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Abstract

Constrained pseudorandom functions (CPRFs) allow learning ‘constrained’ PRF keys that can
evaluate the PRF on a subset of the input space, or based on some sort of predicate. First introduced
by Boneh and Waters [AC’13], Kiayias et al. [CCS’13] and Boyle et al. [PKC’14], they have been
shown to be a useful cryptographic primitive with many applications. The full security definition
of CPRFs requires the adversary to learn multiple constrained keys, a requirement for all of these
applications. Unfortunately, existing constructions of CPRFs satisfying this security notion are only
known from exceptionally strong cryptographic assumptions, such as indistinguishability obfuscation
(IO) and the existence of multilinear maps, even for very weak predicates. CPRFs frommore standard
assumptions only satisfy security for a single constrained key query.

In this work, we give the first construction of a CPRF that can issue a constant number of
constrained keys for bit-fixing predicates, only requiring the existence of one-way functions (OWFs).
This is a much weaker assumption compared with all previous constructions. In addition, we prove
that the new scheme satisfies 1-key privacy (otherwise known as constraint-hiding), and that it
also achieves fully adaptive security. This is the only construction to achieve adaptive security
outside of the random oracle model, and without sub-exponential security losses. Our technique
represents a noted departure from existing CPRF constructions. We hope that it may lead to future
constructions that can expose a greater number of keys, or consider more expressive predicates (such
as bounded-depth circuit constraints).

1 Introduction

Historically, pseudorandom functions (PRFs) provide the basis of a huge swathe of cryptography. Intu-
itively, such a function takes a uniform key and some binary string x as input, and outputs (deterministi-
cally) some value y. The pseudorandomness of the function dictates that y is indistinguishable from the
output of a uniformly sampled function operating solely on x. PRFs typically provide useful sources of

∗This work is a merged version of [DN18] and [KY18] with additional results.
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randomness in cryptographic constructions that take adversarially-chosen inputs. Simple constructions
of PRFs exist based on well-known standard assumptions: Goldreich, Goldwasser and Micali give a
construction based on the existence of pseudorandom generators [GGM86]; Naor and Reingold [NR04]
give a simple construction from assumptions related to the discrete log problem.

There have been numerous expansions of the definitional framework surrounding PRFs. In this work,
we focus on a strand of PRFs that are known as constrained PRFs or CPRFs. CPRFs were first introduced
by Boneh and Waters [BW13] alongside the concurrent works of Kiayias et al. [KPTZ13] and Boyle et
al. [BGI14]. They differ from standard PRFs in that they allow users to learn ‘constrained’ keys that
can evaluate the function on a subset of the input space. That is, let X denote the input space, and let
S ⊆ X . Then a constrained key KS for CPRF allows evaluating CPRF.Eval(K, x) if and only if x ∈ S.
In the security game, the adversary is permitted to make queries for learning PRF evaluations as with
standard PRFs. The adversary is also permitted to learn constrained keys for any subsets S ⊆ X that it
wants. Security now dictates that the CPRF remains pseudorandom on an input point that lies outside of
the queried subsets. If an adversary can ask more than one constrained key query, then we say the CPRF
is collusion-resistant.

In this work, our main question is:

Can we construct constrained PRFs with collusion-resistance from standard assumptions?

Up until now, this question has been unanswered in either the affirmative or the negative. An extra
consideration that we have to make is what kind of predicates that we consider for our CPRF to satisfy.

Predicates. While constrained keys can be defined with respect to subsets, a more natural definition
defines functionality with respect to predicates. That is, the constrained key allows evaluation of the
function on x, if and only if the associated predicate is equal to 1 on x. We denote such a predicate by
P and 1← P (x) indicates that the input satisfies the constraint. Otherwise, we write 0← P (x).

Many suitable predicates for CPRFs have been proposed in the literature, such as:

• puncturing [BW13, KPTZ13, BGI14, BLW17];

• prefixes [BW13, BFP+15];

• left-right (LR) [BW13];

• bit-fixing (BF) [BW13, BLW17, CC17, AMN+18];

• general circuits in NC1 [CC17, AMN+18, CVW18];

• general circuits in P/poly [BW13, HKKW14, BV15, BLW17, BTVW17, PS18].

We highlight the two predicates that are the most interesting due to the expressibility and flexibility of
the predicate class that they support.

• Bit-fixing (BF) predicates are associated with a string v ∈ {0, 1, ∗}` as input; where vi = ∗
indicates a wildcard entry. Denote the predicate by Pv(x) for some x ∈ {0, 1}`. Then we say that
1← Pv(x) iff (xi = vi) ∨ (vi = ∗) for each i ∈ [`].

• General circuit predicates are associated with some representative circuit C ∈ C. We say that
1← PC(x) for x ∈ {0, 1}` if and only if C(x) = 1.

m-key privacy. An additional security requirement that was introduced by Boneh et al. [BLW17] is
that the constrained keys do not reveal the constraint that is encoded in them. In other words, given
a constrained key for one of two adversarially-chosen constraints, the same adversary is unable to
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distinguish which constraint is encoded with more than negligible advantage. A CPRF satisfying this
definition of security is known as a private CPRF or PCPRF.1 The definition can be made stronger by
requiring that the adversary is given m keys for m ≥ 1, and also by allowing the adversary access to
the evaluation oracle. When no evaluation queries are permitted, the security guarantee is referred to
as weak key privacy. The applications that [BLW17] consider are all satisfied by the weaker notion of
privacy; so proving security with respect to this definition is enough. As a consequence, when we refer
to key privacy, we will always refer to the weaker definition.

It was shown by Canetti and Chen [CC17] that a CPRF satisfying m-key privacy for m ≥ 2 and
bounded-depth circuit predicates implies the existence of IO. This implication holds using the weaker
notion of privacy, also. In [CC17], they also show that security in the simulation-based setting is
stronger than in the indistinguishability model of [BLW17]. In the simulation-based security framework,
a CPRF satisfyingm-key privacy implies the existence of VBB obfuscation. Therefore, it is impossible
to construct CPRFs for P/poly withm-key privacy (form ≥ 2) in this setting [BGI+12].

1.1 Existing constructions

Since the original works of [BW13, KPTZ13, BGI14], numerous constructions of CPRFs have been
given, relying on different primitives and providing a range of functionality. It was observed in the
original works that the GGM-PRF [GGM86] can be used as a CPRF for the very simply puncturing or
prefix-fixing predicates. Put differently, construction of CPRFs for such simple predicates are known to
exist from OWFs. On the other hand, CPRFs supporting more flexible predicates such as LR, bit-fixing,
and P/poly circuit predicates were also considered in the original works of [BW13]. They showed such
constructions in the random oracle model (ROM) or by assuming the existence of multilinear maps. With
the help of ROM or strong assumptions, these CPRFs for flexible predicates satisfy collusion-resistance
for any polynomial number of constrained keys.

