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Abstract. Transaction throughput, confirmation latency and confirma-
tion reliability are fundamental performance measures of any blockchain
system in addition to its security. In a decentralized setting, these mea-
sures are limited by two underlying physical network attributes: commu-
nication capacity and speed-of-light propagation delay. Existing systems
operate far away from these physical limits. In this work we introduce
Prism, a new proof-of-work blockchain protocol, which can achieve 1) se-
curity against up to 50% adversarial hashing power; 2) optimal through-
put up to the capacity C of the network; 3) confirmation latency for
honest transactions proportional to the propagation delay D, with con-
firmation error probability exponentially small in the bandwidth-delay
product CD ; 4) eventual total ordering of all transactions. Our approach
to the design of this protocol is based on deconstructing the blockchain
into its basic functionalities and systematically scaling up these func-
tionalities to approach their physical limits.
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1 Introduction

In 2008, Satoshi Nakamoto invented the concept of a blockchain, a mechanism
to maintain a distributed ledger for an electronic payment system, Bitcoin [18].
Honest nodes mine blocks on top of each other by solving Proof-of-Work (PoW)
cryptographic puzzles and by following a longest chain protocol they can come to
a consensus on a transaction ledger that is hard to be reversed by an adversary.
Solving the puzzle effectively involves randomly trying a hash inequality until
success. Since Bitcoin’s invention, much work has been done on the analysis
and design of blockchain protocols; however, it remains unclear what is the best
performance achievable by blockchain protocols. In this manuscript, we explore
the performance limits of blockchain protocols and propose a new protocol, Prism
, that performs close to those limits. Our focus is on Proof-of-Work payment
systems, although we believe similar design principles have applications to Proof-
of-Stake as well as smart contracts systems.
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gfanti@andrew.cmu.edu, pramodv@illinois.edu
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1.1 Performance measures

There are four fundamental performance measures of a PoW blockchain protocol:

1. the fraction β of hashing power the adversary can control without compro-
mising system security;

2. the throughput λ, number of transactions confirmed per second;
3. the confirmation latency, τ , in seconds;
4. the probability ε that a confirmed transaction will be removed from the

ledger in the future. (log 1/ε is sometimes called the security parameter in
the literature.)

For example, Bitcoin is secure up to the adversary having 50% of the hashing
power of the network nodes (β = 0.5), has throughput λ of the order of several
transactions per seconds and confirmation latency of the order of tens of minutes
to hours. In Bitcoin, there is also a tradeoff between the confirmation latency and
the confirmation error probability: the smaller the desired the confirmation error
probability, the longer the needed latency is in Bitcoin. For example, Nakamoto’s
calculations [18] show that for β = 0.3, while it takes a latency of 10 blocks
(on the average, 100 minutes) to achieve an error probability of 0.04, it takes a
latency of 30 blocks (on the average, 300 minutes) to achieve an error probability
of 10−4. This latency arises because in order to provide a low error probability,
blocks must be deep in the underlying blockchain to prevent the adversary from
growing a longer side chain and overwriting the block in question.

1.2 Physical Limits

Bitcoin has strong security guarantees, being robust against an adversary with
up to 50% hashing power. However, its throughput and latency performance are
poor; in particular high latency is required to achieve very reliable confirmation.
Much effort has been expended to improve the performance in these metrics
while retaining the security guarantee of Bitcoin. But what are the fundamental
bounds that limit the performance of any blockchain protocol?

Blockchains are protocols that run on a distributed set of nodes connected
by a physical network. As such, their performance is limited by the attributes of
the underlying physical network. The two most important attributes are C, the
communication capacity of the network, and D, the speed-of-light propagation
delay across the network. Propagation delay D is measured in seconds and the
capacity C is measured in transactions per second in this manuscript, since a
transaction is the basic unit of information in a payment system. Nodes partici-
pating in a blockchain network need to communicate information with each other
to reach consensus; the capacity C and the propagation delay D limit the rate
and speed at which such information can be communicated. These parameters
encapsulate the effects of both fundamental network properties (e.g., hardware,
topology), as well as resources consumed by the network’s relaying mechanism,
such as validity checking of transactions or blocks. Assuming that each transac-
tion needs to be communicated at least once across the network, it is clear that
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λ, the number of transactions which can be confirmed per second, is at most C
while the confirmation latency τ is at least D. What is less obvious is that these
two parameters also limit the achievable confirmation reliability. Indeed, if the
confirmation latency is τ and the block size is B transactions, then at most

C

B
· τ

mined blocks can be communicated across the network during the confirmation
period for a given transaction. These mined blocks can be interpreted as confir-
mation votes for a transaction during this period; i.e. votes are communicated
at rate C/B and C/Bτ votes are accumulated over time τ . This number is max-
imized at Cτ , when the block size is smallest possible, i.e. B = 1. On average, a
fraction β < 0.5 of these blocks are adversarial, but due to the randomness in the
mining process, there is a probability, exponentially small in Cτ , that there are
more adversarial blocks than honest blocks; if this happens, confirmation can-
not be guaranteed. Hence, this probability is a lower bound on the achievable
confirmation error probability. In particular, if the desired confirmation latency
τ is of the order of the propagation delay D, then we have:

ε = exp{−O(CD)}, (1)

i.e.

log
1

ε
= O(CD).

The quantity CD is analogous to the key notion of bandwidth-delay product
in networking (see eg. [11]); it is the number of “in-flight” transactions in the
network.

