
Efficient UC Commitment Extension with
Homomorphism for Free (and Applications)

Ignacio Cascudo1, Ivan Damg̊ard2∗, Bernardo David3,4†, Nico Döttling5,
Rafael Dowsley2,4‡, and Irene Giacomelli6

1 Aalborg University
2 Aarhus University

3 Tokyo Institute of Technology
4 IOHK

5 CISPA – Helmholtz-Zentrum (i.G.)
6 ISI Foundation

Abstract. Homomorphic universally composable (UC) commitments
allow for the sender to reveal the result of additions and multiplications
of values contained in commitments without revealing the values them-
selves while assuring the receiver of the correctness of such computation
on committed values. In this work, we construct essentially optimal ad-
ditively homomorphic UC commitments from any (not necessarily UC
or homomorphic) extractable commitment. We obtain amortized linear
computational complexity in the length of the input messages and rate
1. Next, we show how to extend our scheme to also obtain multiplicative
homomorphism at the cost of asymptotic optimality but retaining low
concrete complexity for practical parameters. While the previously best
constructions use UC oblivious transfer as the main building block, our
constructions only require extractable commitments and PRGs, achiev-
ing better concrete efficiency and offering new insights into the sufficient
conditions for obtaining homomorphic UC commitments. Moreover, our
techniques yield public coin protocols, which are compatible with the
Fiat-Shamir heuristic. These results come at the cost of realizing a re-
stricted version of the homomorphic commitment functionality where
the sender is allowed to perform any number of commitments and op-
erations on committed messages but is only allowed to perform a single
batch opening of a number of commitments. Although this functionality
seems restrictive, we show that it can be used as a building block for more
efficient instantiations of recent protocols for secure multiparty compu-
tation and zero knowledge non-interactive arguments of knowledge.

∗This project has received funding from the European Research Council (ERC)
under the European Unions’ Horizon 2020 research and innovation programme under
grant agreement No 669255 (MPCPRO).
†This work was supported by JSPS Kakenhi Grant 18K17999.
‡This project has received funding from the European Research Council (ERC)

under the European Unions’ Horizon 2020 research and innovation programme under
grant agreement No 669255 (MPCPRO).

1 Introduction

A commitment scheme is the digital equivalent of a locked box containing a
committed message chosen by a prover. Once the prover gives away the box
to a verifier, the content cannot be changed, the commitment is binding. On
the other hand, the verifier cannot look into the box so the message is hidden
until the prover gives away the key to the box. Commitments are perhaps the
most fundamental building block in cryptographic protocols and despite the
conceptual simplicity of the primitive, it has far-reaching consequences and many
applications, e.g., to coin-flipping, zero-knowledge proofs and many other things.

The simplest form of commitment that only have the basic binding and hiding
properties follow from one-way functions. On the other hand, one may wish
for many other properties, such as non-malleability, security under composition
etc. The strongest form of commitments, namely UC secure commitments, has
all these properties, but on the other hand can only be implemented under
setup assumptions, such as the common reference string model. In this model,
UC commitments imply secure key exchange, so since some sort of public-key
technology seems to be required, it was believed for a long time that even if UC
commitments are the gold standard for security, they must be much less efficient
than the weaker type that only requires symmetric primitives.

However, in [18] and independently in [24,9], this was shown to be false: one
can push the use of public-key technology into a preprocessing phase that is only
needed once and for all and the cost of which does not depend on the number
of commitments to be done later. Notably, the actual commitment and opening
protocols only requires simple finite field algebra and a pseudorandom generator.
After this, a long line of research optimized this approach [17,22], culminating
in [16] where it was shown that after doing O(k + s) string OTs in the setup
phase (where s is the statistical security parameter and k is the message length)
one can commit at rate approaching 1, that is, the communication required is
k+ o(1) bits, furthermore the computational complexity is linear in k7. Finally,
the commitments are additively homomorphic, i.e., one commits to vectors over
a finite field F, and if a, b ∈ Fk have been committed, prover and verifier can
compute a commitment to a+ b which, if opened, would reveal only the sum.

The first construction from this line of work [18] had also a multiplicatively
homomorphic property, namely the prover can send the verifier a single message,
and this allows the verifier to compute a commitment to a ∗ b, the coordinate-
wise (Schur) product of the vectors. However, subsequent constructions did not
have this property.

So, while this line of research has resulted in constructions that are optimal in
several respects, it still leaves some important and natural questions unanswered:

Is it overkill to use OT in the setup phase? All efficient earlier schemes
use OT in the preprocessing phase, but this is in general a stronger prim-
itive than commitment. Even UC commitments do not always imply OT,

7All this holds in an amortized sense, assuming we make enough commitments so
that the cost of the setup phase is dwarfed.

2

this depends on the setup assumption. It is therefore natural to ask if we
can make do with only commitment in the preprocessing, thus obtaining a
proper “commitment extension” result.

Can we make an efficient multi-verifier scheme? The commitments from
[16], and in fact all constructions from this line of work, can only work with
one verifier because security against a corrupt prover depends on the verifier’s
private choice of selections bits in the initial OT’s. Thus, if a prover needs
to commit towards several verifiers, the only known solution is to run many
instances of the scheme, one for each verifier and then on top of this have
the prover convince the verifiers that (s)he committed to the same message.
This seems quite far from an ideal solution.

Can we also get multiplicatively homomorphic schemes? The most ef-
ficient constructions are not multiplicative, but one earlier scheme was in
fact “fully homomorphic”. So it is natural to ask if we can solve the above
problems and also get multiplication at the same time.

1.1 Our contributions

In this paper, we come up with answers to all of the above questions. We present a
protocol for UC secure commitments that has the well known structure consisting
of a preprocessing phase and a phase where the actual commitments are built,
computed on and opened.

In contrast to previous work, however, the preprocessing only makes use
of a commitment scheme (and not OT)8. Notably, however, this commitment
scheme does not need to be homomorphic, and in fact it does not even need
to be UC secure. It just needs to be extractable and hiding - here, extractable
means that the simulator can extract the committed value from a corrupt prover.
For UC full security one usually needs also equivocation (when the prover is
honest, the simulator can fake a commitment and later open it to any value).
The commitment scheme we build uses only a PRG and finite field arithmetic
after the preprocessing. It has rate 1, it is additively homomorphic, and linear
time. Security does not depend on any secret choices of the verifier, so the scheme
easily extends to multiple verifiers with no essential loss of security. Finally, we
show how to make the scheme multiplicative, the scheme is then only quasilinear,
and we get constant rate instead of rate 1.

All these results come at the cost that what we implement is a slightly weaker
commitment functionality than the standard one. Namely, it allows opening of
committed values only in a final stage and after this the functionality stops
working. Equivalently, one can think of this as a functionality one can use exactly
as the standard one, except that when opening a value the prover simply tells
the verifier what the committed value is. Of course a corrupt prover can lie, but
there is a final verification stage where the prover will be caught if he lied.

8The scheme of [9] can be constructed from an extractable commitment and an
equivocal commitment. However, it is intrinsically incompatible with homomorphic
operations.

3

We show that despite this limitation there are a wide range of applications
for the scheme. While we describe these in more detail below, it is already in-
tuitively clear that our functionality is sufficient for ZK proofs, for instance: the
verifier needs to decide to accept or reject only at the end of the protocol so it is
sufficient that a cheating prover is caught at that point. As a simple example of
the power of our construction, consider that UC secure commitments are easy
to implement in the (global) random oracle model [11]: one simply inputs the
message concatenated with some randomness to the oracle and uses the output
as the commitment. Of course, a random oracle based scheme has no homo-
morphic properties: a random oracle “by definition” has no such structure. But
nevertheless, we can use it as commitment scheme in our preprocessing and get
a homomorphic scheme. In general, one can think of our protocol as a “commit-
ment extension” result. It is similar to the well known OT extension protocols,
but incomparable because we get extra homomorphic properties (and perhaps
UC security) for free, but on the other hand we produce a slightly weaker func-
tionality.

Techniques. On the technical side, our approach is best described by referring to
previous work such as [16]: the main idea there was that the prover commits to
a vector a by encoding it using a linear code C. He then additively secret shares
each coordinate in the codeword C(a) to get two shares for each position. Using
the OT’s from the preprocessing, the verifier will learn one out of the two shares
for each position, however, the prover does not know which shares the verifier
has. To open, the prover must reveal C(a) and all shares, and the verifier can
now check that the prover sent a codeword and that the shares are consistent
with C(a) and with the shares the verifier knows.

Intuitively, since the verifier has only one share of each coordinate, C(a) is
unknown to him at commit time. On the other hand, if the prover wants to open
a different value, he must change to a different codeword. However, if C has large
minimum distance, this means the prover must change many coordinates and
therefore must lie about many of the shares. Since he does not know which shares
he can change without being detected, this can only be done with negligible
success probability9.

In order to avoid having to do an OT for each codeword position and each
commitment, instead the prover chooses seeds si,j for a PRG, where i points to
a codeword position and j = 0, 1. The shares for all the commitments are then
constructed by running the PRG on all these seeds and for each i an OT is done
that transfers either si,0 or si,1 to the verifier.

Our key observation now is that it is actually sufficient if the prover simply
commits to the seeds in the preprocessing phase, if we are careful later. Namely,
we run the same protocol as we would have done had the OTs been used, but

9This argument works, even if the prover did not choose a codeword at commit
time. If we also want to have additive homomorphism, we need to check that the
prover chose something that it at least close to a codeword. This can be done using,
e.g., the interactive proximity testing from [16].

4

at the end of the protocol, the verifier will ask the prover to reveal either si,0
or si,1 for each i. Note that, as long as a corrupt prover cannot predict which
seeds he will be asked for, he is in the exactly same position as in the original
protocol. The verifier will receive the same information as before, but cannot
verify it until the end, so hence openings can only be done, or at least can only
be verified, at the end. A corrupt verifier clearly has no advantage compared to
the OT based protocol: he learns the same information, only later.

A very nice “side effect” of this is that we can now easily have several verifiers.
They just need to receive the prover’s initial commitments (assuming, of course
that the initial commitments support this). Then at the end, they can decide,
e.g., by coin flipping which seeds to ask for.

We also extend the commitment scheme to allow for proving multiplicative
relations on committed values. For this purpose, we require the code C to have the
property that its square C∗2 is also a good code, with large minimum distance.
Here C∗2 is defined to be the span of all pairwise Schur-products of words from C.
Moreover, we replace the 2-party additive secret sharing by 3-party linear secret
sharing which is multiplicative: the Schur-product of sets of shares of u, v ∈ F
is (essentially) an additive secret sharing of uv. The effect of all this is that if
we multiply two commitments to a, b by multiplying corresponding components
of them, we obtain a commitment to a ∗ b of essentially the same form as in
the original protocol, except that underlying code is now C∗2. See more details
within. The new demands we place on C imply that we can only get constant
rate and not rate 1 and also that complexity will be quasilinear rather than
linear. The main motivation for this construction is that we get the multiplicative
property and at the same time have multiple verifiers and use only commitment
for preprocessing. An earlier scheme that achieves multiplicative homomorphism
was constructed in [18] via building first an elaborate VSS (verifiable secret
sharing) scheme . While our construction obtains similar asymptotic complexity,
the concrete efficiency is easier to estimate: for a fixed security parameter, we
can give an explicit bound for the rate of the commitment based on recent results
on squares of cyclic codes.

1.2 Applications

Efficient Zero-Knowledge Arguments. A recent line of research is concerned with
the construction of practically efficient succinct non-interactive zero-knownledge
arguments of knowledge (e.g. [1,10,32]) with a particular focus on optimizing the
efficiency of the prover while keeping verification complexity sub-linear.

One such approach, originally dating back to [5], compiles a public coins in-
teractive proof system for a language L into a zero-knowledge proof system for
the same language. This transformation is conceptually simple: Instead of send-
ing its messages to the verifier in the clear, the prover provides only commitments
of his messages to the verifier. At the end of the protocol, the prover provides a
zero-knowledge proof to the verifier which asserts that the verifier of the original
proof system would accept the committed transcript. This transformation has
received renewed interest in the light of efficient P-delegation schemes [25,30].

5

Wahby et al. [32] observed that this approach can be implemented in a par-
ticularly efficient way if the verifier of the interactive proof system is algebraic:
In this case the zero-knowledge proof in the transformation of [5] can be imple-
mented very efficiently via homomorphic commitments.

We show that using our homomorphic commitment scheme, this transfor-
mation can be performed essentially for free, i.e. we can convert any public
coin interactive proof system with algebraic verifier into an honest-verifier zero-
knowledge proof system such that the communication complexity of the protocol
is not affected and both prover and verifier incur only a small constant factor
overhead. Using the Fiat Shamir transform [20], we can convert such a proof
system into a succinct non-interactive zero-knowledge argument.

Committed MPC. The so called “Committed MPC” protocol [21] requires a
multiparty additively homomorphic commitment protocol that supports addi-
tions of commitments generated by different senders. While a generic approach
for constructing such schemes from any two-party additively homomoprhic com-
mitments was proposed in [21], their generic construction for t parties requires
t2 calls to the underlying commitment scheme. If instantiated with the previ-
ously best two-party additively homomorphic commitment protocol of [16] using
a [n, k, s] code, this construction would require nt2 OTs plus extra communica-
tion in the order of O(nmt2) to commit to m messages of length k. We provide
a new generic construction from multi-receiver additively homomorphic com-
mitments which can be instantiated with our new protocols, requiring only nt
non-homomorphic commitments (e.g. random oracle commitments) plus extra
communication in the order of O(smt) to achieve the same.

Insured MPC. The topic of MPC with financial penalties has attracted increas-
ing attention recently [2,6,27,7,4]. The main idea is to combine MPC techniques
with cryptocurrencies in order to provide monetary incentives for the partici-
pants to act honestly during the protocol execution. Insured MPC [4], the most
efficient solution to date, uses a publicly verifiable additively homomorphic multi-
receiver commitment as an important component to build the protocol. However,
the employed commitment scheme is a bottleneck in that construction as its com-
plexity grows quadratically in the number of participants. Using our new tech-
niques together with an authenticated bulletin board (which is also used in the
previous construction), it is possible to dramatically improve the performance
of publicly verifiable additively homomorphic multi-receiver commitment. We
can obtain extremely efficient instantiations, for instance, by using the canoni-
cal random oracle commitment scheme. The improvement in computational and
communication complexity achieved for this application is very similar to that
of the Committed MPC case, since the previously best protocol for publicly
verifiable additively homomorphic multi-receiver commitments [4] has a very
similar structure to the multi-sender protocol of [21]. Thus, we basically go from
quadratic to linear in the number of players.

6

2 Preliminaries

In this section we establish notation and introduce notions that will be used
throughout the paper. We borrow much of the notation from [16].

2.1 Notation

The set of the n first positive integers is denoted [n] = {1, 2, . . . , n}. Given a

finite set D, sampling a uniformly random element from D is denoted r
$←D.