Recently, constructions of CPRFs for flexible predicates from much weaker assumptions have been
considered, at the expense of providing weaker guarantees. The CPRF schemes of [BV15, CC17,
BTVW17, PS18, CVW18] derive security from the learning with errors (LWE) assumption, and other
lattice-based assumptions. All of these CPRFs allow for (the powerful) general circuit constraints either
for NC1 or P/poly. However, all of these constructions do not satisfy collusion resistance. The work of
Attrapadung et al. [AMN+18] provides CPRFs for BF and NC1 from traditional groups. However, their
constructions too do not satisfy collusion resistance. Moreover, it is worthwhile to mention that all the
CPRFs listed above only achieve selective security in the standard model.

Therefore, thus far, all known CPRF constructions from standard assumptions in the standard model
do not achieve collusion resistance (even for 2 keys!) or full adaptive security (for predicates taken from
the expressive classes highlighted above).

1.1.1 Achieving private constraints.

The constructions of [BLW17] satisfy poly-key privacy for circuit predicates under the existence of
IO. The PCPRFs of [CC17, BTVW17, PS18, CVW18] also satisfy the privacy guarantee for circuit
predicates, but only in the case of m = 1. Achieving privacy for m > 1 seems challenging, since it
would imply the existence of IO for P/poly from LWE [CC17]. Finally, CPRF for LR predicates shown
in [BW13] satisfies poly-key privacy in the random oracle model and the CPRF for bit-fixing predicates
shown in [AMN+18] satisfies 1-key privacy.

1They are also known as ‘constraint-hiding’ CPRFs.
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1.2 Our contribution

In this work, we develop a new CPRF construction for the bit-fixing predicate. While this predicate
may be less expressive than general bounded-depth circuit predicates, our construction is derived only
from the existence of one-way functions; which is a remarkably weaker assumption than all other CPRF
constructions for the bit-fixing predicate [BW13, BLW17, CC17, AMN+18].

Our construction is the first to satisfy collusion-resistance for bit-fixing from any standard assumption
and within the standard model. Specifically, our construction is secure against PPT adversaries who learn
Q = O(1) constrained keys (i.e. a constant number with respect to the security parameter). Additionally,
our security proof holds in the setting where all queries are made adaptively, with only a polynomial
loss in security. Some previous constructions satisfy adaptive security from non-standard assumptions
or within the ROM. Otherwise, they can only satisfy adaptive security under sub-exponential security
losses.

Finally, our construction satisfies (weak) 1-key privacy by the definition of [BLW17] (See Remark 3.6
for more details on the definition of key privacy). We are unable to achieve security for the setting where
m > 1. We leave this open as a future research direction, since such a construction would imply
obfuscation for bit-fixing predicates from OWFs. We summarize our contribution alongside the previous
state-of-the-art in Table 1.

Table 1: List of existing constructions of CPRFs along with their functionality and the assumptions
required. The adaptive column only refers to works that achieve adaptive security in polynomial-time.
We categorize [KPTZ13, BGI14] as puncturing CPRFs since they use GGM-based techniques. We do
not consider the CPRFs of [Bit17, GHKW17] since they do not permit evaluation queries.

Collusion-resistance Privacy Adaptive Predicate Assumption
[BW13] 1 0 × Puncturing OWF

poly poly X LR BDDH & ROM
poly 0 × BF MDDH
poly 0 × P/poly MDDH

[KPTZ13] 1 1 × Puncturing OWF
[BGI14] 1 0 × Puncturing OWF

[HKKW14] poly 0 X P/poly IO & ROM
[BFP+15] poly 0 × Prefix LWE
[BV15] 1 0 × P/poly LWE
[BLW17] poly 1 × Puncturing MDDH

poly 1 × BF MDDH
poly poly × P/poly IO

[BTVW17] 1 1 × P/poly LWE
[CC17] 1 1 × BF LWE

1 1 × NC1 LWE
[AMN+18] 1 0 × NC1 L-DDHI

1 1 × BF DDH
1 0 X NC1 L-DDHI & ROM
1 1 X BF ROM

[CVW18] 1 1 × NC1 LWE
[PS18] 1 1 × P/poly LWE

This work O(1) 1 X BF OWF
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1.3 Roadmap

In Section 2 we give a technical overview of our scheme. In Section 3, we discuss the preliminaries
required for consuming our construction. In Section 4 we give our CPRF construction along with the
proofs of correctness and security. We conclude this work in Section 5.

2 Technical overview

2.1 Lattice-based constructions

The idea for this work originates from the lattice-based CPRF for bit-fixing constraints of Canetti
and Chen [CC17]. In these works the adversary is allowed to query for one constrained key that is
chosen selectively (rather than adaptively). The PRF is defined over an input x ∈ {0, 1}` and the
master secret key is a set of Gaussian-distributed matrices {Di,b}i∈[`],b∈{0,1}. These matrices are
thought of as representatives of LWE secrets, the underlying technique is borrowed from the PRFs
of [BPR12, BLMR13]. The constrained key for some bit-fixing predicate v ∈ {0, 1, ∗}` is a set of
matrices, where we reveal Di,vi if vi ∈ {0, 1}, and reveal both {Di}b∈b∈{0,1} if vi = ∗, for each
i ∈ [`]. Finally, newly sampled Di,1−vi

$← χm×m replace the matrices that are not learnt.2 In the public
parameters, there is a matrix A, and for an input x, the PRF evaluation is the product A ·

∏`
i=1 Di,xi ,

rounded to some appropriate integer p > 0.
The key observation of [CC17] is that pseudorandomness only has to hold for some challenge x†

where (x†j 6= vj) ∧ (vj 6= ∗) and v is the selectively chosen bit-fixing predicate at the beginning of
the security game. Then when the PRF is evaluated at x†, the output includes the matrix D

j,x†
j
in

the product. This matrix is not revealed in the constrained key, and thus not revealed to the adversary
either. As a result, their security proof follows the formula of [BLMR13]; relying on an LWE security
reduction where D

j,x†
j
ultimately acts as an unknown LWE secret. It is also noted by [CC17] that a very

similar argument can be used to show that the [BLMR13] PRF is also a PCPRF for bit-fixing constraints.
For circuit-based constraints, this proof technique does not apply since the matrices are no longer tied
explicitly to one bit of the constraint query. In these cases, a more careful LWE argument is used with
the secret distribution that is considered.