To connect this to existing blockchain systems, consider a global network with
communication links of capacity 20 Mbits/second and round-the-world speed-
of-light propagation delay D of 0.2 seconds. If we take a transaction of size
100 bytes, then C = 25, 000 transactions per second, and the bandwidth-delay
product is CD = 5000, giving an extremely small limit on the confirmation
error probability (c.f. (1)). Real-world blockchain systems operate far from these
physical network limits. Bitcoin, for example, has λ of the order of 10 transactions
per second, τ of the order of minutes to hours, and an error probability ε =
10−3. Ethereum has λ ≈ 15 transactions per second and τ ≈ 3 minutes for a
comparable error probability [5].

1.3 Main contribution

The main contribution of this work is a new blockchain protocol, Prism, which
has the following performance guarantees:

1. security: Prism is secure up to an adversary power of 50%, i.e. for any
β < 0.5 and for any adversarial action, it can achieve an eventual total
ordering of the transactions, with consistency and liveness guarantees.
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2. throughput: For any adversarial action, Prism can achieve a throughput

λ = (1− β)C transactions per second.

3. latency: For any β < 0.5 and for any adversarial action, Prism can achieve
an expected latency

E[τ ] <
16D

(1− 2β)3
seconds

on confirming a list of possible transaction ledgers such that with probability
exp{−Ω(CD)} one of the ledgers will be part of the eventual totally ordered
ledger (Figure 1). Moreover, honest transactions (without double spends)
will eventually appear in all ledgers in the list and can be confirmed with
expected latency

E[τ ] <
22D

(1− 2β)3
seconds.

Fig. 1. List ledger confirmation. An example where one can fast-confirm that the final
ledger is one of three possibilities. Honest transactions that appear in all three ledgers
can be fast-confirmed. Double spends cannot appear in all ledgers and are therefore
not fast-confirmed, although one of them will be slow-confirmed.

Some comments:

– The security of Prism is as good as Bitcoin: Prism can be robust to an adver-
sary with hashing power up to β = 0.5.
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– Since 1 − β is the fraction of honest hashing power, Prism ’s throughput
is optimal assuming each transaction needs to be communicated across the
network.

– For honest transactions, Prism simultaneously achieves a latency proportional
to the speed-of-light propagation delay and the smallest possible confirma-
tion error probability, exponentially small in the bandwidth-delay product
CD. Thus, there is essentially no tradeoff between confirmation latency and
confirmation reliability for honest transactions. Put another way, for any
desired security parameter log 1

ε � CD, the confirmation latency for honest
transactions is independent of log 1/ε (Figure 2).

– For a total ordering of all transactions (including double spends), on the
other hand, there is a tradeoff between latency and the security parameter,
similar to that of Bitcoin: i.e. latency is proportional to log 1/ε (Figure 2).

Fig. 2. Latency versus security parameter for fast and slow confirmation. For fast
confirmation, latency is independent of security parameter value up to order CD. For
slow confirmation, latency is proportional to security parameter.

1.4 Approach

A critical parameter of any PoW blockchain protocol is the mining rate, i.e.
the rate at which puzzles are successfully solved (also called the PoW solution
rate). The mining rate can be easily controlled via adjusting the difficulty of
the puzzle, i.e. the threshold at which the hash inequality needs to be satisfied.
The mining rate has a profound impact on both the transaction throughput and
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confirmation latency. Large mining rate can potentially increase the transaction
throughput by allowing transactions to be processed quicker, and can potentially
reduce the confirmation latency by increasing the rate at which votes are casted
to confirm a particular transaction. However, increasing the mining rate has the
effect of increasing the amount of forking in the blocktree, because blocks mined
by different nodes within the network delay cannot be mined on top of each
other and are hence forked. This de-synchronization slows down the growth rate
of the longest chain, making the system more vulnerable to private chain attacks,
and decreasing the security of the protocol. Indeed, one reason why Bitcoin is
highly secure is that the mining rate is set to be very small, one block per 10
minutes. At the current Bitcoin block size of 1 Mbytes, this corresponds to a
generated traffic of about 13 kbits/second, much less than capacity of typical
communication links [30]. Thus, Bitcoin ’s performance is security-limited, not
communication-limited, and far away from the physical limits.

Fig. 3. The DAG approach to increasing the mining rate.

To increase the mining rate while maintaining security, one line of work in
the literature has used more complex fork choice rules and/or added reference
links to convert the blocktree into more complex structures such as a directed
acyclic graph (DAG). This allows a block to be confirmed by other blocks that
are not necessarily its descendents on a main chain. (Figure 3). Examples of
such works are GHOST [29], Inclusive [15], Spectre [28], Phantom[27] and Conflux
[16]. However, as discussed in more details in the related work section, GHOST ,
Phantom, and Conflux all have security issues, and Spectre does not provide total
ordering of transactions. It is fair to say that handling a highly forked blocktree
is challenging.
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Fig. 4. Deconstructing the blockchain into transaction blocks, partially ordered pro-
posal blocks arranged by level, and voter blocks organized in a voter tree. The main
chain is selected through voter blocks, which vote among the proposal blocks at each
level to select a leader block. For example, at level 3, block b is elected the leader over
block a.