Vectors of elements of some field are denoted by bold lower-case letters, while
matrices are denoted by bold upper-case letters. We denote finite fields by F
and write Fq for the finite field of size q. For z ∈ Fk, z[i] denotes the i’th entry
of the vector, where z[1] is the first element of z. The coordinate-wise (Schur)
product of two vectors is denoted by ∗, i.e. if a, b ∈ Fn, then a ∗ b ∈ Fn and
(a ∗ b)[i] = a[i]b[i]. If A ⊆ [n], we will use πA to denote the projection that
outputs the coordinates with index in A of a vector. For a matrix M ∈ Fn×k,
we let M[·, j] denote the j’th column of M and M[i, ·] denote the i’th row. The
row support of M is the set of indices I ⊆ {1, . . . , n} such that M[i, ·] 6= 0.

We say that a function ε is negligible in n if for every positive polynomial p
there exists a constant c such that ε(n) < 1

p(n) when n > c. Two ensembles X =

{Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are
said to be statistically indistinguishable, denoted by X ≈s Y , if for all z it holds
that | Pr[D(Xκ,z) = 1]−Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic
algorithm (distinguisher) D. In case this only holds for computationally bounded
(non-uniform probabilistic polynomial-time (PPT)) distinguishers we say that
X and Y are computationally indistinguishable and denote it by ≈c.

2.2 Coding Theory

For a vector x ∈ Fn, we denote the Hamming-weight of x by ‖x‖0 = |{i ∈ [n] :
x[i] 6= 0}|. Let C ⊂ Fn be a linear subspace of Fn. We say that C is an F-linear
[n, k, d] code, if C has dimension k and it holds for every nonzero x ∈ C that
‖x‖0 ≥ d, i.e., the minimum distance of C, denoted dist(C), is at least d. The
distance dist(C,x) between C and a vector x ∈ Fn is the minimum of ‖c− x‖0
when c ∈ C. The rate of an F-linear [n, k, d] code is k

n and its relative minimum

distance is d
n .

A matrix G ∈ Fn×k is a generator matrix of C if C = {Gx : x ∈ Fk}, and we
write C(x) = Gx. The code C is systematic if it has a generator matrix G such
that the submatrix given by the top k rows of G is the identity matrix I ∈ Fk×k.

For an F-linear [n, k, d] code C, we denote by C�m the m-interleaved product
of C, which is defined by C�m = {C ∈ Fn×m : ∀i ∈ [m] : C[·, i] ∈ C}. In other
words, C�m consists of all Fn×m matrices for which all columns are in C. We
can think of C�m as a linear code with symbol alphabet Fm, where we obtain
codewords by taking m arbitrary codewords of C and bundling together the com-
ponents of these codewords into symbols from Fm. For a matrix E ∈ Fn×m, ‖E‖0

7

is the number of nonzero rows of E, and the code C�m has minimum distance
at least d′ if all nonzero C ∈ C�m satisfy ‖C‖0 ≥ d′. With this definition, it is
easy to see that dist(C�m) = dist(C)

For an F-linear [n, k, d] code C, we denote by C∗2 the Schur square of C, which
is defined as the linear subspace of Fn generated by all the possible vectors of
the form v ∗w with v,w ∈ C. This is an [n, k̂, d̂] code where k̂ ≥ k and d̂ ≤ d.

2.3 Interactive Proximity Testing and Linear Time Building Blocks

We will use the interactive proximity testing technique and corresponding linear
time building blocks introduced in [16]. As stated in [16], this technique consists
in the following argument: suppose we sample a function H from an almost
universal family of linear hash functions (from Fm to F`), and we apply this to
each of the rows of a matrix X ∈ Fn×m, obtaining another matrix X′ ∈ Fn×`;
because of linearity, if X belonged to an interleaved code C�m, then X′ belongs
to the interleaved code C�`. Theorem 1 states that we can test whether X is
close to C�m by testing instead if X′ is close to C�` (with high probability over
the choice of the hash function) and moreover, if these elements are close to the
respective codes, the set of rows that have to be modified in each of the matrices
in order to correct them to codewords are the same.

Definition 1 (Almost Universal Linear Hashing [16]). We say that a fam-
ily H of linear functions Fn → Fs is ε-almost universal, if it holds for every
non-zero x ∈ Fn that

Pr
H

$←H
[H(x) = 0] ≤ ε,

where H is chosen uniformly at random from the family H. We say that H is
universal, if it is |F−s|-almost universal. We will identify functions H ∈ H with
their transformation matrix and write H(x) = H · x.

Theorem 1 (Theorem 1 in [16]). Let H : Fm → F2s+t be a family of |F|−2s-
almost universal F-linear hash functions. Further let C be an F-linear [n, k, s]
code. Then for every X ∈ Fn×m at least one of the following statements holds,

except with probability |F|−s over the choice of H
$←H:

1. XH> has distance at least s from C�(2s+t)

2. For every C′ ∈ C�(2s+t) there exists a C ∈ C�m such that XH> −C′ and
X−C have the same row support

Remark 1 ([16]). If the first item in the statement of the Theorem does not
hold, the second one must hold. Then we can efficiently recover a codeword C
with distance at most s− 1 from X using erasure correction, given a codeword
C′ ∈ C�(2s+t) with distance at most s − 1 from XH>. More specifically, we
compute the row support of XH> −C′, erase the corresponding rows of X and
recover C from X using erasure correction10. The last step is possible as the
distance between X and C is at most s− 1.

10Recall that erasure correction for linear codes can be performed efficiently via
gaussian elimination.

8

In order to achieve linear time and optimal rate (i.e., rate-1) in our construc-
tions, we will need to instantiate interactive proximity testing with a family of
linear time almost universal linear hash functions and a linear time encodable
error correcting code that achieves rate 1. Theorems 3 and 6 from [16] guarantee
that explicit constructions of such building blocks exist.

The following theorem is a strengthening of Theorem 3 of [16] in that the
output of the hash functions is guaranteed to be uniformly random given that
its first l inputs are uniformly random. The full proof is given in Appendix B.

Theorem 2. Fix a finite field F of constant size, let s ∈ N be a statistical
security parameter, let n ∈ N and let l = s + O(log(n)). Then there exists an
explicit family H : Fl+n → Fl of |F|−s-universal hash functions that can be
represented by O(s2) bits and computed in time O(n). Moreover, it holds for any
function H ∈ H that if x = (x1, . . . , xl, . . . xl+n) is such that the x1, . . . , xl are
independently uniform and xl+1,...,xl+n are independent of x1, . . . , xl, then H(x)
is distributed uniformly random.

2.4 Universal Composability

The protocols presented in this paper are proven secure in the Universal Com-
posability (UC) framework introduced by Canetti in [12]. We refer the reader to
Appendix A and [12] for further details.

Adversarial Model: Our protocols will be proven secure against static and
active adversaries. In other words, the adversary may deviate from the protocol
in any arbitrary way and can only corrupt parties before the protocol execution
starts.

Functionality FCOM

FCOM is parameterized by commitment length λ. FCOM interacts with a sender P ,
a set of receivers V = {V1, . . . , Vt} and an adversary S and proceeds as follows:

– Commit Phase: Upon receiving a message (commit, sid, ssid, P, V,m)

from P where m ∈ {0, 1}
λ

, record the tuple (ssid, P, V,m) and send
(receipt, sid, ssid, P, V) to every receiver Vi ∈ V and S. Ignore subsequent
commit messages with the same ssid.

– Open Phase: Upon receiving a message (reveal, sid, ssid) from P , if a tuple
(ssid, P, V,m) was previously recorded, then send (reveal, sid, ssid, P, V,m) to
every receiver Vi ∈ V and S. Otherwise, ignore.

Fig. 1. Functionality FCOM.

Setup Assumption: Since UC commitment protocols cannot be obtained in
the plain model [13], they need a setup assumption, i.e., a resource available to
all parties before the protocol starts. In this work, our goal is to prove security
in the FCOM-hybrid model [12,14], where the parties have access to an ideal

9

(non-homomorphic) commitment functionality (our constructions are described
in the FCOM-hybrid model for the sake of clarity, but they actually only need the
underlying commitments to be extractable). Functionality FCOM is described in
Figure 1. Notice that we describe a version of FCOM that operates with a set V
of multiple receivers instead of a single receiver. However, FCOM can operate as
a standard two-party commitment functionality with a single receiver by setting
V = {V1}, in which case it can be realized in the CRS model under different
assumptions with security against static malicious adversaries by a number of
protocols such as [13,28,8].

A recent result by Camenisch et al. [11] shows that the “canonical” ran-
dom oracle commitment realizes this functionality in the Global Random Oracle
model without extra computational assumptions achieving security against static
malicious adversaries. We observe that the protocol in [11] supports multiple re-
ceivers. In this protocol, the sender commits to a message m with randomness
r by sending to the receiver the output c of the global random oracle when
queried on (r,m) and opens by revealing (r,m), which allows the receiver to
verify by querying the global random oracle with the pair (r,m) received as
opening and checking that the response is equal to c. Given that the random
oracle functionality in this model is global, any number of receivers who have
received the commitment and the opening can trivially obtain the same result
in the verification.

Functionality FAHCOM

FAHCOM interacts with a sender P , a set of receivers V = {V1, . . . , Vt} and an
adversary S and proceeds as follows:

– Commit Phase: The length of the committed messages λ is fixed and known
to all parties.
• If P is honest, upon receiving a message (commit, sid, ssid, P, V) from
P , sample a random m ← {0, 1}λ, record the tuple (ssid, P, V,m),
send the message (commit, sid, ssid, P, V,m) to P and send the message
(receipt, sid, ssid, P, V) to every receiver Vi ∈ V and S. Ignore any future
commit messages with the same ssid from P to V .

• If P is corrupted, upon receiving a message (commit, sid, ssid, P, V,m) from
P , where m ∈ {0, 1}λ, record the tuple (ssid, P, V,m) and send the mes-
sage (receipt, sid, ssid, P, V) to every receiver Vi ∈ V and S. Ignore any
future commit messages with the same ssid from P to V .

• If a message (abort, sid, ssid) is received from S, the functionality halts.
– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3, P, V) from
P : If tuples (ssid1, P, V,m1), (ssid2, P, V,m2) were previously recorded
and ssid3 is unused, record (ssid3, P, V,m1 + m2) and send the message
(add, sid, ssid1, ssid2, ssid3, P, V, success) to P , every receiver Vi ∈ V and S.

– Open Phase: Upon receiving a message (reveal, sid, ssid1, . . . , ssido) from P ,
for every ssid ∈ {ssid1, . . . , ssido}, if a tuple (ssid, P, V,m) was previously
recorded, then send (reveal, sid, ssid, P, V,m) to every receiver Vi ∈ V and S,
if not, send nothing. Finally, halt.

Fig. 2. Functionality FAHCOM

10

Functionality FMHCOM

Augment the functionality FAHCOM (Figure 2) with the step:
– Multiplication: Upon receiving a message (mult, sid, ssid1, ssid2, ssid3, P, V)

from P : If tuples (ssid1, P, V,m1), (ssid2, P, V,m2) were previously recorded
and ssid3 is unused, record (ssid3, P, V,m1 ∗ m2) and send the message
(mult, sid, ssid1, ssid2, ssid3, P, V, success) to P , every receiver Vi ∈ V and S.

Fig. 3. Functionality FMHCOM

Ideal Functionalities: In Section 3, we construct an additively homomorphic
string commitment protocol that UC-realizes functionality FAHCOM, described
in Figure 2. Similarly to a functionality of [16], FAHCOM augments the standard
multiple commitments functionality FMCOM from [14] by introducing a com-
mand for adding two previously stored commitments and an abort command in
the Commit Phase. Moreover, FAHCOM gives an honest sender commitments to
random messages instead of letting it submit a message as input, which can be
straightforwardly used to commit to arbitrary messages with additive homomor-
phism as shown in [16]. In order to model corruptions, functionality FAHCOM

lets a corrupted sender choose the messages it wants to commit to. The abort
is necessary to deal with inconsistent commitments that could be sent by a
corrupted party. However, differently from [16] or [14], this functionality can op-
erate with a set V of multiple receivers but only allows for a single opening of a
batch of commitments, after which it halts, not allowing further commitments,
additions or openings. Notice that this functionality can operate as a two-party
commitment functionality with a single receiver by setting V = {V1}. Section 4
shows how to modify the construction of Section 3 to obtain a protocol that
UC-realizes the augmented functionality FMHCOM (Figure 3), which also allows
for multiplication of committed values.

3 Rate-1 Linear Time Additively Homomorphic
Commitments

In this section, we construct a linear time additively homomorphic commit-
ment protocol that achieves amortized rate-1 and linear time in the length of
committed messages assuming an extractable commitment (not necessarily ho-
momorphic) and a PRG as building blocks. Protocol ΠAHCOM realizes FAHCOM,
which only allows for commitments to random messages. Interestingly, in this
case we can achieve sublinear communication complexity in the commitment
phase while maintaining rate-1 in the opening phase. Even though committing
to random messages is useful for a number of applications (e.g. [23]), it has
been shown in [16] that FAHCOM is sufficient for building a protocol ΠARBHCOM

that commits to arbitrary messages (see Appendix C for more details). Notice
that Protocol ΠARBHCOM achieves rate-1 and runs in linear time when FAHCOM

is instantiated with Protocol ΠAHCOM as described in this section, since the
commitments to random messages only require sublinear communication.

11

The main idea is to use a “delayed watchlist” mechanism where the sender
first commits to seeds that will be stretched by a PRG to instantiate the watchlist
but only allows the receivers to learn the watch bits in a later point, at which
the receivers choose a random subset of the seed commitments to be opened.
Basically, the watchlist is viewed as a matrix R = R0 + R1 such that, for each
row of R, the receiver learns only a row from either R0 or R1 without revealing
to the sender which one. Instead of using a number of 1-out-of-2 random OTs
to obtain seeds that are stretched to generate each line of R0 or R1 in the
beginning of the protocol as in previous works, the receiver relies on simple
commitments to each seed sent by the sender. This scheme achieves rate-1 using
similar techniques as [16]: first having the sender adjust the bottom bits of the
watchlist matrix R so that its columns are codewords of random strings (in
the top bits of R) and then using interactive proximity testing to convince the
receiver that these columns are indeed “very close” to codewords. In order to
“open” a commitment, the sender reveals the columns from both R0 and R1

corresponding to that commitment, allowing a receiver who knows rows from
each of these matrices to check that the revealed column vector corresponds to
the watchlist with high probability. However, in our new scheme, the receiver
only chooses which commitments to seeds will be revealed after the sender has
sent this opening information. Otherwise, the sender would learn which rows of
R0 or R1 the receiver would check, being able to open commitments to arbitrary
messages. Protocol ΠAHCOM is described in Figures 4 and 5.