Unfortunately, the analysis for bit-fixing does not follow for more than one key. It is entirely possible
to choose two constrained keys that would reveal the entire set {Di,b}i∈[`],b∈{0,1}, without compromising
all evaluation points.3 Therefore, the LWE argument cannot be used since all the secrets are effectively
revealed to the adversary. The main issue of this technique is that one bit of the PRF input is tied
concretely to one matrix in the master secret key. Consequently, when valid constraints reveal both
components of the master secret key for each bit, security is effectively lost.

2.2 Our scheme

To improve on the functionality of previous schemes, we design a CPRF construction that analyses Q
input bits at a time, for Q ≥ 1. That is to say that [CC17] analyses only 1 input bit at a time, and we
regard this as an important distinction. We also depart from the lattice constructions above, effectively
replacing the matrices above with keys to an underlying PRF. It becomes clear that we requireQ = O(1)
later, as the size of the master secret key is O(poly(κ)Q).

Key generation. To be more precise, let PRF be an underlying pseudorandom function, where
PRF.Eval : {0, 1}κ × {0, 1}nin 7→ {0, 1}nout . Let T = (t1, . . . , tQ) denote a tuple of Q values taken

2This is not required for standard CPRF security, but only for the extra privacy property.
3For example, choosing the constraints v1 = 1 ∗ ∗ ∗ 1 and v2 = 0 ∗ ∗ ∗ 0; where x† = 1 ∗ ∗ ∗ 0 is still a constrained point.
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from [nin], that is T ∈ [nin]Q.
The ‘functional’ master secret key is generated by running the following loop.

• For T ∈ [nin]Q and w ∈ {0, 1}Q: sample KT,w $← PRF.Gen(1κ).

Clearly, we require thatQ = O(1), otherwise this loop would run in super-polynomial time with respect
to κ. Finally, let K = {KT,w}T∈[nin]Q,w∈{0,1}Q .

We also run a separate invocation of the above to generate a ‘dummy’ set of PRF keys. That is, for
T ∈ [nin]Q and w ∈ {0, 1}Q: sample K̂T,w $← PRF.Gen(1κ). Let K̂ = {K̂T,w}T∈[nin]Q,w∈{0,1}Q .

The entire master secret key is then given by K = (K, K̂). The need for the dummy key becomes
apparent soon, but essentially this is to allow us to satisfy 1-key privacy.

Evaluation. To evaluate the CPRF on x ∈ {0, 1}nin , do the following.

• For each T ∈ [nin]Q, let xT be the string xt1xt2 · · ·xtQ .

• Compute the XOR: y ←
⊕
T∈[nin]Q PRF.Eval(KT,xT

, x).

• Output y.

In other words, evaluation requires (nin)Q evaluations of the underlying PRF. Recall that Q = O(1) and
so it also runs in polynomial time.

Constraining. To produce constrained keys for the function, we only analyse bit-fixing predicates
implied by strings v ∈ {0, 1, ∗}nin . Here, we use the notation that ∗ is a wildcard character, and we say
that a binary string x ∈ {0, 1}nin satisfies the bit-fixing predicate CBF

v , with respect to v, if and only if:

nin∧
i=1

((
vi

?= xi
)∨(

vi
?= ∗
))

= 1.

We may also write b← CBF
v (x), where b = 1 indicates satisfaction and b = 0 indicates otherwise.

Now let vT = vt1vt2 · · · vtQ be defined as before, for T = (t1, . . . , tQ) ∈ [nin]Q. Then to produce a
constrained key,Kv for our CPRFwe analyse each string vT individually against all possiblew ∈ {0, 1}Q.

Recall that the definition of a CPRF states that evaluation should remain the same using Kv, if
CBF
v (x) = 1. Before we describe constraining for general parameter settings, it may be helpful to

consider a small example where nin = nout = 8, Q = 3, v = 100 ∗ ∗1 ∗ 0 and let T = (3, 4, 6). Then
vT = 0 ∗ 1 ∈ {0, 1, ∗}Q, and so we should be able to evaluate the CPRF on inputs, where xT = 001 or
xT = 011. To achieve this, we can let K̃vT,001 = KT,001 and K̃vT,011 = KT,011. However, we do not have
to reveal any keys where CBF

vT
(xT ) = 0; e.g. if xT = 100. In these occurrences, we let K̃vT,w = K̂T,w

(that is, dummy keys). Finally, we let:

Kv =
(
{K̃vT,001} ∪ {K̃vT,011} ∪ {K̃vT,w}w/∈{001,011}

)
T∈[nin]Q

,

denote the entire constrained key.
In general, we define the constraining algorithm to do the following.

• For all T = (t1, . . . , tQ) ∈ [nin]Q: let vT = vt1vt2 · · · vtQ .

• For w ∈ {0, 1}Q, if CBF
vT

(w) = 1: let K̃vT,w = KT,w.

• For w ∈ {0, 1}Q, if CBF
vT

(w) = 0: let K̃vT,w = K̂T,w.

• Output Kv =
(
K̃vT,w

)
T∈[nin]Q,w∈{0,1}Q

.
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Constrained evaluation. An interesting property of our scheme is that constrained keys are essentially
distributed the same as master secret keys where the dummy portion of the key is removed (i.e., K =
(K, ∅)). This is because all the underlying set elements are just keys sampled from the keyspace of PRF.
Therefore, constrained evaluation is identical to the real evaluation algorithm.

2.3 Proving security

Constrained pseudorandomness. The main goal of our work is to prove that our construction
satisfies pseudorandomness on “constrained points” after receiving Q = O(1) constrained keys. Let
v(1), . . . , v(Q) be the bit-fixing strings that the constrained keys are defined with respect to.

Our goal is to essentially show that there exists a T † = (t†1, . . . , t
†
Q) such that v(i)

t†i
6= ∗ for i ∈ [Q].

If this was not the case, then this implies that there exists i ∈ [Q] such that v(i) = ∗ ∗ · · · ∗ (i.e. the all
wildcard string). If this was true, then any eventual challenge input point x† would be unconstrained
(since 1← CBF

v(i)(x†)), and thus the security game is void.

For each v(i), let Kv(i) =
(
K̃(i)
T,w

)
T∈[nin]Q,w∈{0,1}Q

. Now consider the string:

w† = (1− v(1)
t†1

) (1− v(2)
t†2

) · · · (1− v(Q)
t†Q

).