Fig. 5. Prism. Throughput, latency and reliability are scaled to the physical limits by
increasing the number of transaction blocks and the number of parallel voting chains
per proposal block.
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In this work, we take a different approach. We start by deconstructing the ba-
sic blockchain structure into its atomic functionalities (Figure 4). The selection
of a main chain in a blockchain protocol (e.g., the longest chain in Bitcoin) can be
viewed as electing a leader block among all the blocks at each level of the block-
tree. Blocks in a blockchain then serve three purposes: they elect leaders, they
add transactions to the main chain, and they vote for ancestor blocks through
parent link relationships. We explicitly separate these three functionalities by
representing the blocktree in a conceptually equivalent form. In this represen-
tation, blocks are divided into three types: proposer blocks, transaction blocks
and voter blocks. The voter blocks vote for transactions indirectly by voting for
proposer blocks, which in turn link to transaction blocks. Proposer blocks are
grouped according to their level in the original blocktree, and each voter block
votes among the proposer blocks at the same level to select a leader block among
them. The elected leader blocks can then bring in the transactions to form the
final ledger. The voter blocks are organized in their own blocktree and support
each other through parent links. Thus, the parent links in the original blocktree
have two implicit functionalities which are explicitly separated in this represen-
tation: 1) they provide a partial ordering of the proposal blocks according to
their levels, and 2) they help the voting blocks to vote for each other.

This alternative representation of the traditional blockchain, although seem-
ingly more complex than the original blockchain representation, provides a nat-
ural path for scaling the performance of blockchain protocols to approach phys-
ical limits (Figure 5). To increase the transaction throughput, one can simply
increase the number of transaction blocks that a proposer block points to with-
out compromising the security of the blockchain. This number is limited only by
the physical capacity of the underlying communication network. To provide fast
confirmation, one can increase the number of parallel voting trees, with many
voters voting on the proposal blocks in parallel, until reaching the physical limit
of confirming with speed-of-light latency and extremely high reliability. Note
that even though the overall block generation rate has increased tremendously,
the number of proposal blocks per level remains small and manageable, and the
voting blocks are organized into many separate voting chains with low block
mining rate per chain and hence little forking. The overall structure, compris-
ing of the three kinds of blocks and the links between them, is a DAG, but a
structured DAG.

This complexity management presupposes a way to provide sortition in the
mining process: when miners mine for blocks, they should not know in advance
whether the block will become a proposal block, a transaction block, or a voting
block, and if it is a voting block, it should not know in advance what particular
chain the voting block will be in. Otherwise an adversary can focus its hashing
power to attack a particular part of the structure. This sortition can be ac-
complished by using the random hash value when a block is successfully mined;
this is similar to the 2-for-1 PoW technique used in [10], which is also used in
Fruitchains [22] for the purpose of providing fairness in rewards. In fact, the
principle of decoupling functionalities of the blockchain, central to our approach,
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has already been applied in Fruitchains, as well as other works such as BitcoinNG.
This line of work will be discussed in depth in Section 2, but its focus is only on
decoupling the transactions-carrying functionality. In our work, we broaden this
principle to decouple all functionalities.

In Bitcoin, the irreversibility of a block in the longest chain is achieved by
a law of large numbers effect: the chance that an adversary with less that 50%
hashing power can grow a private chain without the block and longer than the
public chain diminishes with the depth of the block in the public chain. This is
the essence of the random walk analysis in Nakamoto’s original paper [18] and
is also implicit in the formal security analysis of Bitcoin in [10] (through the
definition of typical execution). The law of large numbers allows the averaging
of the randomness of the mining process, so that the chance of the adversary
getting lucky and mining many blocks in quick succession is small. The averaging
is achieved over time, and the price to pay is long latency, the latency increasing
with the desired level of reliability.

Prism also exploits the law of large numbers, but over the number of parallel
voter trees instead of over time. Due to the sortition mechanism, the mining
processes of both the adversary and the honest nodes are independent across the
voting trees. By having many such trees, many votes are casted on the proposer
blocks at a given level, and the chance of an adversary with less than 50% hashing
power being able to reverse many of these votes decreases exponentially with m,
the number of voter trees. The number of voter trees m, and hence the rate of
vote generation, is limited only by the physical capacity C of the network. Thus,
we can attain irreversibility of a large fraction of the votes at extremely high
probability, approaching 1 exponentially fast in the bandwidth-delay product
CD, without waiting for a long time. We show that this irreversibility of votes
allows fast confirmation that the final leader block at a given level must be one
of a list of proposer blocks. In particular, it is guaranteed that the adversary
cannot propose another block in the future that has enough votes to become the
final leader block at that level. Together with liveness of honest transactions, we
show that this “list decoding” capability is sufficient for fast confirmation of all
honest transactions 1. If one block stands out in terms of number of votes cast on
the different blocks, then the list narrows to this single block, which can then be
declared as the leader block. In the worst case, when the votes are tied between
two or more proposer blocks (due to active intervention by the adversary, for
example), the irreversibility of all of the votes and a content dependent tie-
breaking rule is needed to come to a global consensus of a unique leader block at
a given level, and this requires higher latency. Hence, Prism requires high latency
in the worst case to guarantee total ordering of all transactions.

The above discussion gives some intuition behind Prism, but a formal analysis
is needed to rigorously establish security, latency and throughput performance
guarantees. Such a formal analysis was done on Bitcoin in [10] in a synchronous

1 List decoding is a concept in coding theory. Instead of decoding to a unique codeword,
list decoding generates a list of possible codewords which is guaranteed to contain
the true codeword.
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round-by-round model and subsequently extended in [21] to an asynchronous
model with an upper bound on block network delay. In particular, [10] pio-
neered the backbone protocol analysis framework where it was shown that two
key properties, the common-prefix property and the chain-quality property, of
the Bitcoin backbone guarantee consistency and liveness of the ledger maintained
by Bitcoin respectively. We leverage this framework to provide a formal analysis
of Prism in the synchronous round-by-round model (we conjecture that similar
results can be established in the more sophisticated asynchronous model of [21]).
The technically most challenging part of the analysis is on fast latency confirma-
tion, where we show that: 1) common prefix property of the vote trees guarantee
vote consistency, so that a large fraction of the votes will not be reversed; 2)
chain quality of the main chains of the vote trees guarantee vote liveness, so
that a large fraction of the vote trees will have honest votes on the proposer
blocks at each level.