In comparison to the protocol of [16], our scheme realizes a functionality with
a caveat that only one opening of a batch of commitments is allowed (after which
it terminates). However, this limited functionality is sufficient for a number of
applications that we discuss in later sections. Moreover, our protocol has two
important properties that the scheme of [16] lacks: it is public coin and supports
multiple receivers. Notice that the watch bits of the receiver (represented by a
row from either R0 or R1) are chosen at random but in public by the receiver.
Hence, given an underlying commitment that support multiple receivers (e.g.,
the canonical random oracle commitment scheme), it is sufficient to have the re-
ceivers run a simple commit-then-open coin tossing protocol to choose the watch
bits they will learn, then have the sender publicly open his seed commitments.
Interestingly, having the receivers broadcast their coin tossing commitments at
the beginning of the protocol (before the sender broadcasts opening informa-
tion), allows the simulator to both equivocate and extract commitments solely
by extracting the underlying commitments. Notice that the simulator can equiv-
ocate a commitment by knowing in advance the watch bits to be learned by the
receivers and extract a commitment by learning the whole watchlist, which are
fixed in the sender’s seed commitments. In order to eliminate interaction with
the receivers, the random watch bits to be opened can be selected with the help
of a random oracle following the Fiat-Shamir heuristic.

Efficiency: Notice that all phases of the ΠAHCOM run in linear time (requiring
a constant number of operations per committed bit) when we use a linear time
PRG (i.e., with a constant number of operations per generated bit, such as [31])

12

a linear time encodable code C (e.g. the one from [16], described in Section 2.3)
and a linear time linear almost universal hash function H (e.g. the one from [16],
described in Section 2.3). The cost of the calls to FAHCOM is amortized over
the number of commitments, which does not need to be very large if FAHCOM

is instantiated with cheap random oracle based commitments. The commitment
phase achieves sublinear communication complexity when committing to random
messages, since a rate-1 [n, k, s]-code C is used and only W,T0,T1 (of size O(1))
are exchanged. Even if the trick from [16] (described in Appendix C) is used to
commit to arbitrary messages, only k extra bits need to be sent per message.
In this case, our protocol achieves rate-1, meaning that the amortized overhead
per committed bit is o(1) for a sufficiently large number of commitments.

The opening phase as described in Figure 5 does not achieve rate-1, since the
sender has to send both A0[·, j] A1[·, j]. However, it can be modified to achieve
rate-1 using the same technique from [16], where a batch of commitments are
opened by performing interactive proximity testing on a matrix A′ containing
the columns of A corresponding to the commitments to be opened. The receivers
can use another coin-tossing to select a hash function H, then the sender sends
A′, T0

′ = A0
′H and T1

′ = A1
′H. The receivers check that A′H = T0

′ + T1
′,

that all columns in A′ are in C and that ∆T0
′ + (I−∆)T1

′ = B′H, where B′

contains the columns from B corresponding to the commitments being checked.
This technique can be proven secure using the same techniques used for proving
security against a corrupt sender.

3.1 Security Analysis

For the sake of clarity, we will prove Protocol ΠAHCOM’s security in the FCOM-
hybrid model, i.e. assuming access to an ideal functionality for commitments.
The proof of security for Protocol ΠAHCOM is very similar to that of the scheme
of [16], with the exception that all information the simulator needs to extract
and equivocate commitments will be obtained from FCOM instead of an OT
functionality. However, our simulator will only rely on the fact that it can extract
the messages sent by the adversary to FCOM before it opens its commitments.
Essentially, our simulators only need an underlying commitment scheme that is
extractable, not a full blown UC commitment scheme (which would also allow
the simulator to open the underlying commitments to arbitrary messages). The
security of Protocol ΠAHCOM is formally stated in Theorem 3.

Theorem 3. Protocol ΠAHCOM UC-realizes FAHCOM in the FCOM-hybrid model
with computational security against a static adversary. Formally, there exists a
simulator S such that for every static adversary A, and any environment Z, the
environment cannot distinguish ΠAHCOM composed with FCOM and A from S
composed with FAHCOM. That is, IDEALFAHCOM,S,Z ≈c HYBRID

FCOM

ΠAHCOM,A,Z .

Proof. Constructing a simulator for the case where all parties are honest is triv-
ial. Hence, the theorem follows straightforwardly from Lemma 2 and Lemma 3
(Appendix D), which establish security against an adversary that corrupts P

13

Protocol ΠAHCOM

Let C be a systematic binary linear [n, k, s] code, where s is the statistical security
parameter and n is k + O(s). Let H be a family of linear almost universal hash
functions H : {0, 1}m → {0, 1}l. Let PRG : {0, 1}` → {0, 1}m+l be a pseudoran-
dom generator. Protocol ΠAHCOM is run by a sender P and a set of receivers
V = {V1, . . . , Vt}, who interact with FCOM and proceed as follows:

Commitment Phase

1. On input (commit, sid, ssid1, . . . , ssidm, P, V), P proceeds as follows:

(a) For i ∈ [n] and j ∈ {0, 1}, sample si,j
$←{0, 1}` and send

(commit, sid, ssidi,j , P, V, si,j) to FCOM.
(b) Compute Rj[i, ·] = PRG(si,j) and set R = R0 + R1 so that R0,R1 forms

an additive secret sharing of R.
(c) Adjust the bottom n − k rows of R so that all columns are codewords in

C by constructing a matrix W with dimensions as R and 0s in the top k
rows, such that A := R + W ∈ C�m+l (recall that C is systematic). Set
A0 = R0,A1 = R1 + W and broadcast (sid, ssid1, . . . , ssidm,W) (only
sending the bottom n− k = O(s) rows).

2. Upon receiving all messages (receipt, sid, ssidi,j , P, V) from FCOM and
(sid, ssid1, . . . , ssidm,W) from P , every receiver Vi ∈ V proceeds as follows:

(a) Sample ri
$←{0, 1}n and r′i

$←{0, 1}`, and send (commit, sid, ssid, Vi, V
′, ri)

and (commit, sid, ssid′, Vi, V
′, ri

′) to FCOM
a, where V ′ = P ∪ V \ Vi.

(b) Upon receiving (receipt, sid, ssid, Vj , V
′) and (receipt, sid, ssid′, Vj , V

′)
from FCOM for all Vj ∈ V \ Vi, send (reveal, sid, ssid′) to FCOM.

(c) Upon receiving (reveal, sid, ssid′, Vj , V
′, rj

′) from FCOM for all Vj ∈ V \Vi,
set r′ = r1

′ ⊕ . . .⊕ rt
′.

3. Upon receiving (commit, sid, ssid, Vi, V
′) and (reveal, sid, ssid′, Vj , V

′, rj
′) from

FCOM for all Vj ∈ V , P proceeds as follows:
(a) Use r′ = r1

′ ⊕ . . .⊕ rt
′ as a seed for a random function H ∈ H (note that

we identify the function with its matrix and all functions in H are linear).
(b) Set matrices P, P0 and P1 as the first l columns of A, A0 and A1, re-

spectively, and remove these columns from A, A0 and A1. Renumber the
remaining columns of A, A0 and A1 from 1 and associate each ssidi (com-
mitment id from step 1) with a different column index in these matrices.
Notice that P = P0 + P1.

(c) For i ∈ {0, 1}, compute Ti = AiH + Pi and broadcast
(sid, ssid1, . . . , ssidm,T0,T1). Note that AH + P = A0H + P0 + A1H +
P1 = T0 + T1, and AH + P ∈ C�l.

aWe abuse notation and assume that each receiver Vi in ΠAHCOM has access to
an instance of FCOM that takes as message with the appropriate length where it
acts as sender and where all other receivers plus sender P act as receivers.

Fig. 4. Commit phase for the protocol ΠAHCOM.

and all but one receiver in V by constructing the simulator SP (Figure 13) or
an adversary who corrupts all receivers in V by constructing the simulator SV
(Figure 14), respectively.

14

Protocol ΠAHCOM

Addition of Commitments

1. On input (add, sid, ssid1, ssid2, ssid3, P, V), P finds indexes i and j correspond-
ing to ssid1 and ssid2 respectively and check that ssid3 is unused. P appends
the column A[·, i] + A[·, j] to A, likewise appends to A0 and A1 the sum of
their i-th and j-th columns, and associates ssid3 with the new column index.
P broadcasts (add, sid, ssid1, ssid2, ssid3). Note that this maintains the prop-

erties A = A0 +A1 and A ∈ C�m
′
, where m′ is the current number of columns

(after appending columns for addition results).
2. Upon receiving (add, sid, ssid1, ssid2, ssid3), every receiver Vi ∈ V stores the

message.

Opening

1. On input (reveal, sid, ssid1, . . . , ssido), P finds the set J =
{j1, . . . , jo} of indexes associated to ssid1, . . . , ssido and broadcasts
(sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j])j∈J).

2. Upon receiving message (sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j])j∈J), every Vi ∈
V sends (reveal, sid, ssid) to FCOM and waits for (reveal, sid, ssid, Vj , V

′, rj)
from FCOM for all Vj ∈ V \ Vi. Vi sets r = r1 ⊕ · · · ⊕ rt and sets the diagonal
matrix ∆ such that it contains r[1], . . . , r[n] in the diagonal.

3. Upon receiving (reveal, sid, ssid, Vj , V
′, rj) from FCOM for all Vj ∈ V , P sets

r = r1 ⊕ . . .⊕ rt, sends (reveal, sid, ssidi,r[i]) to FCOM for i ∈ [n] and halts.
4. Upon receiving (reveal, sid, ssidi,r[i], P, V, si,r[i]) from FCOM for i ∈ [n], every

receiver Vj ∈ V proceeds as follows:
(a) Compute S[i, ·] = PRG(si,r[i]), obtaining a matrix S. Note that each row of

S is a row from either R0 or R1, which form an additive secret sharing of R
held by P . Set B = ∆W +S. Define the matrix Q as the first l columns of
B and remove these columns from B, renumbering the remaining columns
from 1. Note that, for A from the commitment phase, A = A0 + A1, B =
∆A1 + (I −∆)A0, A ∈ C�m , i.e., A initially held by P is additively
shared and for each row index, V knows either a row from A0 or from A1.

(b) Check that ∆T1 + (I−∆)T0 = BH + Q and that T0 + T1 ∈ C�l. If any
check fails, abort. Notice that T0,T1 form an additive sharing of AH+P,
where V knows some of the shares, namely the rows of BH + Q.

(c) For every message (add, sid, ssid1, ssid2, ssid3) received from P , append
B[·, j] + B[·, i] to B, where i and j are the index corresponding to ssid1
and ssid2 respectively and associate ssid3 with the new column index. Note
that this maintains the property B = ∆A1 + (I−∆)A0.

(d) For every j ∈ J , check that A0[·, j] + A1[·, j] ∈ C and that, for i ∈ [n],
it holds that B[i, j] = Ar[i][i, j] (recall that r[i] is the i-th entry on the
diagonal of ∆). If all checks succeed, for every j ∈ J , output the first k
positions in A0[·, j] + A1[·, j] as the opened string and halt. Otherwise,
abort by outputting (sid, ssidj ,⊥).

Fig. 5. Addition of commitments and opening phase for the protocol ΠAHCOM.

15

4 Achieving Multiplicative Homomorphism

In this section, we modify our additively homomorphic commitment protocol
described Section 3 (protocol ΠAHCOM) so that it is also homomorphic for (co-
ordinatewise) multiplication of messages. That is, if we denote the scheme from
Section 3 by com, our goal is that given commitments com(a), com(b) the prover
can construct a commitment com(a∗b). In order to do this we need to introduce
a second auxiliary commitment scheme prodcom, also described below.

Both com and prodcom can be obtained by changing the instantiation of
two of the building blocks of protocol ΠAHCOM. Namely, at the core of the
construction of the commitment scheme in Section 3 (as well as in the ones from
[16,17,22]) there is a linear error correcting code C, which is used to encode the
message and which needs to have a large enough minimum distance; and there
is the 2-out-of-2 additive secret sharing scheme Add2, which is applied to each
coordinate of the encoding. Our modifications are as follows: first, we need a
linear code C such that also its (Schur) square C∗2 has a large enough minimum
distance. We will use C as the linear code in com and C∗2 as the linear code
in prodcom (with a certain caveat described below). As for the secret sharing
schemes, we will use the replicated secret sharing scheme RSS3 (described below)
for com and the additive 3-out-of-3 Add3 secret sharing scheme for prodcom.
RSS3 is the secret sharing scheme where the secret s ∈ {0, 1} is additively split
into three parts, i.e., s = r0 + r1 + r2 where r0, r1 are uniformly random and
independent, and the shares are defined to be the pairs s0 = (r0, r1), s1 = (r1, r2),
s2 = (r2, r0). RSS3 is a multiplicative secret sharing scheme, which means that
shares of s, s′ can locally be transformed into shares by Add3 of the product s ·s′.
More precisely, s · s′ = t0 + t1 + t2, where ti = rir

′
i + rir

′
i+1 + r′iri+1 (where sums

in the indices are modulo 3) and note that all this information is contained in
the i-th shares si, s

′
i of s and s′.

The rationale for the choices of codes and secret sharing schemes is then that
from the watchlists of com(a), com(b) a verifier can compute a watchlist to a
commitment prodcom(a ∗ b). Indeed, given the j-th share (in RSS3) of the i-th
coordinates (C(a))i, (C(b))i the verifier can determine the j-th share (in Add3)
of (C(a) ∗ C(b))i, and note C(a) ∗ C(b) is a codeword in C∗2 having a ∗ b as the
vector of its first k coordinates.

But our goal is to construct com(a ∗ b) rather than prodcom(a ∗ b). We do
that as follows: the prover constructs commitments com(y), prodcom(y) of a
random vector y with both commitment schemes, where for every coordinate
i, the verifier will later request to open the share with the same index ri in
prodcom(y) as he does for com(a), com(b), com(y) (note that for com that means
the additive shares indexed by ri and ri + 1). The sender needs to prove that
com(y), prodcom(y) are indeed commitments to the same vector, which will
be detailed later. From com(a), com(b) the prover constructs all the shares in
prodcom(a∗b) as mentioned above, and then announces all three additive shares
of a ∗ b − y. For each coordinate i, the receiver will be able to determine the
ri-th share of this vector from the watchlists of com(a), com(b), prodcom(y) and
contrast this with the information that the prover opens. Now assuming the

16

verifier does not abort, the prover and verifier can simply construct com(a ∗ b)
by adding a ∗ b− y to com(y). 11

We need to address however some small technical details: commitments with
prodcom are to messages of length k′ (the dimension of C∗2) rather than messages
of length k and in general it can happen that k′ > k, so when we say prodcom(y)
we mean that the commitment is to a vector y||z where z is of length k′ − k.
Moreover, initially we cannot choose the random vectors we commit to since
these are generated pseudorandomly from the seeds, so the prover will need to
send some correction information in order to commit to the same value in the two
schemes. In order to do that, and simultaneously prepare to prove that com(y)
and prodcom(y) are commitments to the same vector y, we define the linear

code C̃ defined as the concatenation of C and C∗2. More precisely,

C̃ = {(y, c,y, c′) : (y, c) ∈ C, (y, c′) ∈ C∗2}. (1)

The prover, having used the PRGs to construct pairs of random vectors r, r′

in {0, 1}n and additive splittings of them, will concatenate the two vectors and

send correction information z ∈ {0, 1}2n so that (r||r′) − z ∈ C̃ (as before, the
first k bits of z can be taken to be 0, so the prover needs to send only 2n−k bits).
Now given a batch of supposed codewords of this form the interactive proximity
testing technique is applied so that the sender proves they are indeed codewords
in C̃, and therefore they are associated to commitments (com(y), prodcom(y)).