Then CBF
v

(i)
T †

(w†) = 0 for all i ∈ [Q], and thus K̃(i)
T †,w† = K̂T †,w† . Therefore, the ‘functional’ key

KT †,w† ∈ K is never revealed by a constrained key query. This is the heart of our security proof.
Our security reduction uses the fact that constrained evaluations can be handled by a reduction

algorithm that has access to an oracle for the underlying PRF at a randomly chosen key K†. Namely,
the reduction algorithm simulates the master secret key in its entirety, apart from for the key KT †,w† and
simulates the challenger for the CPRF adversary. Consider an evaluation query x made by the CPRF
adversary that needs to use the key KT †,w† , this implies that xT = w†. Then the query is answered by
submitting x as an oracle query in the PRF game, where KT †,w† = K† is implicitly chosen. For the
challenge constrained input x† output by the CRPF adversary, the reduction algorithm submits x† to
its challenge oracle and receives back y† ← PRF.Eval(K†, x†) or y† ← f(x†) for a uniformly sampled
function f : {0, 1}nin 7→ {0, 1}nout .4

The fact that the value y ∈ {0, 1}nout output by the CPRF is pseudorandom is obtained via the fact
that y† is XORed into y, and y† is a pseudorandom output dependent solely on x† (by the security of
PRF). See Theorem 4.1 for the full proof of security.

Adaptive security. Our construction arrives at adaptive security for free. Previous constructions incur
sub-exponential security losses during the reduction from adaptive to selective security. Essentially all
constructions use the technique where the adaptive adversary attempts to guess the challenge point x†
that the selective adversary uses. We can achieve adaptive security with a polynomial security loss
(e.g. 1/poly(κ)): by instead guessing the key (not the challenge input) that is implicitly used by the
adversary (i.e. KT †,w†). If this key is not eventually used by the challenge ciphertext, or it is revealed
via a constrained key query, then the reduction algorithm aborts. This is because the entire proof hinges
on the choice of this key, rather than the input itself. Since there are only polynomially many keys (for
Q = O(1)), we can achieve adaptive security with only a 1/poly(κ) probability of aborting. Finally we
note that, due to the non-trivial abort condition, there is a subtle technical issue we must resolve which
is addressed in Lemma 4.2. Similar problems were identified by Waters [Wat05] who introduced the
“artificial abort step”.

4Note that we require a version of PRF security where challenge points and standard evaluation queries are distinct in the
sense that evaluation queries are always answered by the actual PRF.
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1-key privacy. We obtain 1-key privacy by returning to our observation about constrained evaluations.
All constrained keys are essentially made up of PRF keys sampled from PRF.Gen. Therefore, recall
the indistinguishability security game for weak key privacy of Boneh et al. [BLW17]. In this game,
the adversary chooses two bit-fixing predicates (v(0), v(1)) and the challenger flips a bit b and returns
Kv(b) . The adversary has to distinguish which constraint has been encoded into the key. Since both
keys are simply made up of uniformly sampled PRF keys, then the resulting CPRF key is perfectly
indistinguishable for either value of b ∈ {0, 1}. See the proof of Theorem 4.4 for more details.

We cannot obtain key privacy form > 1 queries because 2 constrained keys would reveal where the
constrained keys differ since the underlying ‘functional’ keys have to be consistent across constrained
keys. Therefore, receiving more than one constrained key, it will become obvious which keys correspond
to which constraint. For a similar reason, we cannot obtain simulation-based security [CC17], because
we would have to permit O(1) constrained key queries for the pseudorandomness requirement and this
would break the 1-key privacy of our scheme.

3 Preliminaries

3.1 Pseudorandom Functions

We first define the standard notion of pseudorandom functions (PRFs).
Syntax. Let nin = nin(κ), and nout = nout(κ) be integer-valued positive polynomials of the se-
curity parameter κ. A pseudorandom function is defined by a pair of PPT algorithms ΠPRF =
(PRF.Gen,PRF.Eval) where:

PRF.Gen(1κ)→ K: The key generation algorithm takes as input the security parameter 1κ and outputs
a key K ∈ {0, 1}κ.

PRF.Eval(K, x) :→ y: The evaluation algorithm takes as input x ∈ {0, 1}nin and outputs y ∈ {0, 1}nout .

Pseudorandomness. We define the notion of (adaptive) pseudorandomness for the PRF ΠPRF =
(PRF.Gen,PRF.Eval) using the following game between an adversary A and a challenger:

Setup: At the beginning of the game, the challenger prepares the key K ← PRF.Gen(1κ) and a set S
initially set to be empty.

Evaluation Queries: During the game, A can adaptively query an evaluation on any input. When A
submits x ∈ {0, 1}nin to the challenger, the challenger evaluates y ← PRF.Eval(K, x) and returns
y ∈ {0, 1}nout to A. It then updates S ← S ∪ {x}.

Challenge Phase: At some point, A chooses its target input x† ∈ {0, 1}nin such that x† 6∈ S and submits
it to the challenger. The challenger chooses a random coin coin $← {0, 1}. If coin = 0, it evaluates
y† ← PRF.Eval(K, x†). If coin = 1, it samples a random value y† $← {0, 1}nout . Finally, it returns
y† to A.

Evaluation Queries: After the challenge phase, A may continue to make evaluation queries with the
added restriction that it cannot query x†.

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say the adversary A wins the game if ĉoin = coin.

Definition 3.1. A PRF ΠPRF is said to be (adaptive) pseudorandom if for all PPT adversary A, the
probability of A winning the above game is negligible.

It is a well known fact that PRFs can be built entirely from one-way functions [GGM86, HILL99].

8



3.2 Constrained Pseudorandom Functions

We now define constrained pseudorandom functions (CPRFs).
Syntax. Let nin = nin(κ), and nout = nout(κ) be integer-valued positive polynomials of the security
parameter κ. Let C = {Cκ}κ∈N be a family of circuits, where Cκ is a set of circuits with domain {0, 1}nin

and range {0, 1} whose sizes are polynomially bounded. In the following we drop the subscript for
clarity.

A constrained pseudorandom function for C is defined by the four PPT algorithms ΠCPRF =
(CPRF.Gen, CPRF.Eval,CPRF.Constrain,CPRF.ConstrainEval) where:

CPRF.Gen(1κ)→ K: The key generation algorithm takes as input the security parameter 1κ and outputs
a master key K ∈ {0, 1}κ.

