ABE in
this paper, as well as the generic transformation from Augmented ABE to traceable ABE by Liu et al.
[24127], a generic transformation that enables ABE schemes to be fully collusion-resistant blackbox traceable
is established.

Note that in previous work [2412612728], the generic transformation from Augmented ABE to traceable
ABE, as well as the definitions of Augmented ABE and traceable ABE, are specific for CP-ABE or KP-
ABE, in Sec. |2|and Sec. We revisit/formalize the definitions and the transformation from Augmented ABE
to traceable ABE in a generic manner, so that more types of ABE could be covered, including CP-ABE,
KP-ABE, ABE supporting boolean formulas, ABE supporting regular languages, etc. While re-formalizing
these preliminaries is a necessary part, the major contribution of this paper lies in the definition of the ABE
template and the generic transformation from this ABE template to Augmented ABE, which we propose in
Sec. ] and Sec. 5} And in Sec. [f] we show some existing ABE schemes that satisfy our ABE template. More
specifically, our contributions are as below.

— In Sec. 4] we define an ABE template for conventional (non-traceable) ABE. The template represents a
type of ABE construction techniques, so that this template covers not only many existing important ABE
schemes with appealing properties, but also some possible ABE schemes in the future, which consider
this template and corresponding construction techniques when designed.

— Also in Sec. [4] we propose a generic framework that transforms the ABE template to Augmented ABE.
All the ABE schemes satisfying the template can be transformed to their traceable counterparts, enjoying
their original appealing properties and additional fully collusion-resistant blackbox traceability.

e The overhead for the transformation (i.e. the overhead for the fully collusion-resistant blackbox
traceability) is sublinear with the number of users in the system.

e We prove the security of the resulting Augmented ABE in the standard model. (The outline for the
security analysis is given later in Fig. )

— While the ABE template and generic transformation in Sec. [4] are described on composite order groups,
to be more general, in Sec. [5| we show that the template, the transformation, and the proof also work
well for the schemes on prime order groups.



I Public Key Size Ciphertext Size Secret Key Size|Public Traceability
P 2 [PK| 4+ O(K?) 2|CT| ISK| - O(K?) X
this work * | |PK| — 1 +4vVK | |CT| — 1+ (15 + do)VK ISK| + 1 Vv

Y|PK|, |SK|, and |CT| are the public key size, secret key size, and ciphertext size of the
underlying (non-traceable) CP-ABE, respectively.

2 The public key size, ciphertext size, and secret key size of the traceable CP-ABE scheme in
[21] are (approximately) |PK|+ 1, 2|CT|, and |SK]| -, respectively, where [ is the codeword
length of the underlying fingerprinting code. For the most efficient fingerprinting code [7]
to date, I = O(K?) for fully collusion-resistance.

3 In this work, do is a constant that describes the (non-traceable) ABE template. For existing
ABE schemes satisfying the template, do = 1 or dp = 2.

Table 1. Comparison of the key and ciphertext sizes

— In Sec. [6] we show some existing appealing ABE schemes with different virtues, indeed satisfy our ABE
template. We obtain the traceable counterparts for these appealing ABE schemes, by applying our generic
transformation framework.

Notice that, our method/framework considers and works for a subset of pairing-based ABE schemes,
namely, those ABE schemes satisfying our non-traceable ABE template, rather than all the ABE schemes.
For example, our framework is not applicable to the lattice-based ABE schemes (e.g. [II]). Actually, as
far as we know, there is not known results on lattice-based ABE schemes with traitor tracing property.
We would like to view our asymptotic result mainly as a stepping stone towards building practical ABE
schemes. In particular, in retrospect, the ABE schemes by Waters [34], Lewko et al. [22], Lewko and Waters
[23], Rouselakis and Waters [31], Attrapadung [I], and so on, represent one of the main branches of ABE
development, as well as a branch of pairing-based ABE design/construction method, and it is reasonable
to believe that new ABE schemes in this branch will be proposed in future. While these ABE schemes
have been getting better security, policy expressivity, and/or efficiency, they did not consider or support
traitor tracing, and this seriously limits their applicability in practice. Our asymptotic result makes the ABE
schemes following this branch to have traitor tracing functionality, while leaving it as future work to further
reduce the overhead incurred by traitor tracing functionality and make other types of ABE schemes (e.g.
the lattice-based ones) to support traitor tracing.

1.2 Related Work

Boneh and Naor [8] showed that any collusion-resistant binary fingerprinting code [33] gives rise to a collusion-
resistant traitor tracing system [I3] with constant size ciphertexts, but the cost is that the secret key size is
linear in the codeword length [, which is quite large, namely, even in the most efficient fingerprinting code
to date (e.g., [7]), | = O(t?) for t-collusion-resistance and I = O(K?) for fully collusion-resistance, where K is
the number of users in the system. Recently, Lai and Tang [21] adapted the techniques of [§] to the setting of
CP-ABE, namely, given a collusion-resistant fingerprinting code, any CP-ABE scheme can be transferred to
a traceable CP-ABE scheme. The resulting traceable CP-ABE in [21] takes small cost on the ciphertext size,
but has extremely large secret key and public key sizes, which are proportional to the codeword length [ of
the underlying fingerprinting code. Table [I] shows a comparison of the key and ciphertext sizes between the
resulting fully collusion-resistant traceable CP-ABE schemes generated by the transformation methods in
[21] and this paper. Note that even using the most efficient fingerprinting code to date, say [7], the resulting
fully collusion-resistant CP-ABE in [2I] has public key and secret key sizes proportional to O(K?), which
are extremely large. In addition, it is worth mentioning that the tracing algorithm in [2I] requires a secret
tracing key so that only a trusted party which knows the tracing key can run the tracing algorithm. In this
paper, our transformation method achieves public traceability, i.e., the tracing algorithm does not need any
secrets and anyone can perform the tracing.



2 ABE and Blackbox Traceability

In this section, we define a ‘functional’ ABE and its security, which are similar to conventional (non-traceable)
ABE (e.g. [23131]), except that we explicitly assign and identify users using unique indices. Then we formalize
the fully collusion-resistant traceability for this ‘functional’ ABE.

To be as general as possible, in the definitions of this functional ABE, we use the terms ‘ciphertext tag’
and ‘key tag’, rather than ‘access policy’ and ‘attributes’. When the ciphertext tag is an attribute set and
the key tag is a Boolean formula, it is a KP-ABE supporting Boolean formula as policy; when ciphertext
tag is a Deterministic Finite Automata (DFA) and the key tag is a string, it is a CP-ABE supporting DFA
as policy, an so on.

2.1 Attribute-Based Encryption and its Security

Attribute-Based Encryption Syntax. Given integers a and b where a < b, let [a, b] be the set {a,a +
1,...,b}. Also, we use [b] to denote the set {1,2,...,b}. Let relation I' : X x Y — {0,1} be a predicate
function that maps a pair of key tag in a space X and ciphertext tag in a space Y to {0,1}. An Attribute-
Based Encryption (ABE) scheme for predicate I" consists of following algorithms:

Setup(\, I', ) — (PP, MSK). The algorithm takes as input a security parameter A, a predicate I", and the
number of users I in the system, runs in polynomial time in A, and outputs a public parameter PP and
a master secret key MSK.

KeyGen(PP, MSK, X) — SKj_ x. The algorithm takes as input PP, MSK, and a key tag X € X, and outputs
a secret key SKj x corresponding to X. The secret key is assigned and identified by a unique index
ke [K].

Encrypt(PP, M,Y) — CTy. The algorithm takes as input PP, a message M, and a ciphertext tag Y € Y,
and outputs a ciphertext C'Ty. Y is included in CTy .

Decrypt(PP, CTy,SKy, x) — M or L. The algorithm takes as input PP, a ciphertext C'Ty, and a secret key
SKp, x, and outputs a message M or L indicating the failure of decryption.

Correctness. For all X € X, Y € Y, and messages M, suppose (PP, MSK) <« Setup(\, I, K), SK x +
KeyGen(PP,MSK, X)), CTy < Encrypt(PP,M,Y). If I'(X,Y) = 1 then Decrypt(PP, CTy,SKy x) = M.

Security. The security of an ABE scheme for predicate I is defined using the following message-hiding game,
which is a typical semantic security game and is similar to that for conventional ABE [2331] security.
Gamepy. The message-hiding game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(\, I, K) and gives the public parameter PP to A.

Phase 1. For i = 1 to Q1, A adaptively submits (index, key tag) pair (k;, X,) to ask for secret key for key
tag X,. For each (k;, Xi,) pair, the challenger responds with a secret key SK;%XM7 which corresponds
to key tag Xj, and has index k;.

Challenge. A submits two equal-length messages My, M7 and a ciphertext tag Y*. The challenger flips a
random coin b € {0, 1}, and sends CTy~ < Encrypt(PP, M, Y™) to A.

Phase 2. For i = Q1 + 1 to Q, A adaptively submits (index, key tag) pair (k;, Xj,) to ask for secret
key for key tag Xj,. For each (k;, Xy,) pair, the challenger responds with a secret key SKy, Xy, » which
corresponds to key tag Xj, and has index k;.

Guess. A outputs a guess b’ € {0, 1} for b.

A wins the game if ¥ = b under the restriction that none of the queried {(k;, Xj,)}%, can satisfy
I'(Xy,,Y*) = 1. The advantage of A is defined as MHAdv 4 = | Pr[b/ = b] — 1|.

Definition 1. A K-user ABE scheme for predicate I' is secure if for all probabilistic polynomial time (PPT)
adversaries A, MHAdv 4 is negligible in X.



We say that a KC-user ABE scheme for predicate I' is selectively secure if we add an Init stage before Setup
where the adversary commits to the challenge ciphertext tag Y.

Remark: As pointed out in previous work [2412728], (1) although the KeyGen algorithm is responsible for
determining/assigning the index of each user’s secret key, to capture the security that an adversary can
adaptively choose secret keys to corrupt, the above model allows A to specify the index when querying for
a key, i.e., for i = 1 to @, A submits pairs of (k;, Xi,) for secret keys with key tags corresponding to Xy,
and the challenger will assign k; to be the index of the corresponding secret key, where Q < K, k; € [K], and
k; # k;j V1 <i# j <@ (this is to ensure that each user/key can be uniquely identified by an index). (2) For
ki # k; it does not require Xy, # Xy, i.e., different users/keys may have the same key tag.

2.2 Blackbox Traceability

A ciphertext-tag-specific decryption blackbox D is described by a ciphertext tag Yp and a noticable proba-
bility value € (i.e. ¢ = 1/f(\) for some polynomial f), and this blackbox D can decrypt ciphertexts generated
under Yp with probability at least e. Such a blackbox can reflect most practical scenarios, which include the
key-like decryption blackbox for sale and decryption blackbox “found in the wild”, which are discussed in
[24127]. In particular, once a blackbox is found being “useful”, i.e. being able to decrypt ciphertexts (regard-
less of how this is found, for example, an explicit description of the blackbox’s decryption ability is given,
or the law enforcement agency finds some clue), we can regard it as a ciphertext-tag-specific decryption
blackbox with the corresponding ciphertext tag (which is associated to the ciphertext that it can decrypt).

We now define the tracing algorithm and traceability against ciphertext-tag-specific decryption blackbox.

TraceD(PP,YD,e) — Kr C [K]. Trace is an oracle algorithm that interacts with a ciphertext-tag-specific
decryption blackbox D. By given the public parameter PP, a ciphertext tag Yp, and a probability value €, the
algorithm runs in time polynomial in A and 1/¢, and outputs an index set Ky C [K] which identifies the set
of malicious users. Note that € has to be polynomially related to A, i.e. ¢ =1/f(\) for some polynomial f.

Traceability. The following tracing game captures the notion of fully collusion-resistant traceability
against ciphertext-tag-specific decryption blackbox. In the game, the adversary targets to build a decryption
blackbox D that can decrypt ciphertexts under some ciphertext tag Yp. The tracing algorithm, on the other
side, is designed to extract the index of at least one of the malicious users whose decryption keys have been
used for constructing D.

Gamerg. The tracing game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(\, I, K) and gives the public parameter PP to A.

Key Query. For i = 1 to @, A adaptively submits (index, key tag) pair (k;, Xk, ) to ask for secret key for key
tag Xy,. For each (k;, Xj,) pair, the challenger responds with a secret key SKki’in7 which corresponds
to key tag Xy, and has index ;.

Decryption Blackbox Generation. A outputs a decryption blackbox D associated with a ciphertext
tag Yp and a non-negligible probability value e.

Tracing. The challenger runs Trace” (PP, Yp, €) to obtain an index set Kz C [K].

Let Kp = {k;|1 < i < @} be the index set of secret keys corrupted by the adversary. We say that A wins
the game if the following two conditions hold:

1. Pr[D(Encrypt(PP, M,Yp)) = M| > ¢, where the probability is taken over the random choices of message
M and the random coins of D. A decryption blackbox satisfying this condition is said to be a useful

ciphertext-tag-specific decryption blackboz.
2. Kr =0, or Ky € Kp, or (I'(Xg,,Yp) # 1 Vk: € Kr).

We denote by TRAdv 4 the probability that A wins.

Remark: For a useful ciphertext-tag-specific decryption blackbox D, the traced Ky must satisfy (Kp #
M A (Kr CKp) A (Fky € K s.t. I'(Xy,,Yp) = 1) for traceability. (1) (Kp # 0) A (Kr C Kp) captures the



preliminary traceability that the tracing algorithm can extract at least one malicious user and the coalition
of malicious users cannot frame any innocent user. (2) (3k; € Kr s.t. I'(Xy,, Yp) = 1) captures the strong
traceability that the tracing algorithm can extract at least one malicious user whose secret key enables D to
have the decryption ability corresponding to Yp. We refer to [20i24] for why strong traceability is desirable.
Note that, as of [QUIONT4I20I24], we are modeling a stateless (resettable) decryption blackbox — such a
blackbox is just an oracle and maintains no state between activations. Also note that we are modeling public
traceability, namely, the Trace algorithm does not need any secrets and anyone can perform the tracing.

Definition 2. A K-user ABE scheme for predicate I' is traceable against ciphertext-tag-specific decryption
blackbox if for all PPT adversaries A, TRAdv 4 is negligible in .

We say that a K-user ABE scheme for predicate I is selectively traceable against ciphertext-tag-specific
decryption blackbox if we add an Init stage before Setup where the adversary commits to the ciphertext
tag YD-

3 Augmented Attribute-Based Encryption

As outlined in Sec. we now define Augmented ABE (or AugABE for short) from the ABE above and
formalize its message-hiding and index-hiding notions, then show that a message-hiding and index-hiding
AugABE can be transformed to a secure ABE with blackbox traceability.

3.1 Definitions

An AugABE scheme has four algorithms: Setup,, KeyGen,, Encrypt,, and Decrypt,. The setup algorithm
Setup, and key generation algorithm KeyGen, are the same as that of ABE, respectively. For the encryption
algorithm, it takes one more parameter k € [KC + 1] as input, and is defined as follows.

Encrypt, (PP, M,Y, k) — CTy. The algorithm takes as input PP, a message M, a ciphertext tag Y, and an

index k € [K + 1], and outputs a ciphertext CTy. Y is included in CTy, but the value of k is not.

The decryption algorithm Decrypt, is also defined in the same way as that of ABE. However, the correctness
definition is changed to the following.

Correctness. For all X € X, Y € Y, k € [K + 1], and messages M, suppose (PP, MSK) < Setup, (A, I', K),
SK,x + KeyGenn(PP,MSK, X), CTy « Encrypt, (PP, M,Y, k). If (I'(X,Y) = 1)A(k > k) then Decrypt, (PP,
CTy,SKy x) = M.

Note that during decryption, as long as I'(X,Y) = 1, the decryption algorithm outputs a message, but
only when k > k, the output message is equal to the correct message, that is, k > k is an additional condition
and if (I'(X,Y) = 1)A(k > k), can SKy, x correctly decrypt a ciphertext under (Y, k). If we always set k = 1,
the functions of AugABE are identical to that of ABE. In fact, the idea behind transforming an AugABE
to a traceable ABE, that we will show shortly, is to construct an AugABE with index-hiding property, and
then always sets & = 1 in normal encryption, while using k € [KC + 1] to generate ciphertexts for tracing.

Security. We define the security of AugABE in three games. The first game is a message-hiding game
and says that a ciphertext created using index 1 is unreadable to the users whose key tags do not satisfy
the ciphertext tag. The second game is a message-hiding game and says that a ciphertext created using
index L 41 is unreadable by anyone. The third game is an index-hiding game and captures the intuition
that a ciphertext created using index k reveals no non-trivial information about k.

Gameﬁ,,Hl. The message-hiding game Gamef\k,,H1 is similar to Gamepy except that the Challenge phase is

Challenge. A submits two equal-length messages My, M7 and a ciphertext tag Y*. The challenger flips a
random coin b € {0, 1}, and sends CTy~ < Encrypt, (PP, M;,,Y™*,1) to A.



A wins the game if ¥ = b under the restriction that none of the queried {(k;, Xj,)}%, can satisfy
I'(Xy,,Y*) = 1. The advantage of A is defined as MH}Adv 4 = | Pr[t/ = b] — 1.

Definition 3. A K-user Augmented ABE scheme for predicate I' is Type-I message-hiding if for all PPT
adversaries A the advantage MHf‘AdvA 18 negligible in \.

We say that an Augmented ABE scheme for predicate I is selectively Type-I message-hiding if we add an
Init stage before Setup where the adversary commits to the challenge ciphertext tag Y*.

GameﬁAHZ. The message-hiding game Game’,\x,,H2 is similar to Gamemy except that the Challenge phase is

Challenge. A submits two equal-length messages My, M7 and a ciphertext tag Y*. The challenger flips a
random coin b € {0, 1}, and sends CTy+« < Encrypta (PP, M,,Y* L+ 1) to A.

A wins the game if &’ = b. The advantage of A is defined as I\/IHQAdvA =|Pr[ty =] — % .

Definition 4. A K-user Augmented ABE scheme for predicate I' is Type-II message-hiding if for all PPT
adversaries A the advantage MHéAdvA s negligible in \.

Ga mefg. The index-hiding game defines that, for any ciphertext tag Y*, without a secret key SKg X; such
that I'(Xj,Y*) = 1, an adversary cannot distinguish between a ciphertext under (Y*, k) and (Y*, k + 1).
The game proceeds as follows:

Setup. The challenger runs Setup, (A, I, ) and gives the public parameter PP to A.

Key Query. For i = 1 to @, A adaptively submits (index, key tag) pair (k;, Xk, ) to ask for secret key for key
tag X, . For each (k;, Xi,) pair, the challenger responds with a secret key SKk,-,in, which corresponds
to key tag Xj, and has index k;.

Challenge. A submits a message M and a ciphertext tag pair Y*. The challenger flips a random b € {0, 1},
and sends CTy~ < Encrypta (PP, M,Y* k 4 b) to A.

Guess. A outputs a guess b’ € {0,1} for b.

A wins the game if b = b under the restriction that none of the queried pairs {(ki, X,)}%, can satisfy
(ki = k) A (I'(Xg,,Y*) = 1). The advantage of A is defined as IH*Adv 4[k] = | Pr[t/ = b] — 3.

Definition 5. A K-user Augmented ABE scheme for predicate I is index-hiding if for all PPT adversaries
A the advantages \HAAdv 4[k] for k =1,...,K are negligible in .

We say that an Augmented ABE scheme for predicate I' is selectively index-hiding if we add an Init stage
before Setup where the adversary commits to the challenge ciphertext tag Y™*.

3.2 The Reduction of Traceable ABE to Augmented ABE

Let Yo = (Setupp, KeyGeny, Encrypt,, Decrypt,) be an AugABE, define Encrypt(PP, M,Y) = Encrypt, (PP,
M,Y,1), then X = (Setup,, KeyGen,, Encrypt, Decrypt,) is an ABE derived from Xa. In the following, we
show that if X'a is Type-I message-hiding, then X is secure (w.r.t. Def. . Furthermore, we propose a tracing
algorithm Trace for X' and show that if X'a is Type-II message-hiding and index-hiding, then X' (equipped
with Trace) is traceable (w.r.t. Def. [2)).

1 ABE Security

Theorem 1. If Yo is Type-I message-hiding (resp. selectively Type-I message-hiding), then X is secure
(resp. selectively secure).

Proof. Note that X is a special case of Xa where the encryption algorithm always set k = 1. Hence, Gameun
for X, including the restrictions, is exactly identical to Game/,\*,,H1 for Xa, which implies MHAdv 4 for X in
Gamepyy is equal to MH?AdvA for Xa in Gameﬁ,,Hl, i.e. if Xp is Type-I message-hiding, then X is secure
(w.r.t. Def. . The selective case is similar.



[3:212 ABE Traceability
We now propose a tracing algorithm Trace, which uses a general tracing method previously used in [6I29J9IT0IT4124],
and show that equipped with Trace, X' is traceable (w.r.t. Def. .

TraceD(PP,Yp,e) — Kr C [K]: Given a ciphertext-tag-specific decryption blackbox D associated with a
ciphertext tag Yp and probability € > 0, the tracing algorithm works as follows:

1. For k =1 to £ + 1, do the following:
(a) Repeat the following 8A(N/¢)? times:
i. Sample M from the message space at random.
ii. Let CTy,, < Encrypt,(PP, M, Yp, k).
iii. Query oracle D on input CTy,,, and compare the output of D with M.
(b) Let py be the fraction of times that D decrypted the ciphertexts correctly.
2. Let Kz be the set of all k € [K] for which pr — Pr+1 > €/(4K). Output Kr as the index set of the

decryption keys of malicious users.

Theorem 2. If Xa is Type-II message-hiding and indez-hiding (resp. selectively index-hiding), then X is
traceable (resp. selectively traceable).

Proof. The proof is similar to that in [24J27]. For completeness, we give the the proof sketch below.

We show that if the blackbox output by the adversary is a useful one then Kp will satisfy (Kp #
D) AN Ky C Kp) A (Fky € Ky s.t. I'(Xg,,Yp) = 1) with overwhelming probability, which implies that the
adversary cannot win Gamerg, i.e., TRAdv 4 is negligible. The selective case will be similar.

Let D be the ciphertext-tag-specific decryption blackbox output by the adversary, and Yp be the cipher-
text tag describing D. Define

pp. = Pr[D(Encrypts (PP, M, Yp, k)) = M],
where the probability is taken over the random choice of message M and the random coins of D.

We have that p; > € and piy; is negligible (for simplicity let pxi1 = 0). The former follows from the
fact that D is useful, and the latter is because X is message-hiding in Gamef‘,,H. Then there must exist
some k € [1,K] such that pp — pr+1 > €/(2K). By the Chernoff bound it follows that with overwhelming
probability, pr — Prr1 > €/(4K). Hence, we have Kg # 0.

For any k € Kz (i.e., pr — Pry1 > 1%), we know, by Chernoff, that with overwhelming probability
Pr — Pr+1 > €/(8K). Clearly (k € Kp) A (I'(Xg, Yp) = 1) since otherwise, D can directly be used to win the
index-hiding game for Xa. Hence, we have (K C Kp) A (I'(Xk, Yp) = 1 Vk € Kr).

4 Transform a Non-Traceable ABE to an Augmented ABE

In this section, we first formailze the notation of Pair Encoding Scheme in Sec. [I1] which is the core
components of the conventional (non-traceable) ABE template we propose in Sec. Then in Sec. we
propose the generic transformation from the ABE template to the Augmented ABE and in Sec. [4.4] we prove
the security of the resulting Augmented ABE.

Note that the ABE template, the transformation, and the proof in this section are described in composite
order bilinear groups, but as shown later in Sec. 5] all these also work well in prime order bilinear groups.

4.1 Pair Encoding Scheme

The notion of pair encoding scheme here is inspired by the work of Attrapdung [1]. Attrapdung [1] proposed
the notion of pair encoding scheme, including syntax and security definitions, and proved the full security of
some Functional Encryption schemes based on the security of corresponding pair encoding scheme instantia-
tions. Here we borrow the term of pair encoding scheme, and actually we only use the syntax to abstract the
structures of the non-traceable ABE schemes which we aim to transform to AugABE, while not considering
or using the security properties of pair encoding scheme.

A Pair Encoding Scheme for predicate I" consists of four deterministic algorithms given by (SysParam, KeyParam,
CiperParam, DecPair):



— SysParam(I") — (d,dp). It takes as input a predicate I' : X x Y — {0,1} and outputs two integers d
and dy. d is used to specify the number of common variables in KeyParam and CiperParam, and dy(< d)
will be used to specify the requirements of the ABE template. For the default notation, let o and
B = (B1,...,B4) denote the list of common variables.

— KeyParam(X,N) — (¢ = (¢o,¢1,-..,Pd,),ds). It takes as inputs N € N and a key tag X € X, and
outputs a sequence of polynomials ¢ = (do, P1, - - -, ¢a,) With coefficients in Zy and an integer ds that
specifies the number of its own variables. Let = (d1,...,04,) be the variables, we require that each
polynomial ¢, (0 < z < dy) is a linear combination of monomials o, 6;,0;3;, where o, B = (B, ..., Bq) are
the common variables. For simplicity, we write ¢(«, 3,8) = (¢o(c, 3,0), d1(a, 8,6), ..., ¢a, (a, 3,0)).