Note that since the first n coordinates of the codewords in C̃ are codewords
in C, this test also guarantees all properties of the interactive proximity test for
the additive case, so we do not need to perform that one separately.

We note that d̃ = dist(C̃) ≥ dist(C∗2), 12 so in this case we will need a lower
bound on dist(C∗2) to obtain the same guarantees as in the additive case. Fur-
thermore, a difference with the proof for the additive-only commitment scheme
is that now the verifier sees 2 out of 3 additive shares of the first n coordinates
and 1 out of 3 coordinates of the last n, which affects the cheating probabilities
of a corrupt prover: we will show that it is enough to assume that dist(C∗2) > βs,
where β = 1/(log2 3 − 1) = 1.709... (which satisfies (2/3)β = 1/2), in order to
guarantee that the cheating prover can succeed with probability at most 2−s.

Protocol ΠMHCOM is described in Figures 6, 7 and 8. Notice that for consis-
tency with the notation of Section 3, we describe our fully homomorphic commit-
ment protocol for random messages. However, a commitment to chosen messages
m can be created using the protocol ΠMHCOM simply sending c = m−a, where

11More precisely, the last share of each coordinate of C(y) is added with the corre-
sponding (now public) coordinate of C(a ∗ b− y).

12One could be tempted to think that the tighter lower bound dist(C̃) ≥ dist(C) +
dist(C∗2) holds, but this is not necessarily true if the dimension k′ of C∗2 is larger
than k, as in that case there will be codewords of the form (0k,0n−k,0k, c′) where
c′ 6= 0n−k. Indeed take (0k, c′) to be the encoding by C∗2 of a vector (0k||z) for a

nonzero z ∈ {0, 1}k
′−k

17

a = π[k](A[·, i]) is one of the random message that the prover gets in the com-
mit phase of ΠMHCOM (same technique used in Appendix C). Now, in order to
allow multiplication of commitments to chosen messages it is enough that all
the players locally adjust the shares of the random messages used as OTP keys
(e.g., the prover P adds C(c) to A2[·, i] and every receiver in V adds ∆C(c) and
∆′C(c) to B[·, i] and B′[·, i], respectively) and then execute the multiplication
step as detailed in Figure 7.

Finally notice that for the sake of simplicity, in the commit phase of pro-
tocol ΠMHCOM we use the same notation and the same construction both for
random messages that are actually input to commitments (or used to construct
a commitment to a chosen message as explained above) and for the auxiliary
random messages that are needed in the multiplication step (i.e., y in the no-
tation used in the introduction of this section), so that all those messages are
encoded in columns of the big matrix Ã. However, committing with prodcom,
and hence creating and manipulating the last n rows of the matrix Ã(what we
call Â), is only necessary for the random messages used in the multiplication
step, and could be saved for the remaining random messages. On the other hand,
the current structure of the commit phase, where we do not distinguish between
the two roles for the random messages, allows us to use only a single interactive
proximity test instead of two (i.e., one for C as in protocol ΠAHCOM to guarantee

the additive property and another one for C̃ and the auxiliary random messages
to guarantee that the same value y is encoded using C and C∗2).

Efficiency: Since we choose to commit to every random message with both com

and prodcom, the total length of the commitment will be 2n− k+ o(k) bits per
message of k bits. For chosen messages we need to add an extra k bits per message
for a total of 2n bits. If C has rate R, our commitments have then rate R/2.
Moreover, for multiplying two commitments the prover needs to have created
an additional commitment of a random message with both com and prodcom

(hence communicating 2n bits), and then communicate all shares of a related
commitment with prodcom (the wi’s in the protocol), which amounts to 3n bits.
So the communication of this step is 5n bits. The question is then what rates
we can have under our new requirements on dist(C∗2).

Asymptotical families of binary codes {Cn} with constant rate (of Cn) and
constant relative minimum distance of C∗2n exist based on algebraic geometry [29].
For fixed values of the security parameter s, the families of cyclic codes con-
structed in [15], while not asymptotically good, give better rates. As an exam-
ple, for s = 60, where our protocol needs dist(C∗2) ≥ 103, Table 2 in [15] gives a
[4095, 338] cyclic code with dist(C∗2) ≥ 135, which has rate around 0.08. Hence
the commitments will have rate 0.04.13 We need to send 25k bits per k-bit mes-
sage we commit to, and 62.5k bits to construct a commitment to the product of
two messages.

13And naturally from this one can also obtain a [4095 · `, 338 · `]-code with the same
minimum distance of its square, by simply applying the [4095, 338] to each block of
338 bits of the message.

18

Protocol ΠMHCOM

Let C be a systematic binary linear [n, k] code, such that C∗2 is also systematic and
satisfies dist(C∗2) ≥ βs, where β = 1/(log2 3 − 1) and s is the statistical security

parameter. Let C̃ be the code defined in (1). Let H be a family of linear almost
universal hash functions H : {0, 1}m → {0, 1}l. Let PRG : {0, 1}` → {0, 1}m+l be
a pseudorandom generator. Protocol ΠMHCOM is run by a sender P and a set of
receivers V = {V1, . . . , Vt}, who interact with FCOM as follows:

Commitment Phase

1. On input (commit, sid, ssid1, . . . , ssidm, P, V), P proceeds as follows:

(a) For i ∈ [n] and j ∈ {0, 1, 2}, sample si,j
$←{0, 1}`, ŝi,j

$←{0, 1}` and send

(commit, sid, ssidi,j , P, V, si,j), (commit, sid, ŝsidi,j , P, V, ŝi,j) to FCOM.

(b) Compute Rj[i, ·] = PRG(si,j) and R̂j[i, ·] = PRG(ŝi,j) and set R = R0 +

R1 + R2 and R̂ = R̂0 + R̂1 + R̂2.
(c) Adjust the bottom n − k rows of R so that all columns are codewords in

C by constructing a matrix W with dimensions as R and 0s in the top k
rows, such that A := R + W ∈ C�m+l (recall that C is systematic). Set
A0 = R0,A1 = R1,A2 = R2 + W.

(d) Adjust R̂ so that all columns are codewords in C∗2 and the first k rows are

the same as in A by constructing a matrix Ŵ with dimensions as R̂ such
that Â := R̂+Ŵ ∈ (C∗2)�m+l and Â[i, ·] = A[i, ·] for all i ∈ [k]. Set Â0 =

R̂0, Â1 = R̂1, Â2 = R̂2 + Ŵ and broadcast (sid, ssid1, . . . , ssidm,W,Ŵ)

(sending the bottom n− k rows of W and the entire matrix Ŵ).
2. Upon receiving all (receipt, sid, ssidi,j , P, V) from FCOM and

(sid, ssid1, . . . , ssidm,W,Ŵ) from P , every Vi ∈ V proceeds as follows:

(a) Sample ri
$←Zn3 , ri

′ $←{0, 1}` and send (commit, sid, ssid, Vi, V
′, ri) and

(commit, sid, ssid′, Vi, V
′, ri

′) to FCOM, where V ′ = P ∪ V \ Vi.
(b) and (c) as is the commit phase of ΠAHCOM (Figure 4).

3. Upon receiving (commit, sid, ssid, Vi, V
′) and (reveal, sid, ssid′, Vj , V

′, rj
′) from

FCOM for all Vj ∈ V , P proceeds as follows:
(a) Use r′ = r1

′ ⊕ . . .⊕ rt
′ as a seed for a random function H ∈ H.

(b) Define the matrices Ã =

(
A

Â

)
and Ãi =

(
Ai

Âi

)
for i ∈ {0, 1, 2}. Note that

Ã ∈ C̃�m+l and Ã = Ã0 + Ã1 + Ã2. Set the matrices P̃ and P̃i as the
first l columns of Ã and Ãi, respectively, and remove these columns from
Ã, Ãi, A, Ai, Â, Âi for i ∈ {0, 1, 2}. Renumber the remaining columns
from 1 and associate each commitment ssidi (commitment id from step 1)

with a different column in these matrices. Notice that P̃ = P̃0 + P̃1+P̃2.
(c) For i ∈ {0, 1, 2}, compute the matrix T̃i = ÃiH + P̃i and broadcast

(sid, ssid1, . . . , ssidm, T̃0, T̃1, T̃2). Note that ÃH + P̃ = T̃0 + T̃1 + T̃2,

and ÃH + P̃ ∈ C̃�l.

Fig. 6. Commit phase for the protocol ΠMHCOM.

19

Protocol ΠMHCOM

Addition of Commitments

1. On input (add, sid, ssid1, ssid2, ssid3, P, V), P finds indexes i and j correspond-
ing to ssid1 and ssid2 respectively and check that ssid3 is unused. P appends
the column A[·, i] + A[·, j] to A, likewise appends to A0, A1, A2 the sum of
their i-th and j-th columns, and associates ssid3 with the new column index.
P broadcasts (add, sid, ssid1, ssid2, ssid3) to V .

2. Upon receiving (add, sid, ssid1, ssid2, ssid3), every Vi ∈ V stores the message.

Multiplication of Commitments

1. On input (mult, sid, ssid1, ssid2, ssid3, P, V), P finds indexes i and j corre-
sponding to ssid1 and ssid2 respectively and check that ssid3 is unused. Then,
P proceeds as follows:
(a) For l ∈ {0, 1, 2}, compute vl = Al[·, i] ∗ Al[·, j] + Al[·, i] ∗ Al+1[·, j] +

Al+1[·, i] ∗Al[·, j]. Note that v0,v1,v2 are shares of A[·, i] ∗A[·, j] in the
scheme Add3 and known to P only. Let h be the index of the first unused
column from A and Â, compute wl = vl − Âl[·, h] for l = 0, 1, 2 and
broadcast (sid, ssid, h,w0,w1,w2) to V . Note that w0,w1,w2 are shares

of A[·, i] ∗A[·, j]− Â[·, h] in the scheme Add3 and are known to P ∪ V .
(b) Let u = π[k](w0 + w1 + w2) (i.e., u consists of the first k compo-

nents of A[·, i] ∗A[·, j] − Â[·, h]), append the columns A[·, h] + C(u) and
A2[·, h] + C(u) to A and A2, respectively. Append the column Ai[·, h]
to Ai for i = 0, 1 and associate ssid3 with the new column index. Note
that since π[k](Â[·, h]) + π[k](A[·, h]), for l ∈ {1, . . . , k} the l-th compo-
nent of newly appended column in A is equal to A[l, i] ∗A[l, j]. Broadcast
(add, sid, ssid1, ssid2, ssid3) to V .

2. Upon receiving (mult, sid, ssid1, ssid2, ssid3), every Vi ∈ V stores the message.

Note that this maintains the properties A = A0 + A1 + A2 and A ∈ C�m
′
, where

m′ is the current number of columns.

Opening (Part 1)

1. On input (reveal, sid, ssid1, . . . , ssido), P finds the set J =
{j1, . . . , jo} of indexes associated to ssid1, . . . , ssido and broadcasts
(sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j],A2[·, j])j∈J).

2. Upon receiving message (sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j],A2[·, j])j∈J),
every receiver Vi ∈ V sends (reveal, sid, ssid) to FCOM and waits for
(reveal, sid, ssid, Vj , V

′, rj) from FCOM for all Vj ∈ V \ Vi. Vi sets r =
r1 + · · · + rt (where the sum is in Zn3) and sets the diagonal matrices ∆,∆′

such that the i-th element in ∆ (resp. ∆′) is 1 if r[i] = 2 (resp. r[i] = 1) and
0 otherwise.

3. Upon receiving (reveal, sid, ssid, Vj , V
′, rj) from FCOM for all Vj ∈ V , P sets

r = r1 + . . . + rt, sends (reveal, sid, ssidi,r[i]), (reveal, sid, ssidi,r[i]+1) and

(reveal, sid, ŝsidi,r[i]) to FCOM for i = 1, . . . , n and halts.

Fig. 7. Addition and multiplication steps, and opening phase for the protocolΠMHCOM.

20

Protocol ΠMHCOM

Opening (Part 2)

4. Upon receiving the messages (reveal, sid, ssidi,r[i], P, V, si,r[i]),

(reveal, sid, ssidi,r[i]+1, P, V, si,r[i]+1) and (reveal, sid, ŝsidi,r[i], P, V, ŝi,r[i])
from FCOM for i ∈ {1, . . . , n}, every receiver Vj ∈ V proceeds as follows:

(a) Compute S[i, ·] = PRG(si,r[i]), S′[i, ·] = PRG(si,r[i]+1) and Ŝ[i, ·] =

πµ+l
(
PRG(ŝi,r[i])

)
obtaining matrices S, S′ and Ŝ. Note for each i, the i-th

row of S, S′, Ŝ will equal the i-th row of Rr[i], Rr[i]+1, R̂r[i] respectively.

Set B = ∆W+S, B′ = ∆′W+S′ and B̂ = ∆Ŵ+Ŝ. Define the matricesa

Q, Q′, Q̂ as the first l columns of B, B′, B̂ and remove these columns from
the latter matrices, renumbering the remaining columns from 1.

(b) Notice that T̃0, T̃1, T̃2 form an additive sharing of ÃH + P̃, and the veri-
fiers know some of the shares, namely the rows of BH + Q and B′H + Q′

(shares for the first n rows of ÃH + P̃) and the rows of B̂H + Q̂ (shares

for the last n rows). For i ∈ {0, 1, 2}, parse T̃i as T̃i =

(
Ti

T̂i

)
. Check that

BH + Q = ∆T2 + ∆′T1 + (1−∆−∆′)T0, B′H + Q′ = ∆T0 + ∆′T2 +

(1−∆−∆′)T1 and B̂H+ Q̂ = ∆T̂2 +∆′T̂1 + (1−∆−∆′)T̂0, and that
T0 + T1 + T2 ∈ C�`. If any check fails, abort.

(c) For every (add, sid, ssid1, ssid2, ssid3) received from P , append B[·, a] +
B[·, b] to B and append B′[·, a] + B′[·, b] to B′ (a, b are the index corre-
sponding to ssid1, ssid2 respectively and ssid3 is associated with the new
column index). For every (mult, sid, ssid1, ssid2, ssid3) received from P :

– given (sid, ssid, h,w0,w1,w2), check that w0 + w1 + w2 ∈ C∗2 and

wr[i] = B[·, a] ∗B[·, b] + B[·, a] ∗B′[·, b] + B′[·, a] ∗B[·, b] + B̂[·, h];
– let u = π[k](w0 +w1 +w2), append the columns B[·, h] + ∆C(u) and

B′[·, h] + ∆′C(u) to B and B′, respectively.
Note that the properties detailed in footnotea are maintained.