1.5 Outline of paper

In Section 2, we discuss other lines of work in relation to our approach. In Section
3, we review the synchronous model used in [10] and introduce our network model
that ties the blockchain parameters to physical parameters of the underlying
network. In Section 4, we focus on throughput, and discuss a simplified version
of the protocol, Prism 1.0, which achieves full security and optimal throughput.
Since Prism 1.0 lacks voter blocktrees, it has latency equivalent to Bitcoin. In
Section 5, we add vote trees to the protocol, and perform a formal analysis of
its security and fast latency. The result is a protocol, Prism, which can achieve
full security, optimal throughput and near physical limit latency on ledger list
decoding and confirmation of honest transactions. In Section 6, we will discuss
the issue of incentivization, as well as applications of our results to Proof-of-Stake
and smart contracts systems.

2 Related Work

In this section, we discuss and compare our approach to several lines of work.

2.1 High-Forking Protocols

As discussed in the introduction, one approach for increasing throughput and
decreasing latency is the use of more sophisticated fork choice and voting rules
to deal with the high-forking nature of the blocktree. Examples of such high-
forking protocols include GHOST [29], Inclusive [15], Spectre [28], Phantom [27],
and Conflux [16]. The earliest of these schemes, GHOST, handles forking through
a fork-choice rule that builds on the heaviest subtree [29]. The authors observed
that in order to improve throughput, we must increase the block mining rate,
f . However, as f grows, so too does the number of blocks mined in parallel,
which are wasted under Bitcoin’s longest-chain fork choice rule, thereby reducing
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security. GHOST’s heaviest-subtree rule allows the system to benefit from blocks
that were mined in parallel by honest nodes since such blocks are counted in
the main chain calculation. While it was shown in [29] that GHOST is secured
against a 50% purely private attack, it turns out that GHOST is vulnerable to a
public-private balancing attack [19], where the adversary can use minimal effort
to split the work of the honest nodes across two subtrees of equal weight, and
then launch a private attack. It turns out that counting side-chain blocks in
selecting the main chain allows the adversary to withhold earlier mined blocks
and use them at later times to balance the growth of the two subtrees. We present
an analysis of this attack in the Appendix and show that this attack restricts
the mining rate f of GHOST to be similar to that of Bitcoin, thus minimizing
the advantage of GHOST.

To improve security at high mining rates, another popular idea is to add
reference links between blocks in addition to traditional parent links, resulting
in a DAG-structured blockchain. Each block in a DAG can reference multiple
previous blocks instead of a unique ancestor (as in Bitcoin). The pertinent chal-
lenges are how to choose the reference links and how to obtain a total ordering
of blocks from the observed DAG in a way that is secure. In a family of proto-
cols, Inclusive, Spectre and Phantom, every block references all previous orphan
blocks. These reference links are interpreted in differing ways to give these dif-
ferent protocols. For example, in [15], the key observation is that the reference
link structure provides enough information to emulate any main-chain protocol,
such as the longest-chain or GHOST protocol, while in addition providing the
ability to pull in stale blocks into a valid ledger. However, the security guarantee
remains the same as that of Bitcoin (namely, tending to zero as the mining rate
grows), and it does not achieve optimal throughput.

Spectre is an innovative scheme that builds upon the the DAG idea to achieve
low confirmation time by interpreting the reference links as votes to compare be-
tween pairs of blocks [28]. However, the fast confirmation is restricted to honest
transactions and the system does not guarantee liveness for double-spends as well
as not having the ability to confirm smart contracts that need a totally-ordered
ledger. Since complete ordering is important for core blockchain applications
(e.g., cryptocurrencies), a later work, Phantom, builds on Spectre to achieve
consensus on a total ordering of transactions by having participants topologi-
cally sort their local DAGs [27]. The authors suggest that by combining Spectre
and Phantom, one may be able to achieve low confirmation latency for hon-
est transactions as well as eventual total ordering. However, a recent work [16]
demonstrates a liveness attack on Phantom. Furthermore, the proposed hybrid
scheme cannot confirm non-contentious smart contracts with fast latency. Al-
though Prism uses a DAG to order transactions, it diverges from prior DAG
schemes by separating block proposal from block ordering in the protocol. This
helps because an adversarial party that misbehaves during block proposal does
not affect the security of transaction ordering, and vice versa; it provides a degree
of algorithmic sandboxing.
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Conflux is another DAG-based protocol whose goal is to increase throughput
[16]. However, Conflux’s reference links are not used to determine where to mine
blocks or how to confirm them; they are only used to include side-chain blocks
into the main chain to improve throughput. The main chain itself is selected by
the GHOST rule. Due to the vulnerability of GHOST to the balancing attack,
the secured throughput of Conflux is limited to Bitcoin levels. (See discussions in
Section 4.6.)

2.2 Decoupled Consensus

Our design approach is based on the principle of decoupling the various func-
tionalities of the blockchain. This decoupling principle has already been applied
in various earlier works, but mainly in decoupling the transactions. We review
these works here.

BitcoinNG [8] elects a single leader to propose a predetermined number of
transaction blocks, called an epoch. At the end of this epoch, a new leader is
elected. Thus, there is a decoupling of proposal blocks and transaction blocks,
the goal being to increase the throughput. However, since the transaction blocks
are not mined but are put on the chain by the leader after the leader is elected,
this protocol is subject to potential bribery and DDoS attacks on the leaders,
whereby an adversary can corrupt a block proposer after learning its identity. In
contrast, Prism does not reveal the identity of a block proposer a priori.