— CiperParam(Y,N) — (¢p = (¢1,...,%4,),dr). It takes as inputs N € N and a ciphertext tag ¥ € Y,

and outputs a sequence of polynomials ¥ = (11, ...,%q, ) with coefficients in Zy and an integer d, that
specifies the number of its own variables. Let w = (7, 71, ..., 74 ) be the variables, we require that each
polynomial ¢,(1 < z < d.) is a linear combination of monomials w,m;, 73,7 5;, where B8 = (51, .., Ba)

are the common variables. For simplicity, we write ¥(3, ) = (¢1(8,®), ..., ¢4, (B, 7)).
— DecPair(X,Y, N) — E. It takes as inputs N € N, a key tag X € X, and a ciphertext tag Y € Y, and

outputs E € ZS\C,Z’“H)XCI“.
Correctness. The correctness requirement is defined as follows.

— First, for any N € N, X € X, YV € VY, let (¢ = (¢o,¢1,-..,P4,),ds) + KeyParam(X,N), (¢p =
(¥1,...,%a.),dr) « CiperParam(Y,N), and E < DecPair(X,Y,N), if I'(X,Y) = 1, then for any
a,B=B1,...,B4), 6 = (01,.-.,0a;), ® = (m,71,...,7a_), we have ¢p(ca, 3,8)Ep(8,m)T = am, where
the equality holds symbolically. Note that since ¢(a, 3,8)Evp(3,m)T = Zie[o,dk],je[l,dc] E, j¢iv;, this
correctness amounts to check if there is a linear combination of ¢;1; terms summed up to a.

— Second, for p that divides N, if we let KeyParam(X, N) — (¢ = (¢o, ¢1,- .., P4, ), ds) and KeyParam(X, p) —
(@' = (0, P15 - - -+ P, )> ds), then it holds that ¢ mod p = ¢’. The requirement for CiperParam is similar.

Remark. We mandate that the variables used in KeyParam and those in CiperParam are different except only
the common variables o and 8. We remark that in the syntax, all variables are only symbolic: no probability
distributions have been assigned to them yet. (We will assign these in the later ABE template constcution).
Note that ds,dg, can depend on X and d,,d. can depend on Y. We also remark that each polynomial in
@, 1 has no constant terms.

4.2 A Template for Non-traceable ABE

Below, we first review the composite order bilinear groups and some notations. Then, from a pair encoding
scheme, by adding some additional requirements, we define a template for conventional (non-traceable) ABE
constructions, which works on composite order bilinear groups. We would like to point out, as shown later
in Sec. o the template can be easily changed to one on prime order bilinear groups, and the transformation
from the non-traceable ABE template to Augmented ABE, as well as the proof, work well on prime order
bilinear groups.

Composite Order Bilinear Groups. Let G be a group generator, which takes a security parameter A
and outputs (p1,pe,ps, G, Gr,e) where pi1,ps, ps are distinct primes, G and G are cyclic groups of order
N = p1paps, and e : G x G — G is a map such that: (1) (Bilinear) Yg,h € G,a,b € Zy, e(g*, h®) = e(g, h)™,
(2) (Non-Degenerate) 3g € G such that e(g, g) has order N in Gr. Assume that group operations in G and
Gr as well as the bilinear map e are computable in polynomial time with respect to A. Let G, G,, and
Gp, be the subgroups of order p;, p2 and p3 in G, respectively. These subgroups are “orthogonal” to each
other under the bilinear map e: if h; € G, and h; € Gy, for i # j, then e(h;, h;) = 1 (the identity element
in GT)

Notations. For a given vector v = (v1,...,v4) € Z%, and g € G, by g we mean the vector (g*1,...,g") €
G?. For two vectors V. = (Vi,...,Vy),W = (Wy,...,Wy) € G% by V- W we mean the vector (V; -
Wi, ...,Va-Wy) € G4, i.e. it performs component-wise multiplication. Furthermore, by eq(V,W) we mean
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szl e(Vi, Wi). Particularly, for v = (vy,...,vq),w = (w1,...,wq) € Z%, we have g - g% = g¥*+t%, and
ea(g?,g%) = HZZI e(g¥, g¥*) = e(g,9)"™), where (v - w) is the inner product of v and w. Sometimes we
omit the subscript d of eq(V,W). For a vector V' = (V1,...,Vy) € G4 and a matrix A = (A; j)axt € Z‘IiVXt,
by VA we mean (H(iizl ViAM’ ngl V;Amv T ngl V;AM) €G".

Non-traceable ABE template. The template consists of four algorithms as follows:

Setupyt (A, I') = (PP, MSK). Run (N, p1,p2,p3, G, Gr, €) < G(A). Pick generators g € G, X3 € G,,. Run
(d,do) < SysParam(I"), where 1 < dy < d. Pick random B = (B1,...,84) € Z%. Pick random « € Zy.
The public parameter is

PP = ((N,G,GT7€)7 gﬂgﬁ>X3ae(g7g)a)-

The master secret key is MSK = (a).
KeyGeny (PP, MSK, X) — SKx. On input a key tag X, run (¢ = (¢o, é1,- -, P4, ), ds) < KeyParam(X, N).
Pick random & = (d1,...,d4;) € Z’f\‘,‘, R=(Ry,...,Rg,) € Gg’;“. Output a secret key SKx as

SKx = (X, K = g**P9 . R).

To satisfy the template, it is required that for any key tag X and variables § = (41,...,04,),

1. dk > do.

2. for z € [2,dg], ¢.(a, B,8) does not contain « or B101. For simplicity, we write them as ¢.(3,0), as
they do not contain o. .y

3. d)l(av 67 5) = 51; ¢0(0[, /Ba 6) =a+ 5151 + ZJOZQ ﬁ&¢d(ﬁv 5)

That is, E]

do
SKy = (X, (KO — 909,3151 H gﬁg¢g(ﬁ,5)R0’ K, = 951 - Ry,
d=2
Ky = g¢2(5,5) “Ry, ..., Kg, = g%k(ﬁﬁ) . de))_

Encryptyt (PP, M,Y) — CTy. On input a ciphertext tag Y, run (¢ = (¢1,...,%4, ), dr) < CiperParam(Y, N).
Pick random 7 = (7,7, ...,7a.) € Z% . Set P = g¥(#™)_ Output a ciphertext CTy as

CTly = (Y, P, C=M- e(g7g)‘”).

Note that P can be computed from g® and 7 since 4(3, 7) contains only linear combinations of mono-
mials 7, 7, 85, 7 B;.
To satisfy the template, it is required that for any ciphertext tag Y and variables w = (7w, m1,..., 74, ),
1. ¢1(B,W> =T.
2. 1/}2(16’ Tl') = 6271-’ cee 71/)d0(ﬁ777) = 5(107‘-'
That is, the first dy components of P are P; = g™, Py = g%, ... , Pa, = gPao™
Decryptyt(PP,CTy,SKx) — M or L. Obtain X, Y from SKx, CTy. Suppose I'(X,Y) =1 (if '(X,Y) # 1,
output L). Run E < DecPair(X,Y,N) € ng,l’“H)Xdc. Compute e(g,9)*™ = e(KF®, P), and output
M + CJ/e(g,9)*".
To satisfy the template, it is required that there is an algorithm DecPairy such that:
—Forany N e N, X e XY €V, let (¢ = (¢o,01,-..,P4,),ds) < KeyParam(X,N), (¢p =

(¥1,...,%4.),dr) < CiperParam(Y, N), for any variables o, B = (81, B2, - -, Bd), 0 = (01,02, ...,04;),
w = (m,71,...,7a,), let By < DecPairi(X,Y,N) € ZS\?’“H)XdC, if I'(X,Y) = 1 we have that
PE T = B1617, i.e., there is a linear combination of i terms summed up to Sy,

Later we will show that a series of ABE schemes with appealing features satisfy this template.

7 Note that to cover as many ABE schemes as possible, we only specify the necessary requirements which we may
use in the constructions and proofs of our generic transformation framework. Here we do not require ¢5(83, d) (for

d =2 to do) to contain only linear combination of monomials d;. Actually, if ¢;(3,d) contained f;, Ko could still
be computed, by putting 3 in MSK.
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4.3 Augmented ABE Transformed from Non-traceable ABE

Notations. Suppose that the number of users K in the system equals to m? for some m. In practice,
if K is not a square, we can add some “dummy” users until it pads to the next square. We arrange the
users in an m X m matrix and uniquely assign a tuple (i,5), where ¢,5 € [1,m], to each user. A user at
position (¢,7) of the matrix has index k = (i — 1) * m + j. For simplicity, we directly use (i,j) as the
index where (i,7) > (4,7) means that ((i > i) V (i = i Aj > j)). The use of pairwise notation (i,7j) is
purely a notational convenience, as k = (i — 1) * m + j defines a bijection between {(i,5)]i,j € [1,m]} and
[1,K]. Given a bilinear group order N, one can randomly choose r, 7y, 7. € Zy, and set x1 = (r5,0,7.),
x2 = (0,7y,72), X3 = X1 X X2 = (=1yTz, =722, 727y). Let span{x1,x2} = {vix1 + vexe|vi,v2 € Zn} be
the subspace spanned by x; and x2. We can see that 3 is orthogonal to the subspace span{xi,x2} and
73, = span{x1, X2, X3} = {v1x1 + vaXx2 + vsxs|v1,v2,v3 € Zy}. For any v € span{x1,xz2}, (x3-v) = 0,
and for random v € Z%;, (X3 - v) # 0 happens with overwhelming probability.

Below we propose our AugABE construction, which is transformed from the conventional (non-traceable)
ABE template in above Sec. Note that the parts written in the box are the same as the conventional
(non-traceable) ABE template, and we add/modify some additional parts to form our generic AugABE
construction.

Setupp (A, I, K = m?) — (PP, MSK).

Run (N, p1, p2,p3,G,Gr, e) < G(N). Pick generators g € Gp,, X3 € G,,.
Run (d,dy) < SysParam(I"), where 1 < dy < d. Pick random B = (fB1,...,4) € Z%.

Pick random {a,7i, 2; € Zn }icm]s 1¢j € ZN}jeim]- The public parameter is

PP = ( (N,G,GT,@),g,h = g'aaX?n {EZ = e(g7g)ai7 Gl :gria ZZ = gZi}iG[m]a {Hj = ng}jE[m] )

The master secret key is MSK = (al, ey Qs Ty e ooy Timy Clyene ey cm).

A counter ctr = 0 is implicitly included in MSK.
KeyGen, (PP, MSK, X) — SK(ij),x-
Upon input a key tag X, run (¢ = (¢, ¢1,- -, ¢d, ), ds) < KeyParam(X, N).
Pick random & = (91, ...,dq,) € Z%, R=(Ry,...,Ra,) € Gédstt,

Pick random R € G,,. Set ctr = ctr +1 and then compute the corresponding index in the form of (¢, 5)
where 1 <4,7 <m and (i — 1) * m 4 j = ctr. Output a secret key SK(; ;) x as

SK(igyx = ((1.), X, K =g?nieten B0 R Kj = 7] R),
Note the requirements stated in KeyGenyyt, we have

do
SKiijyx = ((1,4), X, (Ko = grierteigho T ¢%1%a PO Ry, Ky = ¢" Ry,
d=2

Ky =g»2PB9 Ry . K, =g*%®9 . Ry,

K(I) = Z§1 6)

2

Encrypt, (PP, M,Y, (i,5)) — CTy.
1. | Upon input a ciphertext tag Y, run (¢ = (¢1,...,%q,),dr) + CiperParam(Y, N).
Pick random 7 = (m,71,...,7m4,) € Z% . Set P = g¥B:m).
Note that P can be computed from ¢g# and  since (3, ) contains only linear combinations of
monomials 7, m;, w35, m; 3;.

2. Pick random



3
Ve, W1,...,Wn € Ly.

Pick random rg, 7y, 7, € Zn, and set x1 = (72, 0,72), X2 = (0,74, 72), X3 = X1 XX2 = (—TyTs, —TaTs, FxTy)-
Pick random

v €23 Vie{l,...,i},
v; € span{x1,x2} Vi € {i+1,...,m}.

For each row ¢ € [m]:
— if 4 < 7: randomly choose §; € Z,,, and set

R;=g¢", R, =g""", Qi=g", Qi1=(¢")"ZI ("),
Qi,? = (gﬁ2)311? DR aQLdo = (gﬂdo)Sia
Qi=g", T,=E].

— if § > i set
Ri = G?iviv R;, = G?Sivia Q’i = gTSi(vi.vC)v Qi,l = (gﬁl)TSi(vi-vC)Zfi (gﬁl)ﬂ—a

Qi,Q = (9/82)7—51(1”.1)6), ey Qi,dg = (gBdo )Ts'i(vi‘vc)’
Qi=g" Ti=M B

For each column j € [m]:
— if j < j: randomly choose p; € Zy, and set C; = H;(v“+“-7X3) g, O = g™
—ifj>jiset C; = H}”“ g™, Cl = g™
3. Output the ciphertext CTy as CTy = (Y, P,(R;, R}, Qi {Q; g}g‘; Qi Ty, (Cy, CTy).
Decryptp (PP, CTy,SK(; jy,x) — M or L. Parse CTy to CTy = (Y, P, (Ri,Rg,Qi,{Qid}d" L Ty

(i:l’ 79 =1

(C;,C%)y) and SK; ) x to SK(; ) x = ((4,4), X, K = (Ko,...,Kq,), K{). ObtainY, X from CTy,
SK(ij),x- Suppose I'(X,Y) =1 (if I'(X,Y) # 1, output L).
1. Run E; <« Pairy(X,Y, N). Compute Dp < e(K®: P).

2. Compute

e(KOaQi) ) €(K67Q2) 63(R;7C_I])

Dy + . .
e(K1,Qin) - TI5, e(K7.Q, 4) €3(Ri, C;)

3. Computes M <+ T;/(Dp - Dy) as the output message. Suppose that the ciphertext is generated from
message M’ and encryption index (7,7), it can be verified that only when (i > i) or (i = i A j > j),
M = M'’. This is because for i > i, we have (v; - x3) = 0 (since v; € span{x1,Xx2}), and for i = i, we
have that (v; - x3) # 0 happens with overwhelming probability (since v; is randomly chosen from Z%;).
The correctness is referred to Appendix [A]

4.4 Security of Augmented ABE

Let Xt = (Setupyt, KeyGenyr, EncryptyT, Decrypty) be a non-traceable ABE scheme satisfying the tem-
plate in Sec. and Xa = (Setupy, KeyGen,, Encryptp, Decrypt,) be an Augmented ABE scheme derived
from Xyt as shown in Sec. As shown in Fig. 2] Theorem [3] Theorem [4 and Theorem [j] state that the
AugABE proposed above is Type-I message-hiding, Type-IT message-hiding, and selectively index-hiding,
respectively. Below we prove Theorem [3] and Theorem [] in a framework manner. For the Theorem [5] we
prove it in a framework manner partially, namely, we prove Claim [2|in a framework manner, while proving
Lemma case by case for the concrete underlying conventional (non-traceable) ABE schemes, and the proof
of Claim [0l will be identical to that of Lemma [l
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Fig. 2. Outline for Security Analysis

Theorem 3. If Xyt is secure (resp. selectively secure), then Xa is Type-I message-hiding (resp. selectively
Type-I message-hiding).

Proof. Suppose there is a PPT adversary A that can break X in Gamef‘AH , With non-negligible advantage

MHiAdv A, we construct a PPT algorithm B to break Yyt with advantage AdvgXnT, which equals to
MH? Adv 4.

Setup. B receives the public parameter PPNT = (N,G,Gr,e) g,9°, X5, E = e(g,9)) from the challenger,
where g € G, and X3 € G,, are the generators of subgroups G, and G, respectively, 3 = (b1, ..., B4) € Z%
(for (d,do) < SysParam(I")) and a € Zy are randomly chosen. B picks random {a;, 74, 2; € ZN }icim], 1¢5 €
ZN }je[m), then gives A the public parameter PP:

PP = ( (Nv Ga GT76)7gag’37X37 {E’L =F- e(ghg)aév GZ = gmv Z’L = QZi}iE[m]7 {H] = gCJ}]E[m] )

Note that B implicitly chooses {c; € Zy }ie[m) such that {a + o} = a; mod p1 }iem-
Phase 1. To respond to A’s query for ((i, 5), X(Z—)j)), B submits X; ;) to the challenger, and receives a secret
key

SKNL,, = (X, (Ko = gg™ H gPa®iPO R, K = ¢ - Ry,
K2 = g¢2(ﬁ;6) . ‘R27 ey de — g¢dk(,6,6) . de))’

where (¢ = (¢o,¢1,--.,¢4,),ds) < KeyParam(X; ;),N), § = (01,...,0q;) € Z‘f\‘,‘, R = (Ry,...,Ry,) €
G+l
D3
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B picks random ]:26 € G,,, then responses A with a secret key SK(Z-J-)’X(M) as

SKi iy = ((0:0): X(iys (Ko = Ko- g™, K1 =Ky,
K2:K27 MR de:[}vdk)7
K{=K{'Ry).
Note that such a secret key has the same distribution as the secret key in the real Augmented ABE scheme,
ie. SKij) xi, = ((i,4), Xj), K =golrieitesBdl . R Ki= 77" Ry), where Ry = Ri' Ry,

Challenge. A submits to B a ciphertext tag Y* and two equal length messages My, My. B submits
(Y*, My, M7) to the challenger, and receives the challenge ciphertext in the form of

CTNT = < Y*7 p :gw(ﬁ’ﬁ-)a é =M - e(g’g)oﬁr >a

where (¥ = (1, ...,%4,),dr) + CiperParam(Y*, N), & = (#,71, ..., 7a4,) € Z3 .

Note that 1/;(/6, ) contains only linear combinations of monomials 7, 7;, 7 8;, 7; 35, and the first dy com-
ponents of P are P, = g™, P, = gP27 ...,Pdo = g%40™. B creates a challenge ciphertext for (i,5) = (1,1) as
follows:

1. B picks random 7’ = (7', 7,...,7) ) € Zf\}'ﬂ, then sets P = g¥B") . (13)_1.

Here (P)~' means (P}, .. '7[:)d:1)' Note that (8, #) contains only linear combinations of monomials
7T, T, By, T B, we have (ﬁ)*1 = g%(B:=7) Note that 1(3, 7’) contains only linear combinations of mono-
mials 7/, 7}, 7' B, 7\ 3;, we have that P = g¥(B7'~%),

2. B picks random

/ !
Ky Ty, S1y.-.,8 t1,...,tm € Zn,

r mo

3
Ve, W1,...,Wn € Ly.

B picks random rm,m,,rz € Zn,and sets x1 = (1,0,72), X2 = (0,7y,72), X3 = X1 XX2 = (—Tyrs, =TT, TaTy).
B picks random v, € Z3, v; € span{x1, X2} Vi € {2 m}.
For each row i € [m]: note that ¢ > ¢ (since ¢ = 1), B sets

R, = Gsvl' 1T(U71UC> 1; R;:Gﬁsgvi'lﬂﬁ 1;
Qi =g I P, Qi = (M) Z0 (o)
Qi = (g)eiveve) ‘152, oy Qi = (gP0)T v L Py
Q=g Ti=Celg™ Py B,
For each column j € [m]: note that j > j (since j = 1), B sets

Cj=H" g™, C)=g".

3. B outputs the ciphertext CTy~ as CTy- = (Y*, P,(R;, R}, Q;,{Q, d}d @i Th)ity, (€, C%)ILy). Note
that this CTy« is a well-formed ciphertext for ciphertext tag Y* and encryption index (i,j) = (1,1), with
implicitly setting s1,...,8, € Zy and w = (7, 71,...,7q, ) € Z?V“‘H by
52—&—L =s;modp; Vi€ {1,...,m}, @ —7& =m mod p;.
T(v; - ve)

Phase 2. Same with Phase 1.
Guess. A gives B a b'. B gives b’ to the challenger.

Note that the distributions of the public parameter, secret keys and challenge ciphertext that B gives A
are same as the real scheme, we have AdvgXnT = MH?AdvA.
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Theorem 4. X5 is Type-II message-hiding.

Proof. The argument for message-hiding in Gamef‘,,H , is straightforward since an encryption to index K + 1
(i.e. (m+1,1)) contains no information about the message. The simulator simply runs Setup, and KeyGeny
and encrypts M, under the challenge ciphertext tag Y* and index (m + 1,1). Since for all i = 1 to m,
T, = Ef  contains no information about the message, the bit b is perfectly hidden and MHSAdV 4 =0.

Now we investigate the Theorem [5| where we prove the index-hiding property. As shown in Fig.
Theorem [5] follows Lemma [I] and Lemma [2| and we need to prove Lemma [I| case by case. Here we use
‘Assumption X’ to represent the assumption(s) that Lemma [1|is based on, and we will present the concrete
assumptions when we prove Lemma [I] concretely.

Theorem 5. Suppose that the Assumption X, the DS3DH, and the DLIN Assumption hold. |§| Then no PPT
adversary can (selectively) win GamefH with non-negligible advantage.

Proof. Tt follows Lemma, [I] and Lemma [2] below.

Lemma 1. If the Assumption X hold, then for j < m, no PPT adversary can (selectively) distinguish

between an encryption to (i,7) and (i,7 + 1) in Gameﬁ; with non-negligible advantage.

Proof. In Gamem with index (i,j), let Y* be the challenge ciphertext tag, the restriction is that the ad-
versary A does not query a secret key for (index, key tag) pair ((,7), X ;)) such that ((i,5) = (i,7)) A
(F(X(m-), Y*) = 1). Under this restriction, there are two ways for A to take:

Case I: In Key Query phase, A does not query a secret key with index (i, j).
Case II: In Key Query phase, A queries a secret key with index (4, j). Let X (i.j) be the corresponding key
tag. The restriction requires that I'(X(;),Y™) # 1.

Case I is easy to handle as the adversary does not query a secret key with the challenge index (i, j).
Case II captures the index-hiding requirement in that even if a user has a key with index (i, ) he cannot
distinguish between an encryption to (Y*,(4,7)) and (Y*, (4,7 + 1)), if the corresponding key tag does not
satisfies I'(X| (i) Y*) = 1. This is the most challenging part of achieving strong traceability. Actually, this is
the only part where we cannot handle in a framework manner, and we have to prove this lemma for different
schemes case by case.

Lemma 2. If the Assumption X, the D3DH, and the DLIN Assumptz’on hold, then for1 < i < m, no
PPT adversary can (selectively) distinguish between an encryption to (i,m) and (i +1,1) in Gamely, with
non-negligible advantage.

Proof. Similar to the proof of Lemma 6.3 in 14, to prove this lemma we define the following hybrid exper-
iment: Hy: encrypt to (i,7 = m); Ha: encrypt to (4,5 = m + 1); and Hs: encrypt to (¢ + 1,1). This lemma
follows Claim [[ and Claim 2] below.

Claim 1. If the Assumption X holds, then no PPT adversary can (selectively) distinguish between experiment
H, and Hy with non-negligible advantage.

Proof. The proof is identical to that for Lemma

Claim 2. If the D3DH and the DLIN hold, then no PPT adversary can distinguish between experiment Hs
and Hs with non-negligible advantage.

8 Here D3DH and DLIN are the abbreviation of the widely accepted Decision 3-Party Diffie Hellman Assumption
and Decisional Linear Assumption, respectively. we refer to [I4] for the details of these two assumptions.
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Proof. The indistinguishability of Hy and Hj3 can be proved using a proof similar to that of Lemma 6.3 in
[14], which was used to prove the indistinguishability of similar hybrid experiments for their Augmented
Broadcast Encryption (AugBE) scheme. For simplicity, we prove Claim [2| by a reduction from our AugABE
scheme to the AugBE scheme in [14].

In particular, Garg et al. [14} Sec. 5.1] proposed an AugBE scheme Xagge = (Setupp,gge, Encrypta,qge;
DecryptAugBE) and proved Yaugge is index-hiding. In the proof of index-hiding for X'augge in [14, Lemma 6.3],
two hybrid experiments were defined and proven indistinguishable via a sequence of hybrid sub-experiments.

- HAugBE Encrypt to (i,m + 1), (i.e. Ho in [14])
HA”gBE Encrypt to (i +1,1), (i.e. H5 in [14])
By following [14, Lemma 6.3], if the DSDH and the DLIN hold, no PPT adversary can distinguish between
HYVEBE and HE for YaugBe with non-negligible advantage. Suppose there is a PPT adversary A that can
distinguish between Hy and Hj for our AugABE scheme with non-negligible advantage. We can construct a
PPT algorithm B to distinguish between Hj"85F and H45"85F for Saueee with non-negligible advantage.
The game of B distinguishing between H, and H3"8%F is played in the subgroup G,, of order p; in

a composite order group Gy of order N = pipops. B is given the values of p;, p» and p3, and can chooses
for itself everything in the subgroup G,,.