(d) For every j ∈ J , check that A0[·, j] + A1[·, j] + A2[·, j] ∈ C and that, for
i = 1, . . . , n, it holds that B[i, j] = Ar[i][i, j] and B′[i, j] = Ar[i]+1[i, j].
If all checks succeed, for every j ∈ J , output the first k positions in
A0[·, j]+A1[·, j]+A2[·, j] as the opened string and halts. Otherwise, abort
by outputting (sid, ssidj ,⊥).

a Note that we have A = A0 + A1 + A2, B = ∆A2 + ∆′A1 + (1−∆−∆′)A0

and B′ = ∆A0 + ∆′A2 + (1−∆−∆′)A1. This means that A held by P is shared
in the replicated secret sharing scheme RSS3 and for each row index, V knows one
share (i.e., V knows the corresponding rows from exactly two of the matrices A0,

A1, A2). Moreover, Â = Â0 + Â1 + Â2 and B̂ = ∆Â2 + ∆′Â1 + (I−∆−∆′)Â0

i.e., Â held by P is shared in the additive secret sharing scheme Add3 and for each
row index, V knows one share (V knows the corresponding row from exactly one

of the matrices Â0, Â1, Â2).

Fig. 8. Opening phase (continued) for the protocol ΠMHCOM.

4.1 Security Analysis

The proof of security for ProtocolΠMHCOM is similar to that ofΠAHCOM. Indeed,
the following Theorem 4 can be proved by adapting the description of simulators

21

SP and SV from Appendix D (resp. Figure 13 and Figure 14) to the new watchlist
setting (i.e., three additive shares instead of two, of which the verifier knows
either two -in the base commitment given by matrix A- or one -in the product
commitment given by Â-) and adding to both figures the step to simulate the
multiplication command (i.e., upon receiving (mult, sid, ssid1, ssid2, ssid3) from
P̂ , SP executes the steps of ΠMHCOM for multiplication and commits to a new
unused ssid via FCOM; upon receiving (mult, sid, ssid1, ssid2, ssid3, P, V, success)
from FMHCOM, SV runs the steps of an honest P exactly as in ΠMHCOM). More
details are given in Appendix E.

Theorem 4. Protocol ΠMHCOM UC-realizes FMHCOM in the FCOM-hybrid model
with computational security against a static adversary. Formally, there exists a
simulator S such that for every static adversary A, and any environment Z, the
environment cannot distinguish ΠMHCOM composed with FCOM and A from S
composed with FMHCOM. That is, IDEALFMHCOM,S,Z ≈c HYBRID

FCOM

ΠMHCOM,A,Z .

5 Applications to Efficient Zero-Knowledge Arguments

In this section, we show how to use the homomorphic commitments constructed
in Section 3 or 4 to compile a public coin interactive proof system into public coin
honest-verifier zero-knowledge proof systems. Using the Fiat-Shamir heuristic,
we can convert such a zero-knowledge proof system into a non-interactive zero-
knowledge proof system. As an application, we can improve a recent construction
of zkSNARKs [32] in a certain parameter regime. We remark that [32] utilizes an
additional optimization which relies on compressing homomorphic commitments,
which is not available in our setting.

The precise notion of interactive proof system we focus on will be resettably
sound public coin interactive proofs with algebraic verifier. Such a proof system
proceeds in t rounds, where in each round i the prover sends a message pi, upon
which the verifier answers with a uniformly random message vi. We require all
the message pi and vi to be vectors over a field F. After the conversation is over,
the verifier evaluates a system of low degree polynomials F1, . . . , Fs in the pi and
vi and accepts if all Fi evaluate to 0, otherwise it rejects. At the heart of this kind
of protocol is the sum-check protocol, which lets a prover prove statements of the
form

∑
x∈{0,1}n P (x) = L, where P ∈ F[X1, . . . , Xn] is a low-degree polynomial

and L ∈ F.
While it can be shown that any constant round proof system can be imme-

diately compiled into a non-interactive argument system via the Fiat-Shamir
heuristic [20], super-constant round protocols need to fulfil a stronger soundness
property called resettable soundness for the Fiat-Shamir transform to result in
a sound protocol.

We will now show how to compile any resettable sound public coin interactive
proof system into an honest-verifier zero-knowledge proof systems in a way that
does not increase the communication complexity and only affects the efficiency
of prover and verifier by a small constant factor.

22

Let (P,V) be a t-round public coins interactive proof system for a language
L. In the construction in this section we will use protocol ΠAHCOM with several
modifications.

– We will only consider a single verifier V

– In step 1 of the commitment phase of Protocol ΠAHCOM (Figure 4 and Fig-
ure 5) the prover P commits to 2n random seeds si,j for i ∈ [{1, . . . , n}]
and j ∈ {0, 1} using a UC-commitment FCOM. This is done to make the
commitment scheme ΠAHCOM extractable. For the context of the current
application, it is sufficient to downgrade this to a non-interactive commit-
ment scheme Commit which is perfectly binding and computationally hiding.
Such a commitment scheme can be constructed e.g. from an injective one-
way function.

– In step 2 of the commitment phase of ΠAHCOM the verifier commits to a
challenge r′ using a UC-commitment FCOM. This step in necessary to make
the commitment scheme ΠAHCOM equivocal. In the context of the current
application, we only need to achieve honest-verifier ZK in order to apply the
Fiat-Shamir heuristic. Consequently, we can drop this commitment step and
have the verifier send r′ in the clear after the end of the commitment phase.

The protocol ΠHV ZK is provided in Figure 9. Our efficiency claims follow from
the fact that the commitment scheme ΠAHCOM (Section 3) has amortized linear
time complexity and rate 1. We can also instantiate ΠHV ZK with the com-
mitment protocol ΠMHCOM (Section 4) and allow the verification equations
F1, . . . , Fk to be low degree polynomials in the pi rather than just linear.

Completeness of the protocol ΠHV ZK follows immediately from the com-
pleteness of (P,V). We will briefly argue why the protocol is sound and honest-
verifier zero-knowledge. First, we will sketch how we can establish soundness of
ΠHV ZK given that (P,V) is sound. First notice that the commitment scheme
ΠAHCOM is statistically binding, as the underlying commitment scheme Commit
is also statistically binding. Therefore, the prover messages (p̂1, . . . , p̂t) commit
uniquely to messages (p1, . . . , pt). Moreover, the proofs for homomorphic rela-
tions are also statistically sound. Thus, if the verifier accepts, it must hold that
Fi(x, p1, . . . , pt, v1, . . . , vt) = 0 for i = 1, . . . , s. But by the soundness of (P,V)
this means that x is in the language L, except with negligible probability over
the random coins of V.

Notice further that if (P,V) is resettably sound, then so is ΠHV ZK , as the
opening phase of ΠAHCOM has only a negligible soundness error.

To see why the protocol is honest-verifier zero-knowledge, notice that the
commitment scheme ΠAHCOM becomes equivocal if the prover knows the chal-
lenge r′ of the verifier before the start of the protocol, see the construction of
simulator SV in Figure 14 in Appendix D. The simulator for ΠHV ZK can choose
r′ and setup ΠAHCOM to be equivocal. In the simulated proof it sets the p̂i
fake commitments. During the opening phase, it opens the commitments to fake
values (just as SV).

23

Protocol ΠHV ZK

1. Prover P : On input a statement x and a witness w, let m be a polynomial
upper bound on the number of field elements in F that P sends in the interaction
with V upon input (x,w). P runs the setup step of the commitment protocol
ΠAHCOM to set it up for m commitments.

2. Prover P and Verifier V run the following interaction for i = 1, . . . , t:
– P computes pi ← P(x,w, i, v1, . . . , vi−1) and computes a commitment p̂i

on pi using the modified ΠAHCOM.
– Upon receiving p̂i, the verifier V chooses a uniformly random value vi and

sends it to P .
3. P now provides a proof to V that the verification equations

Fi(x, p̂1, . . . , p̂t, v1, . . . , vt) = 0 for i = 1, . . . , s hold using the additive
homomorphic property of ΠAHCOM.

4. P and V now run the consistency check/opening phase of ΠAHCOM. As
described above, for this consistency check V uses fresh random coins. If the
consistency check passes, V outputs 1, otherwise 0.

Fig. 9. Protocol ΠHV ZK

6 Applications to Secure Multiparty Computation

6.1 Committed MPC

A recent work by Frederiksen et al. [21] has shown that additively homomor-
phic commitments can be leveraged to construct efficient preprocessed MPC.
However, their “Committed MPC” protocol requires a multiparty commitment
functionality that allows for multiple senders and for computing linear combi-
nations between commitments generated by different senders. We will show a
generic construction of such a protocol from functionality FAHCOM that can
be instantiated with Protocol ΠAHCOM, achieving significantly better efficiency
than the construction of [21].

Functionality FMSAHCOM. Our protocol will realize the multiparty additively
homomorphic commitment functionality from [21] with the difference that it
will only allow for a single batch verification of opened commitments. While it
allows for openings before verification, the validity of those will not be ensured
by FMSAHCOM, which will let the adversary choose any value to be provided
as an opening. FMSAHCOM will allow for a single verification phase where all
parties check whether the openings they have received are valid, after which the
functionality halts. This functionality is sufficient for realizing the “Committed
MPC” protocol of [21], since the parties can use the intermediate (non-verified)
openings to compute the protocol and in the end verify that the result is cor-
rect. Other small differences is that we omit the Partial Open interface used
to open a commitment to a single receiver and provide an interface for single
addition operations. Notice that our procedures for opening a commitment for
all receivers can be trivially adapted to opening towards a specific receiver by

24

sending the corresponding messages only to that receiver and that single addi-
tions of commitments can be trivially used for computing linear combinations as
in the functionality of [21]. We present Functionality FMSAHCOM in Figure 10.

Functionality FMSAHCOM

FMSAHCOM is parameterized by n ∈ N. FMSAHCOM interacts with a set of parties
P = {P1, . . . , Pt} and an adversary S (who may abort at any time):

– Init Upon receiving (init, sid) from all parties in P , forward the message to S
and initialize empty lists raw and actual.

– Commit: Upon receiving (commit, sid, I) from all parties in P where I is a

set of unused identifiers, for every ssid ∈ I, sample a random xssid
$←Fk, set

raw[ssid] = xssid and send (commit− recorded, sid, I) to all parties P and S.
– Input: Upon receiving (input, sid, ssid, Pi,y) from Pi ∈ P and

(input, sid, ssid, Pi) from all other parties in P , if raw[ssid] = xssid 6=⊥, set
raw[ssid] =⊥, set actual[ssid] = y and send (input− recorded, sid, ssid, Pi) to
all parties in P and S.

– Random: Upon receiving (random, sid, ssid) from all parties in P , if
raw[ssid] = xssid 6=⊥, set actual[ssid] = xssid, set raw[ssid] =⊥ and send
(random− recorded, sid, ssid) to all parties P and S.

– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3) from all par-
ties in P : if actual[ssid] = xssid 6=⊥ for ssid ∈ {ssid1, ssid2} and raw[ssid3] =
actual[ssid3] =⊥, set actual[ssid3] = actual[ssid1] + actual[ssid2] and send the
message (add− recorded, sid, ssid1, ssid2, ssid3) to all P and S.

– Open: Upon receiving (open, sid, ssid) from all parties P , if
actual[ssid] = xssid 6=⊥, send (open, sid, ssid,xssid) to S. If S answers
with (open, sid, ssid,x′ssid), send (open, sid, ssid,x′ssid) to all parties in P .

– Verify: Upon receiving a message (verify, sid) from all parties in P ,
let ssid1, . . . , ssido be the ssids of opened commitments (i.e. for which
(open, sid, ssid,x′ssid) messages were sent). For ssid ∈ {ssid1, . . . , ssido}, set
b = 1 if actual[ssid] = x′ssid or b = 0 if not, and send (verify, sid, ssid, b) to
every party in P .

Fig. 10. Functionality for additively homomorphic commitments with multiple senders.

Protocol ΠMSAHCOM. While a generic construction of such a protocol from any
two-party additively homomorphic commitment scheme is presented in [21], we
can significantly simplify and improve the efficiency of this construction depart-
ing from a multi-receiver scheme as defined in FAHCOM. We construct a protocol
where every party acts both as sender and receiver of all commitments. In this
protocol, each party first uses FAHCOM to commit to random values towards
the others. A joint random commitment in the new multi-sender protocol is
defined as the commitment to the sum of all random messages contained in
the individual commitments by each party. Linear combinations between joint
commitments can be computed by having each party (acting as a sender in the
underlying multi-receiver commitment scheme) compute the same linear combi-
nation on its own “shares” of the joint commitment. Opening a joint commitment
works by having each party open their individual commitments, allowing every-

25

body to compute the joint commitment as the sum of the opened messages.
Using standard tricks, these joint random commitments can be easily turned
into commitments to arbitrary messages.

Protocol ΠMSAHCOM

Given a set of parties P = {P1, . . . , Pt}, for each party Pi ∈ P , ΠMSAHCOM uses
an instance of FAHCOM denoted as F iAHCOM where Pi is the sender with a set of
receivers Vi = P \Pi. Parties in P = {P1, . . . , Pt} interact with each other and with
F1

AHCOM, . . . ,F tAHCOM, proceeding as follows:
1. Commit On input (commit, sid, ssid, I) where I = {ssid1, . . . , ssidγ} each

party Pi ∈ P , for ssid ∈ I, sends (commit, sid, ssid, Pi, Vi) to F iAHCOM, receiv-
ing as answer (receipt, sid, ssid, Pi, Vi,xssid) and setting rawi[ssid] = xssid and
actuali[ssid] =⊥.

2. Input On input (input, sid, ssid,y) for Pi and input (input, sid, ssid, Pj) for
every Pj for j 6= i, parties P proceed as follows:
(a) For every j ∈ [t], j 6= i, Pj aborts if actualj [ssid] 6=⊥. Otherwise, Pj sends

(sid, ssid, rawj [ssid]) to Pi.
(b) Upon receiving (sid, ssid, rawj [ssid]) from Pj for every j ∈ [t], j 6= i, Pi

sets x =
∑
j∈[t] rawj [ssid], w = y − x, actuali[ssid] = w and broadcasts

(sid, ssid, Pi,w).
(c) Upon receiving (sid, ssid, Pi,w), every party Pj ∈ P sets actualj [ssid] = w.

3. Random: On input (random, sid, ssid), if actuali[ssid] =⊥, each party Pi ∈ P
sets actuali[ssid] = 0k.

4. Addition: On input (add, sid, ssid1, ssid2, ssid3), if actuali[ssid1] 6=⊥,
actuali[ssid2] 6=⊥ and actuali[ssid3] =⊥, every party Pi ∈ P
sets actuali[ssid3] = actuali[ssid1] + actuali[ssid2] and sends
(add, sid, ssid1, ssid2, ssid3, Pi, Vi) to F iAHCOM. All parties proceed after
receiving (add, sid, ssid1, ssid2, ssid3, Pi, Vi, success) from F iAHCOM.

5. Open: On input (open, sid, ssid), each Pi ∈ P broadcasts (sid, ssid, rawi[ssid]).
Upon receiving (sid, ssid, rawj [ssid]) for j ∈ [t], j 6= i, each party Pi ∈ P
computes x′ = actuali[ssid] +

∑
j∈[t] rawj [ssid] and outputs (sid, ssid,x′).