The objective of Fruitchains [22] is to provide better chain quality compared
to Bitcoin; at a high level, chain quality refers to the fraction of blocks in the
main chain belonging to the adversary. In Bitcoin, adversaries can augment this
fraction relative to their computational power by using strategic mining and
block release policies, such as selfish mining [9,26,20]. Fruitchains mechanically
resembles Nakamoto consensus, except miners now mine separate mini-blocks,
called fruits, for each transaction. Fairness is achieved because the fraction of
fruits a miner can mine is proportional to its computational power. As in Bit-
coinNG , the fruits (transactions) are decoupled from the proposal blocks in the
blocktree, but for a different reason: to improve fairness.

2.3 Hybrid Blockchain-BFT consensus

Another line of work to improve throughput and latency combines ideas from
Byzantine fault tolerant (BFT) along with blockchains. Hybrid consensus uses
a combination of traditional mining under a longest-chain fork choice rule with
Byzantine fault tolerant (BFT) consensus [23]. The basic idea is that every k
blocks, a BFT protocol is run by an elected committee of nodes. Hybrid con-
sensus is designed to provide responsiveness, which describes systems whose
performance depends on the actual network performance rather than an a priori
bound on network delays. The authors show that no responsive protocol can be
secure against more than 1/3 adversarial power, and hybrid consensus achieves
this bound. In this work, our focus is not on being responsive to network delay,
but close to the propagation delay physical limit and small error probability.
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A closely-related protocol called Thunderella includes a slow Nakamoto con-
sensus blockchain, as well as a faster confirmation chain that is coordinated
by a leader and verified by a BFT voting protocol [24]. Thunderella achieves
low latency under optimistic conditions, including having a honest leader and a
β < 0.25, while having consistency under worst case condition (β = 0.5). In con-
trast, our protocol achieves low latency under all conditions, but for list-decoding
and confirmation of honest transactions.

3 Model

3.1 Mining and communication model

Let N denote the set of participating nodes in the network. Each transaction
is a cryptographically secure payment message. When a transaction arrives at
the network, it is assumed to be instantaneously broadcast to all nodes in the
network. A block consists of an ordered list of B transactions and a few reference
links to other blocks. Each node n ∈ N controls pn fraction of total hashing
power and it create blocks from the transactions and mines them with Poisson
process rate fpn blocks per second. There are two types of nodes – honest nodes,
H ⊂ N , who strictly follow the protocol, and the adversarial nodes, N/H, who
are allowed to not follow the protocol. The adversarial nodes control β fraction of
hashing power i.e,

∑
v∈N/H pv = β, whereas the honest nodes control the other

1−β fraction of hashing power. As a consequence, the honest nodes mine blocks
with Poisson process rate

∑
v∈H fpv = (1− β)f and the adversarial nodes mine

blocks with Poisson process rate
∑
v∈N/H fpv = βf . Without loss of generality

we can assume a single adversarial node with 1− β fraction of hashing power.
The nodes exchange blocks via a broadcast channel. The time taken trans-

mitting a block from one honest node to another honest node is assumed to be
∆ seconds. On the other hand, the adversary can transmit and receive blocks
with arbitrary delay, up to delay ∆.

To simplify our analysis, we discretize the above continuous-time model into
the discrete-time round-by-round synchronous model proposed in [10]. Each
round in this model corresponds to ∆ seconds in the continuous-time model
above. In the rth round, let H[r] and Z[r] be the number of blocks mined by the
honest nodes and by the adversarial nodes respectively. The random variables
H[r] and Z[r] are Poisson distributed with means (1 − β)f∆ and βf∆ respec-
tively and are independent of each other and independent across rounds. The
H[r] blocks are broadcast to all the nodes during the round, while the adversary
may choose to keep some or all of the Z[r] blocks in private. The adversary may
also choose to broadcast any private block it mined from previous rounds. The
adversary is allowed to first observe H[r] and then take its action for that round.
At the end of each round, all nodes in the network have a common view of the
public blocktree. An important random variable is Y [r], which equals 1 when
H[r] = 1 and 0 otherwise. This is the indicator random variable for whether
the rth round is a uniquely honest round, i.e. a round in which only one block
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is mined by the honest nodes. Note that Y [r] has a Bernoulli distribution with
parameter (1− β)f∆e−(1−β)f∆.

The location of the H[r] honest blocks in the block data structure after the
rth round is protocol-dependent. In Bitcoin, for example, all honest blocks are
appended to the longest chain of the public blocktree from the previous round.
Adversarial blocks can instead be mined on any public or private block from the
previous round.

Following the Bitcoin backbone protocol model [10], we consider protocols
that execute for a finite number of rounds, rmax which we call the execution
horizon. We note that we do not consider cryptographic failure events, such
as insertion in the blockchain, since it has been demonstrated already in the
backbone protocol paper that for a polynomial number of rounds rmax in the
hash-length, these events have negligible probability.

3.2 Network model

To connect to the physical parameters of the network, we assume a very simple
network model. The network delay ∆ is given by:

∆ =
B

C
+D, (2)

i.e. there is a processing delay of B/C followed by a propagation delay of D sec-
onds. This is the same model used in [29], based on empirical data in [7], as well
in [25]. However, here, we put an additional qualification: this expression is valid
only assuming the network is stable, i.e. the total workload of communicating
the blocks is less than the network capacity. In terms of our parameters:

fB < C. (3)

For a given block size, (3) imposes a physical constraint on the total mining
rate f . This stability constraint sets our model apart from prior work, which
has traditionally assumed infinite network capacity; in particular, this gives us
a foothold for quantifying physical limits on throughput and latency.