Setup. The challenger gives B the public key PK**88% and due to (i,m + 1) ¢ {(i,7)|]1 < 4,j < m}, the
challenger gives B all private keys in the set {SK(Alug;3 Bl1<i,j< m}ﬂ
PKMEEE — (g, {Ei = e(9,9)™, Gi=g" Yicpm) {H; =9, fj}je ),
AugBE [ T4 Oi,j
SKGE: =(Kiys Kl jy AKijgbiemniy ) = (997 f7 0 g7, {7 Yremniy )s

where g, f1,..., fm € Gy, {0, 1i € Zyp, Yicpm)s {¢5 € Zp, }jem)s 04,51 < 4,5 <m) € Zy,, are randomly chosen.
B picks random X3 € G,,, runs (d,dy) < SysParam(I"), and picks random pSs,...,84 € Zy. B picks
random 21, ..., 2y, € Zy. Setting ¢# = (H;”:l fi, g%, ..., g%), B gives A the following public parameter PP:

AugBE

PP = ( (N7G7GT76)5 9, gﬁa X37 {Elv Gia Zl :gZi}iE[m]7 {H]}]E[m] )
Note that B implicitly picks 81 € Zy such that g% = [T~ £
Key Query. To respond to A’s query for ((i, j), X(; ;)), Bruns (¢ = (¢o, ¢1, ..., ¢a,),ds) < KeyParam(X; j,

N), and picks random dg, ...,04, € Zn, R = (Ro,...,Ra,) € Gg’;“, and Rj, € Gp,. B outputs a secret key
SK(i,j),X(i,j) as

SK (i), x5 = ((ivj)vx(i:j% (Ko = f(i»j - ( H K ,JJ Hgﬁd% PRy, K= l,J Ry,
jem\{s} d=2

K = ¢2(ﬁ’6) : RQa RN de = g¢dk(ﬁ76) ' de)y

Ko - (KI ) 'Ré))-
Note that B implicitly picks 61 € Zy such that 6; = 0; ; mod p;. Note that for any variables o € Zy, 3 =
(Biy---,Ba) € 24,8 = (01,...,045) € Zjl\;*, each ¢,(3,0)(2 < z < di) contains only linear combinations of
monomials J;,0;58; and does not contain 316;. Note that B knows the values of ¢or = g% = Kz(,j’ 02,y ..., 0d,
and g7 =TI, fj, ;- .., fa, B can calculate the values of g?2B:8) - g%a.(B:9) and then the values of
gPa®aB9) for d € {2,...,dy}. Thus, we know B can produce the above secret key SK(i.3), X000,

Challenge. A submits a message M and a ciphertext tag Y*. Note that (i,m + 1) & {(4,7)|1 < i,j < m},
B sets the receiver set to be J = {(4,)|1 <4,7 < m} and submits (M, J) to the challenger. The challenger
glves B the challenge ciphertext CTAveBE — ((R R’ L Qi QZ,T)z 1 (C’], C’) J), which is encrypted to
(i*,7%) € {(i,m +1),(i+1,1)} and in the form of

Jj=1

9 Note that we slightly changed the variable names in the underlying AugBE scheme to better suit our proof.
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1. For each i € [m]: _ ~ . . R
i<t Ry = gv, R, =g"™, Qi=g", Q;=l;e, ;)" Ti=E].
Cifg > Gs Ui R; _ Gfsivi, Ql _ gTSi(’U,L”’Uc), @2 _ (Hj'GJi fj)TSi(’vi,-’vc)7 T,L = M.E,Z—Si(’vi"vc).
2. For each j € [
_ lf] < ]* é] — H;(UC+NJ'X3) .g"‘wj’ é; :gw7
—ifj>j% Cj=H" g™, C=g".

where k,7,5,(1 < i <m),5(1 <i<i*),u(l <j<i*) ey, ve,wij(l <j<m )vi(lgigi*) €
Z3 . and (i > i*) € span{xi1, X2} are randomly chosen (where x1 = (r,0,7.),x2 = (0,7y,72),x3 =
(=ryrs, —TyTs, ryry) are for randomly chosen 7y, 7y, 7, € Zy, ), and J; = {j|(i,7) € J}.

Note that J = {(i,7)[1 < i,j < m}, we have J; = {1,...,m} for all 1 < g m, and then Q) =

(s, £3)" = (g for i < 3* and @) = (TTjeg f5)702) = ()70 for i >
B runs (¢ = (¢1,...,%4,),dr) < CiperParam(Y™*, N) and picks random 7 = (, . Ta,) € T4
then sets

P = gw(ﬁ,ﬂ).

Note that P can be computed from g? and 7 since 1(3, 7) contains only linear combinations of monomials

Waﬂi,wﬁjaﬂ_iﬂj'
B picks random t1,...,tm € Zy. B outputs a challenge ciphertext as CTy- = (Y*, P,(R;, R}, Q;,
{Qz d}d 1’ i );n 1» (Cj’ C;);n:1>’ where

1. For each i € [m]: R; = R;, R, = R, Q; = Qi, Qi1 = Q- Z!'(¢")", Qin = Q?Qwqui,do =

Q. Qi=g". T,=
2. For each j € [m]: C; =C; , Cl=C".

@

Guess. A outputs a guess b’ € {0, 1} to B, then B outputs this & to the challenger as its answer to distinguish
between HzAugBE and H?“gBE for scheme Xa,qgE-

As the exponents are applied only to the elements in the subgroup G,,, from the view of A, the distri-
butions of the public parameter, secret keys and challenge ciphertext that B gives A are same as the real
scheme. Thus B’s advantage in distinguishing between HA"8% and H. ? “BE for scheme Y augee will be exactly
equal to A’s advantage in distinguishing between H, and Hj for scheme Xa.

5 Extension to Prime Order Groups

In Sec. [ the Non-traceable ABE Template, the transformation from Non-traceable ABE Template to
Augmented ABE, and the proofs are all presented on composite order bilinear groups. Note that our generic
transformation from Non-traceable ABE Template to Augmented ABE and the security proofs for the
transformation do not rely on the composite order bilinear groups, and are only related to the G, subgroup.
Actually, the only reason we use composite order bilinear groups in Sec. [4] is that some appealing ABE
schemes, e.g. those in [I], are built on the composite order bilinear groups, and we want our Non-Traceable
ABE template to cover these appealing ABE schemes. On the other side, as shown below, it is easy to adjust
the Sec. [] contents to prime order bilinear groups, and the resulting generic framework still works well.
Roughly speaking, this can be done by replacing the N with the prime order p; and removing all the parts
related to po, p3. Below we list the details.

— In Sec. define ‘Prime Order Bilinear Groups’. Let G be a group generator, which takes a security
parameter A and outputs (p,G,Gr,e) where p is prime, G and G are cyclic groups of order p, and
e: G x G — Gr is a map such that: (1) (Bilinear) Vg,h € G,a,b € Z,,e(g% h®) = e(g,h)*, (2) (Non-
Degenerate) 3g € G such that e(g, g) has order p in Gp. Assume that group operations in G and Gy as
well as the bilinear map e are computable in polynomial time with respect to .
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— In Sec. redefine the Non-traceable ABE Template by replacing (N, p1,p2, ps, G, Gr, e) < G(\) with

(p, G,Gr, e) < G(X), replacing N with p, replacing p; with p, and removing all the parts related to Gp,:
e Removing X3 in Setupyt and PP,
e Removing R = (Ry, ..., Rq,) € G1! in KeyGenyr and SKx.

— For Sec. similar to Sec. modify the transformation from Non-traceable ABE Template to Aug-
mented ABE by replacing (N, p1,p2,p3,G,Gr,e) < G(A) with (p,G,Gr,e) + G(N), replacing N with
p, replacing p; with p, and removing all the parts related to G,,:

e Removing X3 in Setup, and PP,
e Removing R = (Ry,...,Rq,) € G T and Rj € G,,in KeyGeny and SK(; ; x-

~ For Sec.[4:4] modify the proofs according to the above modifications for Sec.[.2land Sec. In particular,
replace N with p, replace p; with p, and remove all the parts related to G,,.

It is easy to see that with the above modifications, the generic transformation framework on prime order
bilinear groups also works well. And Later we also give some instantiations on prime order bilinear groups.

6 Instantiations Satisfying the Non-traceable ABE Template

In this section we show that some existing non-traceable ABE schemes with appealing features satisfy the
template in Sec. and prove the Lemma [1] (the indistinguishability between an encryption to (i,7) and
(i,7 + 1)) for the AugABE constructions from these non-traceable ABE instantiations.

These instantiations include three ABE instantiations on composite order bilinear groups, which were
proposed by Attrapadung [I2], and one ABE instantiation on prime order bilinear groups, which was pro-
posed by Rouselakis and Waters [31]. In addition, we also give some other existing ABE schemes that satisfy
the template, but omit the construction details.

6.1 Fully Secure Unbounded KP-ABE with Large Universe

Attrapadung [Il, Sec. 5.3] proposed a fully secure unbounded KP-ABE scheme with large universe (i.e. the
public key size is constant and independent from the size of the attribute universe), here we denote it by
EKIPTLU. In EKIPTLU the predicate I" is described by linear secret sharing scheme (LSSS) [4], which is used
in many ABE schemes (e.g. [T6/3412212331]) to express the access policy. Actually, any monotonic boolean
formula (resp. monotonic access structure) can be realized by an LSSS [4]. We refer to [23] for more details of
LSSS in ABE. Below we review ZK,‘-’,-LU in terms of Pair Encoding Scheme. Note that we change the variable

names in EKIPTLU to better suit our template definitions.

1 The Pair Encoding Scheme
ENPTLU satisfies our non-traceable ABE template in Sec. with the following Pair Encoding Scheme.

SysParam. Take as input I" : X x Y — {0, 1}, where the ciphertext tag (here is the attribute set) space is
Y ={Y | Y C Zy} and the key tag space is X = {LSSS (4, p) | A is a matrix over Zy and p maps each
row of A to an attribute in Zy (p does not need to be injective) }, output d = 6 and dy = 2. Denote
B=(Br,-... o).

KeyParam. Take in N and a key policy (A, p) € X, where A is an [ x n matrix, and p : [1,]] = Zy maps
each row of A to an attribute in Zy, output ds = [ +n + 1 and ¢ = (do, ¢1, P2, {P3,ks Paks 5.k }ren))
with dp = 2 + 3l:

o = a+ B101 + f2d2, ¢1 =01, P2 = I,
b3 = Ak -u+EBa,  Gar =&k sk = Ek(Bs + Bep(k)),

where § = (81,02,&1,...,&, U2, ., Up) € Zk{”“ and w = (u; = B301, Uz, ..., Upy).
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CiperParam. Take in N and an attribute set S C Zy, output d, = 1+|S| and ¥ = (¢¥1, 2, V3, Y1, {P5.2, V6 .z }ues)
with d, = 4 + 2|9]:

Py =7, P = Bam, g = B + B3,
Yy =7, Y55 =701+ 1B+ Bex), Y6z =Tz,

- 5
where 7 = (7, T, {7y }ues) € Z?\TH .

We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. dj > dy, where di, = 2 + 3l and dy = 2.
2. Each of {¢o, ¢1, P2, {P3,k> Pa,ks 5.k frep} I8 a linear combination of monomials « 6;, §; ;.

3. ¢ = a+ Bi1¢1 + Badz, ¢1 = 01. None of {¢a, {¢3 1, Pak; P51 rep} contains a or B16;.
— CiperParam:

1. Each of {11, %2,v3,%4,{¢5.2,%6,}zes} is a linear combination of monomials 7, 7;, 73;, ™ 5;.
2. 1 =, hy = B,
— DecPair: When S satisfies (A, p), let I = {k € [I]|p(k) € S}, we have reconstruction coefficients {wy }rer
such that ), ; wr(Ay - u) = u; = B301. Therefore, we have the following linear combination of the ¢;);
terms:

P13 — Zwk(¢37kw4 — Qa1 V5, p(k) + D5.86V6,p(k)) = 01(B17T + B3T) — Zwk((Ak ~u)T) = B1o17.

kel kel

[6.112 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. [2| here we only need to (1) state the security of the underlying conventional
non-traceable ABE scheme (since the Type-I message hiding property of the AugABE is reduced to it) and
(2) prove the Lemma

(1) The Section 5.3 of [1] shows that their KP-ABE scheme corresponding to the above Pair Encoding
Scheme is a fully secure unbounded KP-ABE scheme with large universe.

(2) The Lemma instantiation here is: if the Modified (1,q)-EDHES Assumption holds, then for j < m,
no PPT adversary can selectively distinguish between an encryption to (i,7) and (i,j + 1) in Gamely, with
non-negligible advantage, provided that the size of the challenge attribute set is < q.

The Modified (1,¢)-EDHE3 Assumption is a special case of the Modified (n,t)-EDHE3 Assumption,
which we introduce by modifying the (n, t)-EDHE3 Assumption in [2] Definition 6], i.e., giving the adversary
one more element g% ¢/, In Appendix we prove that Modified (n,t)-EDHE3 Assumption holds in the
generic group.

Definition 6. The Modified (n,t)-EDHE3 Assumption Given a group generator G, let (N = p1paps,
G,Gr,e) &£ G\, g £ Gy, 92 £ Gy, 93 L Gyps, a,c,2,d1, ..., dy £ Zy . Suppose that an adversary
s given
D= ((N7 G7 GT? 6)7 g, ga’ gu," ) 907 gc/z7 ga"c/z 92, 93,
Vel gdi,
Ve st jrg 9% <B4,
a'd; /d2.,
Vie[l,n], G,J'€[1,t] s.t. j#i 9 . )
Viel1,2n], jelL,1] ga_Cd-’}

Vic1,2n],i#n+1, je[L,1] g eldi
2 ., L gt edi/d

i€[1,2n], 7,5 €[1,t] s.t. j#j g IR
al/d?
aiczd;/d]-/ )

vie[l,n+1], jety 9

vie[n+1,2n],j,j’€[l,t] g

and a target element T' € Gy,,. The assumption states that it is hard for any polynomial time adversary to
distinguish whether T = ga"“z or T <& Gy, -

The proof of the above Lemma [I] instantiation is given in Appendix [C}
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6.2 Fully Secure KP-ABE with Short Ciphertexts

Attrapadung [1l Sec. 5.3] proposed a fully secure KP-ABE scheme with short ciphertexts (i.e. ciphertext size
is constant and independent from the size of the attribute set associated with the ciphertext), here we denote
it by EKIPTSC. In ZKIPTSC the predicate I' is also described by LSSS. Below we review EKIPTSC in terms of Pair

Encoding Scheme. Note that we change the variable names in Eh”TSC to better suit our template definitions.

1 The Pair Encoding Scheme
YRPSC is a bounded ABE where the maximum size for attribute set associated with the ciphertext is bounded

by T, while no further restriction is required. ZK,‘-’,-SC satisfies our non-traceable ABE template in Sec.
with the following Pair Encoding Scheme.

SysParam. Take as input I' : X x Y — {0, 1}, where the ciphertext tag (here is the attribute set) space is
Y={Y |Y CZnyA|Y|<T} and the key tag space is X = {LSSS (A4, p) | A is a matrix over Zxn and
p maps each row of A to an attribute in Zy (p does not need to be injective) }, output d =T + 6 and

do = 2. Denote ﬁ = (ﬂl, ey ﬁ4, 00, 91, . 79T+1)'
KeyParam. Take in N and a key policy (4, p) € X, where A is an [ X n matrix, and p : [1,{] — Zy maps each

row of A to an attribute in Zy, output ds = I4+n+1and ¢ = (¢o, 1, P2, {P3.k, Pa ks P5.k,0, { D5kt Fe[T) Freq)
with d, =2+ (T + 3):

G0 = a+ B161 + Ba2da, ¢1 =01, @2 = o,
O3k = Ap -u+ &Py, Par = ks
G500 = Ekbo,  {D5,00 = E(Or1 — O1p(K)") }eer,

where § = (81,02,&1,...,&, U2, ., Up) € Zk{”“ and w = (u; = B301,uz,...,Upy).
CiperParam. Take in N and an attribute set S C Zx such that |S| < T, let ¢; be the coefficient of 2! in
p(Z) = HJ;ES(Z - ‘T)? Output dﬂ' =2 and 1:b = (1/)171/)271?3,7/14,7115,%/16) with dc =6:

Y1 =7, g = fam, g = i+ B3,
Yo =7, 5 =7hs+ 700+ X i_oclir), Yo =T,

where w = (7, 7, %) € Z%.
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. dy > do, where di, =2+ (T + 3) and dy = 2.
2. Each of {¢o, ¢1, P2, {D3,ks Da,ks D5,k,0, {P5,k.t te[r) foep) } 18 @ linear combination of monomials «, d;, d;3;.
3. ¢o = a+ Bid1 + Pada, ¢1 = 1. None of {¢a, {3k, Pu ks P5.k,0, {P5.k.t Fre[r) fRe[)} contains a or F1dy.
— CiperParam:
1. Each of {1, 2, 3,14, 15,%6} is a linear combination of monomials , m;, 75;, 7, 3;.
2. Y1 =7, Py = for.
— DecPair: When S satisfies (A, p), let I = {k € [l]|p(k) € S}, we have reconstruction coefficients {wy }rer
such that ), ; wr(Ay - u) = u; = B301. Therefore, we have the following linear combination of the ¢;);
terms:

T

P13 — Zwk (¢3,k04 — Papths + (d5,0,0 + Z L5, k.t)6)

kel t=1

T T
= 193 — Zwk((Ak “u+ §pBa)T — Ei(TPs + (00 + Z i) + &k (00 + Z ciBiy1)7)
t=0 t=0

kel
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= 01(Bim + Bsm) — Y wi(Ag - u)T

kel
= 0161m.

Note that

T T T
(¢5,1,0 + Z s et = & (B0 + Z cifir1 — b Z cep(k)')
t=1 t=1 t=1

T
=&k (00 + > cbirr — 01(p(p(k)) — co)) &

t=1

T
=& (6 + Z cifi1 + Orco) 7 since p(p(k)) =0

t=1

T
= fk (00 -+ Z ct9t+1)fr.

t=0

[6.212 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. [2| here we only need to (1) state the security of the underlying conventional
non-traceable ABE scheme and (2) prove the Lemma

(1) The Section 5.8 of [1] shows that their KP-ABE scheme corresponding to the above Pair Encoding
Scheme is a fully secure KP-ABE scheme with short ciphertexts.

(2) The Lemma [I| instantiation here is: if the Modified (T + 1,1)-EDHE3 Assumption holds, then for
Jj <m, no PPT adversary can selectively distinguish between an encryption to (i,7) and (i,5+1) in Gamem
with non-negligible advantage, provided that the size of the challenge attribute set is < T.

Note that the Modified (T + 1,1)-EDHE3 Assumption is a special case of the Modified (n,t)-EDHE3
Assumption in Def. [6]

The proof of the above Lemma [l| instantiation is given in Appendix

6.3 Fully Secure ABE with Ciphertexts Associated with DFAs

Attrapadung [2| Sec. 8.2] proposed a fully secure ABE scheme for regular languages with ciphertexts
associated with Deterministic Finite Automata (DFA). Here we denote it by Y20 In PP the
predicate I' is described by DFA. In particular, for a DFA M and a string w, I'(M, u) = 1 if the automata
M accepts the string u. We refer to [35/I] for more details about DFA-based ABE, here we only give
the below brief introduction. A DFA M is a 5-tuple (Q, A, T,qo, F) in which @ is the set of states Q =
{90,q1,---,qn-11}, A is the alphabet set, T is the set of transitions, in which each transition is of the form
(g2, qy,0) € Q X Q X A, qo is the start state, and F' C Q is the set of accepted states. We say that M accepts
a string w = (uq,ua,...,u;) € A* if there exists a sequence of states pg, p1,...,pn € @ such that py = qo,
for i = 1 to I we have (p;—1,pi,u;) € T, and p; € F. Note that, as shown in [12], it is wlog if we consider

machines such that |F| = 1. Below we review E&EFDFA in terms of Pair Encoding Scheme. Note that we change

the variable names in E,f,pTDFA to better suit our template definitions.

[6.3l1 The Pair Encoding Scheme
Z,f,pTDFA satisfies our non-traceable ABE template in Sec. with the following Pair Encoding Scheme.

10 Attrapadung [2] refers to the scheme as a ‘Functional Encryption’ scheme. Note that the scheme in [2] is still in
“All-Or-Nothing” style and is covered by our ABE definitions, in this paper we refer to it as an ABE scheme.
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SysParam. Take as input I' : X x Y — {0, 1}, where the ciphertext tag space is Y = {M | M is a DFA} and
the key tag space is X = {u | u € (Zy)*}, output d =9 and dy = 2. Denote 3 = (51,...,59).

KeyParam. Take in N and a string w € (Zy)*, let | = |u|, and parse w = (uq,...,u;). Output ds = 3 +1
and ¢ = (¢o, P1, P2, 03, P4, $5.0, {5k, D6k Y rel1,)) With dp = 5+ 2L:

o = a+ B101 + B2d2, ¢1 =101, P2 =0y, ¢3 = —P301 + P&y,
b1 = Eofs, 50 =250, {Dsk =&k Dok = Ex—1(B6 + Brun) + Ek(Bs + Pour) bre1,,

where 8 = (31,02, 80, &1,...,&) € ZJ.
CiperParam. Take in N and a DFA M = (Q,Zn, J, qo, ¢n—1) where n = |Q|, let J = |J|, and parse J =

{(QquyﬁUt”t S [1aJ]} OutPUt dTr =1 + J—|—7’l and '(/) = (¢17¢2a¢3,¢47¢57¢67{1/)7,75’ w&hw&t}te[l,]])
with d. =6 + 3J:

P =, Yo = o, V3 = B + B3,
Yy =T, s = T, Ve = —vo + T Bs,
Yrp =T, Ysp = Ve, +T(B6 + Bror), hor = —vy, + m(Bs + Booy),

where m = (7,7, T0, 71, -, 77, {Va } g e\ {gn_11}) € Z?\,+J+” and v,_1 1= (4.
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. di > dy, where di, = 5+ 2] and dy = 2.
2. Each of {0, ¢1, p2, #3, P4, 05,0, {P5.ks D6,k } ke, } 18 a linear combination of monomials a, d;, 8;5;.
3. ¢o = a+ Bi¢1 + Padz, ¢1 = 01. None of {¢2, d3, ¢4, ¢5,0, {5k, P6.k ke[, } contains o or B14;.

— CiperParam:
1. Each of {41, 2,3, %4, Vs, V6, {¥7.t, ¥s,t, Yot fre, s} is a linear combination of monomials 7, ;, 73,
ﬂiﬁj.
2. Yy =, hy = P
— DecPair: When M accepts w = (ug,...,u;), we have that there is a sequence of states pg, p1,...,0 € Q

such that py = qo, for ¥ = 1 to | we have (pg_1,pr,ux) € J, and p; € F. Let (qztk,qytk,atk) =
(Pk—1, P, ur). Therefore, we have the following linear combination of the ¢;¢; terms:

P13 + P34 — Paths + ¢5006 + Z (=96,kU7 1 + D5, k—1"8,1, + P56%0,1,)

ke[1,]]
=01(B1m + B37) + (—F361 + B1&)T — &oBsmo + Eo(—vo + mofBs) + (§ovo — Eivn—1)
=01601m + Ba&iT — §BaT
261(5171'.

Note that for any k € [1,1] we have

— 96,kY7,t, + P5k—1Vs 1, + P5.8Y0,1),
= — (&k—1(Bs + Bruk) + &k(Bs + Bour)) Ty, + Ek—1(Va,, + e, (Bs + Brow,)) + Eu(—vy,, + 7, (Bs + Boo,))

:gk—lyztk - gkl/ytk

and for any k € [1,l — 1] we have Yy, = Tty Note that ¢z, = po = ¢qo implies z;;, = 0 and
Qoy, =PI = Gn—1 implies z;, = n — 1. Thus, we have

D (~6rthra, + G5 k-1Us + b5.kUor,) = ey, — Gy, = oMo — EiVn1.

ke[1,]]
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[6-312 Security Analysis of the Resulting Augmented ABE
As shown in Sec. and Fig. [2| here we only need to (1) state the security of the underlying conventional
non-traceable ABE scheme and (2) prove the Lemma

(1) The Section 8.2 of [2] shows that their ABE scheme corresponding to the above Pair Encoding Scheme
is a fully secure ABE scheme with Ciphertexts Associated with DFAs.

(2) The Lemma (1] instantiation here is: if the Modified (n,J)-EDHE2-Dual assumption holds, then for
j < m, no PPT adversary can selectively distinguish between an encryption to (i,j) and (i, + 1) in Gamel,
with non-negligible advantage, provided that the size of the challenge transition set is < J.

The Modified (n,J)-EDHE2-Dual Assumption is a special case of the Modified (n,m)-EDHE2-Dual
Assumption, which we introduce by modifying the (n,m)-EDHE2-Dual Assumption in [2, Definition 9], i.e.,
giving the adversary one more element g“n_lbc/ #.In Appendix we prove that Modified (n, m)-EDHE2-Dual
Assumption holds in the generic group.

Definition 7. The Modified (n, m)-EDHE2-Dual Assumption Given a group generator G, let (N =

R R R R R
p1p2p3, G,Gr,e) «— G(A), g «— Gy, g2 «— Gy, g3 <— Gy, a,b,¢,2,d1,...,dy <— Zn. Suppose that
an adversary is given

D= ((N7GaGTve>7 g7ga’gb7gb/z’ga"71bc/z7 92, 93,

42 aib/d; d; a'dj/d? bd; /d, /4% a'd;/d®
vi€[1,n]7 7,3 €[1,m],j#5" ga‘/ Jaga / 797,99 il J/vga i/ Jlaga/ 759 il iy
i bed;

ViE[O,n—l], JE[1,m)] gz@_;;dg:’ “,
Vielon), jelt,m] 9% %

)
i g2 ibed® /db
Viell,2n—1], 4,5’ €[1,m].j#5’ ga‘de’/dj@ga bed;/dj
ibe/d;
vie[l,Qn—l],i;ﬁn, JE[1,m)] ga e/ 7,
7 2 17,2 i . 6 3 6 (3 5 2 17.2 5
Viell,2n—1], jjrelt,m] 9" e/di gr b edi/dir g0 dej/df/aga ¢4 g dej/dj’7ga bed;/d; )

and a target element T' € G, . The assumption states that it is hard for any polynomial time adversary to

distinguish whether T = g* <% or T L Gy, -

The proof of the above Lemma [I] instantiation is given in Appendix [E]

6.4 Large Universe CP-ABE on Prime Order Groups

Rouselakis and Waters [31] proposed a large universe CP-ABE scheme which is on prime order groups and
consequently more efficient than those on composite order groups. Here we denote it by E,f#‘Up. In Z&%Up
the predicate I" is described by LSSS. Below we review Z,f#Up in terms of Pair Encoding Scheme. Note that

we change the variable names in E,Z"TLU" to better suit our template definitions.