6. Verify: On input (verify, sid), let ssid1, . . . , ssido be the ssids of opened
commitments (i.e. for which (open, sid, ssid) inputs were received), every
Pi ∈ P sends (reveal, sid, ssid1, . . . , ssido) to F iAHCOM. For every ssid ∈
{ssid1, . . . , ssido}, upon receiving (reveal, sid, ssid, Pj , Vj ,xj) for j ∈ [t], j 6= i,
each party Pi ∈ P sets xi = rawi[ssid], computes x = actuali[ssid] +

∑
j∈[t] xj ,

sets b = 1 if x′ = x (where x′ is the value previously opened) or b = 0 if not,
and outputs (verify, sid, ssid, b).

Fig. 11. Protocol ΠMSAHCOM

Security Analysis: To verify correctness, notice that ΠMSAHCOM computes a
random commitment identified by ssid as a commitment to

∑
i∈[t] raw

i[ssid],

where rawi[ssid] is supposed to be the value obtained by Pi from F iAHCOM. In

the verification procedure, all parties obtain xj for j ∈ [t] directly from F jAHCOM,
being able to verify that the previously opened commitments are indeed valid.
If a commitment identified by ssid is set to an arbitrary message y, the sender

26

Pj holding y broadcasts w = y −
∑
i∈[t] raw

i[ssid], which also allows all parties

to retrieve y when values rawi[ssid] are released and to verify the correctness
of this opening when xj (corresponding to rawj [ssid]) are revealed. Notice that
addition are simply computed by adding the actuali[ssid] vectors and, since all
of these vectors are linear combinations of themselves, opening and verification
of a result addition works the same way as for the other commitments.

Theorem 5. Protocol ΠMSAHCOM UC realizes FMSAHCOM in the FAHCOM-
hybrid model with statistical security against a static adversary. Formally, there
exists a simulator S such that for every static adversary A, and any environment
Z the following holds: IDEALFMSAHCOM,S,Z ≈s HYBRID

FAHCOM

ΠMSAHCOM,A,Z .

Proof (Sketch). Notice that ΠMSAHCOM only performs operations with random
values obtained from F iAHCOM. Hence, upon learning the opening of any com-
mitment from FMSAHCOM, the simulator can simply cheat in the openings of
random values from the emulated F iAHCOM in order to equivocate a commit-
ment. Similarly, if it needs to extract any commitment done in ΠMSAHCOM, the
simulator can compute it from the messages sent by the adversary in the protocol
and the messages the adversary obtains from the emulated F iAHCOM.

Efficiency: Notice that our construction of ΠMSAHCOM using FAHCOM as a
black box actually communicates more bits than necessary. In ΠMSAHCOM’s
opening phase, all parties broadcast the messages in commitments generated
by FAHCOM and, later on, verify these openings by opening the commitments
through FAHCOM, sending the same messages again. If instantiated withΠAHCOM,
our construction can be made more efficient by having the parties broadcast
columns A0[·, j],A1[·, j] (Step 1 of ΠAHCOM’s opening phase) during the open-
ing phase of ΠMSAHCOM. Later on, for verification, the parties only need to
execute the remaining steps of the opening phase of ΠAHCOM in order to verify
that the columns they have previously obtained are actually valid. In a setting
with t parties, our protocol only requires t individual multi-receiver commit-
ments, where the construction of [21] requires t2 two-party commitments. Their
constructions also require extra communication in the order of O(skt2) for gen-
erating a batch of m commitments, where s is the security parameter and k
is the message length. Moreover, instantiating the construction of [21] with the
previously best two-party additively homomorphic commitments [16] implies a
high cost of nt2 OTs for the setup phase (with an underlying [n, k, s] code) and
extra communication in the order of O(nmt2) bits for generating a batch of m
commitments to random messages. On the other hand, our construction instan-
tiated with protocol ΠAHCOM can do the same with nt calls to FCOM (which
can be instantiated much cheaper than an OT by calling a random oracle and
sending its output) and extra communication in the order of O(smt) bits. In the
opening phase, the construction of [21] requires communication in the order of
O(nt2) bits, while our construction only requires communication in the order of
O(nt) bits, assuming broadcast channels.

27

6.2 Insured MPC

Recently, Andrychowicz et al. [2] started a line of work [6,27,7,4] that deals with
the problem of fairness in multiparty computation by combining MPC protocols
with cryptocurrencies. The main idea is to provide financial incentives for the
parties to act honestly. In a nutshell, each party provides a security deposit before
the protocol execution or right before the outputs are revealed. After that, the
protocol is executed and if no problem happens, then the security deposits are
reimbursed. On the other hand, if some problem happens, the security deposit
of the parties who misbehaved/aborted is used to compensate the remaining
parties. This combination of MPC and cryptocurrency techniques also allows to
have both inputs and outputs consisting of both data and monetary assets and
distribute the funds according to the output of the computation.

The most efficient solution to date, due to Baum et al. [4], uses a publicly ver-
ifiable additively homomorphic multi-receiver commitment scheme as a central
building block. By combining such commitment scheme with a smart contract,
an authenticated bulletin board, and a MPC scheme that output verifiably secret
shared outputs, they obtained an efficient MPC protocol with public detection
of cheating behavior that financially punishes misbehaving parties. Nevertheless,
the main bottleneck of their protocol is the multi-party commitment scheme, as
its complexity grows quadratically in the number of parties. With our techniques
it is possible to greatly improve the performance of publicly verifiable additively
homomorphic multi-receiver commitments.

The functionality for publicly verifiable additively homomorphic commit-
ment FPVHCOM is described in the Appendix F and the set of external verifiers
U is allowed to be dynamic by adding procedures for registering and deregis-
tering parties following the approach of Badertscher et al. [3]. Assuming that
the underlying commitment protocol ΠCOM used as a building block is publicly
verifiable, Protocol ΠAHCOM is trivially publicly verifiable when all the mes-
sages are posted to an authenticated bulletin board, straightforwardly realizing
functionality FPVHCOM. The “canonical” random oracle commitment scheme
(that realizes FCOM in the programmable Global Random Oracle model with-
out extra computational assumptions according to a recent result by Camenisch
et al. [11]) is a clear example of a scheme that is publicly verifiable when the
messages are posted to an authenticated bulletin board, and ΠAHCOM instan-
tiated using that commitment scheme can be used to remarkably improve the
performance of publicly verifiable additively homomorphic commitments and
consequently of the Insured MPC protocol of Baum et al. [4]. The efficiency
improvements achieved in this application are similar to those of the Committed
MPC case, since the previously best publicly verifiable multi-receiver additively
homomorphic commitment protocol of [4] has a very similar structure to the
commitment protocol of [21].

28

References

1. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. Ligero: Lightweight sublinear arguments without a trusted setup. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 17, pages 2087–2104. ACM Press, October / November 2017.

2. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 443–458. IEEE Computer Society Press, May 2014.

3. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin
as a transaction ledger: A composable treatment. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356.
Springer, Heidelberg, August 2017.

4. Carsten Baum, Bernardo David, and Rafael Dowsley. Insured mpc: Efficient secure
multiparty computation with punishable abort. Cryptology ePrint Archive, Report
2018/942, 2018. https://eprint.iacr.org/2018/942.

5. Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian,
Silvio Micali, and Phillip Rogaway. Everything provable is provable in zero-
knowledge. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages
37–56. Springer, Heidelberg, August 1990.

6. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 421–439. Springer, Heidelberg, August 2014.

7. Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized
poker. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II,
volume 10625 of LNCS, pages 410–440. Springer, Heidelberg, December 2017.

8. Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Anal-
ysis and improvement of Lindell’s UC-secure commitment schemes. In Michael J.
Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini,
editors, ACNS 13, volume 7954 of LNCS, pages 534–551. Springer, Heidelberg,
June 2013.

9. Lúıs T. A. N. Brandão. Very-efficient simulatable flipping of many coins into a well
- (and a new universally-composable commitment scheme). In Chen-Mou Cheng,
Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II,
volume 9615 of LNCS, pages 297–326. Springer, Heidelberg, March 2016.

10. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE Computer
Society Press, May 2018.

11. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 280–312. Springer, Heidelberg, April / May 2018.

12. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

13. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Hei-
delberg, August 2001.

29

https://eprint.iacr.org/2018/942

14. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

15. Ignacio Cascudo. On squares of cyclic codes. IEEE Trans-
actions on Information Theory (to appear), 2018. Available at
https://ieeexplore.ieee.org/document/8451926.

16. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, and Jesper Buus
Nielsen. Rate-1, linear time and additively homomorphic UC commitments. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 179–207. Springer, Heidelberg, August 2016.

17. Ignacio Cascudo, Ivan Damg̊ard, Bernardo Machado David, Irene Giacomelli, Jes-
per Buus Nielsen, and Roberto Trifiletti. Additively homomorphic UC commit-
ments with optimal amortized overhead. In Jonathan Katz, editor, PKC 2015,
volume 9020 of LNCS, pages 495–515. Springer, Heidelberg, March / April 2015.

18. Ivan Damg̊ard, Bernardo Machado David, Irene Giacomelli, and Jesper Buus
Nielsen. Compact VSS and efficient homomorphic UC commitments. In Palash
Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS,
pages 213–232. Springer, Heidelberg, December 2014.

19. Erez Druk and Yuval Ishai. Linear-time encodable codes meeting the gilbert-
varshamov bound and their cryptographic applications. In Moni Naor, editor,
ITCS 2014, pages 169–182. ACM, January 2014.

20. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987.

21. Tore K. Frederiksen, Benny Pinkas, and Avishay Yanai. Committed MPC - mali-
ciously secure multiparty computation from homomorphic commitments. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS,
pages 587–619. Springer, Heidelberg, March 2018.

22. Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto
Trifiletti. On the complexity of additively homomorphic UC commitments. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS,
pages 542–565. Springer, Heidelberg, January 2016.

23. Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Se-
bastian Nordholt, and Claudio Orlandi. MiniLEGO: Efficient secure two-party
computation from general assumptions. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 537–556.
Springer, Heidelberg, May 2013.

24. Juan A. Garay, Yuval Ishai, Ranjit Kumaresan, and Hoeteck Wee. On the com-
plexity of UC commitments. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 677–694. Springer, Heidelberg,
May 2014.

25. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating compu-
tation: interactive proofs for muggles. In Richard E. Ladner and Cynthia Dwork,
editors, 40th ACM STOC, pages 113–122. ACM Press, May 2008.

26. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography
with constant computational overhead. In Richard E. Ladner and Cynthia Dwork,
editors, 40th ACM STOC, pages 433–442. ACM Press, May 2008.

27. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734.
Springer, Heidelberg, May 2016.

30

28. Yehuda Lindell. Highly-efficient universally-composable commitments based on the
DDH assumption. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume
6632 of LNCS, pages 446–466. Springer, Heidelberg, May 2011.

29. Hugues Randriambololona. Asymptotically good binary linear codes with
asymptotically good self-intersection spans. IEEE Trans. Information Theory,
59(5):3038–3045, 2013.

30. Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round inter-
active proofs for delegating computation. In Daniel Wichs and Yishay Mansour,
editors, 48th ACM STOC, pages 49–62. ACM Press, June 2016.

31. Salil P. Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and simplifying
pseudorandom generator constructions. In Howard J. Karloff and Toniann Pitassi,
editors, 44th ACM STOC, pages 817–836. ACM Press, May 2012.

32. Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium on
Security and Privacy, pages 926–943. IEEE Computer Society Press, May 2018.

31

Appendix A Universal Composability

We adopt the description of the Universal Composability (UC) framework given
in [17]. In this framework, protocol security is analyzed under the real-world/ideal-
world paradigm, i.e. by comparing the real world execution of a protocol with
an ideal world interaction with the primitive that it implements. The model has
a composition theorem, that basically states that UC secure protocols can be
arbitrarily composed with each other without any security compromises. This
desirable property not only allows UC secure protocols to effectively serve as
building blocks for complex applications but also guarantees security in practi-
cal environments where several protocols (or individual instances of protocols)
are executed in parallel, such as the Internet.

In the UC framework, the entities involved in both the real and ideal world
executions are modeled as probabilistic polynomial-time Interactive Turing Ma-
chines (ITM) that receive and deliver messages through their input and output
tapes, respectively. In the ideal world execution, dummy parties (possibly con-
trolled by an ideal adversary S referred to as the simulator) interact directly
with the ideal functionality F , which works as a trusted third party that com-
putes the desired primitive. In the real world execution, several parties (possibly
corrupted by a real world adversary A) interact with each other by means of a
protocol π that realizes the ideal functionality. The real and ideal executions are
controlled by the environment Z, an entity that delivers inputs and reads the
outputs of the individual parties, the adversary A and the simulator S. After
a real or ideal execution, Z outputs a bit, which is considered as the output
of the execution. The rationale behind this framework lies in showing that the
environment Z (that represents all the things that happen outside of the pro-
tocol execution) is not able to efficiently distinguish between the real and ideal
executions, thus implying that the real world protocol is as secure as the ideal
functionality.

We denote by REALπ,A,Z(κ, z, r̄) the output of the environment Z in the
real-world execution of protocol π between n parties with an adversary A under
security parameter κ, input z and randomness r̄ = (rZ , rA, rP1

, . . . , rPn), where
(z, rZ), rA and rPi are respectively related to Z, A and party i. Analogously,
we denote by IDEALF,S,Z(κ, z, r̄) the output of the environment in the ideal
interaction between the simulator S and the ideal functionality F under security
parameter κ, input z and randomness r̄ = (rZ , rS , rF), where (z, rZ), rS and
rF are respectively related to Z, S and F . The real world execution and the
ideal executions are respectively represented by the ensembles REALπ,A,Z =
{REALπ,A,Z(κ, z, r̄)}κ∈N and IDEALF,S,Z = {IDEALF,S,Z(κ, z, r̄)}κ∈N with z ∈
{0, 1}∗ and a uniformly chosen r̄.

In addition to these two models of computation, the UC framework also
considers the G-hybrid world, where the computation proceeds as in the real-
world with the additional assumption that the parties have access to an auxiliary
ideal functionality G. In this model, honest parties do not communicate with the
ideal functionality directly, but instead the adversary delivers all the messages
to and from the ideal functionality. We consider the communication channels to

32

be ideally authenticated, so that the adversary may read but not modify these
messages. Unlike messages exchanged between parties, which can be read by the
adversary, the messages exchanged between parties and the ideal functionality
are divided into a public header and a private header. The public header can be
read by the adversary and contains non-sensitive information (such as session
identifiers, type of message, sender and receiver). On the other hand, the private
header cannot be read by the adversary and contains information such as the
parties’ private inputs. We denote the ensemble of environment outputs that
represents the execution of a protocol π in a G-hybrid model as HYBRIDGπ,A,Z
(defined analogously to REALπ,A,Z). UC security is then formally defined as:

Definition 2. A n-party (n ∈ N) protocol π is said to UC-realize an ideal func-
tionality F in the G-hybrid model if, for every adversary A, there exists a sim-
ulator S such that, for every environment Z, the following relation holds:

IDEALF,S,Z ≈ HYBRIDGπ,A,Z .

We say that the protocol is statistically secure if the same holds for all Z with
unbounded computing power.

Appendix B Interactive Proximity Testing

To prove Theorem 2 we rely on the Theorem 6 from [26,19] and the following
Lemma 1.

Theorem 6 ([26,19]). Fix a finite field F of constant size. For all integers n,m
with m ≤ n there exists a family of linear universal hash functions G : Fn → Fm
such that each function G ∈ G can be described by O(n) bits and computed in
time O(n).