CPRF.Eval(K, x) :→ y: The evaluation algorithm takes as input themaster keyK and inputx ∈ {0, 1}nin

and outputs y ∈ {0, 1}nout .

CPRF.Constrain(K, C) :→ KC : The constrained key generation algorithm takes as input the master key
K and a circuit C ∈ C specifying the constraint and outputs a constrained key KC .

CPRF.ConstrainEval(KC , x) :→ y: The constrained evaluation algorithm takes as input the constrained
key KC and an input x ∈ {0, 1}nin and outputs either y ∈ {0, 1}nout or ⊥.

Correctness.We define the notion of correctness for CPRFs. We say a CPRF ΠCPRF is correct if for all
κ ∈ N, nin, nout ∈ poly(κ), K ∈ CPRF.Gen(1κ), C ∈ Cκ, KC ∈ CPRF.Constrain(K, C), x ∈ {0, 1}nin

such that C(x) = 1, we have CPRF.Eval(K, x) = CPRF.ConstrainEval(KC , x).
Pseudorandomness on Constrained Points. We define the notion of (adaptive) pseudorandomness on
constrained points for CPRFs. Informally, we require it infeasible to evaluate on a point when only given
constrained keys that are constrained on that particular point. For any C : {0, 1}nin → {0, 1}nout , let
ConPoint : C → {0, 1}nin be a function which outputs the set of all constrained points {x | C(x) = 0}.
Here ConPoint is not necessarily required to be efficiently computable.

Formally, this security notion is defined by the following game between an adversary A and a
challenger:

Setup: At the beginning of the game, the challenger prepares the master key K ← CPRF.Gen(1κ) and
two sets Seval, Scon initially set to be empty.

Queries: During the game, A can adaptively make the following two types of queries:

-Evaluation Queries: Upon a queryx ∈ {0, 1}nin , the challenger evaluates y ← CPRF.Eval(K, x)
and returns y ∈ {0, 1}nout to A. It then updates Seval ← Seval ∪ {x}.

-Constrained Key Queries: Upon a queryC ∈ C, the challenger runsKC ← CPRF.Constrain(K, C)
and returns KC to A. It then updates Scon ← Scon ∪ {C}.

Challenge Phase: At some point, A chooses its target input x† ∈ {0, 1}nin such that x† 6∈ Seval and
x† ∈ ConPoint(C) for all C ∈ Scon. The challenger chooses a random coin coin $← {0, 1}.
If coin = 0, it evaluates y† ← PRF.Eval(K, x†). If coin = 1, it samples a random value
y†

$← {0, 1}nout . Finally, it returns y† to A.

Queries: After the challenge phase,Amay continue tomake evaluation queries with the added restriction
that it cannot query x† as the evaluation query and cannot query any circuitC such thatC(x†) = 1
as the constrained key query.

Guess: Eventually, A outputs ĉoin as a guess for coin.

9



We say the adversary A wins the game if ĉoin = coin.

Definition 3.2. A CPRF ΠCPRF is said to be (adaptive) pseudorandom on constrained points if for all
PPT adversary A, |Pr[A wins]− 1/2| = negl(κ) holds.

Remark 3.3 (Selective Security). In case all the constrained key queries made by the adversary must be
provided before the Setup phase, we say it is selective pseudorandom on constrained points. All known
constructions of CPRFs satisfy only selective security for a subset of all possible queries. Constructions
that achieve adaptive security are based on stronger assumptions (e.g. IO) or are situated in the ROM.

Remark 3.4 (Collusion Resistance). We can adjust the strength of the above notion by imposing a
restriction on the number of constrained keys an adversary can query. In case the adversary can query at
most one constrained key, it is called single-key secure. In case we can tolerate up to Q constrained key
queries, we say it is Q-collusion resistance.

1-key privacy. We adopt the indistinguishability notion of 1-key privacy that was introduced by Boneh
et al. [BLW17].5 This property is sometimes known better as ‘constraint-hiding’. We note that the
simulation-based definition of Canetti and Chen [CC17] is stronger, but we are unable to prove security
in this setting. Essentially, there is a disparity between the number of constrained queries that we permit,
and the number of constraint-hiding keys that we can prove security for.

Let C denote the class of predicates that are associated to constrained keys.

Setup: At the beginning of the game, the challenger prepares the master key K← CPRF.Gen(1κ).

Constrained Key Query: A specifies two predicate circuits C0, C1 ∈ C. The challenger chooses a
random coin coin $← {0, 1}. The challenger then runs Kcoin ← CPRF.Constrain(K, Ccoin) and
returns Kcoin to A.

Guess: A outputs ĉoin as a guess for coin.

We say the adversary A wins ĉoin = coin.

Definition 3.5. A CPRF ΠCPRF is said to satisfy perfect weak 1-key privacy if for all PPT adversaries A,
then |Pr[A wins]− 1/2| = 0 holds.

Remark 3.6. The version of key privacy that we use above is better known as weak key privacy [BLW17].
This is because the adversary has no access to an evaluation oracle. We note that the main applications
of PCPRFs are instantiable under weak key privacy. As a result, we do not lose anything by considering
the weaker security guarantee.6 It should also be noted that the previous definitions of key privacy were
settled computationally. In this work we actually satisfy the notion of perfect key privacy due to the lack
of structure in our constrained keys.

4 Constructing CPRFs from Standard PRFs

In this section, we provide a construction of an adaptive pseudorandom on constrained points, Q-
collusion resistant CPRFs for the bit-fixing predicate from any PRF, where Q can be set to be any
constant independent of the security parameter. In particular, the result implies the existence of such
CPRFs from one-way functions [GGM86, HILL99]. Recall that no other CPRFs are known to be
adaptive and/or to achieve Q-collusion resistance for any Q > 1 in the standard model, excluding the
CPRFs where the constraints are the trivial singleton sets: F = {{x} | x ∈ {0, 1}nin} or prefix-fixing
predicates.

5Note that the original definition is for m-key privacy but we assume that m = 1 only, as this is relevant to our work.
6There is also no need for an admissibility requirement.
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4.1 Preparation: Bit-Fixing Predicates

Here, we provide the constraint class we will be considering: bit-fixing predicates. Formally, for a vector
v ∈ {0, 1, ∗}`, define the circuit CBF

v : {0, 1}` → {0, 1} associated with v as

CBF
v (x) = 1 ⇐⇒

∧̀
i=1

((
vi

?= xi
)∨(

vi
?= ∗
))

= 1,

where vi and xi denotes the ith bit of the string v and x, respectively. Then, the bit-fixing predicate (for
length ` inputs) is defined as

CBF
` := {CBF

v | v ∈ {0, 1, ∗}`}.