[6.4.1 The Pair Encoding Scheme
E,i#‘Up satisfies our non-traceable ABE template in Sec. with the following Pair Encoding Scheme.

SysParam. Take as input I' : X x Y — {0,1}, where the key tag (here is the attribute set) space is
X ={X | X CZ,} and the ciphertext tag space is Y = {LSSS (4, p) | 4 is a matrix over Z, and p maps
each row of A to an attribute in Z, (p does not need to be injective) }, output d = 4 and dy = 1. Denote

B=(B,...,Ba).
KeyParam. Take in p and an attribute set S C Z,. Output ds = 1 + |S| and ¢ = (¢o, 1, {Pz.2, P23} zes)
with dy = 1+ 2|9]:
0=« + ﬂl(sh ¢1 - 517 {(bx,Q - em; ¢:c,3 - (62.% + 63)01 - 6461}3065,

where § = (01, {0 }zes) € Z;HS‘.
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CiperParam. Take in p and a ciphertext policy (A4, p) € Y, where A is an [ x n matrix over Z,, and p : [1,1] —
Z, maps each row of A to an attribute in Z,. Output d =l+n —1 and ¥ = (Y1, {¥r,1, V2, &3} ken)
with d. = 1 + 3I:

Y1=m, {Yr1=D51(Ak u)+ Balk, V2= —(Bap(k) + B3)k:  Yr3 = Ektren,
where m = (m,ug, ..., Un,&1,...,&) € Zé"’” and w = (u; = T, ug, ..., Uy).
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:
— KeyParam:
1. dy > do, where dj, = 1+ 2|S| and dy = 1.
2. Each of {¢o, ¢1,{¢2,2, $2,3}zecs} is a linear combination of monomials «, d;,0;/3;.
3. ¢o = a+ f1¢1, o1 = 01. None of {¢; 2, ¢y 3}zes contains a or 161. Note that dy = 1.

— CiperParam:
1. Each of {11, {¢x,1,¥r.2, %k 3}kep} is a linear combination of monomials 7, m;, 73;, 7 5;.
2. ¢ = m. Note that dy = 1, thus there is no requirement on v ; for d > 2.
— DecPair: When S satisfies (4, p), let I = {k € [l]|p(k) € S}, we have reconstruction coeflicients {wy }rer
such that Zke ;wi(Ag - u) = u; = m. Therefore, we have the following linear combination of the ¢;v;
terms:

> wk(@1r1 + Goiry 2k + o) 3%k3) = 0181 Y wi((Ag - w)) = Bidy.

kel kel
[6.412 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. |2| here we only need to (1) state the security of the underlying conventional
non-traceable ABE scheme and (2) prove the Lemma

(1) The Section 4 of [31] shows that their CP-ABE scheme corresponding to the above Pair Encoding
Scheme is a selectively secure CP-ABE scheme with large universe.

(2) The Lemma |1] instantiation here is: if the Extended Source Group q-parallel BDHE Assumption [28]
holds, then for j < m, no PPT adversary can selectively distinguish between an encryption to (i,7) and
(i,j + 1) in Game,AH with non-negligible advantage, provided that the challenge LSSS matriz’s size | x n
satisfies I,n < q.

The proof of the above Lemma [I] instantiation is given in Appendix [F]

6.5 More Instantiations

Besides the instantiations above, some other existing ABE schemes also satisfy our ABE template, such as
the ones below, which we omit the details here.

The Fully Secure ABE with Keys associated with Regular Languages in [T, Sec. 5.2], with dy = 2.
The Fully Secure CP-ABE in [2, Scheme 11], with dg = 1.

The Fully Secure CP-ABE with large universe in [2, Scheme 13], with dy = 1.

The Fully Secure CP-ABE Scheme in [22, Sec. 2], with dy = 1.

The Fully Secure CP-ABE Scheme in [23], with dp = 2.

Crl o=

7 Conclusion

In this work, we proposed a generic framework that can transform conventional (non-traceable) ABE schemes
to their traceable counterparts, which remain the appealing properties of the original conventional (non-
traceable) ABE and achieve additional fully collusion-resistant blackbox traceability at the cost of sublinear
overhead. In particular, we proposed a conventional (non-traceable) ABE template, and proposed a generic
transformation from the ABE template to Augmented ABE which implies Traceable ABE. This generic
framework implies that any ABE schemes satisfying our ABE template can be transformed to a Traceable
ABE in a generic manner. And we showed that some existing appealing ABE schemes do satisfy our ABE
template. We proved the security of our transformation framework in the standard model.
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A Correctness

Correctness. Suppose that the message is M’ and the encryption index is (4, j). For i > i we have

Ti;Cj TG d Q5 TS; (ViU i
(Ko, Qi) - (K, Q) _ elgroteighm I, g?a0a®0), g tvive))e(Z), ")

(0 Qun) Ty oK Q) (g7 (g )7 0o 20 (g )7) - T (g8 ), (gha) 7o)
e(griCjJrai’g‘rsi(vi-vc))

— e(g, (gP)m)

If i > 1A j > j: we have

es(R;, C5)  e3(GFHVigwi) 1 1

es(RiCy)  ea(GEP HI™ g ) eqlgrom, g efg, gy

If i > i A j < j: note that for i > i, we have (v; - x3) = 0 (since v; € span{x1,X2}), then we have

e3(R;, Cj) e3(G7*, g%7) 1 1

63(Ri, Cj) 63(Gfivi,H;(vc+qu3) . gﬁwj) eg(g’l‘iSi’Ui7ngT(vc+N_jX3)) B e(g’ g)msl'c]"r(m‘vc) .
If i =i A j < j: note that for i = 7, we have that (v, - x3) # 0 happens with overwhelming probability (since
v; is randomly chosen from Z3;), then we have

ea(R;, C}) es(G™ g™ L !

5(RisCy)  eg(Ge, IO grany)  eglgriomms, g oetix)) — efg, g)resierm(wme s (o))

Note that Dp = ¢(KE, P) = e(g,g)"sE“pT = e(g,9)?*™. Thus from the values of T;, Dp and Dy, for

M = T;/(Dp - D;) we have that: (1) if (i > i)V (i =i Aj > j), then M = M’; (2) if i =i A j < j, then
M = M'-e(g,g)Tsimiciti(vixa); (3) if < 4, then M has no relation with M’

B Generic Security of the Assumptions

As the underlying assumptions in this paper are modified versions of the assumptions in [2], in this section
we prove the generic security of these assumptions using the proof framework of [2].

Theorem 6. The Modified (n,m)-EDHE2-Dual assumption is secure in the generic group model.

Proof. The Modified (n, m)-EDHE2-Dual assumption could be considered as (M,Y)-EDHE assumption [2]
Definition 11] where the matrix M and the vector Y are depicted in Table [2| and where we use variables
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Type Terms Range a b ¢ di do dn 2
. J 0 0 0 0 0 0 0
9 4 1 0 0 0 0 0 0
3 o 0 1 0 0 0 0 o0
4 pOE 0 1 0 0 0 0 -1
4t ga”*lbc/z n—1 1 1 0 0 0 -1
5 gaic i€0,n—1] 7 0 1 0 0 0 0
6 g% jel,m] 0 0 O laj 0
T ¢ ielLmljeLm) i 00 =t ’
8 ge /s ie1,n],j € [1,m] i 0 0 —6a; 0
0 ¢Mh o icLnljeLm] i 10 Lo 0
10 gafdf/d?f i€(l,n],j,5 €l,m],j#J i 0 0 laj, —2a; 0
1 g e[l g e Lmlj# S i 00 1a;, —Go; 0
12 " e (lnl, 4,5 € [1,m],j # 5 i 10 laj, ~1ay 0
13 gaibcdj ie0,n—1],j€[1,m] i 1 1 la; 0
14 g ielon) g€ flm] ¢ 11 Sas )
15 ga'lbcdj/dﬁ, i€, 2n—1],5,5 €[L,m],j#5 i 1 1 laj, —2a; 0
16 g ie o154 € Lml A @ 11 5a;, ~6aj 0
17 g ieL2n—1]i#£n,j€[l,m] i1 ~la; 0
18 ¢vh e [,2n—1],5€[1,m] i 0 1 —2a; 0
19 gl e, 20— 1],5 € [1,m] i 01 —6o; 0
20 g/ e (1,20 - 1],4,5 € [1,m] i o2 1 laj, ~1ay 0
21 "l e 1,20~ 1],4,5 € [L,m] io2 1 5e;, —laj 0
99 gaibcd]‘/d?/ i€ [1,2n — 1]7]‘7]4 € [1,m] i 1 1 laj, —6a; 0
23 e/ e 1,20 — 1],4,5 € [L,m] i 11 5a;, ~2ay 0
Target
N a"cz n 0 1 0 0 0 1

Table 2. The matrix representation of the Modified (n, m)-EDHE2-Dual assumption
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a,b,c,dy,...,dm,z. The first requirement holds since n,m = O(poly(\)). We now prove the second require-
ment. We denote by v, ; ; the row of type x with specified i, j in the range if there is any for that type. We
also denote by S, the set of all row indexes of type x ranged in its specified condition.

We first observe that 2v, contains 2 in the column z, but for any v, w, v, 4+ v,, contains at most 0 in the
z column, hence 2v, # v, + v,, for any v, w. It remains to prove that v, + v, # v, + v, for any u,v,w. We
observer that v, +v,, for v ¢ {4,4%} contains 1 in the column z. Hence by the same reason, v, + v, # v, + vy,
for all u ¢ {4,47},v,w. It remains to prove that v, + vy = (n,1,1,0,...,0) # v, + vy, for all v,w and
Vi +vgr = (2n—1,1,2,0,...,0) # v, + vy, for all v, w. By the proof of the (n, m)-EDHE2-Dual assumption
[2L Lemma 46], v, + v4 # v, + vy, for all v,w such that v,w ¢ {4%}. We observe that v, + v,, for v € {4%}
or w € {47} contains at most —1 in the z column. Hence v, + v4 # v, + vy, for all v, w. Now it remains to
prove that v, + vy = (2n —1,1,2,0,...,0) # v, + v, for all v, w. For a vector X and column ¢, we denote
[X], the entry in X at gq. We first consider the following five cases.

—ve{4,4T}orwe {4,47}: [vy + V). < —1 but [vi + vg+], = 0.
-V E Sgo U S or w € SQO U Sa1: [VU +Vu;]b > 2 but [V* +V4+]b =1.
— v € SgUS11 US16US1g or w € Sg U S11 U S16 U Sig: [VU + Vw]dj < —1 for some J but [V* + V4+]dj =0
for all j. This is since [v,]4, = —6 for some j and [vy]q, <5 for all j.
— v € Saz or w € Saz: [Vy +Vyla; # 0 for some j but [v. +vy+]q; = 0 for all j. This is due to the following.
WLOG, we assume v € Sa3 (and w can be any) and write v = (23,1, j,j'). We further categorize as:
o If j =j', [Vola, = 3. But for all j, [vy]a;, # —3.
o Ifj# j/’ ([V'U]dj7 [Vv}dj/) = (5’ _2)' But for all jaj/7 ([Vw]dj’ [Vw]dj/) 7é (_5’2)'
— v e Sy orw e S1y: WLOG, we assume v € S14. We further categorize as:
o w € Soo: [Vy + Voulp = 2 but [vs + vyt ]p = 1.
o w ¢ Syt [Vy 4+ Vyla; # 0 for some j but [vi + vy+]q;, = 0 for all j. This is since [v,]q; = 5 for some j
and [vy]a; # —5 for all j.

From now, we can assume v, w ¢ {4,4%} U Sg U S11 US14 U S16 U S19 U Sa9 U Sa1 U Sz3. We then consider the
following case:

— v € S7US10U S15 U S8 U Sy or w € S7 U S19 U S5 U S18 U Soa: [VU + Vw]dj < —1 for some J but
[V« + Vvat]a;, = 0 for all j. This is since [v,]q; < —2 for some j and [vy]q; < 1 for all j.

From now, we can assume also v, w ¢ S7 U S19 U S15 U S1s U Saa. We further categorize as:

v ¢ S5 U S13 U S17 and w ¢ S5 U S13 U Si7: [VU -i-Vw}C =0 but [V* +V4+]C = 2.

— v € S5US13US17 and w € S5 U S13 U S17: we further categorize as:
e vE S5 and w € Ss: [y + Vylp =0 but [vi + vyt = 1.
e v € S5 and w e S13US17: [Vy + Vla, # 0 for some j but [v, + vy+]q, = 0 for all j.
o v & 53U 7 and w € Ss: [y + Vyla; # 0 for some j but [v, + vyt ]q; = 0 for all j.
e v € Si3US17 and w € Si3U Sy7: [Vu + Vw]b =2 but [V,,< +V4+}b =1.

v € S5 US13U S17 and w ¢ S5 U S13 U Sq7: [VU -l—Vw}C =1 but [V,,< +V4+]C = 2.

- v ¢ S5 U S13US17 and w € S5 U S13 U Sy7: [VU + Vw}c =1 but [V* + V4+]C = 2.

This concludes all cases.
Theorem 7. The Modified (n,t)-EDHES3 assumption is secure in the generic group model.

Proof. The Modified (n,t)-EDHE3 assumption could be considered as (M,Y)-EDHE assumption [2 Def-
inition 11] where the matrix M and the vector Y are depicted in Table 3] and where we use variables
a,b,c,dy,...,ds, z. The first requirement holds since n,t = O(poly()\)). We now prove the second require-
ment. We denote by v, ; ; the row of type x with specified 7, j in the range if there is any for that type. We
also denote by S, the set of all row indexes of type x ranged in its specified condition.

We first observe that 2v, contains 2 in the column z, but for any v,w, v, + v, contains at most 0
in the z column, hence 2v, # v, + v,, for any v,w. It remains to prove that v, + v, # v, + v,, for any
u, v, w. We observer that v, + v, for u ¢ {4,417} contains 1 in the column z. Hence by the same reason,
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Type Terms Range a c d1 ds d z
1 g 0 0 0 0 0 0
2 g° 1 0 0 0 0 0
3 g° 0 1 0 0 0 0
4 g°/* 0 1 0 0 0 -1
4t g el* n 1 0 0 0 -1
5 gh j et 0 0 laj 0
6 g5 ieLn+1]je 1,1 i 0 T 0
T Y el €Lt iAF i 0 laj, —2a; 0
8 atedi/dyr 5 it e [1,t],5 # 4’ n 1 lej, —laj 0
9 g edi ie[1,2n],j €11 i1 la; 0
10 gv /b iel,2n)i£n+1,5€e[1,t] i 1 —laq; 0
11 gL el € L £F i 1 laj, —2aj 0
12 g¥ U/ e [n+1,2n), 4,5 € [1,1 i 2 sy — g 0
13 g n 0 0 0 - 0 0
Target
% go" = nt1 0 0 0 - 0 1

Table 3. The matrix representation of the Modified (n,¢)-EDHE3 assumption

Vi +Vy £ Vy + vy, for all u ¢ {4,47}, v, w. It remains to prove that v, +vy = (n,1,0,...,0) # v, +v,, for all
vy,wand v, +vy+ = (2n+1,1,0,...,0) # v, + vy, for all v, w. By the proof of the (n,t)-EDHE3 assumption
[2l Lemma 47], vi + v4 # v, + vy, for all v, w such that v,w ¢ {47 }. We observe that v, + v,, for v € {47}
or w € {47} contains at most —1 in the z column. Hence v, + v4 # v, + v, for all v,w. Now it remains to
prove that v, + v+ = (2n+1,1,0,...,0) # v, + vy, for all v,w. For a vector X and column ¢, we denote
[X]q the entry in X at g. We first consider the following five cases.

—ve{4,4T}orwe {4,47}: [vy + V], < —1 but [vi + vy+], = 0.

— v € 8US7USI1 or w e SgUS7U St [Vy + Vlg, < —1 for some j but [v, +vy+]q; = 0 for all j. This is
since [vy]q; = —2 for some j and [v,]q; <1 for all j.

— v € Syp or w € S1a: [Vy + Ve > 2 but [vi + vyt]. = 1.

From now, we can assume v,w ¢ {4,4%} U Sg U S7 U S11 U S12. We further categorize as:

- v ¢ {3} U Ss U SgU Sip and w ¢ {3} U Ss U Sg U Sip: [Vv +Vw]c =0 but [V* +V4+]c
—v€e{3}USsUSeUS1p and w € {3} USgUSgU S1g: [Vy + Vuw]e = 2 but [vi + vat]e
- v € {3}USsUSyUS1p and w ¢ {3} USg U Sy U Syg: we further categorize as:

e v e {3} and w € {2,5,13}: [vy + Viyla < 1 but [V + vyt]e =20+ 1.

e v SgUSyUSipand w € {2,13}: vy + vy la; # 0 for some j but [v. +vy+]q, = 0 for all j.

e v € SgUSygUSip and w = 5: [vy + Vyle < 21 but [vy + vy+]e = 20+ 1.
- v ¢ {3} USsUSyUSjp and w € {3} USg U Sy U Sjp: this is the same as the previous case for “v €

{3} USg U Sg U S1g and w ¢ {3} U Sg U Sy U S19” by exchanging v, w.

=1
=1

This concludes all cases.

C Proof of the Lemma |1] for the Fully Secure Unbounded KP-ABE with Large
Universe

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.
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C.1 The Resulting Augmented KP-ABE

Setupp(\, I, K = m?) — (PP,MSK). Run (N, p1,p2,p3,G,Gr,e) < G(N). Pick generators g € G,,, X3 €
Gps- Set d = 6,dy = 2. Pick random 8 = (f1,..., ) € Z%. Pick random {a;, i, 2 € ZN}icim)s {¢; €
ZN }je[m)- The public parameter is

PP = ( (N,G,GT,G),g,h = (hl = gﬁlv"'7h6 :gIBG)7X3a
{Ei=e(g,9)", Gi=g"", Zi=9"}Yicpm)» {H;=9%}jem) )-

The master secret key is MSK = (a1, ..., Qm, 71, T, ClyeenyCm)-
A counter ctr = 0 is implicitly included in MSK.

KeyGen, (PP, MSK, (4, p)) — SK(i j),(a,p)- Set ctr = ctr + 1 and then compute the corresponding index
in the form of (i,5) where 1 < 4,5 < m and (i — 1) *m + j = ctr. Let I x n be the size of A. Pick
random & = (51, 52,51, . ,fl,u2, . ,Un) € Zl[\-}-n+17 R = (RQ, R, Ro, {R37k, R4,k7R5,k}ke[l]) S ngm,
and Ry € Gp,. Implicitly setting w = (uy = B301,uz, ..., uy), output a secret key SK(; ;) (a,,) as

SK(i ), a0 = ( (i,), (4, p),
Ko = grictaigh®gh® Ry, Ky =g"Ri, Ky=g"- Ry,
{Ksp =g g% Ry y, Kyp = g% Rap, Ksi = (9%¢%" %) Ry 1 Ve,
Kj = Z"Ry).

Note that K35 = gAk‘“gﬂ‘*g’ng,k can be computed as K3 = (gBS)AkJ(SlgE?:z Akyt“tg/ﬂgkR?,,k, where
A = (AkJ, Akyg,;.;, Akm) is the k-th row of A.

Encrypt, (PP, M, S, (i,7)) — CTs.
1. Upon input the attribute set S C Zy, pick random 7 = (7, T, {7, }ses) € Z?\,ﬂsl. Set

P = 97;7 P, = gﬁ2ﬂ7 ) Py = gﬁlﬂ'gﬁSﬂ"
Py=g", {P5.= gﬁ4ﬂ'(gﬁ59561)ﬂ'm’ Psr = g™ }res-

2. Pick random kK, 7, S1,...,8m, t1,---stm € ZN, Ve, Wi,..., Wy € Z?\%
Pick random ry, 7y, 7, € Zn, and set x1 = (74, 0,72), X2 = (0,74, 72), X3 = X1 XX2 = (—TyTz, =TTz, FaTy)-
Pick random v; € Z3; Vi € {1,...,i}, wv; € span{x1,x2} Vi€ {i+1,...,m}.
For each row ¢ € [m]:
— if ¢ < 4: randomly choose 3; € Zy, and set

Ri=g", Rj=g"", Qi=g% Qi1=(¢")"Z(¢")", Q2= (¢")", Qi=4", Ti=E".
— if § > i set

R, = Gf‘l’vq7 R; — G;@Si’vi, Qi _ gTSi(vi‘vc)7 Qi,l — (gﬁl)TSi(’Ui"Uc)Zfi (gﬁl )7r, Qi’Q _ (gﬂg)rsi(vi~vc)7

Q=g Ti=M- B,

For each column j € [m]:
— if j < j: randomly choose y; € Z,, and set C; = H;(v°+“jX3) g, Clh= g™
—if j > jiset C; = Hjmc g, Cl = g™,
3. Output the ciphertext CTs as CTs = (S, (P1, P2, P3, Py, {Ps 2, Ps 2 }ze5), (Ri, R}, Qi, Qin, Qi2, Q) T7) 72y,
(Cja C;);n:1>
DecryptA(PP7CTS,SK(iVj)y(A’p)) — M or 1. Parse CTS to CTS = <S7 (Pl,P27P3,P4,{P57$,P6}1}$es),
(Ria R;,7 Q'L7 Qi,lv Qi,Qa Q;7 T’i)?;h (Cj7 C_I]);n:1> and SK(i,j),(A,p) to SK(i,j),(A,p) = ((7’7])7 (Aa p)v (K07 K17 K27
{ K31, Kai K5 i} ey K§)- Suppose S satisfies (4, p) (if S does not satisfies (A, p), output L).
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1. Compute constants {wk},x)es such that 3, cqwpAr = (1,0,...,0). Compute

e(K3k, Py) - e(Ks k, P pk)) o
e(Ka ks Ps p(k))

Dp +e¢ K17P3 / H
p(k)eS

2. Compute

e(Ko, Qi) - e(Kp, @;)  es(R;, CF)
e(K1,Qin) - e(K2,Qi2) e3(R;,Cj)’

3. Computes M <« T;/(Dp - D) as the output message.

D](—

C.2 Proof of Lemma Il

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve a Modified (1,¢)-EDHE3 problem instance in a
subgroup as follows. B is given

D = ((N,G,Gr,e), g,9% g% g°%,9°/* (for g°*"/* with n = 1), go, gs,

Vje[q] g ]’ gacd ga 2ed; gac/d , a/dz7 z/Ul27
d;/d>? d;/dj d; /d?, 2ed; /d?,
Vj7j/e[q] st j£j g:2:2/d_f/’dg/ac /d; , gac 3/ d; ’ga cdj /d; ,
Vijel 9% YY)
and T, where (N = p1paps3, G,Gr,€) £ G, g £ Gy, 92 £ Gy, 93 £ Gps, a,¢,2,d1, ..., dg £ Zn,

and T is either equal to 9“22 or is a random element from G,,. B’s goal is to determine 1" = g“zz or T is a

random element from G,, .
Init. A gives B the challenge attribute set S* = {aj,...,a}.} C Zy, where |S*| =1* <q.
Setup. B randomly chooses {a; € Zn}icim)s {76, 2 € ZN}icpmp(a}s ™5 % € Zn, {¢; € Zn}jepm), and
B1, B2, 8%, B4, B, Bs € Zn. B gives A the public parameter PP:
<ga hl = (gll)ﬁi7 h2 = 9527 h3 = (ga)ﬁéa h4 = (ga)ﬂév

hs = g% - (TT (/*) =) - ( T] 9*/*). he = g% - ( T] 9*/%).
tell*] tell*] te(l*]

{E —e(g g) }ze[m]
{(Gi=g", Zi=(9")V Viepngy (Hi = (07 Y jepmngy Gi= (") Zi=g%, Hj=(g") )

Note that B implicitly chooses 75, 2;(i € [m]\ {i}), ¢;(j € [m]), Bi1, B3, B4, B5,B6 € Zn such that

ar; =r; mod p1, az, = z; mod p1 Vi € [m] \ {i},
ac; = ¢ mod p1, (¢/2)¢; = c¢j mod py Vj € [m]\ {5},

afy = 1 mod p1, afy = B3 mod p1, aBy = B4 mod p1,
B + Z (—aja/d}) + Z(ac)/dt5ﬁ5 mod py,

te(l*] te(l*]

By + > a/d; = B mod p;.

te(l*]

Query Phase. To respond to A’s query for ((7,7), (A, p)), let I x n be the size of A,
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o if (i,5) # (i,j): B picks random & = (01,02,&1,...,&, U2, U,) € Zﬁ"“, R = (Ry, R1, Ra,
{R3k, Ra, Rs k brep)) € Gf’)::‘l, and R} € Gp,. Implicitly setting u = (u1 = B301,us,...,uy), B creates

a secret key SK(; j) (a,p)

gal( c/z)rlc h61h62R0, Z#i]#}
I T R
g™ (g°)" - W WP Ry, iA1= ]
K = 61R1, K2:9 Ra, KO Z(;IR
(K = R0 gTia Aeu & po Ky = g8 Ry K = (hsht™)& Rs g Jrer.

e if (4,5) = (i,7): it implies that A is querying a secret key with the challenge index (i, 7), and (A4, p) is not
satisfied by S*. B first computes a vector @ = (U1, ..., 4,) € Z% that has first entry equal to 1 (i.e. 43 = 1)
and is orthogonal to all of the rows Ay, of A such that p(k) € S* (i.e. Ap-u = 0VEk € [I] s.t. p(k) € S*). Note
that such a vector must exist since S* fails to satisfy (A, p), and it is efficiently computable. B picks random
01,02, {&kTrelt) s.t. p(k)es=s 18k Tkel] s.t. p(k)gs=> Uy - -+ Uy, € ZN, R = (Ro, R1, Ra, {R3 &, Rak, Rk }repy) €
G313, and Ry € Gp,. Let w/ = (0,uh,...,u),) € Z%, B sets the values of 61 € Zy, u € Z¥, {& €
ZN}kE[l] st p(k)gS* by 1mp1101tly setting

5 —ar cs /61 =60y mod p1, u=1u'+ (afs)0a,

&+ (a— Z %)Bérécg(flk )/ (B18) = & mod p Vk € [1] s.t. p(k) & S*.
te[i*] ¢

Note that for a; € S* and p(k) ¢ S* we have p(k) — a; # 0. B creates a secret key SK(; 7) (a,,) as follows:

Ko = g™ h{th? Ry, Ky = g% () "/ % Ry, Ky = g Ra, K = (K1)* R),
o for k € [l] s.t. p(k) € S*,

Ksp = g(A’“'“)hi’“Ra,k _ g(Ak'u/)'f‘aﬂé(sl(Ak"'a)hikRS)k _ g(Ak'u/)hik Rs .,
Kyp=g%Rap, Ksp= (hshp )EkR5 s

o for k € [l] s.t. p(k) ¢ S*,

K3 = g hi* Ry,
_ gy | goBhi—artel /8 (4u)
RSk (gaB)oBiries (A B/ (318D | (gashy~(Rrenn) sriap Bl (e @/ (B0
(ch
_ g(Ak~u’) _ga,ﬁgéi(Akﬂ) ) hi; . (thE[L*] ﬁ)—ﬁéré%(h-ﬁ)/ﬁ{Rg .