Note that the protocols discussed in this manuscript can be used in any
network setting. This simple network model is only used as a common baseline
to evaluate how well a particular protocol performs relative to the physical limits.

4 Approaching physical limits: Throughput

In this section, we study the optimal throughput λ achievable under worst-
case adversarial behavior for a given adversarial power β. The main results are
summarized in Figure 6, which show plots of λ̄ := λ/C versus β for various
protocols. The metric λ̄ is the throughput as a fraction of the network capacity
and is a measure of the efficiency of a protocol. The plot shows upper bounds
on the efficiency of two baseline blockchain protocols, Bitcoin and GHOST (a
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version of GHOST is used in Ethereum). Note that the throughput efficiency of
both protocols vanishes as β approaches 0.5. In contrast, we design a protocol,
Prism 1.0, which attains a throughput efficiency of 1 − β. This efficiency does
not vanish as β approaches 0.5 and is in fact the best possible if only honest
nodes are working. We will see that the difference between Prism 1.0 and the
two baseline protocols is that while the throughput of the two baseline protocols
are security-limited for large β, the throughput of Prism 1.0 is only limited by
the physical network capacity for all β < 0.5.

Fig. 6. Throughput efficiency versus β tradeoff of baseline protocols and Prism 1.0 .
The tradeoffs for the baseline protocols are upper bounds, while that for Prism 1.0 is
exact.

4.1 Baselines: Bitcoin and GHOST

We derive upper bounds on the achievable throughput under worst-case adver-
sarial behavior of two key baselines: Bitcoin and GHOST. Throughput can be
altered by tuning two parameters: the mining rate f and block size B. We are
interested in the maximum achievable throughput efficiency (λ̄ := λ

C ), optimized
over B and f . To simplify notation, we suppress the dependence of λ̄ on β.

4.1.1 Bitcoin

The security and consensus properties of Bitcoin have been studied by Nakamoto
[18], and formally by [10] in the synchronous model, followed by the analysis of
[21] in the asynchronous model. These works and others (e.g., [29,13]) show that
choice of f and B in Nakamoto consensus has tradeoffs. As the mining rate
f grows, forking increases and the maximum tolerable adversarial fraction β
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shrinks, Similarly, as the block size B grows, the network delay ∆ also grows,
which causes forking.

An upper bound on the worst case throughput (worst case over all adversary
actions) is the rate at which the longest chain grows when no adversary nodes
mine. The longest chain grows by one block in a round exactly when at least
one honest block is mined. Hence the rate of growth is simply P(H(r) > 0), i.e.

1− e−(1−β)f∆ blocks per round, (4)

Notice that (4) is monotonically increasing in f ; hence to maximize throughput,
we should choose as high a mining rate as possible.

However, we are simultaneously constrained by security. For Bitcoin’s secu-
rity, [10] shows that the main chain must grow faster in expectation than any
adversarial chain, which can grow at rates up to βf∆ in expectation. Hence we
have the following (necessary) condition for security:

1− e−(1−β)f∆ > βf∆. (5)

Equation (5) gives the following upper bound on f∆, the mining rate per round:

f∆ < f̄BTC(β),

where f̄BTC(β) is the unique solution to the equation:

1− e−(1−β)f̄ = βf̄ ,

This yields an upper bound on the throughput, in transactions per second,
achieved by Bitcoin as:

λBTC ≤ βf̄BTC(β)B/∆. (6)

Substituting in ∆ = B/C +D and optimizing for B, we get the following upper
bound on the maximum efficiency of Bitcoin :

λ̄BTC ≤ βf̄BTC(β),

achieved when B � CD and ∆� D.
Another upper bound on the throughput is obtained by setting f at the

capacity limit: f = C/B (cf. (3)). Substituting into (4) and optimizing over B,
this yields

λ̄BTC ≤ 1− eβ−1,

achieved when f∆ = 1, B � CD and ∆� D.
Combining the above two bounds, we get:

λ̄BTC ≤ min
{
βf̄BTC(β), 1− eβ−1

}
This is plotted in Figure 6. Note that for large values of β, the first upper bound is
tighter; this is a security-limited regime, in which the throughput efficiency goes
to zero as β → 0.5. This is a manifestation of the (well-known) fact that to get a
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high degree of security, i.e. to tolerate β close to 0.5, the mining rate of Bitcoin
must be small, resulting in a low throughput. For smaller β, the second upper
bound is tighter, i.e. this is the communication-limited regime. The crossover
point is the value of β such that

1− eβ−1 = β,

i.e., β ≈ 0.43.

4.1.2 GHOST

The GHOST [29] protocol uses a different fork choice rule, which uses the heaviest-
weight subtree (where weight is defined as the number of blocks in the subtree),
to select the main chain. To analyze the throughput of GHOST, we first observe
that when there are no adversarial nodes working, the growth rate of the main
chain of GHOST is upper bounded by the growth rate of the main chain under
the longest chain rule. Hence, the worst-case throughput of GHOST, worst-case
over all adversary actions, is bounded by that of Bitcoin, i.e.