Since we can consider a canonical representation of the circuit CBF
v given the string v ∈ {0, 1, ∗}`, with

an abuse of notation, we may occasionally write v ∈ CBF
` and view v as CBF

v when the meaning is clear.
Moreover, for any v ∈ {0, 1, ∗}` and T = (t1, · · · , tQ) ∈ [`]Q such that Q ≤ `, let us define

vT ∈ {0, 1, ∗}Q as the string vt1vt2 · · · vtQ , where vi is the ith symbol of v. In addition, let Gaut be a
function defined as

Gaut(vT ) = {w ∈ {0, 1}Q | CBF
vT

(w) = 1}.

Namely, it is the set of all points with the same length as vT that equals to vT on the non-wild card
entries. For example, if ` = 8, Q = 5, v = 011 ∗ 01 ∗ 1, and T = (4, 1, 2, 6, 1), then vT = ∗0110 and
the authorized set of points would be Gaut(vT ) = {00110, 10110}. Here, with an abuse of notation, we
define the function Gaut for all input lengths.

4.2 Construction

Let nin = nin(κ), and nout = nout(κ) be integer-valued positive polynomials of the security parameter
κ and Q be any constant positive integer smaller than nin. Let CBF := {Cκ}κ∈N := {CBF

nin(κ)}κ∈N be a
family of circuits representing the class of constraints. Let ΠPRF = (PRF.Gen,PRF.Eval) be any PRF
with input length nin and output length nout.

Our Q-collusion resistance CPRF ΠCPRF for the constrained class CBF is provided as follows:

CPRF.Gen(1κ)→ K: On input the security parameter 1κ, it runs KT,w ← PRF.Gen(1κ) and K̂T,w ←
PRF.Gen(1κ) for all T ∈ [nin]Q and w ∈ {0, 1}Q. Then it outputs the master secret key as

K =
(
{KT,w}, {K̂T,w}

)
T∈[nin]Q,w∈{0,1}Q

.

CPRF.Eval(K, x) :→ y: On input the master key K and input x ∈ {0, 1}nin , it first parses(
{KT,w}, {K̂T,w}

)
T∈[nin]Q,w∈{0,1}Q ← K.

It then computes

y =
⊕

T∈[nin]Q
PRF.Eval(KT,xT

, x),

where recall xT ∈ {0, 1}Q is defined as the string xt1xt2 · · ·xtQ and T = (t1, · · · , tQ). Finally, it
outputs y ∈ {0, 1}nout .
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CPRF.Constrain(K, CBF
v ) :→ KC : On input the master key K and a circuit CBF

v ∈ CBF
nin , it first parses(

{KT,w}, {K̂T,w}
)
T∈[nin]Q,w∈{0,1}Q ← K and sets v ∈ {0, 1, ∗}nin as the representation of CBF

v .
Then it outputs the constrained key

Kv =
(
K̃T,w

)
T∈[nin]Q,w∈{0,1}Q

,

where K̃T,w = KT,w if w ∈ Gaut(vT ), and K̃T,w = K̂T,w otherwise. Recall thatGaut(vT ) = {w ∈
{0, 1}Q | CBF

vT
(w) = 1}.

CPRF.ConstrainEval(Kv, x) :→ y: On input the constrained key Kv and an input x ∈ {0, 1}nin , it first
parses

(
K̃T,w

)
T∈[nin]Q,w∈{0,1}Q ← Kv. It then uses the PRF keys included in the constrained key

and computes

y =
⊕

T∈[nin]Q
PRF.Eval(K̃T,xT

, x).

Finally, it outputs y ∈ {0, 1}nout .

4.3 Correctness

We check correctness of our CPRF. Let CBF
v be any bit-fixing predicate in CBF

nin . Put differently, let us fix
an arbitrary v ∈ {0, 1, ∗}nin . Then, by construction we have

Kv =
(
K̃T,w

)
T∈[nin]Q,w∈{0,1}Q

← CPRF.Constrain(K, CBF
v ).

Now, for any x ∈ {0, 1}nin such that CBF
v (x) = 1, by definition of the bit-fixing predicate, we have

nin∧
i=1

((
vi

?= xi
)∨(

vi
?= ∗
))

= 1.

Then, by definition of function Gaut, we have xT ∈ Gaut(vT ) for any T ∈ [nin]Q since we have
CBF
vT

(xT ) = 1 if CBF
v (x) = 1. In particular, we have

K̃T,xT
= KT,xT

∈ Kv for all T ∈ [nin]Q.

Therefore, since CPRF.Eval and CPRF.ConstrainEval are computed exactly in the same way, using the
same PRF keys, correctness holds.

4.4 Pseudorandomness on Constrained Points

Theorem 4.1. If the underlying PRF ΠPRF is adaptive pseudorandom, then our above CPRF ΠCPRF for
the bit-fixing predicate CBF is adaptively pseudorandom on constrained points andQ-collusion resistant.

Proof. We show the theorem by considering the following sequence of games between an adversary A
against the pseudorandomness on constrained points security game and the challenger. In the following,
for simplicity, we say an adversary A against the CPRF pseudorandomness game. Below, let Ei denote
the probability that ĉoin = coin holds in Gamei. Recall that A makes at mostQ-constrained key queries,
where Q is a constant.

Game0: This is defined as the ordinary CPRF pseudorandomness game played between A and the
challenger. In particular, at the beginning of the game the challenger prepares the empty sets
Seval, Scon. In this game, the challenger responds to the queries made by A as follows:
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• WhenA submitsx ∈ {0, 1}nin as the evaluation query, the challenger returns y ← CPRF.Eval(K, x)
to A and updates Seval ← Seval ∪ {x}.

• When A submits CBF
v(j) ∈ CBF

nin as the jth (j ∈ [Q]) constrained key query, the challenger
returns Kv(j) ← CPRF.Constrain(K, CBF

v(j)) to A and updates Scon ← Scon ∪ {CBF
v(j)}.

Furthermore, recall that when A submits the target input x† ∈ {0, 1}nin as the challenge query, we
have the restriction x† /∈ Seval and x† ∈ ConPoint(CBF

v(j)) for all CBF
v(j) ∈ Scon. Here, the latter

condition is equivalent to
nin∧
i=1

((
v

(j)
i

?= x†i
)∨(

v
(j)
i

?= ∗
))

= 0 for all CBF
v(j) ∈ Scon. (1)

By definition, we have |Pr[E0]− 1/2| = ε.