/NN

g(Ak-u’) ) (ga)ﬁgé’l(Akﬂ) . hi; . ( H (ga%dt)m) Barici(Ak: u)/B1R
te[l*]

Kyy = gf"'R47k _ gﬁfdr(a—zteu* (k) a* )Byrics (A @)/ (B ,84)R471€

— gEL . (ga)ﬁérécé(Ak-ﬁ)/(ﬁiBQ) . ( H (gacdt)p(k)faf )—5:’3T§C§(Ak‘ﬁ)/(ﬁiﬁi)R47k7
te(l*]
k
Ks i = (h5h£( ))5’“Rs,k
acd ¢/

(@=>"ep# m)ﬁérlcl(Ak'ﬁ)/(ﬁiﬁé)

= (hsh§™)% - (hshg™)™ Rs
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= (hsh§ ™)

acd,y _
=S e =t BhTL L (AT 184
. (gﬂé-&-ﬁép(k) ( H (ga/d p(k)— at ) H gu’c/dt )(a e =, )By ik (Ak )/(ﬂlfﬁ).

tell*] te(l*]

acd ¢!

5,k

_ (h5hg(k))£;“ ) (gﬁé_‘_ﬁép(k))aﬂé%c;(A;«ﬁ)/(ﬁ{ﬁé) ) (gﬁé+ﬁép(k)) (Zt’g[l*] OE a* )ﬂéT;CE(Ak )/ (B184)

acdy

. a/df p(k)—ay aﬂér'c' (Akﬁ)/(ﬁiﬁzx) . a/d? p(k)— (Zt 'e1*] p(k)— a* )5:;T;C;(Ak u)/(ﬁ164)
( I (gerdeyrtr=ad) ( I (gereeyer=ei)

te(l*] tell*]
acd !

( H gac/dt)GB{;?”%C%(AJC"E)/(B{B:;) ( H gac/dt)_(zt/e[l W)BéTiCS(Ak 'u,)/(,8154

te(l*] te(l*]

“Rs 1,

_ (h5hg(k))£’/“ . (ga)(ﬁéJrBéﬂ( NBsrics(An-@)/(B18)) ( H (gacd,/)m) (B5+B6p (k) Byrics (Ax-T) /(81 8))

t'e[l*]

/20

( H (ga2/df)p(k)fa:)Bérécg(Aku (B1B1) . H H a’ed, /d? p((:))%a%)fﬁérécé(fm'ﬁ)/(ﬁiﬁg)

te(l*] tell*] t’'e

2]

| H ga%/dt)ﬂéra'-cmku (B162) H H a®c?d,s /dy ﬁ)—ﬁérécgmk-a)/wm Rs

te(l*] te[l*] ¢/ e[l*]

U3
p(k)—af ror — Y
_ wl . wz . ( H H a cd,,//d p(k)—af/ )*BsTECj(Ak'u)/(ﬁlﬁﬁ

tefl=] ¢/ [l*]\{t}

Wy, for t'#t

p(k)—

. ( H (yz%dddf)ﬁ)*BéT%CE(Ak'ﬁ)/(ﬁif@ i H q° c/dt 63TLCJ( @)/ (B181) Wy RS,k

te(l*] te(l*]

for t'=t

=W,y Uy Ry

Note that B can calculate the values of Ko, K1, K2, Kj, { K3 ¢, K41, K5 1 } k) using the suitable terms of the

assumption.
Challenge. A submits a message M. B randomly chooses

’ _ /o ’ / / ’
Ty 81y vy 85185 Siqls s Smy b1yee s Gt Gy by € Zn,
_ / / 3
Wiy, WG, W, Wy € Zy,

/ !
T, Ty Mazyeeo s Mar €ZN.

B randomly chooses r, 7y, 7, € Zn, and sets x1 = (r5,0,72), x2 = (0,74, 72), X3 = X1 XX2 =

B randomly chooses

v, €ZEVie{l,... i1},
o € span{x1. x2}, v € span{xa},
v; € span{x1, X2} Vi € {i+1,...,m},
vP € span{x1,x2}, v =rv3xs € span{xs}.
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B sets the value of k,7,s;,t;(i € [m]\ {i}) € Zn, ve,v; € Z3;, {w; € Z3 N} ™ € LN, & € Ly, {mgy €
7N }ep#) by implicitly setting
a=rmodpi, azr’ =7 modpy, s;/a=s;modpr,
ti 4+ cfi7 st (v - vl) /2 = t; mod py Vi€ {1,...,i— 1},
ti —apy7'si(vi - v8) /2 4 By si (v - wl) /2 = timod py Vi€ {i+1,...,m},
1 c
vom Lo sun wmor s Sun
% — aciT'vl = w; mod py,
wh — ccjr'vl = wimodpy Vj € {j+1,...,m},

w

' —cr'si(vlvl) =7 modpl, 7'+ cfy7'si(v? - vl) /By = T mod py,
— di 1847 s (v - i) /B3 = mar mod py VE € [I7].

It is worth noticing that v; and v,. are random vectors in Z3; as required, and (v;-v.) = L (v2-v?)+ < (v?-v9),
2 N ) z i c z i c
since x3 is orthogonal to span{x1, X2} and Z3; = span{x1, x2, X3}
B creates a ciphertext (S*, (P1, P, P3, Py, { P52, Ps u}oes+), (Ri, R}, Qi, Qi1, Qi2, Q;, 1)Ly, (Cy,C))jLy)
as follows:
1. P = g?(j(]c“'s?(”i"”zh Py=(P)%, Py=hi'hf, Py=g" (g°) 7 iiv/ms,
for t € [I*],
Py = hi(hshit )™

hir’+cﬂi'r’s’(v vq)/Bs (h hat) dtﬁl iT/S/(U vq)/B3

— hf{ ) (gaﬁé)cﬁif'sfz(v;-vZ)/ﬁa

- (hshgt )™ - (gﬁggﬂga: T (g2 (T o) )

t'efl*] te[l*]

—di 187" s (v] )/ By

= B (gee) BB WU By (g )T (i) P Pean) BT () B

( H (gadt/df,)at ) 5154/17'/5/(” ) /ﬂs. H gacdt/d ﬁiﬁéT/S%(U?'”Z)/ﬂé

t'efl*]
= hy .(QGC)ﬂéﬂiT/S%(vg‘”Z)/Bé.(hshgf) ai . (g z)*(ﬁﬁﬁéaZ‘)BlBiT'S'( vd)/B5
~—
oy A 2]

. ( H (gadt/df,)a;‘fa;‘,)*5iﬁfnls§(vg-vg)/5é . ((gadt/d ) 7at) ﬁiﬂifr’sé(vg-vg)/ﬁé

te[l*]\{t} 1, for t/=t
U3, for t/#t
. ( H gacdt/dt/)_515217'IS%(”?’”Z)/5§ . (gacdt/dt)_ﬁiﬁé"'/sé(vg'”g)/ﬁé

te[l*\{t} A1, for t'—t

Yy, for t'#t

Zwl'%'%'@;,

— BB STV /B Ly (diy =888 08)/ )

Pog: =g =g (g

Note that the values of ¥, ..., ¥, can be calculated using the suitable terms of the assumption.

2. For each i € [m]:
— if 4 <4: it randomly chooses 3; € Z,, then sets

R;=g", Ri=(¢")", Qi=g¢" Qirx=hy"Z'h,
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Qiz = (Q)™, Q)= gli(ge)msWivd/= T, = B,
— if i = 4: it sets

R; = gl (g 2) vl Ry = () (g ), Q= g7 T ()T e,
LTI CLE T p—" ) )
Qin=hy U ZERT D Qi = (Q0)2, QL =gY, Ty =M-e(g™, Q).
— if i > 1: it sets

R; =g, R = (g%, Q; = (g%)7 5o, Qi1 = Zfifff,7
Qi = (Qi)%, Q) = gli(g*) A1 s wevd) = (go)ir'siwivd/= T = M - e(g™, Q).

3. For each j € [m]:
— if j < j: it randomly chooses /J; € Zy and implicitly sets the value of u; such that (GC)71M;V3 —v3 =
1y mod py, then sets C; = (g(4)/=)557E - el 15¥1 - (goyws, O = g,
—if j =it sets Cj =T ¥ - (g)®5, C) = g"i - (g%) "7 .

G > it sets Cj = (9190557 (g, ) =g (g) 9T

ItT = ga2z, then the ciphertext is a well-formed encryption to the index (i, j). If T is randomly chosen, say
T = g" for some random r € Z,,, the ciphertext is a well-formed encryption to the index (4,7 + 1) with
implicitly setting y; such that (-7 — 1)vz = p; mod py.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, private keys and challenge ciphertext are the same as that in
the real scheme. B’s advantage in the Modified (1, ¢)-EDHE3 game will be exactly equal to A’s advantage
in the selective index-hiding game.

D Proof of the Lemma [1] for the Fully Secure KP-ABE with Short Ciphertexts

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

D.1 The Resulting Augmented KP-ABE

Setupa(A\, U, N = m? T) — (PP,MSK). Run G()) to get (N,p1,p2,p3, G,Gr,e). Pick generators g € G,
X3 € Gp,. Set d =T + 6,dy = 2. Pick random 3 = (B1,...,04,00,01,...,0741) € Z%JFG. Pick random
{as, riy 2i € Ln}icim), {¢j € ZN}jepm)- The public parameter is

PP = ( (N,G7GT,€)7g,h1 :gﬁla"'7h4 29647]00 :gaomfl :.9917"'7fT+1 :geT+17 X37
{E’L = 6(979)0411, G; :gria Z; :gZi}iG[m]a {H] :ng}’jG[m] )

The master secret key is MSK = (al, ey Qny Tlyee oy Ty Clyevny cm).
A counter ctr = 0 is implicitly included in MSK.

KeyGen, (PP, MSK, (4, p)) — SK(; j),(a,p)- Set ctr = ctr + 1 and then compute the corresponding index in
the form of (4,7) where 1 <i4,j <m and (i — 1) *xm + j = ctr. Let [ x n be the size of A. Pick random

8 = (61,02,&1, .., &uz, ..y un) € ZN™ R = (Ro, R, Ra, {Rs 5, Raie, Rs 0, { Rkt }eeir) rey)) €

Gg:(3+T)l, and R € G,,. Implicitly setting w = (uy = (301, u2, ..., uy,), output a secret key SK; ;) (a,p)

as

SK(i,j), (a0 = ( (i,9): (4, p),
Ko =g b hi? Ry, Ki=g" Ry, Kz=g" Ry, Kf=Z]Rp,
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(K3 = g™ “h§" Ry o, Kap = g% Ray,
Kspo= 18, {Kspi = (froafi 7™ )S* R it bee ) Frct) -

Note that K3 = gAr-gBate R3 j can be computed as
Ky = (g%)A%1% gXica Anve gBase Ry . = py 1% g3l Anewe pS Ry o where Ay, = (Ag1, Ak, .-, Ajn)
is the k-th row of_A_.
Encrypta (PP, M, S, (i,7)) = CTs.
1. Upon input the attribute set S C Zy, pick random 7 = (7,7, 71) € Z3;. Let ¢; be the coefficient of 2*
in p(2) == [[,cq(z — ). Set
Plzgﬂv P2:h’72rv P3:h71'rh§|"
Py=g", Ps=hi(fo -, )", Pe=g".

2. Pick random

Ky Ty S1y--+38my tiy... tm € Zn,
Ve, Wi,y..., Wy, € Z?’V.
Pick random Tay Ty, Tz € ZN7 and set X1 = (’I“I,OJ”Z), X2 = (Oaryvrz)a X3 = X1XX2 = (_Tyrza —TzTz, Tasry)'
Pick random
v, €73 Vi€ {l,...,i},
v; € span{x1,x2} Vi € {i+1,...,m}.
For each row i € [m]:
— if ¢ < i: randomly choose 3; € Z,,, and set
Ri=g", R, =g"", Qi=g", Qi1=(9")"Z(¢")", Qi2=(9™)",
Qi=g", T,=Ej.
— if i > i set
Ri= G, R =G, Q=g v, Qo = (7)o 2 (g,
Qin = (g%)7silvive),
Q; — gti, Ti =M. Ezsi(vi"vc)'
For each column j € [m]:
— if j < j: randomly choose p; € Zy, and set C; = H;(v°+“jX3) g, O = g™,
—ifj>jiset Cj = Hve . giwi, C% = g»i.
3. OutPUt the CipherteXt CTS = <Sa (Pla P27 P37 P47 P5a P6)7 (R’La R;v Qi7 Qi,la Qi,2a Q{u Ti):’lla (0_77 C;)T:l)
DeCI’yp'EA(PP7 CTs, SK(i,j)7(A7p)) — M or 1. Parse CTS to OTS = <S, (Pl, PQ, Pg, P4, ]357 Pﬁ), (1{17 R;, Qi, Qiﬂ’
Qi2, Q5 Ty, (Cy, Ch)y) and SK; 5y, (a,p) 10 SK(i gy a,p) = ((i,9), (A, p), (Ko, K1, Ko, {K3 1, Ka 1, K5 1.0,
{K57k,t}t€[T]}ke[l],K6). Suppose S satisfies (A4, p) (if S does not satisfies (A, p), output L).

1. Compute constants {wy}yk)es such that > cgwrdr = (1,0,...,0). Let ¢; be the coefficient of 2t
in p(2) := [[,cg(z — 7). Compute

(K3, Pa) - e(Ks 1o [T K5 1 Pe)

DP (—€(K1; PS)/p(:]!;[eS ( €(K47k, P5) )
:e(Kl PS)/ H (e(gAk'uhik7gﬁ) : e((f() H?:O ftcjtil)gkvgﬁ))wk
p(k)es e(ggkth(fO Htho fthtLl)ﬂ)
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:e(Kl, P3)/ H (e(gAk‘uygir))wk _ e(g,g)‘“‘s”e(g,g)“351’?/e(g,g)“351*
p(k)esS

a1617r

=e(g,9)

Note that Dp can be computed using 4 pairing computations, since Hp(k)es (e(K37k,P4))wk can be
compute by B(Hp(k)es K;:’k: Py), and the same applies to two parts for Ps and Ps.
2. Compute
e(KOan) G(K(/)aQ;) 63(R;?C;)
e(K1,Qi1) - e(K2,Qi2) e3(R;,Cj)’

3. Computes M < T;/(Dp - Dy) as the output message.

D[(ﬁ

D.2 Proof of Lemma (1l

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve a Modified (7' + 1,1)-EDHE3 problem instance in
a subgroup as follows. B is given

T+1

D = ((N,G,Gr,e), g,9% 9% g°, ge@ 7 (for gea"/F withn =T + 1), g%, g%,

a'cd

Viepr+y) 9°
Viepr+Lizri2 9%,

7 2
Vie[r+2] 9“_/d ;
a’c? )

Vier+2,2(T+1)] 9

R R R R R
and T, where (N :Tzzrlngpg,G,GT,e) — G, 9 Gy, g2 < Gp,, g3 < Gy, a,¢,2,d <:2ZN, and T
is either equal to g* # or is a random element from G,,. B’s goal is to determine 7' = g * or T' is a

random element from G,, .
Init. A gives B the challenge attribute set S* = {af,...,a}.} C Zy, where |S*| =1* <T.

Setup. B randomly chooses {a; € Zn}icim), {ri, 2 € ZN}iG[mt]\{f}a 5, % € LN, {03 € ZN}jeim), and
b1, B2, B3, 84,605,601, . ..,00 € Zn. Let ¢ be the coefficients of 2* in p(z) = [[,cg- (2 — ), B gives A the
public parameter PP:

aT+1

oT+1\ g/ / oT+1\ g/
(9, hi= (9" )P, ho=g", ha=(g" )%, ha=(g" )4,

T
/T4 41,2 st 2
fO :geoga c/d H(ga /d ) Ct, {ft :getga /d Z“:+11’
t=0

{E7. = e(gag)ai}ie[m]v
r; aT+?t
{Gi=4g", Zi= (g

T+1

)27}l€[m]\{€}a {HJ = (gC/Z)Cj }]G[m]\{3}7 G% = (ga )rz’ ZZ = 9227 H} = (ga)cj' )

Note that B implicitly chooses 75, 2;(i € [m]\ {i}), ¢;(j € [m]), Bi1, B3, B4, B5,B6 € Zn such that

a’rt = r; mod p1, o’ 2] = z; mod py Vi € [m] \ {i},

ac% = ¢; mod py, (c/z)c; =c¢;mod p; Vj € [m] \ {;j},

a1 B} = 1 mod p1, o’ B} = B3 mod p1, o’ !B} = B4 mod py,

T
0 +a’te/d — Zc;‘(at+1/d2) = 0y mod py,
t=0
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vte{l,..., T+1}: 0, +a'/d*> = 6; mod py,

Query Phase. To respond to A’s query for ((4,7), (4, p)), let I X n be the size of A,
o if (i,j5) # (i,j): B picks random & = (d1,02,&1,...,&,U2,... ,up) € Zﬁ"“, R = (Ro,R1, Ro,

{R3.%, Ra ks Rs k.0, { Rs 1, t}teT}ke[l]) € GSH(SJFT) and Rpy € Gy, . Implicitly setting u = (u1 = f301, ug, .., un),
B creates a secret key SK ).(A,p)-

gal( c/z)nc h61h62R0, - 7£ E,j 7&3
Ko = { g (g( GTH1 )/z)r ¢ _h(151thR07 - :{7]‘ 755
9% (g")" - hhy Ro, ci# =],

Ky =g"Ri, Ky=g" Ry, K{=Z]"R,

{K3p = hAk 10N Aet S Ry 1y Kag = g% Ra,
Kspo=f5" {Ksps = (frarf " )gkRs kit }te|T) hel-

e if (i,5) = (4,7): it implies that A is querying a secret key with the challenge index (i, ), and (A, p)
is not satisfied by S*. B first computes a vector @ = (U1,...,U,) € Z) that has first entry equal to 1
(i.e. w3 = 1) and is orthogonal to all of the rows Ay of A such that p(k) € S* (i.e. Ay -4 = 0 Vk €
[] s.it. p(k) € S*). Note that such a vector must exist since S* fails to satisfy (A,p), and it is effi-
ciently computable. B picks random 07, d2, {x b rep) s.t. pkyes=> 1€k hel] s.t. p(k)gs= U, - uy, € Zn, R =
(Ro,RhRQ, {Rs,k,R4,k,R5,k,0, {R5,k,t}t€T}ke[l]) S Gi’;;—l(?ﬁ-T)’ and R6 S Gps Let u' = (O,ué, Ce ,’U/n) S Z%
B sets the values of 01 € Zy, u € Z};, {&x € ZN brel] s.t. p(k)gs+ Dy implicitly setting

—aric;/B] =61 mod p1, uw=u'+ (aTT1BL)6 @

T
€t (oot oS 6 eda ™)t (A @)/ (38 = 6 mod py ¥ € [ 1. p0) ¢ 5
=0
Note that for p(k) ¢ S* we have p(p(k)) # 0. B creates a secret key SK; 7y (4,,) as follows:

a; 1,01 roa\—rick /B 2
Ko = g“ihy'hy? Ry, K1 = ¢*1(¢°)"“//PiRy, Ky = ¢" Ry, K{j = (K1)%

0
o for k € [l] s.t. p(k) € S*,

T+1B3

KS,k: — g(Ak‘u)hikRS’k — g(Ak"u/)+a 01(Ag- u)hfkRS e = (Ak u )hfkRB ks

Ky = g% Rag, Kspo=fo¥, {Kspe= (.ft+1f1_p( ! )% Rs kot ety
o for k € [I] s.t. p(k) ¢ S*,

K3 =g hi* Ry,

= glArw) | ga" B8 —arlc} /5] (Ar-®)
/ ’ ro = 1 al ’ aTHi-t, t 1o - !t
. hik . (gaT+1ﬂ4)aﬁaricj(Ak‘u)/(ﬁlﬁﬂ . (gaT+1ﬂ4)(Z?:0 WG)W)@%TEC}(Ak'u)/(ﬁl@x)RB’k

Q2T +2—t g (k)t

_ g(Ak‘ul) .gaTHﬁé(Si(Ak'ﬁ) . hi;c . (gEtlo W)%T’C’ (Ay-w)/B] Rs

’ T N ror — ’
= g (gn B A S (T] (g e sty ) S B

t=0
Kip=g%Ryp = 95L+(a+m o p(k)tcda”l’t)5&?‘%C§(Ak‘ﬁ)/(ﬂiﬂé)R4’k
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T
= g&k . (g%)Perics (A @)/ (B162) . (H(gaT“-tcd)gggﬁiﬁ) )ﬁérécg(Am)/(ﬁiﬁ@RM,
t=0
Ks 0= f§*Rsxo
! T .
= fSk (g0 ge esd H(ga”l/dz)%?)aﬁéré%(Ak'ﬁ)/(BiBQ)
i=0
T+1 X 1,2 T aTHi=tedp)t\ o s g _ !
. (gO[’)ga tle/d H(ga“r /d )—cf)(zmo W)ﬁSTECE(Ak'“)/(5154)R5 o
i=0

LR (g %) P AW BB (a2 ay el (A (BB (ﬁ( g el B (e B (318)

=0
121

123

>9aﬁéréc§(Ak~a>/<ﬂiﬂz>

&l T4+1—t p(k)t
) (H(ga od) 50tk

U3

T
. ( H(ga2T+2ftc2) pt—z(’(‘]):)) >Bér%c§(Ak.ﬁ)/(,31,8£)

P

vy

. —c¥p(k)t N — Y
. ( H H(gaT+1+2_tc/d)7p(‘p[g§£; )537"263 (AkIU)/(BIB‘L)RS,k,O
t=04=0

7, - (ga”zc/d)ﬂsrfc;(Ak'ﬁ)/(5154) Wy - W3 - Wy

& Tit2—t —eie) gttt (A @) /(B BL)
. (H H (ga C/d)W) 37C5 (Ak 184
t=04€[0,T]\{t}

@y, for it
T ATt gy ZE 5ttt (4, @) ) (8,85)
'(H(ga e/ d) Tl )re " Rs 0
t=0
for i=t
- (gaT+2c/d)B§7'§C§(Ak~ﬁ)/(5{5f;) Ty Wy - Wy - s
A
(" /d)%%w)ﬁgrgcgwﬂ)/(ﬁm;) Rs.0
A1, since YL cip(k)t=p(p(k))
=0 - Wy W3-y -Us - Ry 1.0,
Ks = (ft+1f1_p(k)t)€k Rs 1o vt e [1,T]

_ (ftJrlfl_p(k)t)&;c .(99£+1gat+1/d2 (géiga/dQ)—p(k)t) (aJr p(pl(k)) Z?:o P(k)iCdaT_H_i)BéT%C%(Ak'ﬁ)/(ﬁiﬁi)RE)’k’t
S

s
= Wy - (gl 0P’ g e (ga/fﬁ)—p(kr)aﬁ’érécﬁAk'ﬁ)/(BiBé)

) (g9;+1—0;p(k)tgat+1/d2 (ga/d"‘)—p(k)t) (m Yo p(k)icda”l’i)ﬁérécg(Ak-ﬂ)/(ﬁiﬁi)R

i)
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= W ((g") O g (el o)y B (e B (515

w7

T ARl

. ( H(gcdaT“”" )p(k)") oy Barics (Ak-a)/(B184)

=0

Ug

(gaTJrQ“*ic/d)p(k)i) mﬂérécé (Ax-@)/(B181)

g

=n

Il
o

K2

i i p(k)t’ Lplel T -
: (Z(g"’ﬂz c/dy=p(k) )4p<p<k>>f”3 105 (Ae- )/ (B154) p ot
1=0
= 476 . q)7 . wg

. ( H (gaT+2+”’*c/d)p(k)1)mﬁérgC%(Ak'ﬁ)/(ﬁ;ﬁD . (<gaT+2+"tc/d)p(k)‘)mﬁé%%(ka'ﬁ)/(ﬁiﬁi)

1€[0, T\ {t} for i=t
Wy, for i#t

T ot ¢
. (Z(gaTJrQ*ic/d)—p(k’)i) %Bér%é (Ax-@)/(B181) . ((gaT+270(:/d)—p(k)0) %ﬁé%% (Ax-@)/(B181) Rs 1ot

=t for i=0
Y10, for i#0
=W - Wy -Ug - Wy -Wio- Rs oz

Note that B can calculate the values of Ko, K1, K2, K, { K3 %, Ka,k, K5, 8,0, { K5,k,¢ }te[1) } k) using the suit-
able terms of the assumption.