1− e−(1−β)f∆ blocks per second, (7)

(cf. (4)). Notice that once again, this bound is monotonically increasing in f and
we would like to set f largest possible subject to security and network stability
constraints. The latter constraint gives the same upper bound as (8) for Bitcoin:

λ̄GHOST ≤ 1− eβ−1. (8)

We now consider the security constraint on f . Whereas our security condi-
tion for Bitcoin throughput was determined by a Nakamoto private attack (in
which the adversary builds a longer chain than the honest party), a more severe
attack for GHOST is a balancing attack, analyzed in Appendix A. As shown in
that analysis, the balancing attack implies that a necessary condition on f for
robustness against an adversary with power β is given by:

E[|H1[r]−H2[r]|] > βf∆, (9)

whereH1[r], H2[r] are two independent Poisson random variables each with mean
(1 − β)f∆/2. Repeating the same analysis as we did for Bitcoin , we get the
following upper bound on the maximum efficiency of GHOST:

λ̄GHOST ≤ βf̄GHOST(β), (10)

where f̄GHOST(β) is the value of f∆ such that (9) is satisfied with equality instead
of inequality.

Combining this expression with the network stability upper bound, we get:

λ̄GHOST ≤ min
{
βf̄GHOST(β), 1− eβ−1

}
. (11)

The throughput is plotted in Figure 6. As in Bitcoin , there are two regimes,
communication-limited for β small, and security-limited for β large. Interestingly,
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the throughput of GHOST goes to zero as β approaches 0.5, just like Bitcoin. So
although GHOST was invented to improve the throughput-security tradeoff of
Bitcoin, the mining rate f still needs to vanish as β gets close to 0.5. The reason
is that although GHOST is indeed secure against Nakamoto private attacks for
any mining rate f [29], it is not secure against balancing attacks for f above a
threshold as a function of β. When β is close to 0.5, this threshold goes to zero.

4.2 Prism 1.0: Throughput-optimal protocol

We propose a protocol, Prism 1.0 , that achieves optimal throughput efficiency
λ̄ = 1 − β, which does not vanish as β approaches 0.5. We will build on Prism
1.0 in Section 5 to obtain our full protocol Prism.

Forking is the root cause of Bitcoin’s and GHOST’s inability to achieve optimal
throughput. In designing Prism 1.0, our key insight is that we can create a secure
blockchain by running Bitcoin at low mining rate with little forking, but incorpo-
rate additional transaction blocks, created via sortition, through reference links
from the Bitcoin tree (Figure 7). This allows us to decouple the throughput from
the mining rate f , and can increase the former without increasing the latter. In
the context of the overall deconstruction approach (Figure 5), this decoupling is
achieved by decoupling the transaction blocks from the core blockchain. Let us
call the blocks in the core Bitcoin blockchain core blocks. Later, when we discuss
latency, we will further split the functionalities of the core blocks into proposer
and voter blocks to build a more complex consensus protocol, but for now we
will just run Bitcoin as the basic consensus.

Fig. 7. Prism 1.0. Decoupling the transaction blocks from the core blocks in the Bitcoin
blockchain.



Deconstructing the Blockchain to Approach Physical Limits 19

We now describe the structure of Prism 1.0.

1. There are two hash-threshold parameters αc and αt, such that αc ≤ αt.
A node mines blocks using a nonce. If the hash is less than the stringent
threshold αc, the block is a core block. If the hash is less than the relaxed
threshold αt but greater than αc, the block is transaction block. This is a
sortition of blocks into two types of blocks, and the adversary does not know
which type of block it is mining until after the fact.

2. The core blocks are used to determine the structure of the main chain. Each
core block will reference several transaction blocks, that are then assumed
to be incorporated into the ledger.

3. A block consists of the following data items.
(a) Public key for reward
(b) Transactions
(c) The hash pointer to the current core block on which it is mining.
(d) Hash pointers (references) to transaction blocks that the miner knows of

and that have not been referenced in the current main chain.
(e) Nonce, which is mined by miners.

If the block is a transaction block, then the hash-pointers to the current
core block as well as the hash-pointers to transaction blocks are not used. Given
these blocks, the ledger is produced by including transactions from the referred
transaction blocks as well as the transactions in each core block in order in the
main-chain. If a transaction output is spent in multiple transactions, only the
first transaction in the ledger is counted.

In the context of the round-by-round synchronous model, the H[r] honest
blocks mined in the rth round are now split into Hc[r] ∼ Poiss((1−β)fc∆) honest
core blocks and Ht[r] ∼ Poiss((1 − β)ft∆) honest transaction blocks, where
fc + ft = f . Similarly, the Z[r] adversarial blocks mined in the rth round are
split into Zc[r] ∼ Poiss(βfc∆) adversarial core blocks and Zt[r] ∼ Poiss(βft∆)
adversarial transaction blocks. The parameters fc and ft can be specified by
choosing the appropriate value of the hash threshold αc.

4.3 Analysis

We now analyze the proposed protocol in our network model. It is clear that the
security of the protocol is the same as the security of the Bitcoin core blockchain.
By setting fc to be appropriately small (depending on β), we know that we can
keep the core blockchain secure. More specifically, [10] gives one such sufficient
condition, obtained by requiring that the rate of arrival of uniquely honest rounds
exceeds the rate of work of the adversary:

fc∆ <
1

1− β
ln

1− β
β

(12)

Under this condition, [10] showed that the longest chain satisfies the common-
prefix property as well as has positive chain quality. Similar to the argument in
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Conflux , the honest blocks in the longest chain can provide a total ordering of
all the blocks, not just the core blocks. Hence, the throughput is given by the
overall mining rate f = fc + ft. By choosing ft such that we are at the capacity
limit, i.e. f = C/B, we can get a total throughput of (1 − β)C/B blocks per
second, or (1 − β)C transactions per second, assuming a worst case that only
honest blocks carry transactions.