Lemma 1. Let d = d(s) be a positive integer. Let F be a finite field of constant
size and F′ be an extension field of F of degree l = ds+log|F|(d)e. Let n = n(s, d)

be such that a multiplication in F′ can be performed in time O(n). Let G : Fn → Fl
be a family of F-linear universal hash functions which can be computed in time
O(n) and has seed length O(n). Let φ : Fl → F′ be a linear embedding of Fl
into F′. For a function G ∈ G and an element α ∈ F′, define the function
HG,α : Fl+d·n → F′ ∼= Fs+log|F|(d) by

HG,α(x) = φ(x0) +

d−1∑
i=1

φ(G(xi))α
i,

where x = (x0,x1, . . . ,xd−1) ∈ Fl × (Fn)d. Define the family H by H = {HG,α :
G ∈ G, α ∈ F′}. Then the family H is 2−s-almost universal, has sub-linear seed-
length O(n) and can be computed in linear time O(d · n). Moreover, if x0 is
uniformly random, then HG,α(x) is uniformly random for any (x1, . . . ,xd−1)
(fixed or independent of x0).

33

Instantiating the family G in Lemma 1 with the family provided in Theorem
6 we obtain Theorem 2.

Remark 2. We can choose the function n(s, d) as small as O((s + log|F|(d)) ·
polylog(s + log|F|(d))), if a fast multiplication algorithm for F′ is used.

Proof. The uniformity property follows immediately. We will show that H is
2−s almost universal. Let x = (x0, . . . ,xd−1) 6= 0. Thus there exists an i ∈
{0, . . . , d − 1} such that xi 6= 0. If i = 0 then φ(x0) 6= 0 as φ is injective.

If i > 0 then it holds for a randomly chosen G
$←G that G(xi) 6= 0, except

with probability 1/|F|l = 1/|F′|. Consequently by injectivity of φ it holds that

φ(G(xi)) 6= 0. Suppose now that 0 6= (φ(x0), φ(G(x1)) . . . , φ(G(xd−1))) ∈ F′d.
Then

P (X) = φ(x0) +

d−1∑
i=1

φ(G(xi))X
i

is a non-zero polynomial of degree at most d− 1, and consequently P (X) has at

most d− 1 zeros. It follows that for a random α
$←F′ that

HG,α(x) = φ(x0) +

d−1∑
i=1

φ(G(xi))α
i = P (α) 6= 0,

except with probability (d−1)/|F′|. All together, we can conclude thatHG,α(x) 6=
0, except with probability

1/|F′|+ (d− 1)/|F′| = d/|F|l = |F|−s

over the choice of G
$←G and α

$←F′, as |F′| = |F|s+log|F|(d).
Notice that the seed size of HG,α is

|G|+ log(|F′|) = O(n) + (s+ log|F|(d)) log(|F|) = O(n).

We will finally show that for any choice of G ∈ G and α ∈ F′ the func-
tion HG,α can be computed in linear time in the size of its input x. Com-
puting G(x1), . . . , G(xd) takes time O(d · n), as computing each G(xi) takes
time O(n). By choosing the representation of the field F′ appropriately com-
puting the embedding φ is esssentially free. Next, evaluating the polynomial
P (X) = φ(x0)+

∑d−1
i=1 φ(G(xi))X

i at α naively costs d−1 additions and 2(d−1)
multiplications. Since both additions and multiplications in F′ can be performed
in time O(n), the overall cost of evaluating P (X) at α can be bounded by
O(l + d · n). All together, we can compute HG,α in time O(l + d · n), which is
linear in the size of the input.

Theorem 7 (Theorem 6 in [16]). Fix a finite field F of constant size. There
exists a constant γ > 0 and an explicit family of F-linear codes (Cs)s of length
O(s2), minimum distance s and rate 1− s−γ , which approaches 1. Moreover, C
has an encoding algorithm Enc that runs in time O(s2), which is linear in the
codeword length.

34

Appendix C Committing to Arbitrary Messages with
ΠAHCOM

Protocol ΠAHCOM described in Section 3 realizes FAHCOM, which only allows for
commitments to random messages. While committing to random messages can
be useful for a number of applications (e.g. [23]), in many scenarios it is necessary
to commit to arbitrary messages. It has been shown in [16] that FAHCOM can be
used to build a protocol for additively homomorphic commitments to arbitrary
messages that also achieves rate-1 and linear time (given that ΠAHCOM is used
to instantiate FAHCOM). The basic idea consists in having the sender provide the
receiver with the difference between the arbitrary message it wants to commit to
and one of the random messages provided by FAHCOM, essentially using them as
one-time pads. In order to commit to an arbitrary message m′, P executes the
commitment phase of FAHCOM to obtain a random messagem, then it computes
c = m′ −m and broadcasts c. In order to add two commitments, P issues the
addition command to FAHCOM and sets c3 = c1 +c2 = m′1 +m′2−m1−m2. In
the opening phase, P issues the opening command to FAHCOM, allowing V to
obtain the intended message by computing m′ = c+m. We give the description
of Protocol ΠARBHCOM in almost verbatim form [16] in Figure 12. The only
difference is that Protocol ΠARBHCOM only allows for a single batch opening.

Protocol ΠARBHCOM

Protocol ΠARBHCOM is run by a sender P with inputs m′1, . . . ,m
′
m ∈ {0, 1}k and

set of receivers V = {V1, . . . , Vt}, who interact with FCOM and proceed as follows:

1. Commitment Phase:
(a) On input (commit, sid, ssid,m′j), P sends (commit, sid, ssid, P, V) to
FAHCOM. Upon receiving (commit, sid, ssid, P, V,mj) as answer, P sets
cj = m′j −mj , and sends (cj, sid, ssid,) to V .

2. Addition:
(a) On input (add, ssid1, ssid2, ssid3), P sends (add, sid, ssid1, ssid2, ssid3,

P, V) to FAHCOM and sets c3 = c1 + c2 = m′1 + m′2 −m1 −m2.
(b) Upon receiving (add, sid, ssid1, ssid2, ssid3, P, V, success) from FAHCOM, V

also sets c3 = c1 + c2 = m′1 + m′2 −m1 −m2.
3. Opening Phase:

(a) On input (reveal, ssid1, . . . , ssido) P sends (reveal, ssid1, . . . , ssido) to
FAHCOM and halts.

(b) Upon receiving (reveal, sid, ssid, P, V,m1, . . . ,mo) from FAHCOM, for j ∈
{1, . . . , o} V computes m′j = cj + mj and outputs m′j . Note that, even if
c is an addition of two commitments c1 and c2, this procedure is still valid
since c3 = c1 + c2 = m′1 + m′2 −m1 −m2.

Fig. 12. Protocol ΠARBHCOM: Using ΠAHCOM to commit to arbitrary messages.

As stated in [16], the security of ΠARBHCOM can be trivially observed since
the random string from FAHCOM acts as a one-time pad hiding all information
and binding is guaranteed by FAHCOM. Hence, ΠARBHCOM is statistically se-

35

cure in the FAHCOM-hybrid model (which is realized by ΠHCOM). Notice that
ΠARBHCOM instantiated with ΠAHCOM also achieves rate-1, since the commit-
ment phase of ΠAHCOM only sends the n − k bottom rows of W and T0,T1,
which only depend on the security parameter and are amortized over many com-
mitments. When ΠARBHCOM is instantiated using ΠAHCOM to realize FAHCOM,
the extra communication in relation to ΠAHCOM corresponds to the remaining
k bits that define each m′j . Moreover, it is possible to embed the difference c
in W so that no extra rounds are required. Hence, in this case, ΠARBHCOM is
rate-1 and linear time.

Appendix D Security Proofs for ΠAHCOM

Simulator SP

Simulator SP interacts with environment Z, functionality FAHCOM and an internal
copy of the adversary P̂ . Upon being activated by Z, SV proceeds as follows:

1. Emulating FCOM: SP executes exactly the steps of FCOM. SP stores the vector
r = r1 ⊕ . . . ⊕ rt computed using the vectors ri received from the receivers
Vi (including itself and the receivers controlled by P̂). Moreover, it stores the
seeds si,j received from P̂ for i ∈ [n] and j ∈ {0, 1}.

2. Commitment Phase: SP executes the steps of the commitment phase of
ΠAHCOM exactly like an honest V would do. After completing the commitment
phase with P̂ , SP learns W,T0,T1 from P̂ and H from r′ (which in turn is
obtained from FCOM during the execution). SP uses its knowledge of si,j to
reconstruct R0,R1,R and then obtain A given W. Next, SP uses W and its
knowledge of the seeds si,j and r to reconstruct ∆, Q and B as honest receivers
would in Step 4(a) of the opening phase. SP executes the tests of an honest
verifier in Step 4(b) using H,T0,T1 obtained in the execution with P̂ and
∆,Q,B reconstructed previously. If the checks succeed, for j ∈ [m], SP decodes
column A[·, j] obtaining message mj . Otherwise, it samples mj ← {0, 1}k.
Finally, SP sends (commit, sid, ssidj , P, V,mj) to FAHCOM. We will show that
if the checks of an honest verifier’s steps in ΠAHCOM fail, then SP will abort
in the Opening Phase (as an honest verifier would). Otherwise, the remaining
m columns of A can indeed be decoded to their corresponding committed
messages except with negligible probability.

3. Addition: Upon receiving (add, sid, ssid1, ssid2) from P̂ , SP execute the
steps of ΠAHCOM for addition, chooses an unused ssid ssid3 and sends
(add, sid, ssid1, ssid2, ssid3, P, V) to FAHCOM.

4. Opening Phase: Upon receiving (sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j])j∈J)
from P̂ , SP executes the exact steps of an honest V in ΠAHCOM. If any
of the checks fails (meaning one of the (A0[·, j],A1[·, j]) is not a consis-
tent opening),, SP outputs whatever P̂ outputs and aborts. Otherwise SP
sends (reveal, sid, ssid1, . . . , ssido) to FAHCOM, outputs whatever P̂ outputs
and halts.

Fig. 13. Simulator SP

36

Lemma 2 (Security Against a Corrupt P). There exists a simulator SP
such that for every static adversary A who corrupts P and all but one receivers
in V = {V1, . . . , Vt}, and any environment Z, the environment cannot distinguish
ΠAHCOM composed with FCOM and A from SP composed with FAHCOM. That
is, we have

IDEALFAHCOM,SP ,Z ≈c HYBRID
FCOM

ΠAHCOM,A,Z .

Proof. In case the adversary P̂ corrupts the sender P and all but one receivers
in V , the simulator SP has to run an internal copy of ΠAHCOM with P̂ , extract
the messages in commitments performed by A and send them to FAHCOM. We
describe the simulator SP in Figure 13. The simulator SP will run protocol
ΠAHCOM with an internal copy of P̂ exactly as an honest V would.

Notice that SP emulates the instances of FCOM used by A following the exact
instructions of FCOM but learning r and the seeds si,j . Using this knowledge, SP
reconstructs matrices ∆,Q,B following the instructions of an honest V in the
opening phase. With the reconstructed ∆,Q,B and matrices H,T0,T1 learned
in the course of the execution with P̂ , SP has exactly the same view as an honest
V will have in the opening phase (when it learns r and si,r[1] for i = 1, . . . , n from
FCOM). Hence, if the checks of an honest V performed by SP using this view
of H,T0,T1,∆,Q,B fail, it will abort in the opening phase with probability 1
(as an honest V would). In this case, the random messages mj sent by SP to
FAHCOM will never be opened, and the joint distribution of ideal execution with
SP is indistinguishable from the real execution with P̂ .

In case the checks of an honest V performed by SP succeed, it is neces-
sary to extract the messages contained in A. By using W received from P̂ in
the execution and the seeds si,j received from P̂ by FCOM for i ∈ {1, . . . , n}
and j ∈ {0, 1}, SP can reconstruct A by computing R0[i, ·] = PRG(si,0) and
R1[i, ·] = PRG(si,1), for i = 1, . . . , n, and setting A0 = R0, A1 = R1 + W

and A = A0 + A1. However, it might be the case that A 6∈ C�m because P̂
is malicious. It remains to prove that SP can decode the columns of A and
obtain the committed messages with high probability, even though it might be
the case that A 6∈ C�m (but close enough to C�m). As an intermediate hybrid,
we assume that matrices R0,R1 are uniformly random. Notice that this hybrid
is computationally indistinguishable from the actual simulation since the rows
of R0,R1 are generated by stretching uniformly random seeds with PRG, so
distinguishing them from uniformly random matrices of same size breaks the
pseudorandomness of PRG. The remainder of this proof uses the same technique
of [16, Lemma 8], which we reproduce in almost verbatim form below:

The simulator will identify < s rows such that A is in C�m except for the
identified rows. As the code has minimum distance s, this allows to erasure
decode each column j of A to C and the corresponding decoded message will be
the extracted message mj that the simulator will input to FAHCOM. We now
give the details.

Let R ⊂ [n] be a set of indices specifying rows of A. For a column vector
c ∈ Fn we let πR(c) = (c[i])i∈[n]\R be the vector punctured at the indices i ∈ R.
For a matrix M we let MR = πR(M) be the matrix with each column punctured

37

using πR and for a set S we let SR = {πR(s)|s ∈ S}. The simulator will need to
find R ⊂ [n] with |R| < s such that

AR ∈ C�mR . (2)

It should furthermore hold that

H∞((bi)i∈R|P̂) = 0 (3)

H∞((bi)i∈[n]\R|P̂) = n− |R| , (4)

where P̂ here denotes the view of P̂ in the simulator so far, i.e., the adversary
can guess R and each choice bit bi for i ∈ R with certainty at this point in the
simulation and has no extra information on bi for i 6∈ R.

Define T := AH. Let T̂0 and T̂1 be the values sent by P and let T̂ = T̂0+T̂1.
Let T0 = R0H and T1 = (R1 + W)H be the values that P̂ should have sent.

Let T = T0 + T1. Let R be the smallest set such that T̂R = TR. We claim that
this set fulfills (2), (3) and (4).

We know that the receiver did not abort, which implies that ∆T̂1 + (I −
∆)T̂0 = BH. The i’th row of ∆T̂1 + (I−∆)T̂0 can be seen to be T̂bi [i, ·]. The
i’th row of B can be seen to be biW[i, ·] + Rbi , so the i’th row of BH is Tbi [i, ·].
We thus have for all i that

T̂bi [i, ·] = Tbi [i, ·] .

For each i ∈ R we have that T̂[i, ·] 6= T[i, ·], so we must therefore have for all
i ∈ R that

T̂1−bi [i, ·] 6= T1−bi [i, ·] .

It follows that if V for position i had chosen the choice bit 1− bi instead of bi,
then the protocol would have aborted. Since P̂ can compute the correct values
Tbi [i, ·] and T1−bi [i, ·] it also knows which value of bi will make the test pass.
By assumption the protocol did not abort. This proves (3). It also proves that
the probability of the protocol not aborting and R having size |R| is at most

2−|R| as P̂ has no information on b1, . . . , bn prior to sending T̂0 and T̂1 so P̂
can guess (bi)i∈R with probability at most 2−|R|. It is easy to see that the value
of the bits bi for i 6∈ R do not affect whether or not the test succeeds. Therefore
these bits are still uniform in the view of P̂ at this point.