Game1: In this game, we add an extra abort condition for the challenger. Specifically, at the end of the
game, the challenger samples a random set T † $← [nin]Q. Let us set T † = (t1, · · · , tQ). The
challenger further samples b†tj

$← {0, 1} for all j ∈ [Q]. Let b†
T † := bt1bt2 · · · btQ ∈ {0, 1}Q.

Then, the challenger checks whether the following equation holds with respect to the constrained
key queries and the challenge query made by the adversary A at the end of the game:

• The challenger aborts if there exists j ∈ [Q] such that(
(v(j)
tj

?= b†tj )
∨

(v(j)
tj

?= ∗)
)

= 0. (2)

does not hold.
• The challenger aborts if x† does not satisfy

(b†
T †

?= x†
T †) =

∧
j∈[Q]

(b†tj
?= x†tj ) = 1. (3)

• The challenger aborts if (T †, b†
T †) chosen by the challenger does not equal to the first pair

(with respect to some pre-defined order over [nin]Q × {0, 1}Q such as the lexicographic
order) that satisfies Equation (2) for all j ∈ [Q] and Equation (3). Note that it is possible to
efficiently find such a pair by enumerating over [nin]Q × {0, 1}Q since Q = O(1).7

When the challenger aborts, it substitutes the guess ĉoin outputted by A with a random bit. We
call this event abort.
As we will show in Lemma 4.2, there exists at least a single pair (T †, b†

T †) ∈ [nin]Q × {0, 1}Q
that satisfies Equation (2) for all j ∈ [Q] and Equation (3). Therefore, the event abort occurs with
probability 1 − 1/(2n)Q. Furthermore, it can be seen that abort occurs independently from the
view of A. Therefore, we have

|Pr[E1]− 1/2| = |Pr[E0] · Pr[¬abort] + (1/2) · Pr[abort]− 1/2|
= |Pr[E0] · (1/(2n)Q) + (1/2) · (1− 1/(2n)Q)− 1/2|
= ε/(2n)Q,

where we used the fact that ĉoin is randomly chosen and thus equals to coin with probability 1/2
when abort occurs.

7One may wonder why the final condition for the abort is necessary, because the reduction in the proof of Lemma 4.3
works even without it. This additional abort step is introduced to make the probability of abort to occur independently of the
choice of the constrained key queries and the challenge query made by the adversary. Without this step, we cannot lower bound
|Pr[E1]− 1/2|. Similar problem was identified by Waters [Wat05], who introduced “the artificial abort step" to resolve it. Our
analysis here is much simpler because we can compute the abort probability exactly in our case.
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Game2: Recall that in the previous game, the challenger aborts at the end of the game, if the abort
condition is satisfied. In this game, we change the game so that the challenger chooses T † and
b†
T † at the beginning of the game and aborts as soon as either A makes a constrained key query
CBF
v(j) ∈ CBF

nin that does not satisfy Equation (2) or a challenge query for x† that does not satisfy
Equation (3). Furthermore, it aborts if (T †, b†

T †) is not the first pair that satisfies Equation (2) for
all j ∈ [Q] and Equation (3). Since it is only a conceptual change, we have

Pr[E2] = Pr[E1].

Game3: In this game, we change how the challenger responds to the challenge query when coin = 0.
For all the evaluation query and constrained key query, the challenger acts exactly the same way
as in the previous game. In the previous game Game2, when the adversary submits the target
input x† ∈ {0, 1}nin as the challenge query, the challenger first checks whether the condition in
Equation (3) holds. If not it aborts. Otherwise, it samples coin $← {0, 1}. In case coin = 0, it
computes CPRF.Eval(K, x†) as

y† =
⊕

T∈[nin]Q
PRF.Eval(K

T,x†
T
, x†) (4)

using the master secret key

K =
(
{KT,w}, {K̂T,w}

)
T∈[nin]Q,w∈{0,1}Q

that it constructed at the beginning of the game, where {KT,w, K̂T,w} ← PRF.Gen(1κ) for all
T ∈ [nin]Q and w ∈ {0, 1}Q. Due to the condition in Equation (3), i.e., b†

T † = x†
T † ∈ {0, 1}Q, we

can rewrite Equation (4) as

y† = PRF.Eval(K
T †,b†

T †
, x†)⊕

 ⊕
T∈[nin]Q\T †

PRF.Eval(K
T,x†

T
, x†)

 . (5)

In this game Game3, when coin = 0, the challenger instead samples a random ȳ†
$← {0, 1}nout and

returns the following to A instead of returning y† to A as in Equation (5):

y† = ȳ† ⊕

 ⊕
T∈[nin]Q\T †

PRF.Eval(K
T,x†

T
, x†)

 . (6)

We show in Lemma 4.3 that

|Pr[E2]− Pr[E3]| = negl(κ)

assuming pseudorandomness of the underlying PRF ΠPRF. In this game Game3, the distribution
of y† for coin = 0 and coin = 1 are exactly the same since A has not made an evaluation query
on x† and K

T †,b†
T †

is not given through any of the constrained key query. Concretely, ȳ† is
distributed uniform random regardless of whether coin = 0 or coin = 1 and thus the value of coin
is information theoretically hidden to A. Therefore, we have

Pr[E3] = 1/2.

Combining everything together with Lemma 4.2 and Lemma 4.3, we have

ε = |Pr[E0]− 1/2| ≤ (2nin)Q · (|Pr[E3]− 1/2|+ negl(κ)) = negl(κ),

where the last equality follows by recalling that nin = poly(κ) and Q a constant.
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Lemma 4.2. In Game1, we have{
(T †, b†

T †) ∈ [nin]Q × {0, 1}Q
∣∣∣∣∣ (T †, b†

T †) satisfies Equation (2)
for all j ∈ [Q], and Equation (3)

}
6= ∅.

Proof. By the restriction posed on A in the game, for all j ∈ [Q], there exists t(j) ∈ [nin] such that

v
(j)
t(j) = 1− x†

t(j) .

Let us denote T̄ := (t(1), · · · , t(Q)) ∈ [nin]Q and b̄T̄ := x†
T̄
∈ {0, 1}Q. It is easy to check that

Equation (2) for all j ∈ [Q] and Equation (3) hold if T † = T̄ and b†
T † = b̄T̄ .

Lemma 4.3.We have |Pr[E2]− Pr[E3]| = negl(κ) assuming that the underlying PRF ΠPRF satisfies
adaptive pseudorandomness.