Challenge. A submits a message M. B randomly chooses

/ / / / / /
T S1yees §51, 87 Sig1s- -+ Smy b1oo s G qu bty g,y € 7Zn,
- / / 3
Wi, W), Wy, Wy, € Ly

/ =/ / /
T Ty Mzseeos Mo € Zn.

B randomly chooses r, 7y, 7, € Zn, and sets x1 = (r5,0,72), x2 = (0,74, 72), X3 = X1 XX2 = (—ryrs, —rgrs, TaTy).
B randomly chooses
v, €L} Vi€ {l,...,i—1},
v? € span{x1,x2}, v € span{xs},
v; € span{x1,x2} Vi € {i+1,...,m},
vg € span{X1, X2}, v = vsxs € span{xs}.

B sets the value of k,7,s;,t;(i € [m]\ {i}) € Zn, ve,v; € Z3;, {w; € Z3 }j L5, m T, € Zy by implicitly
setting

o’ =kmodpr, a’T'27 =7 modpr, si/a’ ! = s; mod py,

ti + B’ s5 (v - vl) /2 =t mod py Vi€ {1,...,i -1},

th—a BT si(vi - vR) /2 4 BT s (v - vd) /2 =ty mod py Vi € {i+1,...,m},

7

c
ve =2 1P + v, v; = vY + —vf,
S Ui

/ [
w; — ac;T v = wj mod py,
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w —cdiT’vl =w; mod py Vi€ {j+1,...,m},

j j
7' —er'si(v? - vl) = T mod p1, 7'+ cfir'si(vd - vl) /By = T mod py,
— dp By’ si(vd - vl) /By = 7 mod py.

It is worth noticing that v; and v, are random vectors in Z3; as required, and (v;-v.) = £ (v?-v2)+<(v?-v?),
since x3 is orthogonal to span{x1, X2} and Z3; = span{x1, x2, X3}
B creates a ciphertext (S*, (Pr, P2, P, Py, Ps, Ps), (Ri, R, Qi,Qi1, Q;, Ti)2y, (Cj, C})TLy) as follows:

’

L Py=g7 (¢°) 70O Py = ()%, Py=hT'hf, Py=g" (g¢)hriivi/ss,

T
Ps =0y (fo[[ )"
t=0

T T
o h/Z "teBiT's) (”g‘”g)/ﬁs . (g%gaT‘Hc/d H at’ +1/d2 H t+1gat+l/d2)c;‘)7" —dByBsT 52(”%'”2)/ﬁ3
t=0
= hf - (g° B, )Cﬁ’f’s’(v%”Z)/ﬁé . ( 6 a™le/d H f+1 —dB| By si(viv) /By

_ hf ) (gaT+1C)ggB;T/sg(ug.vg)/a; ) (geg Hge;HC;)%/—dﬁiﬁar/sé(v%vz)/ﬂé

| (ge" el )R A B s 5

T T
= B (g eS8 (g0 T g%eret) T (g (g heret) AT
t=0
) (gaT+1C/d)fr/ _ (gaﬂlc)_5gggr'sg(vg-vg)/ﬁg
’ T ’ * ~ ’ ’ s q q ’ T+1 ~
900 HgﬂtJrlct )77 . H t+1ct —B1Ba7 85 (vi-vd) /By . (ga c/d)Tr

t=0
Ps=g" = gﬁ’—dﬁiﬁh’S%(v%-vﬂ)/ﬁs
_ gfr’(gd)fﬁiﬁh’%(v%vg)/%.
2. For each i € [m]:
— if 4 < 4: it randomly chooses 3; € Zj, then sets

T+1

Ri=g", R =(g"")", Qi=g¢" Qi1=hiZ'n}
Qiz = (Q)™, Qj=g"(g)"7 Sied/E T = E;Z
— if i =1 it sets
R, = grlslvl( c/z)r%s%v?7 R; _ (gaT+1)r/5/vP (gaT+1c/z)r£s§vg’ Qi = gT’s%(v%’.vf)(96)7’5%(1;?-1)2)’
Qll—hTS(v e )th 71Ta Qi,QZ(Qi)ﬁ27 Q;:gtia E:Me(gaz7Q7,)
—if i >4 it sets
P T+1 PP TH+1 ¢ (ay.. ! ’
R, = g’l‘zS'L'Uz’ R; _ (ga )msﬂu7 Qz _ (ga )7- si(v; vﬁ’)’ Qi,l _ Zf’hir ,
QiZ — (Qi)627 Q; — gt; (gaT+1),giflsi(vi.vf)/z;(gc)ﬁi‘,-’s%(vg-vg)/zé’ j_lt - M - e(gaini)~

3. For each j € [m]:
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— if j < j: it randomly chooses 5 € Zyn and implicitly sets the value of j1; such that ((IT+1C)_1,U;V3 -
Vs = mod p1, then sets Cj = (g(aT+1c)/z)c;-,—’v§ . gc;-,—’p;vg . (gaT+1)wj7 C; = gV,
N ifj _ j it sets Cj — TGT vl (gaTJrl)w’j’ C; _ gwj . (ga)—cj‘r vﬁ'

—if > Jrit sets Cj = (9@ /H)GTVE L (g O = g - (go) STV

If T = ¢g¢" 2, then the ciphertext is a well-formed encryption to the index (i,7). If T is randomly chosen,

say T = g" for some random r € Z,,, the ciphertext is a well-formed encryption to the index (i, j + 1) with
T

implicitly setting p; such that (-, — 1)v3 = p; mod p;.
Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, secret keys and challenge ciphertext are the same as that in
the real scheme. B’s advantage in the Modified (T'+1, 1)-EDHE3 game will be exactly equal to A’s advantage
in the selective index-hiding game.

E Proof of the Lemma [1] for the Fully Secure ABE with Ciphertexts
Associated with DFAs

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

E.1 The Resulting Augmented ABE with Ciphertexts Associated with DFAs

Setupp(\, U, K = m?) — (PP,MSK). Run G(\) to get (N, p1, p2, p3, G, Gr, e). Pick generators g € G,,, X3 €
Gyps- Set d =9,dy = 2. Pick random B = (Bi,...,B9) € Z%. Pick random {a;, r;, 2 € ZN Yiem)s 1c5 €
ZN }je[m)- The public parameter is

PP = ( (N7GvGTae)agvh = (hl = gﬁlv'--7h9 :gﬁg)va)’a
{(EBi=el9,9), Gi=9g"", Zi = 9" }Yicim» {Hj=9}jeim) )-

The master secret key is MSK = (ozl, ey Oy T1ye ooy Ty Clye ety cm).
A counter ctr = 0 is implicitly included in MSK.

KeyGen, (PP, MSK, u € (Zy)*) — SK(; j),u- Set ctr = ctr + 1 and compute the corresponding index in the
form of (i,7) where 1 < i,5 < m and (i — 1) *m + j = ctr. Let [ = |ul, and parse u = (uq,...,u;).
Pick random § = (51, 52,&),51, . ,51) S Z?V—H, R= (Ro, Ry,..., Ry, R570, {R5,k7R6,k}ke[l]) S GS;Q—QZ’ and
Ry € G,,. Output a secret key SK(; ;) , as

SK(i,j),u = ( (ivj)a’uH
Ko =g % n hd2 - Ry, K = g% - Ry, Ky =g Ry,
Ky =h3""h§ - Ry, Ky =h§" - Ry, K50 =g% - Rs,
{Ks1 = g% - Rs e, Ko = (hehs*)* " (hshg®)** - Rk treys
Ky=Z" - Rp).
Encrypta (PP, M, M, (i, 7)) — CTy.
1. For any DFA M = (Q,Zn,J,490,F = {gn-1}) where n = |Q|, let J = |J|, and parse J =

{(gz,,qy,,00)t € [1,J]}. Pick random =« = (7r,7‘r,7r0,7r1,...,WJ,{V_T}%EQ\{%?I}) S Zi}*“”‘" and im-
plicitly set v,,_1 := B47. Set

Pi=g",  Py=g"", Py = ghmgheT,

Py =g Ps =g™, Ps = g~"hg",
{Prs=g™, Pgi=g"+(heh7*)™, Poi=g " (hghg' )™ }ren, -
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Note that for ¢ € [1,J], if #; = n — 1, then Pg; is computed as Py = hj(hehst)™; if y, = n — 1, then
Py, is computed as Py, = hy " (hghg')™.
2. Pick random

Ky Ty S1y--+38ms tiy...,tm € Zp,

3
Ve, Wi,..., Wy € Ly.

Pick random rg, 7y, 7, € Zn, and set x1 = (72, 0,72), X2 = (0,74, 72), X3 = X1 XX2 = (—TyT2, —TaTs, FaTy).
Pick random

v €T} Vi {l,... i},
v; € span{x1,x2} Vi € {i+1,...,m}.

For each row i € [m]:
— if 4 < 4: randomly choose §; € Z,,, and set

Ri = gvi? R; = gﬁvia Q’L = gs“ Qi71 = (g,81>SZZztl (9,31)71" Qi,Q = (9B2)8i7
Qi=4g", T,=E".
— if § > i set
R, = Gfivi7 R; — G;j@swi, Q; = gmz(m~'uu)7 Qi,l _ (gBl)TSi(’Ui"Uc)Zfi (gﬁl)w’ Qi,Z _ (gﬁz)TSi('vi"vc)7
Q =g', Ti=M. E*®ve)

For each column j € [m]:
— if j < j: randomly choose y; € Zy, and set C; = H;
—ifj>jiset Cj=H[" - g™, C}=g"i.
3. Output the ciphertext CTM = <M, (Pl, PQ, 1337 P4, P5, P67 {P7’t7 PS,t7 P9,t}te[1,J])7 (Ri, R;, QZ‘, Qi,h Qi’Q, Q;,
Ti)i%y, (Cj, C))iLy).

DecryptA(PP, CTy, SK(i,j),u) — M or L. Parse C'Ty; to CTyy = <M, (Pl, Py, P3, Py, Ps5, P, {P7,t, Py, Pg,t}te[l,J])a
(Ri, R}, Qi, Qi 1, Qi2, Q, Ti)%y, (C, C%)TL ) and SK; jy o t0 SK(i jy,u = ((4,5), u, (Ko, K1, K2, K3, Ky, K5 9,
{ K51, Kok brep, Kb), where M = (Q,Zn, T, qo, F = {qn-1}) withn = |Q|, J = |T|, T = {qu+ dy. ot }re1,15
and u = (uq,...,u;). Suppose M accepts u (if M does not accept u, output L).

1. Find a sequence of states pg, p1,- .., o € @ such that py = qq, for k = 1 to | we have (pg_1, pr,ug) € J,
and p; € F. Let (qmtk,qytk,atk) = (pr—1, pk, ux). Compute

(vetpixs) , ’ .
J - g Cj =g"i.

e(Ksk—1,Ps ) - €(K51Pot,)
D <_ ) Uk 3 Uk
re 11 e(Keo s Pr.i,)

ke(1,]]

_ et (hehs™)™x) - e(g, g~ (hghg ™) ™)
ke[L,] e((hehy")sk=1(hghg* )&k, g™ )

=TT elg™rg™) elg,g7 ) (since oy, = ue)
ke[1,1]

:e(g&’,g”’h) . e(ggl,g_yyﬁ ) (since yi, = x4, fork=1,...,1—1)
=e(g*, g"°) - e(g%, g7 ") (since xy, = 0,yy, =n —1)
=e(g%0, ") - e(g™, by 7).

Compute

e(Ky, P3) - e(Ks3, Py) - e(Ks0, Ps) - Dr
e(Ky, Ps)

DPF
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Ce(g?, g% %) ce(hy O R, g7) - e(g%0, gT0RE) - e(g%, g*°) - e(g%, hy ™)
e(hs’, g™)

=e(9”,¢"7).
2. Compute

e(Ko, Qi) - e(Kp, Qf)  es(R;, CY)
e(Kvai,l)'e(K%Qiﬂ) 63(Ri,Cj)'

Dy +
3. Computes M < T;/(Dp - D) as the output message.

E.2 Proof of Lemma [1]

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve a Modified (n, J)-EDHE2-Dual problem instance in
a subgroup as follows. B is given

n—1
D= ((NaGa GT,Q), g7ga’gb7gb/z’ga bc(z, 922’ g3, .
i/d2 ih/ds . ‘d;/d?, ibd:/d., i /d8 id;/db,
VielLnl, .57 €[LI]jsd ga./dj’ga b/d]7gd_7’ga i/ d; . g° bd; /d; g /d“ga 5/ d; ,
Vieon—1], jef,g 9% g2 ed,

a’bed?
Viejonl, jep,g) 9* %, .
a‘bed;/d?,  a'bed?/dS,
7 ag 7 L

vi€[1,2n71], j7j,€[17J]7j¢j, g .
*be/d;
Vielan—1)izn, jen,g) 9% 7%, ,
alc/d?  a'b2ed;/d., a'bed;/d®,  aic/d®  atbed?/d3?, aibZed®/d,
Viean—1), jrefm g% /%, gt edi/dy @ bedi/dy gate/dy | gatbedi/dy | gattTedj/dy
R R R R R
and T, where (N = p1paps, G,Gr,e) «— G, g <— Gy, g2 <— Gy,, g3 «— Gy, a,b,¢,2,d4, .. .,dnJ «— Zn,
a cz

and T is either equal to ¢*"°* or is a random element from Gyp,. B’s goal is to determine T' = g or T is

a random element from Gy, .

Init. A gives B the challenge DFA M* = {Q*,Zn,J*, 0, qn-1}, where n = |Q*|, let J = |J|*, and parse
‘7 = {(qﬁla%juo—f)v MR (QI,]v Qy,]v 03)}

Setup. B randomly chooses {a; € Zn}iepm), {74, 2 € ZN}ie[m]\{i}a 5,2 € N, {c; € ZnN}jepm), and
B1, B2, B%, B4, B, Be, Bh. B, By € Zn. B gives A the public parameter PP:

(97 hl = (g(l)ﬂi, h2 = 9627 h3 = (ga)5é7 h4 = (ga)ﬁé7 h5 = gﬂ;—, : ganb/d17

he=g% - ( ] goien T gt T A e gBr 1T g~ ey,

tell,J] te(l,J]
hg = gﬁé ’ ( H gia:an_yt/dfgan_“b/dt)a hg = Qﬁé : ( H gan_yt/d?)a
tel1,J] tell,J]

{Ei = e(gag)ai}ie[m]a
{Gi=g", Zi = 9"V Victmpgiys {Hi = (0"*) 5 Ysepmpgy> Gi= (9" ), Zi=g7, H; = (9")% )

Note that B implicitly chooses r;, 2;(i € [m]\ {i}), ¢;(j € [m]), B1,Bs, B4, Bs, Be» Br, Bs, Bo € Zn such that

a"tert = r; mod p1, az, =z mod py Vi € (m] \ {i},
acj = ¢; mod py1, (b/2)c; = c; mod py Vj € [m] \ {3},

afy = fr mod py, afy = B3 mod p1, afy = B4 mod py, B5 +a"b/dy = S5 mod py,
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56"’_ Z * a~ a:t/d2 n— wtb/dt)EBG mod py, ﬁ/7+ Z ( n— zt/d2) 7m0dp17

te[l,J] tefl,J]
Bt 3 (—ora v /dS +a"vb/d) = By mod pr, fy+ 3 (a7 /d¥) = By mod pi.
te(1,J] te(l,J]

Query Phase. To respond to A’s query for ((7, j),u), let | = |u|, and parse u = (ug,...,u;),
o if (i,5) # (i,4): B picks random & = (61, 02,80, &1, ..., &) € ZN, R= (Ro, R1,..., Ry, R5 0, {Rs 1, R i
wer) € G8H2and R} € G,,. B creates a secret key SK(; i) o
€[l Ps 0 P3 (4.9),
@ (gh =) - WG - Ro, i A, # ]
i (ge e 1bc/z)r cj . hflhgz Ro, 1i=1,7 ?éj
(g W R, i AT =]
Kl = 961 . _R17 K2 — g RQ, KO 251 /
K3 =h3"h§ - Rs, Ky =hE - Ry, K50 = 950 'R5,07
{Ks = g% - Rsk, Koi = (hehy*)™ " (hshg*)* - Ro ik }repi-

g
Ko=14yg
g

o if (i,5) = (i,7): it implies that A is querying a secret key with the challenge index (3, j), and M* does not
accept u. We denote by wuy, the vector formed by the last [ —k symbol of w. That is ug, = (ug41,.-.,u;). Hence
wuo = u and w; is the empty string. For ¢; € {qo, ..., ¢n—1} = Q, let M} be the same DFA as M* except that
the start state is set to ¢;. Then for each k € [0,1] we define U, = {i € [0,n — 1]|M} accepts uy}. From this
and the query restriction that M* does not accept u, we have 0 ¢ Uy. Due to the WLOG condition, we have
Ur = {n—1}. B picks random § = (6175235&51, cee agl/) € ZII))\/—Hv R = (Ro, Ry, ..., Ry, Rs.0, {R5,kv Rﬁ,k}ke[l]) €
GGHZ and Rj € Gp,.

B sets the values of §; € Zn, u € ZY, {§x € Zn frepy by implicitly setting

61 =0y —a"terids /B,

S =& — vt/ (B0 (S aic)(1+ (0 X difor — ),

€Uy tG[l J]
s.t.oy #uy

Vke[,l—1]: & =& — r%c%ﬁé/(ﬁ{ﬁfl)( 3 aic) (1 +0 S dif(or — )
€Uy te(l,J]
s.t.0; AUkt

> di o —w)),

te(l,J]
s.t.o; Fuy

b =& —rici0/ G180 (X aie) (14 (0 X di/(of —w)),

el tell,J]
s.t.o] #ul

B creates a secret key SK(; 5 ,, as follows:

n—1

a; 101 "a
Ko = gh{'h%* - Ry, K1 = g% (g
K3 =h;"h§ - Rs

C)—rgcg/ﬂi ‘R, Ky = 952 ‘Ro, K(’) = (K,)% - RB’

5 e o lertel /B ) *T;{C?ﬂé/(ﬂiﬂi)(zieul aic) <1+(bz te[1,J] df/(i’f*ul)))
_ hs_ lhil . (gaﬁs)a cric /P (gaﬂ4) s.t.07 Fu - Ry

/ o R AT ATr (R (D> ) )
h 51h5, ) (gavac)WC;Bs/B1 . (gaﬂ4) s.t.of Fug - Rs

46



(since U; = {n —1})
= h3o g (ga”cyz’-?’;ﬁé/ﬁi . (ga"c)—%%ﬁé/ﬁi I « ganbcdi)l/wrﬁo)—réc_’;ﬂg/ﬁa Ry

tel1,J]
s.t.oy #uy
a0 A
te(l,J]
s.t.of #ug
Ky =h5 - Ry
i (o .ganb/dl)—rgcgﬁg/wwg)(zieuo aic)

*Técgﬁé/(ﬁiﬁé)(z@% aiC) <(bz te(1,J] dt/(a;fful))>
. (gﬁs . ga b/dl) s.t.oy #uq . R4

_ hg(’) . ( H gaic) —r;c5B3B5/(B1B%) . ( H ga"“bc/dl)77“%6%%/(%64’1)
€Uy i€l

note that 0¢Uop

(H H (gaibcdt)l/w:—ul))*Técéﬁéﬁé/w;ﬁ;)

€Uy te[l J]
s.t.o] #ul
) ( H H (ganJrqib?.Cdt/dl)1/(0;‘7711))—T20553/(ﬁ1/84) ' R4
i€l te[l,J]
s.t.o; F#uy

Kso =g Rs0

Y Y 77"%6%6’ BI'BI ( i aic)( b ds UZ*U )
&6 ,9755353/(5154)(216[; a c) 5/ (B1B2)\ Xicug ( > tefl,J] /( 1))

=g s.t.oy #uq ‘Rso
— gf(/) . ( H gaic)*’f%céﬁé/(ﬁﬂﬁ . H H a “heds 1/(0’t —ul)) Tﬁcgﬁé/(ﬁiﬁi) . R5’0
i€Ug 1€Up tE[l J]
s.t.o; ;ﬁul

K5y = g - Rs 1 for ke[l,1-1]
g,;frgc;—.ﬁg/(ﬁgﬁg)(z@k aic) (1+(b§j te, ] dt/(affuk_,.l))Jr(bZ te[1,J] df/(oz‘fuk)))

=g s.t.0) Fupy1 s.t.op Fug . R5,k
. H g Ticgﬂs/(:@ :64 . ( H H (gaibcdt)1/(Uf—uk+1))_Técgﬁé/(ﬁiﬁé)
€Uy i€Ux  te[l,J]

s.t.of Fuky1

H H a “bed? 1/ 7uk))77”§c§,3:,3/(,31ﬁ:1) - Ry 1

i€Uy  te[l,J]
s.t.op Fug

Ks;=g" - Rs,

i-rics 84/ Siew, a'e) (14 (0% ey /i -w))

=g s.t.of Fuy . R5 .
_ gfl/ . ( H gaic)frécljﬁé/(ﬁif&x . H H a “bed? 1/(o't _ul)) récgﬁg/(ﬁiﬁg) ) R57l7
i€l; €U, tell,J]
s.t.of #u
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Ke1 = (heh$")% (hshg")® - Re 1
= (heh#" )% (hshy)&

2]

. ( ﬁ6+ﬁ7ul . H g O‘ 711.1)0.” l‘t/d2 an— J‘tb/df))T:C;Bé/(ﬁiﬁé)(ZzeU‘J alc)

te[t,J]

_T;/C;’/Bé/(ﬂiﬂé)(ZLeUO aic) ((bz t'e(1,J] dt//(o':/_ul)))

) (gﬁé+ﬂ;ul H g oF—uy)a"" “/dz an— wtb/dt)) s.t.o),#uy
te[1,J]

.(gﬁ;%w [T o @i w/d?ga”*b/dt))d%/(wg)(xe% )

te[1,J]
—Tﬁcﬁﬁé/(ﬁiﬁé) (EieUl aic) ((bZ t'e[1,J] dt//(a:,—ug)))
. (gﬁé"rﬁéul . ( H g_(at*_ul)anfyt/d?ganf'ytb/dt)) s.t.oy Fus
te(l,J)]
frgc;ﬂ.;/wiﬂg)(zieul a) ((bz Ve[t] d;’b/(aéwﬁ))
. <gﬁé+ﬁéu1 H g (oF —ur)a™ "Vt /dfga"*ytb/dt)) s.t.oy #u1 . Rﬁ,l
te[1,J]
i r;¢5B5 (B +Bru1)/(B1BY) an—at+ia /g2y (oF —u1) *Técéﬁé/(ﬁiﬁa)
—w-(To) (T I ey =)
= te(1,J] icUo
Wz WB
H H (ga"fwﬁ'ibc/d,,)—l)*Tﬁcgﬁé/(ﬁiﬁi)
tE[l,.]] €Uy
( H H (gaibcdt/)l/(afl—ul))7T%C§ﬁé(ﬁé+ﬁ;ul)/(ﬁiﬁé)
1€Uo t'€g[l,J]
s.t. Ut/7£u1
'
H H H (gaw,—mt+ibcdt, /d:f)(o':*ul)/((f:/*ul)) —T%Cﬁﬂé/(ﬂiﬂz/})
te[l,J]i€lo t'€[1,J]
s.t. U,,;éul
H H H (gan—thribzcdt//dt)_1/(0;_,“1))—Técgﬁé/(ﬁiﬁi)
te[1,J]i€lo t'€[1,J]
s.t.a':/;éul
s
i _T%‘%Bé(ﬁé‘f‘ﬂéul (B184) w—yt+ic/d6 —(o} —u1) —Técéﬁé/(ﬁiﬁi)
(1) (I I ey o)
€Uy te(l,J] €U
‘1’5 S!77
—ricsBy/(B15Y)

IT I ")

te(l,J] i€l
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<H H (gaibcdt,)1/(0;_u2))—T%Céﬁé(ﬁéWéul)/(ﬁﬁﬂé)

€Uy t'eg[l,J]
s.t. a't/7£u2

Uy

H H H (go" " ibedu /d?) —(o; —u1)/ (o}, —uz)) —ri¢3Ps/(B154)

te[l,J] €U t'€[1,]]
sto,,;éuz

Yy

H H H (ga"*ytJrincdt//dt)1/(0:,_u2)>

te[l,J]i€lUs  t'e[1,J]
s.t.o;, Fus

—rick By /(B154)

Y10
5(Bg+Bu1)/(B184)