In particular, we can therefore continue under the assumption that |R| < s.
We can then apply Theorem 1 where we set X = A. From |R| < s it follows
that XH has distance less than s to C�m, so we must be in case 2 in Theorem 1.
Now, since the receiver checks that T̂ ∈ C�l and the protocol did not abort, we
in particular have that T̂R ∈ C�lR from which it follows that TR ∈ C�lR , which

in turn implies that ARH ∈ C�lR and thus XRH ∈ C�lR . We can therefore pick a
codeword C′ ∈ C�l such that the row support of XH−C′ is R. From Theorem
1 we then get that there exists C ∈ C�m such that the row support of A−C is
R. From this it follows that AR = CR, which implies (2).

38

Now notice that since C has minimum distance s and |R| < s the punctured
code CR will have minimum distance at least 1. Therefore the simulator can from
each column A[i, ·]R ∈ CR decode the corresponding message mj ∈ {0, 1}k. This

is the message that the simulator will input to FAHCOM on behalf of P̂ .
In order to fool SP and open a commitment to a different message than the

one that has been extracted from A[·, j], P̂ would have to provide A′0[·, j],A′1[·, j]
such that A′[·, j] = A′0[·, j] + A′1[·, j] is a valid codeword of C corresponding to
a different message m′. However, notice that since CR has minimum distance
s−|R|, that would require P̂ to modify an additional s−|R| positions of A that
are not contained in R so that it does not get caught in the checks performed by
a honest V in the opening phase. That means that P̂ would have to guess s−|R|
of the choice bits bi for i 6∈ R. It follows from (4) that this will succeed with
probability at most 2|R|−s. Taken in combination with the fact that P̂ suceeded
in passing the previous checks without the protocol aborting with probability
2−|R|, the total probability of success for P̂ is 2−|R| · 2|R|−s = 2−s.

Simulator SV

Simulator SV interacts with environment Z , functionality FAHCOM and an internal
copy of adversary V̂ . Upon being activated by Z, SV proceeds as follows:

1. Emulating FCOM: SV executes exactly the steps of FCOM, storing r = r1 ⊕
. . . ⊕ rt computed using the random strings ri received from Vi for i ∈ [t]
(controlled by V̂).

2. Commitment Phase: Upon receiving (receipt, sid, ssid1, . . . , ssidm, P, V)
from FAHCOM, SV runs the steps of an honest P in the commitment phase
exactly as in ΠAHCOM.

3. Addition: Upon receiving (add, sid, ssid1, ssid2, ssid3, P, V, success) from
FAHCOM, SV runs the steps of an honest P exactly as in ΠAHCOM (using
indexes i and j associated to ssid1, ssid2).

4. Opening Phase: Let J = {j1, . . . , jo} be the set of indexes asso-
ciated with ssid of the opening phase, ssid1, . . . , ssido. Upon receiving
(reveal, sid, ssid, P, V,mj) from FAHCOM for j ∈ J , SV uses its knowledge
of r[1], . . . , r[n] to compute alternative columns A0

′[·, j],A1
′[·, j] such that

A′[·, j] = A0
′[·, j] + A1

′[·, j] is a valid commitment to mj that can opened
without being caught by V̂ even though mj is different from the messages
committed to in the commitment phase. Namely, SV initially sets A0

′[·, j] =
A0[·, j],A1

′[·, j] = A1[·, j] and then sets A′1−r[i][·, j] = C(mj)−Ar[i][·, j]. Note
that matrices A0

′[·, j],A1
′[·, j] only differ from matrices A0[·, j],A1[·, j] ob-

tained in the commitment phase in positions that are not known by V̂ . Finally,
SV sends (sid, ssid1, . . . , ssido, (A0

′[·, j],A1
′[·, j])j∈J) to V̂ , outputs whatever

V̂ outputs and halts.

Fig. 14. Simulator SV

Lemma 3 (Security Against a Corrupt V). There exists a simulator SV
such that for every static adversary A who corrupts all receivers in V = {V1, . . . , Vt},
and any environment Z, the environment cannot distinguish ΠAHCOM composed

39

with FCOM and A from SV composed with FAHCOM. That is, we have

IDEALFAHCOM,SV ,Z ≈c HYBRID
FCOM

ΠAHCOM,A,Z .

Proof. In case the adversary corrupts all receivers in V , the simulator SV has
to run ΠAHCOM with an internal copy of V̂ , commit to a random string and
then equivocate this commitment (i.e., open it to an arbitrary message) when it
receives the actual message from FAHCOM. In order to achieve this, we construct
a SV that executes the commitment phase exactly as an honest P in ΠAHCOM,
only deviating in the opening phase. We describe SV in Figure 14.

Again we use an intermediate hybrid, where we assume that matrices R0,R1

are uniformly random. Notice that this hybrid is computationally indistinguish-
able from the actual simulation since the rows of R0,R1 are generated by stretch-
ing uniformly random seeds with PRG, so distinguishing them from uniformly
random matrices of same size breaks the pseudorandomness of PRG.

Notice that V̂ has no information at all about the committed strings after the
commitment phase. This is true because each row of B is one additive share of A
(either a row from R0 or a row from R1 adjusted by W) that trivially contains no
information. Moreover, matrix P is never revealed and Q has the same structure
as B (containing no information about P). Hence, matrices T0,T1 seen by V̂ in
the commitment phase contain no information about the message encoded in A.

Notice that SV learns vector r by observing vectors ri sent to FCOM by V̂ and
that the inverses of bits r[1], . . . , r[n] represent the positions of the matrices that
are unknown to V̂ (i.e., unknown to V in the real world). In this scenario, SV can
open a commitment to an arbitrary message without being detected. Note that
SV executes the exact steps of an honest P in ΠAHCOM except for the opening
phase. For each commitment associated with index j to be opened, SV sends
A0
′[·, j],A1

′[·, j], which are different from the vector A0[·, j],A1[·, j] computed
in the commitment phase and that would be sent in a real execution of ΠAHCOM.
However, A0

′[·, j],A1
′[·, j], only differ from A0[·, j],A1[·, j] in positions that are

unknown by V̂ . Hence, the joint distribution of the ideal execution with simulator
SV is computationally indistinguishable from the real execution of ΠAHCOM with
corrupted receivers.

Appendix E Security Proofs for ΠMHCOM

Theorem 4. Protocol ΠMHCOM UC-realizes FMHCOM in the FCOM-hybrid model
with computational security against a static adversary. Formally, there exists a
simulator S such that for every static adversary A, and any environment Z, the
environment cannot distinguish ΠMHCOM composed with FCOM and A from S
composed with FMHCOM. That is, we have

IDEALFMHCOM,S,Z ≈c HYBRID
FCOM

ΠMHCOM,A,Z .

Proof. If the adversary P̂ corrupts the sender P and all but one receivers in V ,
the simulator SP will analogously as in the proof of Lemma 2 learn the seeds si,j ,

40

ŝi,j , r, ∆, ∆′, B, B′, B̂, Q, Q′, Q̂, H, T̃0, T̃1, T̃2. Then it will do all checks
that the honest verifier will do in the step 4(b). If the checks fail, it will abort as
an honest V would. Assume then that the checks succeed. Now SP reconstructs

Ã =

(
A

Â

)
and we need to prove that SP can extract the committed messages

with high probability even in the case where Ã /∈ (C̃)�m. In order to do that,
the simulator SP will find sets of rows R, R̂ of rows (where R is a subset of the

rows in A and R̂ is a subset of the rows in Â) such that R, R̂ are small and such
that Ã would be in (C̃)�m except for those rows (i.e. there exists C̃ ∈ (C̃)�m

which equals Ã in the remaining rows).

For j = 0, 1, 2, let Uj , Ûj , be matrices sent by the corrupt prover in place of

the values Tj , T̂j that it should have sent. Let U = U0 + U1 + U2 and define

Û, T, T̂ analogously. The simulator defines R (respectively R̂) to be the set of
rows in which T and U (respectively T̂ and Û) differ.

Now call ri = r[i] the selections of the verifier. Since the receiver did not
abort, then Uri = Tri , Uri+1 = Tri+1, Ûri = T̂ri For every position in R, it
must hold that Uri+2 6= Tri+2, while for every position in R̂, either Ûri+1 6=
T̂ri+1 or Ûri+2 6= T̂ri+2 (or both). The probability that the protocol does
not abort equals the probability that P̂ guesses ri exactly for every i in R and
guesses a subset of two (out of three) elements in which ri is, for every i in R̂\R.

Therefore the probability that the protocol does not abort is (1/3)|R|(2/3)|R̂\R|.
We can assume R ⊆ R̂ (indeed this is in P̂ ’s advantage: if P̂ changes a share for
the i-th row of T successfully, then it is because it guessed ri exactly, but then
it can change the i-th row T̂ “for free”). Nevertheless, the maximum number of
total coordinates that P̂ can change (the maximum of |R| + |R̂|) such that the
probability that the protocol does not abort is at least 2−s is achieved for R = ∅
and |R̂| = βs where β = 1/(log2 3− 1). Therefore assume that P̂ can change at
most βs coordinates, and recall that by assumption βs < dist(C∗2) ≤ dist(C̃).
We are then in case 2 of Theorem 1 when applied to X = Â and C as linear

code. Thus we eventually find a matrix C̃ =

(
C

Ĉ

)
∈ (C̃)�m with CR = AR and

ĈR̂ = ÂR̂ (where the notation AR means the submatrix of A consisting of all

rows except those indexed by R). Hence Ã belongs to (C̃)�m except for the rows
in R and R̂. Since these are in total less than dist(C̃) coordinates, the simulator
can now erasure-correct each column and input that as messages to FMHCOM.

In order to open a commitment to a different message and avoid that the
verifier aborts, P̂ would need to modify additional positions Q and Q̂, respec-
tively in the matrices A and Â where Q is disjoint with R and Q̂ is disjoint with
Q̂ so that in total |R|+ |Q|+ |R̂|+ |Q̂| ≥ dist(C̃) = βs since P̂ needs to reveal a
codeword in C̃. P̂ can guess correctly the selections of the choices of the verifier

in the new sets with probability (1/3)|Q|(2/3)|Q̂\Q|. Under these conditions, and
similarly to what is mentioned above the probability that the protocol does not
abort either because of the choices of the R’s or of the Q’s is at most 2−s.

41

Finally we need to prove that, given two committed values (indexed by i,
j), P̂ cannot fool SP by creating a third commitment that it claims to contain
the product of the two committed values, but which it can open to a different
message.

Let wl, l = 0, 1, 2, be the vectors created from the matrices Al and Âl as in
the protocol ΠMHCOM. Remember that P̂ may have cheated in positions R, R̂ of
the matrices A and Â respectively and that we were assuming that R ⊆ R̂ (since
this is in P̂ ’s advantage). Letw = w0+w1+w2. Note thatwR̂ ∈ C∗2

R̂
. P̂ can now

choose to announce some arbitrary vectors w′
l. However, if w′

ri [i] 6= wri [i], then
the protocol will abort. This is because the verifier can compute wri [i] from Ari

, Ari+1
, Âri . Let M the set of positions outside R̂ where w 6= w′. The verifier

will abort if w′ /∈ C∗2. Since wR̂ ∈ C∗2R̂, if the verifier does not abort either

|R̂∪M | = 0 (i.e. P̂ has not cheated) or |R̂∪M | ≥ dist(C∗2) > βs. So the protocol
has not aborted at this point if P̂ has been able to guess, for every i ∈ R̂ ∪M ,
a pair of indices {a, b} ⊆ {0, 1, 2} such that ri ∈ {a, b} and |R̂ ∪M | ≥ dist(C∗2).
This occurs with probability smaller than (2/3)βs = 2−s.

In case the adversary V̂ corrupts all receivers in V , the simulator SV first
runs the commit phase and the computation steps of ΠMHCOM as an honest P
and then equivocates these commitments when it receives the actual messages
from FMHCOM. This is possible for two reasons, first V̂ has no information at all
about the committed messages before the opening phase. This is true because:

1) the matrices W and Ŵ broadcasted during the commit phase (if adjusted

by R2 and R̂2, respectively) represent one out of three additive shares of the
components of the codewords encoding the committed messages and therefore
they trivially contains no information, 2) the matrix P̃ and the columns of Ã
used in the multiplication steps are never revealed; hence the matrices T̃i for
i ∈ {0, 1, 2} from the commit phase and the triples from the multiplication step
(i.e. one triple (w0,w1,w2) for each multiplication) contains no information
(i.e., they are additive share of values that don’t contain information).

Second, V̂ learns the vector r by emulating FCOM and therefore it knows the
index of the shares that are checked by V̂ in the opening phase. This implies
that in order to equivocate a commitment, SV simply needs to modify the share
not checked by V̂ before broadcasting them at the beginning of the opening
phase. More in detail, for any j ∈ {ssid1, . . . , ssido} upon receiving mj from
FMHCOM as opening of the commitment associated with the index j, SV defines
A′r[i]+2[·, j] = C(mj)−Ar[i]+1[·, j]−Ar[i][·, j] and A′r[i]+l[·, j] = Ar[i]+l[·, j] for
l ∈ {0, 1} (where Ai[·, j] are the ones constructed for the commit phases executed
by V̂). Now, V̂ broadcasts (sid, ssid,A′0[·, j],A′1[·, j],A′2[·, j]) and outputs the
same value as V̂ . This guarantees that the joint distribution of the ideal execution
with simulator SV is computationally indistinguishable from the real execution
of ΠAHCOM with receivers controlled by V̂ .

42

Appendix F Publicly Verifiable Multi-Receiver
Additively Homomorphic Commitments

The functionality for publicly verifiable additively homomorphic commitments
FPVHCOM used in the Insured MPC protocol of Baum et al. [4] is described in
Figure 15.

Functionality FPVHCOM

FPVHCOM interacts with a sender P , a set of receivers V = {V1, . . . , Vm}, a set of
external verifiers U , and an adversary S and proceeds as follows:

– Commit Phase: As in FAHCOM.
– Addition: As in FAHCOM.
– Open Phase: As in FAHCOM.
– Public Verification: Upon receiving a message (verify, sid, ssid, P, V,m) from
Ui ∈ U , if a tuple (ssid, P, V,m) was previously recorded and revealed, then
send (verified, sid, ssid, P, V,m) to Ui.

– Register External Verifier: Upon receiving (register) from Ui, set U = U∪Ui
and return (registered) to Ui.

– Deregister External Verifier: Upon receiving (deregister) from Ui, set U =
U \ Ui and return (deregistered) to Ui.

– Check Registration: Upon receiving (is− registered) from Ui, return
(is− registered, b) to Ui, where b = 1 if Ui ∈ U and b = 0 otherwise.

– Get Registred: Upon receiving (get− registered) from the ideal adversary S,
the functionality returns (get− registered, U) to S.

Fig. 15. Functionality FPVHCOM

43

	Efficient UC Commitment Extension with Homomorphism for Free (and Applications)