Proof. For the sake of contradiction, let us assume an adversary A that distinguishes Game2 and Game3
with non-negligible probability ε′. We then construct an adversary B that breaks the pseudorandomness
of ΠPRF with the same probability. The adversary B proceeds as follows.

At the beginning of the gameB samples a random tupleT † = (t1, · · · , tQ) $← [nin]Q and b†tj
$← {0, 1}

for all j ∈ [Q] as in the Game2-challenger. Let b†T † := bt1bt2 · · · btQ ∈ {0, 1}Q. Then, it further samples
KT,w ← PRF.Gen(1κ) for all T ∈ [nin]Q and w ∈ {0, 1}Q except for (T †, b†

T †). It then sets the
(simulated) master key K† as

K† =
(
KT,w

)
(T,w)∈[nin]Q×{0,1}Q\(T †,b†

T † )
.

Here, B implicitly sets K
T †,b†

T †
as the PRF key used by its PRF challenger. Finally, B prepares two empty

sets Seval, Scon. B then simulates the response to the queries made by A as follows:

• When A submits x ∈ {0, 1}nin as the evaluation query, B checks whether xT † = b†
T † . If not, then

it can use the simulated master key K† to compute

y =
⊕

T∈[nin]Q
PRF.Eval(KT,xT

, x).

Otherwise, it makes an evaluation query to its PRF challenger on the input x. When it receives
back ȳ from the PRF challenger, B computes the output as

y = ȳ ⊕

 ⊕
T∈[nin]Q\T †

PRF.Eval(KT,xT
, x)

 .
Finally, B returns y to A and updates Seval ← Seval ∪ {x}. Note that by the specification of the
PRF challenger, we have ȳ = PRF.Eval(K

T †,b†
T †
, x).

• When A submits CBF
v(j) ∈ CBF

nin as the jth (j ∈ [Q]) constrained key query, B checks whether the
condition in Equation (2) holds. If not it aborts and outputs a random bit. Otherwise, it returns
the following constrained key Kv(j) to A:

Kvj =
(
K̃T,w

)
T∈[nin]Q,w∈{0,1}Q

,

15



where K̃T,w = KT,w if and only if w ∈ Gaut(v(j)
T ) = {w ∈ {0, 1}Q | CBF

v
(j)
T

(w) = 1} and

K̃T,w = K̂T,w otherwise. Here, B can prepare all the PRF keys since the condition in Equation (2)
guarantees us that we have b†

T † 6∈ Gaut(v(j)
T † ), or equivalently, CBF

v
(j)
T †

(b†
T †) = 0. Namely, K̃

T †,b†
T †

=

K̂
T †,b†

T †
and so K

T †,b†
T †

is not included in Kv(j) .

• When A submits the target input x† ∈ {0, 1}nin as the challenge query, B checks whether the
condition in Equation (3) holds. If not it aborts and outputs a random bit. Otherwise, B queries
its PRF challenger on x† as its challenge query and receives back ȳ†. It then computes y† as in
Equation (6) and returns y† to A. Here, since Equation (3) holds, K

T †,b†
T †

must be required to

compute on input x†.

Finally, A outputs its guess ĉoin. B then checks whether (T †, b†
T †) is the first pair that satisfies

Equation (2) for all j ∈ [Q] and Equation (3). If it does not hold, B outputs a random bit. Otherwise, B
outputs ĉoin as its guess.

This completes the description of B. It is easy to check that in case coin = 0, B receives ȳ† ←
PRF.Eval(K

T †,b†
T †
, x†), hence B simulates Game2 perfectly. Otherwise in case coin = 1, B receives

ȳ†
$← {0, 1}nout , hence B simulates Game3 perfectly. Therefore, we conclude that B wins the PRF

pseudorandomness game with probability exactly ε′. Assuming that ΠPRF is pseudorandom, this is a
contradiction, hence, ε′ must be negligible.

This completes the proof.

Theorem 4.4. If the underlying PRF ΠPRF is adaptive pseudorandom, then our above CPRF ΠCPRF for
the bit-fixing predicate CBF satisfies perfect weak 1-key privacy.

Proof. Notice that the master secret key is of the form:(
{KT,w}, {K̂T,w}

)
T∈[nin]Q,w∈{0,1}Q

,

where KT,w, K̂T,w ← PRF.Gen(1κ). Let v(0), v(1) ∈ {0, 1, ∗}nin be the two bit-fixing strings that the
adversary A queries. Then, A receives either one of the following two distributions:

•
(
K̃(0)
T,w

)
T∈[nin]Q,w∈{0,1}Q

where K̃(0)
T,w = KT,w if and only if w ∈ Gaut(v(0)

T ), and K̃T,w = K̂T,w
otherwise.

•
(
K̃(1)
T,w

)
T∈[nin]Q,w∈{0,1}Q

where K̃(1)
T,w = KT,w if and only if w ∈ Gaut(v(1)

T ), and K̃T,w = K̂T,w
otherwise.

Notice that both the distributions are made up entirely of keys sampled from PRF.Gen. Moreover, A
cannot compare outputs under the constrained key and the real master key since A has no access to the
evaluation oracle in this setting. Therefore, the two distributions are perfectly indistinguishable and the
proof of weak key privacy is complete.

5 Conclusion and future work

In conclusion, we have developed the first CPRF construction with O(1) collusion-resistance for bit-
fixing predicates. Our technique signals a noted departure from existing techniques and uses much
weaker assumption than any previous constructions for comparable predicates. Finally we achieve full
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adaptive security with a polynomial security loss alongside 1-key privacy. Our construction is the first to
achieve adaptive security in the standard model and without sub-exponential security losses (regardless
of the primitive).

We believe that there are a number of interesting future directions for our work. Since our technique
is substantially different from existing constructions, we believe that our methods could widen the
possibilities for constructing CPRFs. We summarise the most interesting avenues in the following items.

• Adapt our technique to construct constant collusion-resistant CPRFs for bounded-depth circuits.

• Devise a construction that satisfies O(p(κ)) collusion-resistance for some possibly bounded poly-
nomial p in κ for BF predicates.

• Satisfy key privacy for > 1 constrained keys for BF predicates.

The first point would immediately give a more expressive CPRF. The second point would lead to
applications (such as those envisioned by [BW13]) with far more utility. Since the number of constrained
keys would be linked to the size of the security parameter. If the last point could be achieved, then
we would immediately construct an IO obfuscator for the BF predicate (from OWFs) via the results
of [CC17]. Previously, obfuscators of this form were derived from LWE-based assumptions [BVWW16,
WZ17, GKW17], or those in the generic model [BKM+18].
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