(I I0 (et 9%

€U t'ell,J]
s.t.o; #uy

Y11

H H H (ganfyt+ibcd$//dii)—(g;‘—ul)/(a':/—ul))

te[l,J]i€Us t'€[1,J]
sto’t;éul

H H H (g n— yf+7b2cd5 /df)l/( o ul)) chaﬁg/(ﬁiﬁi) .Rﬁ,l

te[l,J]i€Ur t'€[1,J]

—rich B/ (B1BY)

s.t.o] #ul
2P
an—ctti —1 77‘£C3ﬁ’,3/(ﬁ1ﬁ4,1)
=y - ( H H t bC/dt) ) Y,
te[1,J] i€Uo
H H H (ga”*mﬁribcdt,/d?)(a:—ul)/(o:/—ul))77”%636:,3/(61&,1)
te[l,J]i€lo t'€[1,J]
s.t. Ut,yéul
n—yp+i —ricsB5/(8184)
W5 - W - U7 - ( IT II G " bc/dt)) T w0y
te[1,J] i€l
I I ¢ gan—wbcdf,/df)%o:—ul)/(a:ful))—T%C%ﬂé“ﬂiﬂé)
te[1,J] i€l t'€[1,]]
s.t.oy #uy
“Wio - Re 1
an Tt tipe —1 *%%ﬁ{;/(ﬁiﬁi)
— - ( H H t bc/dt) ) A
te[1,J] i€Uo
< I I II ¢ gawmbcdt,/df)<a:—u1>/<o;>—u1>>—T%C.%ﬂé/ (8163)
te[1,J] i€Uo t'€[1,J]
s.t.of #uy s.t.oy, Ful
n—ypti —r5c5B5/(B184)
Vs - W - Ur - ( H H (ga " bc/dt)) e W Wy - Wi - Uy
te[l,J] i€l
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( I I 1 (ganfwwcdf,/d?)—<o—:—u1>/<a:—u1>)—T%C%f’é/“’if’i)

te[l,J] i€Ur t'e1,J]

s.t.o; Fuy s.t.o; #u1
~W1a - Re1
— WUy Wy
gn—witi ric5Bs/(B1BL) nwgtip o\ —1\ 71585/ (B1BL)
( H H f+b('/d) ) 7P3 14.( H H(ga t+bc/dt) 1) 7Ps 14@4
tG[l ]] €Uy tG[I,J] 1€Uyp
s.t.oy #uy s.t.oy=uq
Agl, foro}#uy for of=u1
H H H (gan—thribcdt//d?)(ag—ul)/(o':/—ul)) —ric5Bs/(B18L)
te[l,J] i€Uo t'e[1,J]
sto’t;éul stat,;éul,t #t
W13, for t/#t
I H(gawmbcdt/d%)(o:fun/(a:ful))—Tic.%ﬁé/(ﬁiﬂi)
tE[l,J] 1€Up
s.t.o; #uy
Ag, for t'=t
. ![/5 . ![/6 . ![/7
n—yi+ip./q _récéﬁé/(laiﬁi) n—yttip./q —Tﬁcéﬁé/(ﬂiﬂfx)
[T I ) (I I )
te[l,J] €U te[l,J] €U
s.t.o; #uy s.t.of =uy
Ay, for oyf#uy for of=uy
W - Wy - Yo - Y11
H H H (ga,"*w“bcdf//d%—(o?—ul)/(a;—ul))*Técéﬁé/(ﬁiﬁé)
te[l,J] €U t'e[1,J]
sto’t;éul s.t.of Fuq,t' £t
Yi4, for t'#t
I T (g ety (oimu/tei —m))*réc&ﬂé/(ﬂiﬁé)
te[l,J] €U
s.t.o) F#uy
A;l,for t'=t
U2+ Re 1
A
n—xs+ti —1 _T%CLBE,/(/%BZ;) n—xsti —1 _Téciﬁé/(ﬁiﬁé)
(I I ey ) (I I )
te[l,J]  i€lo te[l,J] i€Uo
stU,*ulstFﬁmf stn,*ulgtz Tt
V15, for iF#zy for i=z¢ (if xz+€Up)

Uy W3- Uy - U - Uy

50



H H (ga"’y”ibc/dt»_éC%BZ”/(B;ﬁ‘,‘) . ( H H (gan—yﬁibc/dt))—réc%ﬁé/(ﬁiﬁi)

te[l,J] i€eli te[l,J] i€l
sta*ulstﬁ‘éyt stat*ulstl Yt
Ui, for i#y: for i=y; (if ye€Ur)

Wg - Wy - Wi - Y11 - Yia - Vi - Ren
=0y Wy W3- W5 - Wy - Vi3 - W5 - W - Wy - W6 - s - Wo - V1o - W11 - Wha - P12 - R 1
(since for ¢ € [1, J] such that o = uy, we have(z; € Uy Ay € Uy) or (x: ¢ Ug Ay: ¢ Ur).)

Ko = (heh*) =1 (hgh§* )% - Re x for ke [2,1—1]
= (hohi* )it (hshy )

.<ﬂ6+/37uk. ( I o ”‘It/dfg“"‘”b/dt))_TiC]ﬁS/(ﬁlﬂ“)(Z@klazc)

tell,J]
_Técg’ﬁf;/(ﬁiﬁi)<zlgUk71 a'ic) ((52 t,e[l,J] dt’/(grl_uk)))
X <gﬁé+ﬁ;uk H g —ug)a™" x‘t/d2 an—Tt b/dt)) s.t.oy, Fu
te(l,J]
—%%ﬁé/(ﬁiﬂé)(iﬁieuk,l aic) ((bZ t'€[1,J] df//(af/—ukfﬂ))
) (gﬂ(’,"!‘ﬁ;uk H g _“k an— If/dz an— Jvfb/dt)) S.t.o':,;éuk,l
te(l,J]

. (95é+ﬁéu1c . ( H g(afuk)a"’yt/dfganytb/df))_TichS/(BIB4)(Ei€U’“ alc)

te(l,J]
_%C%Bé/(ﬁiﬁé) (ZiEUk aic) ((bZ t'el1,J] dt’/(a:/_uk+1)))
. <g,8é+5éuk . ( H g_(U:_uk)QVL*yt/d?ga"*ytb/dt)) s.t.o) Furg
te(l,J]
*chgﬁé/(ﬁiﬁi) (Eiguk aic) ((bZ t'e[l,J] df//(fft*/*uk)))
. (gﬁé""ﬁéuk . ( H g—(o':—uk)a"*yt/d?ga"*ytb/dt)> s.t.a':/;ﬁuk X Rﬁ,k
tell,J]
= (hh2)S (hghg )

v,
( H dic —r5c5B5(Bs+Brur)/(B151)
. g )

i€Up_1

12}

H H (ganfmfﬁﬂc/d?)(o-t*_uk))7T%£‘3ﬁf’i/(6154’1)

te[l,J] i€Uk_1

U3

I I1 6 )

te[l,J]i€Uk_1

—rici By /(B164)
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< H H ( “lb('dt/)l/(o':/—uk))_Técéﬁé(ﬁé_‘—ﬁ;uk)/(ﬁiﬁi)
1€Uk—1 t'€[l,J]
s.t.oy, Fu

Uy

H H H (gan—zﬂribcdtl/df)(o-f—uk)/(df,—uk)>

te[l,J]i€Uk-1 t'€[1,J]
s.t.U;‘,;éuk

H H H (ga"*1t+ib2cdt,/dt)71/(g:,7uk)>—T%c%ﬁé/(g{gé)

te[1,J]i€Uk—1 t'€[1,J]
s.t.oy, Fu

—rictBy/(B18%)

43

( I1 11 (gaibcdf,)l/(o:,—uk,l)>

i€Uk—1  t'€[1,J]
s.t.o), Auk—1

vl B4 (B4 Byui)/ (81 84)

s
M I 11 (gawwbcdf//df)<a:—uk>/(o:ﬁukfl>(ganfwb%df,/dt)71/<a;sfuk71>)—T%C.%ﬁé/(ﬁiﬂfl)
te[1,J]i€Uk—1 t'€[1,J]
s.t.af,;ﬁuk,l
124
wic) i (BatByur)/ (B1BL)
(IT9")
€Uy
Uy
H H (ga"*yfﬂric/d?)_(o:—uk))77"%6%6&/(515:1)
te(l,J] i€Us
Yy
i g\ T B/ (BLL)
H H (ga, bc/d,,)) i
te[1,J] i€Ux
(TT T (gt i) O B 6320
1€Ur  t'ell,J]
S.t.U:/#ﬂk+l
Y10
—r5ch By /(818%)

H H H (ga”*yt+ibcd61/df)*(0;*uk)/(U;‘/*uk#l)(ga"’yt*?’bQCdt//dt)1/(0:/*uk+1)>

te[l,J] i€l t'€[l1,J]
5.6.00 AUkl

Y1
< H H (gaibcdf/)1/(0':,—uk))_T%C_%ﬁ:/j(ﬁz/s""ﬁéuk)/(ﬁiﬁé)

€U, t'e(l,J]
s.t.oy, Fuy
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NI 1 (gan*yt+ibcdf//d?)—(o’f—uk)/(orl—uk))_Técéﬁé/(ﬁiﬁé)

te[1,J]i€U,  t'€[1,J]
s.t.oy, Fuy

(H I 1I (ga"*ymb?cdf,/dt)1/(0;,—uk))*Técéﬁé/(ﬁiﬁi)_R&k

te[l,J]i€Ux t'€[1,J]
sto't,7$uk

2%}

an Tt Tipe -1 —7"%%5!/(5{5:1)
:WI-W2-EPS~< H (g b/dt) ) 3 -W4
te[l,J]i€Uk_1

H H H (gan—zmbcdt,/dg) (o7 —ur)/ (ol wk)) —rich B/ (B18%)

te[1,J]i€Uk—1 t'€[1,J]
s.t.oy, Fup

at Yt Tipe 7T%C§ﬁé/(515£)
'!175'2176'U77'U78'U79'< H H(g Y b/dt)) Wy - Wy - Uyo
te[l,J] i€V

<H H H (gan*yt,Jribcdf//d?)—(at*—uk)/(az/—uk.)>7T%C§ﬁé/(ﬁiﬁé)

te[l,J]i€Ux t'€[1,J]
s.t. Ut,;éuk

U3 - Re i,

= - (H I ( nwﬂbc/dt)—l)*Técéﬁé/w;ﬁ;)

te[l,J] €Uk
s.t.oy] #uk

. ( H H (gan—wtﬂbc/dt)—l)*Tflicﬁﬁé/(ﬁiﬁzx) .,

tell,J] 1€Uk_1
s.t.oy =uy

( I I 1 (gan—wbcdt'/d3)<a:—uk>/<o:/w>)—Técéﬁé/%%)

te[l,J] t€Ukr-1 t'€[l,J]
s.t.a;‘;éuk sAt_o':,#uk

I —richBh/(B184)
.WS.%.%.%.%.( M II yt*bc/dt)) iPs/ PP
tG[l,J] €Uk
s.t.of Fug
55 B85/ (B15L)

H H (ganfyﬂribc/dt))i Wy - Uy - U

te[l,J] €U
s.t.oy=uk

. ( H H H (gan*ytJridei’//df)—(G:—uk)/(o—;‘,_uk))7T§c3—.,8§/(/31[34/1)

te[l,J] i€Ur t'e[l1,J]
s.t.oy #ug s.t.o) Fu

W13 - Re g

:wl ( H H ”’ItJribc/dt)*l)_Técgﬂé/(ﬂiﬂé)

te(l,J] i€Uk-1
s.t.oy] ;ﬁuk

apt
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H H (ganﬂmbc/dt)_l) —riciPa/ (8161 7,

te[l,J] i€Uk_1
s.t.o; =uy

H H H (gaﬂfwﬁribcdt//df)(at*—uk)/(U:/_uk))

te[l,J] i€Uk_1 t'e[1,J]
s.t.ofFug s.t.0% Fup,t' #t

—rici By /(B184)

Vi, for t'#t

H H (ga"*zt“bcdt/df) (o7 —ur)/ (o} —uk)) —r5¢5 B3/ (8184)

te[l,J] i€Uk_1
s.t.o; Fuy

Ag, for t'=t
n—yg+i —riciBs/(B1BL)
.;175.u76.u77.y78.y79.< M II6 yt*bc/dt)) iPal(P1Fa
te[l,J] €U
s.t.op Fug
Ay
Jro— —ric5Bs/(B184)
H H ' bc/dt)) ’ W0 - V11 - Yo

tell,J] i€Ug
s.t.oy =u

H H H (ga"_yf*’ibcdf,/df)*(Ug*uk)/(":/*uk))_7'%(!%6;’/(6{6‘/1)

te[l,J] €U t'e1,J]
Stgﬁﬁuk s.t.07 Fup,t' #t

W5, for t/#t

H H a™” 1’t+ibcdf/df)*(0:7uk-,)/(0:7uk))_Técéﬁé/(ﬁiﬁzlx)

te[l,J] i€Ug
s.t.o] ;éuk

Al_l, for t'=t
W13 - Re
ik 85/ (B18%)

v ([ T T T ey

te[L,J] i€Uk_1
s.t.o; =uy

Wy W - Wy - Wy - Wy - ( H H (ga"*yt“bc/dt)

te[l,J] €U
s.t.op =ug

n—x¢ti — *Técéﬁ/ ﬁlﬁl
:Wl'W2~W3~< H H (ga Jrbc/dt) 1) 3/(B1BY)

te[l,J] i€Ur_1
s.t.o) =uy s-t.iFTe

—ric5 B3/ (B15L)
) W0 -Wi1 Yo W5 - Wiz - Re i

Ui, for i#xy
H H (ga"’”“bc/dt)*l) —r5¢5B3/(B1BY) Ty Uy

te[l,J] i€Ux—1
s.t.of=uy S-t.1=T¢

for i=xy (if w¢€Up—_1)
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n—yi+ip, —Técéﬁé/(ﬁiﬁi)
~W5'W6-W7'W8-W9'< H H(ga b/dt))
tE[l,J] €U
s.t.of=uk £ Yt

Y7, for i#y:
—rict By /(B18%)

H H (ga“*y”’ibc/dt))

te[1,J] €Uy
s.t.oy=uy =Yt

for i=yy (if y+€Uk)
U0 - Y11 - W2 - Vs - Vi3 - Re g
=V - Uy U3 Wi - Wy - Wiy U5 - Vs - Wy - Ug - Uy -7 - W19 - W11 - V12 - V15 - Vi3 - R ks
(since for ¢ € [1, J] such that o} = ug, we have(z; € Uy_1 Ay € Uy) or (2 ¢ Up—1 Aye & Uk).)

Kg = (heh¥")¥= (hshg")* - Rg,
= (heh")5i- (hshy')*

tElJ]

frécgﬁé/(ﬁiﬁé)(zieum ) ((bz el dt//<o:ﬁuz>))

) (gﬂé“rﬁ;ul H g Ul an Tt/d an— Ttb/dt)) s.t.U:,;éul
te(l,J]

_Técgﬁé/(ﬁiﬁi)(zigU171 aic> ((bZ t'e[1,J] df//(”f/—ulfl)))
) <g/5é+ﬁéul H g (o7 —ur)a™™ u/d2 an— ltb/df)) s.t.oy Fui—1

te(1,J]

.<g6é+5éuz II o a"-w/di’ga”‘“tb/dt))"'i%ﬂS/(ﬁlﬂ”(Zievz“”)

te[1,J]
_rgc;;ag/(ﬁm;l)<zieul aic)((bz e[ df,/(a':,—ul)))
. <gﬁé+ﬁéuz H g (oF —wp) *yt/dfganfytb/df,)) s.t.o),Fw - R,y
te(l,J]
= (hﬁhgl)éz_l(hshgz)éz
vy
( II gaic)*Tﬁcéﬁé(ﬁéﬂﬁuz)/(ﬂ{ﬂi)
i€U;—1
123
n—xp4i 2\ (oF —up) —Técivﬂé/(ﬂiﬂf;) n—xpti —1 —'f’%céﬁé/(ﬁiﬁé)
[T I0 @ remyer)  CI I ™)
te[l,J]i€U; 1 te[l,J) €U

Vs

(H 11 (gaibcd,,/)lmaz,fun)W%ﬁé(ﬂéwéun/wwa)

€Ui—1 t'e(l,J]
s.t.oy Fuy

Yy
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—rici 5/ (B184)

H H H (ganfwﬁribcdt//df)(f’:_ul)/(gfl—ul))

te[l,J]i€Ui—1 t'€[1,J]
s.t.oy, Fu

H H H (ganwtwbzcdt,/dt)—1/(,,;,_7“))

te[1,J]i€li—1 t'€[l,J]
s.t.U;‘,;éul

—rich B/ (B1BY)

Us

H H (gaibcdf,)l/(at*/*uzfl

ielUi—1 t'ell1,J]
s.t.oyFui_q

)) —rhch By (B +Brwi) / (B18%)

s

H H H (ga"ﬂt“b“if,/df)("7—“1)/(“?—“1—1) (ga"*“"t“b%df//dt)1/(03—“%1))

te[l,J]i€lUi—1  t'e[1,J]
s.t.o;‘,;éul,l

—rick B/ (B18Y)

Wy
i\ ~Tic5Bs (Be+Byw)/ (B18L)
. < 11+ ) .
el
s

: : —ric3Ps/ (B1F1) S— —rick B4/ (81 8%)
H H (gan—yt+zc/d?)7(ot7ul)) r3¢583/ (8184 ( H H (ga yt+ bc/dt)) 7P3/P1Py
te[1,J] i€l te[1,J] i€l

Yy

( H H (gaibcdf,)l/(ff;‘/*UZ))

€Uy ¢'el1,J]
s.t. Ut/;ﬁUL

ot B (Bt Byun)  (B1BL)

Y10

H H H (ga"*’yt,+ibcd;’3//d?>—(o'?—uz)/(()‘f,—u”))7T%C§ﬁé/(ﬁ1ﬁ£)

te[1,J]iels t'e1,J]
s.t.o), Fu

—rich L/ (B18Y)

I DT (e weyeso)

te[1,J]i€U; t'€[1,J]
s.t. Ut,yﬁul

251

—w v ([T T (o)

te[l,J]i€Ui_1

T I I (o eterdtyi /e uz)) i/ (1)

te[l,J]i€Ui—1 t'€[1,J]
s.t.oy, Fu

Wy W - Wy - Wy - Wy ( H H (gan'frytJribC/dt))

te(l,J]i€l;

1) —ric;Bs/(B18%)

—rictBy/(8184)
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H H H (ga"’y‘“bcdf//d?) —(Uf—uz)/(af/—uz)) ) —ric;B5/(B1BY) 01y - Ry
te[1,J]i€U; t'e1,J]
s.t.oy, Fu

— W Wy W ( T I (¢ s

tell,J] €U
s.t.o; #uy

( H H "_"”t‘”bc/dt)

tell,J] i€U;—1
Gtcr, =uy

_1)4%%/33/(/315;)

,1) —rhch B3 /(8184

NERIERI (gwwbcdt,/df)<a:—uz>/<o:ﬁuz))—’"%C%ﬂé/ (P163)

te[l,J] i€Ui—1 t'g[1,J]

s.t.oy] ;éul s.t. ot,;ﬁul

an vt *Técéﬂé/(ﬂiﬂi)
.%.u'/ﬁ.y'/?.y'/s.y'/g.( I II6" ™ bC/df,)>
te[l J] i€U;
s.t.o} #ul
11 H(ga"*ytﬂbc/dt))’Tﬁciﬂé/(ﬁiﬂi)
tell,J] i€l
s.t.oy=u

r:c585/ (B1BL)

LTS VO U 2 ) I Y Y

te[l,J] €U t'e[1,J]
€tUt #uy étO’t/;ﬁLLl

RN I S

tell,J] €U
s.t.oy] #ul

_1)77«#;/3;/(/31/311)

—1
AO

_1)—T§C§ﬁé/(ﬁiﬁi)

(I

tG[l,J] i€eU;_1
s.t.op=u;

( H H H (ga"*wﬂribcdt//df)(U:—Ul)/(oz‘,—ul))*T%céﬁé/(ﬁiﬁi)

tel]] i€Up—1 t'e[1,J]
s.t.oy #w s.t.0 Fug,t' #t

V12, for t/#t

H H (ga"ﬂ”ﬂbcdt/df)(U:—Uz)/(ﬂf—uz)) —T%céﬁé/(ﬁ{ﬁfx)
tG[l,J] i€U;_1
s.t.op #ug
Ao, for t'=t
n—y¢+i 7T£0363/(ﬂ1ﬁz,1)
-!175'!176'!77'!78'U79'( H H(ga " bc/dt))
te[1,d] €U,
s.t.op Fuy
Ay
( H H w,—yt+ibc/dt))_Téc%Bé/(Bﬁﬁé)
te[l,d] i€l
s.t. cr, =uy
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n—yi i g —(or—w) /(0% —ur) )\ ~TiC585/ (B181)
.@10,( T I II (g« ety (i n)) s
te[l,J] €U, t'e[1,J]

s.t.0) Ay s.t.o At #

W13, for t'#t

I I (ga"_yt‘*'ibcd‘;’/df)*(Ufful)/(o':*m))>_Tgcg’gé/(’giﬁ‘/l) Ay Re.
tell,J] i€l
s.t.o; #uy

Al_l, for t'=t

:mw%.( M II ¢« "_‘T”":bc/dt)*l)_Técéﬁé/(ﬁiﬁé).

te[l,J] i€U;-1
sto't_ul

v i B4/ (8154)
-%-%-%-%-%.( T 11" +bc/dt)) U g Wy - W - Ry
te[l,J] i€l;

4'@12

s

s.t.of=u;

= ( M 1T« nfwbc/dt)—l)*réc;ﬁ;/w;ﬁ@

tell,J] €U
sto’t—ul 1FTy

V14, for iFxy

IR -u
M 11 ¢ "*It“bc/dt)—l)*Tzcjﬁs/(ﬁlﬁﬁ
te[1,J] i€U;_1

s.t. ot =u; 1=t

Wy - Uy

for i=zy (if x4€U;_1)

Wy W W Wy Wy - ( H H = i+ibed, D-%%ﬁé/(ﬁiﬁé)

tE[l J] 7:€Ul
s.t.of=u £yt

Uis, for iFy:
Jrom— —r3c5B5/(B18%)
I Ie bc/dﬁ)) T g s -0 - Ry
te[1,J] i€l

stot—ull Yt

for i=yy, (ify.€li)

Us - Wiy - Wy Wi - W5 - Vg - Wy - U - Wy - Wy - Wy - W3 - Wqq - Ry

(since for ¢ € [1, J] such that o] = u;, we have(x, € U1 Ay, € Up) or (x, ¢ U1 Ay ¢ UL).)

A

Note that B can calculate the values of Ky, K1, Ko, K{j, K3, K4, K50, {K5.1: K6 k } ke 1) using the suitable
terms of the assumption.

Challenge. A submits a message M. B randomly chooses

/

/ / ! ! /
T 81y s $i15 85 Sig1s- -5 Smy U1y oo n b Gty gy oo oty € 2N,
B / ! 3
Wi, W), Wy, Wy, € Ly
/ =/ !

™, T, 71-0)71-,1’"'771{1 EZN’ {V;: GZN}Qa;GQ\{anl}'

B randomly chooses 14,7y, 7, € Zn, and sets x1 = (12,0,72), x2 = (0,7y,72), X3 = X1 XX2 = (—TyTrs, —T2T2, T2Ty)
B randomly chooses
v, €LY Vie{l,... i—1},
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v? € span{x1, x2}, v € span{xs},
v; € span{x1,x2} Vi € {i+1,...,m},
vP € span{x1, X2}, vI = v3xs € span{xs}.

B sets the value of k, T, sj,t;(i € [m]\{i}) € Zn, v, v; € Z3, {w; € Z3 };”] Ty Ty T, Ty« sy € L, {V, €
7N }q,€Q\{gn_} by implicitly setting

n—1 n—1

a"te=kmodp, a" lezr’ =7 mod p, st/ (a
ti + 0B 7 si(v? - vl) /2 = t; mod py Vi€ {1,...,i— 1},
th—a" " eBir si(vi - V) /2 + BT (v - vl) /2l =t mod py Vi€ {i+1,...,m},

Z %

¢) = s; mod py,

1 q
Ve = -V, + V¢, v*—v——}— v-
z

/ [
w; — ac;T vg = wj mod py,

w’; — bejr'vl = wimod py Vj € {j+1,...,m},
7' —br'si(v? - vl) = mmod py, T+ 0P T si(v] - vl)/B3 = 7 mod py,
Ty + d1 84817 si(v? - vl) /By = mo mod py,
™+ di By 8T /('U* vd)/By =m mod py Vt € [1,J],
v, +a" 0By A T s (vl - 0l) /By = vy mod p1 Vg € Q\ {gn-1}

Also, B implicitly sets v, 1 := B4 = aBy (7" + bBy7's5(v] - vd)/B5) mod py.

It is worth noticing that v; and v, are random vectors in Z3%; as required, and (v; - v.) = L(v? - vE) +
g(vg -v?), since x3 is orthogonal to span{x1, x2} and Z3%, = span{x1, X2, X3}

B creates a ciphertext (M*, (P1, P2, Ps, Py, Ps, Ps,{Prt, Ps.t, Pot }1ep)), (Ri, R}, Qs, Qin, Qi2, Q, Ti) %y,
(Cy, C;);”ZQ as follows:

1.
Pi=g" = g™ (¢") I, Py= ()%, Py=hihi = b7 by
Py =g =g~ (") siwivd By p— gm0 = g™ (gd1)54517'8%(vg-v2)//3§’
Py = g 0RO — g vaa"bBLBI S0 wD) /B, hgé (g% - go"b/dr) BB T s (v vD)/ B

= g_’/(/)hg(/)( d1)6564617/5/( q)//BS
for t € [1,.J],

Py = gﬂ‘ = gﬂi’r . (gdt)ﬁéllﬂ{"—,sg(vgvg)/ﬁé7

ife,=n-—1,

Py = gt (hehZ')™
= gaPa(F +BI 7 (v vE)/B3) (g hvt Yt deBipiT s (v vd) /By

— (g®)PaT gaPibBLT i (i) /8, (h6h<7rt ) (gﬁngﬁéaZ)dtﬁiﬁif’s%(vg-v‘i)/ﬁé

(( H gaz,a"’_mt’/d?,gfa"_mt’b/dt/). H (gfa" o /2, )G )

t'e[1,J] t'e[1,J]

iy By1 7" 87 (v] )/ By

_ (ga)ﬁéfr' PRV ST B4 (g T (i) Bt Bron) BT S (o) 6
H g —a zt/b/dt/)dtﬂ4517’3/(v ,Uq)/,[—}é

t’'e(1,J)]
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— (g") P o PR S 5 (g i (i) e PRr ST () 5
( H gfa”*“”t/bdt/dt/)5&517'55(1’?%2)/@%
t’'e(1,J]
= (g®)Pi™ gaBibBiT i (vi vl /By (hﬁh;? )™ (g%) (B+B707)BiB1 7" 55 (v v) /By
(I gfa"_””t’bdt/dt/)ﬁfxﬁi’ﬂsé(vg'”@/ﬁé : (gfab)ﬁgﬁif’%(v%-vi’,)/ﬁé

t'el1,J]

—
okt for t'=t

for t'#t
_ (ga)ﬂg‘fr' (hﬁh;f)ﬂ'; (gdt)(ﬁé‘ﬁ%”:)ﬂéﬂi"'lsg(”g""g)/ﬁé
) ( H ga"*wt/bdt/dt,)—ﬂiB{T’%(v?'vZ)/ﬁé
t'e[1,J]
t' £t

ifxy A#n—1,
Pg =g (hah?:)’”

= gV g BT s (0] v ) By (g hgf Yt deBaBiT s (v vE) /By

= g¥er . g0 T OBABLT ST /By (L (gﬁéw;or)dtﬂéﬂif"%(v?-vﬁ)/ﬁé

(T groe e ttgmen vy T (g 17

t'e(l,J] t’'e(1,J]

:,)dtﬁiﬁif’%(v%-vZ)/Bg

= Ve g BB ST B (g T Y (g ) BB BTS (v] wE) /s

( H g—a”’l't’b/dt/)dtﬁéﬁh/sé(v%}'vg)/ﬂé
t'e[1,J]

gV gt TP ST/ B (7 (e ) (Bo BB (D) /B

A H gfa"’“”t’bdt/dt,)5&517'%(”?'”3)/63
t'e(1,J]

= Ve g TR S B (T8 Y (g ) PR SBT s (v w) s

(10 g b PP ST B o B s ] w1 /B

t'el1,J]

t'#t for t'=t
for t'#t
— g '(hthf)w; (gdt)(ﬂéﬂiéffi‘)ﬁiﬁiT'S%(vg'vZ)/Bé N H g bdt/dt/)754517'8%(1’2’%2)/%’
t'e[1,J]
t'#t

ifyy=n—1,
Py = g~ (hshg' )™
—aBy (7' +bB1 7' s7 (v vl)/By) (hghg?)ﬂ{+dtﬁ£ﬁ17'52(vq~vi)/ﬁé

B

=g
— (g®) O g aBabBlT S (0l v By (g T Y (Bt aot ) BT S (] v s

A((CTT g sdu gt eviay (T g ) ™)

e[, J] t'e[1,J]

dipypy T 85 (v vd) /By
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= (g) P goROT ST 8 (g ) (g) AT )5
- 9
. ( H ga"’yt’ b/d,/)dtﬁiﬁiT'S%(vg'vg)/ﬁé
e,
_ (ga)—Biﬁ/g—a,ﬁibﬂiT/s%(vgmg)/,ﬁ’é (hshg‘* >7r£ (gdt)(/82/34-/35/3‘7:)5:1517/3%(”?'”2)/65,
) ( H ga"_yt’bdt/dt/)5:1517/5%(”?‘”3)/55
t'e[1,J]
_ (ga)—ﬁéﬁ—’g_aﬁébﬁiq—/s%(vg.’uZ)/,@g (hghgf* )7T£ (gdt)(/BéJrﬂéU:)BéBir/S%(vg-vg)/ﬂé

YN

) ( H ga"*yt/ bd,,/dt,)ﬁf;ﬁﬂ s7(viwl)/B; (gab)ﬁflﬂif’%(v?'vg)/ﬁé

t,tel[;;;]] for t'=t
for t/#t
_ (ga)fﬂgﬁ'(hshgz)ﬂ'; (gdt)(Béﬂ%ﬂ;gg)5:1617'/5;"(”%'”2)/ﬁé . ( H ga"—wbdt/d,,,)ﬁiﬁif’%(v%vi)/ﬂé’
t'el1,J]
t'#t

if Yt # n-— 17
Py =g~ " (hshg' )™

= gV g T BB S (0BG (T i de BB s (v wT) /By
= g g BB S ] WD) /B (T YL (Bt Bt ) PP S ] V) s

(( H gfdzza"_yt’/dffga"_yt/b/dt')'( H gan_“t’/d?’)U:’)dtﬂéﬂh/sé(vg'vz)/ﬁé

e, g e, ]
= g g BB S 0] o) By (Y () (PSP (D) s
N H g b/dt/)dtﬁfxﬁi"'/s%(vg'”g)/ﬁé
vef.J]
= g g BB S ] W)/ B (g Ty (g ) (Bt Par BT S (] ) /s
N H g bdt/dt,)ﬂéﬂiT’S%(v?vi)/Bé
t'e(1,J]
_ gfz/;t . g*a”*ytbﬂiﬂiﬂsg(vg-vg)/ﬁé(hshg:)ﬂ'; (gdt)(5é+5éof)ﬁf;ﬁ{r's§(vg-vg)/ﬁé

11t

T g e PR DB B /B

t'e[1,J]

/I —
£t for t'=t

for t/#t
g*”ét ] (hghgz)”i (gdt)(Bé+,8é<72‘)ﬂéﬂiT/S%(v%vZ)/ﬁé ) ( H ga”*ytlbdt/dt/)Bé,ﬁirls%(v?vg)/ﬂé.

t'e[1,J]
t'#t

Note that the values of (Py, P2, Ps, Py, Ps, Ps,{Prt, Pst, Pot }te[1,7]) can be calculated using the suitable
terms of the assumption.
. For each i € [m]:
— if 4 <4: it randomly chooses 3; € Zj, then sets

R; = gvia R;. = (ga C)Uiv Q’L = gSiv Qi,l = hilzflhirla

Qin = (Q)™, Q) =gl (") wivd/= T, = B,

n—1

61



— if i =14: it sets
n—1 P ol oy P

R, = grésgv’; (gb/z)rés%v;?, R; _ (ga C)TZSE’U; (ganflbc/z)r%s%'vg7 Qi = gT’sg(U%’.v‘f)(gb)‘ﬂsé(vg.vg)

7

7’55 (v?-v?h)

Qi,l = h]_ Zztvhjlr 9 Qi,Z = (Qi)ﬂ27 Q; = gti7 1-’1 = M : e(gwini)~
— if i >4 it sets
n—1

Ri= g, Bi= (g
Qiz = (Q)™, Q) = gt (g°

C)Tq‘,sq‘,qu Qi _ (ga"’IC)T’si(vi.v‘g) Qi L= Zt;h.f’
’ ) ) (2 ?
"71(1)—B;T’sl(vj‘vf)/z; (gb),@i‘r’s%('ug~'vg)/z;7 E — M- 6(9%',@1‘).
3. For each j € [m]:
— if j < j: it randomly chooses y; € Zy and implicitly sets the value of ji; such that (a"'be) ™" vz —
v3 = pj mod py, then sets C; = (g Tbe/z)eTvE L ST e L (ga” T eyw; C) =g,
—if j=Jrit sets Gy =T % - (g7 O)Wh, O =g - (g) "7 E.

—if > it sets Cj = (g P/2)GTVE L (g WS, O = gl - (gh) T Ve

nflc

If T = ¢g*"¢*, then the ciphertext is a well-formed encryption to the index (i,7). If T is randomly chosen,
say T = g" for some random r € Z,,, the ciphertext is a well-formed encryption to the index (i, j + 1) with
implicitly setting j; such that (77— — 1)v3 = p; mod p;.
Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, private keys and challenge ciphertext are the same as that
in the real scheme. B’s advantage in the Modified (n,J)-EDHE2-Dual game will be exactly equal to A’s
advantage in the selective index-hiding game.

F Proof of the Lemma (1| for the Large Universe CP-ABE on Prime Order
Groups

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

F.1 The Resulting Augmented CP-ABE

Setuppa(\, I, K = m?) — (PP,MSK). Run (p, G,Gr,e) < G()\). Pick a generator g € G. Set d = 4,dy = 1.
Pick random 8 = (B1,...,04) € Z,. Pick random {«;, i, zi € Zp}icim], {¢j € Zp}jcm)- The public
parameter is

PP = ( (p,G,Grp,e),9,h = (h1 = gﬁl, e hy = gﬁ“),
{Ei=elg.9)™, Gi=9", Zi = 9" Yiepm), {Hj=9"}jepm )-
The master secret key is MSK = (al, iy QU Ty ey Ty Clye ey cm).
A counter ctr = 0 is implicitly included in MSK.

KeyGenp (PP,MSK, S C Z,) — SK; jy,s- Set ctr = ctr + 1 and then compute the corresponding index in
the form of (4,7) where 1 <i4,j <m and (i — 1) *xm + j = ctr. Let [ x n be the size of A. Pick random

0 = (01,{0s}ses) € Z,l,HS‘. Output a secret key SK; ;) 5 as

SK(ij).s = ( (4,5), S,
Ko = gricg<+a7tgﬁ1617 K, = 9617 {K9372 = gema Ky3= (gﬁﬂgﬁg)gm (9B4)_61}w65,
Ky =27").
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EncryptA(PP7 M7 (A7 p)7 (17])) - CT(A,p)~
1. Upon input a ciphertext policy (A4,p) € Y, where A is an [ X n matrix over Z,, and p : [1,]] — Z,
maps each row of A to an attribute in Z,. Pick random 7 = (7, ug,...,un,&1,...,§) € Ziﬁ" and set
w = (T, U, ..., Upy). Set

P =g, {Pk,l — gﬂl(Ak-u)gﬂUEk, Ppo= (gﬁzp(k)gﬁ%)*ik’ Pp3= ggk}ke[l}

2. Pick random K, T, S1,...,8m, t1,...,tm € Zp, v, wl,...,wm€Zg.
Pick random 74,7y, 7, € Zp, and set x1 = (r:,c,O,rz)7 X2 = (0,7"y,rf)7 X3 = X1XX2 = (—Tryrs, —Tal, Taly).
Pick random v; € Z3 Vi € {1,...,i}, w; € span{x1,x2} Vie {i+1,...,m}.

For each row i € [m ]
— if 4 < i: randomly choose 3; € Z,,, and set

Ri=g", Rj=g"", Qi=g% Qir=(¢")"Z'(¢")", Q=4g", T.=E]"
— if i > i set
R, =G, Rj=G™v, Q=g e Q= () silvive) zli(gPr)m,
Q; — gti, T; =M. E;I'Si('vi'vc)'

Note that dp = 1, thus there is only Q; ;.

For each column j € [m]:

— if j < j: randomly choose yu; € Z,, and set C; = H]T(”“-H‘jm)

—if j > jiset Cj = H" - g"i, C = g*.
3. Output the ciphertext CT(4,) = ((A,p), (P1,{Pr1,Pr2, Pr3tren) (Ri, R, Qi Qin, Qf Ti)i%y,
(C,Cy).
DecryptA(PP OT(A p),SK(l 7, S) — M or L. Parse OT(A p) to CT(A p) — <(A p), (Pl, {Pk,lapk,ZaPk,?)}ke[l])a

. gmwj7 C; = gwj.

(RzaszQlaQ’L 17szT)z 17(C]7C ) >andSK(1j)StOSK(z7J)S (( )757 (K07K1a{Kx,27Kx,3}$65'7K(I))'

Suppose S satisfies (4, p) (if S does not satisfies (A4, p), output L).
1. Compute constants {wk},x)es such that 3, cqgwpAr = (1,0,...,0). Compute

Dp + H e(K1, Prn) - e(Kp(y.2: Pr2) - (K piy.3, Pra)) "
p(k)eS

2. Compute

G(Ko,Qi) ) C(K(/),Q;) . 63(R;’C;)
e(K1,Qi) e3(R;,C;)’

Dy +
3. Computes M <« T;/(Dp - Dy) as the output message.

F.2 Proof of Lemmal(ll

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve an Extended Source Group g-parallel BDHE problem
as follows. B is given a problem instance as

(( 7G Gr, )7gvgdngdagdaqa

g, gh. g¥ti, gl ges i, e g,

g9° “ ) Vi€ [2¢)\ {g+1},j € [q),
g2 /% _ Vi € [2q],4,5' € lq] st. 5" # j,
gedatby /by gedathy/v] Vielgl,j,j' €lal st jF#j")
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and T, where (p,G,Gr,e) £ g, g £ G, a,c,d,by,...,bq £ Z,, and T is either equal to gcanrl or is a
random element of G. B’s goal is to determine T' = gcaq+1 or T is a random element from G.

Init. A gives B the challenge LSSS matrix (A*, p*), where A* is an | x n matrix with [,n <g.

Setup. B randomly chooses {a; € Zp}icim], {7, 2 € Zplicimpgiy> ™52 € Zp, {¢) € Zp}jem), and
B4, 8%, 8y € Z,. B gives A the public parameter PP:

(g7 hy = g%, h2_gB2'H H t/b2

kell] te[n]

7953 H H ‘/b"’ —p*(k)A kt hy 7954 H H '/bk

kell] te[n] kell] ten]
{Ez = e(gmg)at}ie[m]v
{Gi=g"". Zi = (0" Yicpmpiiys {Hj = (9D Y epmpggy, Gi= ("), Zi =g, Hj = (g°)% )
Note that B implicitly chooses 75, z;(i € [m]\ {i}), ¢;(j € [m]), Bi, B2, B3, B1 € Zy, such that

a?rt = r; mod p, az] = z; mod p Vi € [m] \ {i},
dc; = ¢j mod p Vj € [m] \ {3} acj = ¢; mod p,

a=pimodp, By+ > Y (a'/0}7)(A;,) = B2 mod p,
kell] te[n]
Bs + Z Z (a'/07) (—p" (k) A} ;) = B5 mod p,
1] te[n]
54‘*’22 a'/bg)(Aj;) = Ba mod p,
1] te[n]

Query Phase. To respond to A’s query for ((4,7),5),
e if (4,7) # (i,7): B picks random & = (61, {0, }ses) € Z}flsl, then creates a secret key SK(; jy g

g (g IR, AL #]
Ko = { g%i(g%")"ic W, =i #]
GG RE, AT =]
Ky =g", Ko=27",
{Kaop = g%, Ku3=(hhs)"h;" }ees.

o if (i,j) = (4,7): it implies that A is querying a secret key with the challenge index (i, j), and S does
not satisfy (A*,p*). B first computes a vector @ = (i, ...,%,) € Z, that has first entry equal to frgcg
(ie. g = frécé) and is orthogonal to all of the rows A} of A* such that p*(k) € S (ie. A} -a =0Vk €
[l] s.t. p*(k) € S). Note that such a vector must exist since S fails to satisfy (A*, p*), and it is efficiently
computable. Then B randomly chooses (d1,{0,}zes) € Zl+| |
implicitly setting

and sets the values of §; and {0,}.cs by

(51 = (51 + Z ﬂtaq+1_t, (1)
ten]
utbk/aq“ —t
QI:9;+6/1- Z (k” + Z Z ’ (2)
k€[l K'ell] t€[n]
pr (k)¢S pr (k)¢S
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Note that for z € S and p*(k') ¢ S we have x — p*(k') # 0
B creates a secret key SK(; 5) ¢ as follows:

n

Ky = ga;hii(H(gaqﬂ f)ut)v Ky = g% H(gaq+l_t)at; Ky = (K1),

For x € S, we have

Kea=g =g J] @yeren) ([ [yl en),

k'e[l] k'e[l] t€[n]
p™(K')¢S o™ (K')¢S
Note that for x € S, we have
/ S % 'af,’bk/aﬁ—l_tl
(h3hs)® = (h5hs)% (hghg)" >/ €tl 0" (%S S=07T . (R fug) 2=+ €l (%5 2t/ el =507
——
Y11
81b,,
=0, ( M =11 10 (gaf/bi)(x—p*(k»Az,t)7172*’&/))
K €[l ke(l] teln]
p™ (K" ¢S

!
@y bk,a‘ﬁLl*‘

( I II @I I a' /6y (e=p"( >>A;’;,t)w)

1] t'eln] kell] te[n]

=wiy (] ()@= (TT T TT ¢ (gt /% 514,*”%

K’ ell] kell] teln] K €[l
o)ES o (k) gS
V1,2
(T T gy B/ e )
k'ell] t'€n]
p* (K )¢S
Vi3
. ( H H qati—t'+ty //bQ) Mut/f((f)))
ke[llteln] K e€[l] t'€[n]
P (k)¢S
t x w—p"(k)
2!1/1,1'%72-( H H (g° bk//bk)é VAL S5 )
kell] te[n] K€l
pr(k)es p* (k)¢S

U4 (for p*(k)ES)

H H H abk//b2 81 A% s p(k/ . H H a/bk 6Akt ng

ke[l te[n] k' e[z]\{k} ke[l ten]
P (k)ES p* (k)¢S pr(k)ES
V15 (for p*(k)ES,k'#k) Ui (for p*(k)¢S,k'=k)

H H H H @ati—t’ +tp, //bZ)Ak tut/ :((:/)))
kel teln] Ke[l] €]
p*(k)ES p* (K )¢s

Y17 (for p*(k)ES)
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H H H H atti=t'+tp, /0y Ak B SR 5,1‘))
ke[l te[n] k' E[l]\{k} t'e[n]
pr (k)¢S (k)¢S

Tis  (for p*(k)ES,k'#k)

[T TT T o)

ke[l] te[n]t’€n]
b (K¢S

(for p*(k)¢S,k'=k)
a+1—t/ 4t i
=1 Wo Vg Vs Pie-Wrs-VYir Vs H H H ¢ /i) A )

kell] te[n [n]
7 p(k)ES
hi% =k 6/ gk H H a'/biy AL — e Bera® T
ke[l te[n]
-5 gati—t s gdt1—t'+t T
:h4 1(H(g B4t HHH /bk) kft)

t'€n] [n] t'€[n]

H H H q+17t1+t/bk)_Azwf,ﬁt’)7
[n] t’€[n]

where W1 =W, 1 -¥; 5 ---- ¥ g and ¥, can be calculated using the suitable terms of the assumption.

Thus, we have

Ki3= (h§h3)9’ h261

— !I/1 H H H adt1i— t/ +t/bk) Ak t“t/)

ke[l] te[n] t'€[n]

pr(k)eS
1ERTIN SR RO N | ) (TR
kell] te[n]t’e[n]\{t} €ll] t€[n]
pr(k)eS p (k)es
U3 (for t'#t) for t'=t
=0y Wy W - H (g*"" /ow)— (A
ke(l]
p*(k)eS

=y - WUy W3, (since A} -u=0Vk € [l] s.t. p*(k) € 5)
Note that ¥;, ¥, and ¥3 can be calculated using the suitable terms of the assumption, B can calculate K, 3.

Challenge. A submits a message M. B randomly chooses

/ /

T 81,03 8i_1,8;,8i41>+-+>Sm € L,
/ / /
oottty b, € Zy,

_ / ’ 3
W, W), Wy, Wy, € Zy,,

E1rv s &, T €Ly, w = (0,uy,... u,) €7

B randomly chooses 74,1y, 7, € Zy, and sets x1 = (r2,0,7.), X2 = (0,7y,7.), X3 = X1 XX2 = (—=TyTs, —Tal2,TaTy),
then randomly chooses

v, €ZIVie{l,...,i—1},
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v? € span{x1,x2}, v! € span{xs},
v; € span{x1, X2} Vi € {i+1,...,m},
vP € span{x1,xz2}, vi=v.x3 € span{xs}.
B sets the values of k,7, s7, t;(i € [m]\ {i}) € Zyp, vi, ve, w;(j € {j,...,m}) € Z}, w € Zp, u € Z7, and
{&k € Zp}rep by implicitly setting
a? =k modp, ca’r’ =7 modp, si/a?=s;modp,
Vie{l,...,i—1}: t;+cdr'si(v!- vl)/z = t; mod p,
Vie{i+1,...,m}: t;—a%m'si(vi-vh)/z + cdr'si(v? - vl)/z = t; mod p,
v; =vf +dv?, ve=c""vl 4+ v,

w’ — ackT'v? = wj mod p,

j j
Vie{j+1,...,m}: wj—cdcjr'v]=w; modp,
7' — cdr'si(v? - vd) =7 mod p, w=m(l,a,a*...,a" ")+,

Ve e [l]: & + cdbp'si(v? - v) = & mod p.

It is worth noticing that v; and v. are chosen from 23 at random as required, and (v; - v.) = %(vf .
v?) + d(v] - v?), since x3 is orthogonal to span{x1, X2} and Z3 = span{xu1, X2, X3}- B creates a ciphertext
<(A*7p*)a (Ph{Pk,lapk,Z;Pk,3}k€[l]) (Rw szQzan,lanyT)1_17 (C],C ) = > as follows:

L P = g™ (g°) i),
For each k € [I]: we have

_ e Af-(L,a,...,a™ T Afu’ I$ 5 at/b , , (‘dbm’ 9’(1} vd)
Piq = ()% ¥h§ = (hy* R RS (P ) Ar
= ) l l 11

&, 1] te[n]

= ( H (gat)AZ, )7r '—cdr' s (v -v?) LBy - (gcdbk)ﬁ4r st (vd-vd) ( H H (ngatbk,/bk/)AZ/),,)”'ISQT(”?'UZ)

te[n] pe wrell] tein]
= (TT ™)™ - (T (gt yAee) 00" 0, 0

t€(n] te(n]

o3 A
O 1 1 (GO R O § (R RO M
k' €[l]\{k} te[n] teln)
@4 (for k'#k) A-1 (for k'=k)

:¢3'¢1 '@2'@47

]Jk,2 — (hg*(k)hg)*ik
(1 W )=k (gPhe sy el o) T IT (%) (0 (0" (K ) A,y et (0 1)
k'ell] te[n]
_ (hp*(k)hg)—§; ) (gcdbk)—(ﬁép*(k)Jrﬁé)T'S%(v?‘vZ) N H cda bi/62,\ (P (k/)—p*(k))AZ/,t)T’S%(v%v‘é)
= (g

pe k'e[l] te[n

— &, ( H H cdatby, /b2, (p*(k’)—p*(k))AZ/,t)T’SQ(v?vZ)
k' e[l]\{k} te[n]

Ps  (for k'#k)
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| H (gcdatbk/bi)(p*(k)—P*(k))AZ,f,)T’S%(v%v‘é)

ten]
1 (for k'=k)
= @5 : ¢67
Prg = gt = g% (getr) ™ siwivl),
Note that &q,...,Pg can be calculated using the suitable terms of the assumption, B can calculate

Py, P2, Pr 3.
2. For each i € [m]:
— if 4 <4: randomly chooses 5; € Z,, and sets

Ri = g'via R;, = (gaq)vi7
Qi=g%, Qi1 =(9")"Z;' (g")", Q=g (g°)" iD= T, = B

— if i =4: sets

/ !y

VRV ! ol a4 9\ plgl P ay\plgl
R'L' g'r‘isivg . (gd)risiv27 R; (ga )risivZ . (gda )7"1.51.1}27
’

T st (vl edyT 8% (v wd) o (a\T s5(vPl) st anT It
Qi = g7 " (gu) T I Qi = (9°)T R 2 ()T, Qi =g
n =M - 6(gai7Qi)~

— le > ; sets
v I
lll grlsz’m’ ll; (ga )T’LS[ i)

Qi = (g¢)7 v Qi1 = Z] ("), Q) = gli(g) T v/ (gedyT S (v [
Ty =M -e(9™, Q).

3. For each j € [m]:
— if j < j: randomly chooses p; € Z,, and implicitly sets the value of p; such that (1} /(cda?) — 1)v, =
p; mod p, then sets: C; = (gd“q)C;T,”f -g“’;T’”;'”g (g )W, C§~ = g"i.
i j = jisets C5 = TSV (g7 5, Y = g5 - (g) T

—if j > i sets € = (g90")5TVE L (g0) 5, O = g - (g°1) TV

If T = g°@*"", the ciphertext is a well-formed encryption to the index (i,). If T is randomly chosen, say
T = g" for some random r € Z,, the ciphertext is a well-formed encryption to the index (i,j 4+ 1) with
implicit setting y; such that (7= — 1)v. = p; mod p.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, private keys and challenge ciphertext are the same as that
in the real scheme. B’s advantage in solving the Extended Source Group g¢-parallel BDHE problem will be
exactly equal to A’s advantage in the selective index-hiding game.
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