This seems to give us the optimal throughput efficiency λ̄ = 1− β. However,
there is a catch: blocks that are mined at the same round may contain the same
transactions, since transactions are broadcasted to the entire network. In the
worst case, we have to assume that blocks mined at the same round contain an
identical set of transactions. In this case, mining more than one block per round
does not add to the (useful) throughput. Hence, the throughput, in terms of
number of non-redundant blocks, is simply:

P(H[r] > 0) = 1− e−(1−β)f∆ blocks per second.

Comparing to (4), we see that this is exactly the longest chain growth rate of
Bitcoin. Since Prism 1.0 can operate at f = C/B, we are achieving exactly the
communication-limited throughput of Bitcoin (c.f. (8)), i.e.

λ̄ = 1− eβ−1, β ∈ [0, 0.5).

The difference with the throughput-security tradeoff of Bitcoin is that Prism 1.0
is operating at the communication-limited regime for β all the way up to 0.5;
there is no security-limited regime anymore. This is because we have decoupled
transaction blocks from the core blockchain and the throughput is not security
limited. In particular, the throughput does not go to zero as β goes to 0.5. But
we are still not achieving the optimal throughput of λ̄∗ = 1− β.

4.4 Transaction scheduling

To achieve optimal throughput, one can minimize the transaction redundancy
in the blocks by scheduling different transactions to different blocks. Concretely,
one can split the transactions randomly into q queues, and each honest block is
created from transactions drawn from one randomly chosen queue. Thinking of
each transaction queue as a color, we now have transaction blocks of q different
colors.

We will only have honest blocks with redundant transactions if two or more
blocks of the same color are mined in the same round. The number of honest
blocks of the same color mined at the same round is distributed as Poisson with
mean (1 − β)f∆/q, and so the throughput of non-redundant blocks of a given
color is

1− e−(1−β)f∆/q blocks per round.

The total throughput of non-redundant honest blocks of all colors is

q
[
1− e−(1−β)f∆/q

]
blocks per round. (13)
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For large q, this approaches

(1− β)f∆ blocks per round,

which equals (1− β)C transactions per second when we set f = C/B. Thus, we
achieve the optimal throughput efficiency

λ̄∗ = 1− β.

This performance is shown in the upper plot in Figure 6.
Interestingly, this maximum throughput of Prism 1.0 can be achieved what-

ever the choice of the block size B. In contrast, the block size B has to be set
large compared to the bandwidth-delay product CD to optimize the throughput
in both Bitcoin and GHOST. This extra degree of freedom in Prism 1.0 has signif-
icant implications on the tradeoff between throughput and transaction latency,
which we turn to next.

4.5 Throughput-Latency tradeoff

So far we have focused on achieving the maximum throughput of Prism 1.0, with-
out regard to latency. But transaction latency is another important performance
metric. The overall latency experienced by a transaction in Prism 1.0 is the sum
of two components:

1. processing latency τp: the latency from the time the transaction enters the
transaction queue to the first time a block containing that transaction is
mined;

2. confirmation latency τ : the latency from the time the transaction is first
mined to the time it is confirmed.

We will discuss in great depth the confirmation latency in Section 5, but for now
let us focus on the processing latency τp. It turns out that there is a tradeoff
between the throughput λ and the processing latency τp.

We can calculate τp by considering the dynamics of an individual transaction
queue. Let us make the simplifying assumption that transactions enter this queue
at a deterministic rate. For a given total throughput λ and q, the number of
transaction queues, the arrival rate into this queue is λ/q transactions per second.
For stability, these transactions must also be cleared at a rate of λ/q. Thus it
takes time qB/λ seconds to clear a block of B transactions from the queue and
enters the blockchain. Hence,

τp =
qB

λ
seconds. (14)

On the other hand, from (13), we see that the throughput λ, at the capacity
limit, is given by

λ = q
[
1− e−(1−β)C∆/(Bq)

] B
∆

transactions per second (15)
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We see that increasing with the number of transaction queues q increases the
throughput but also increases the processing latency , as the effective arrival rate
decreases. Hence tuning q can effect a tradeoff between throughput and latency.
To see the tradeoff explicitly, we can eliminate q from (14) and (13) and obtain:

λ̄ =
1− β

τ̄p ln

(
1

1− 1
τ̄p

) 1 < τ̄p <∞, (16)

where τ̄p :=
τp
∆ .

We see that as ¯taup goes to infinity, the throughput efficiency λ̄ approaches
1 − β, the maximum throughput derived in previous section. This maximum
throughput does not depend on the choice of the block size B, and this fact is
consistent with our previous observation. However, for a given latency τp, the
throughput achieved depends on the network delay ∆, which does depend on the
block size B. By choosing the block size B small such that B � CD, ∆ achieves
the minimum value of the propagation delay D, optimizing the tradeoff. Under
this choice of the block size B, (16) becomes a tradeoff between λ̄, the throughput
as a fraction of network capacity, and τ̄p, the processing latency as a multiple
of the propagation delay (Figure 8). Thus Prism 1.0 is achieving throughput
and processing latency simultaneously near their physical limits. Note that Bit-
coin and GHOST are not only sub-optimal in their maximum throughput, their
throughput-latency tradeoff is also much worse. In particular, to achieve a non-
zero throughput efficiency, the block size of these protocols is much larger than
the bandwidth-delay product CD, and as a consequence, the processing latency
of these protocols needs to be much larger than the propagation delay.

The remaining question is whether the confirmation latency can also be made
close to the propagation delay. This is not the case in Prism 1.0 since its confir-
mation latency is the same as that of Bitcoin. This latency scales with log 1/ε,
where ε is the confirmation error probability, and can be many multiples of the
network delay. The question is whether we can improve upon Prism 1.0 to make
the confirmation latency of the same order as the processing latency. This will
be addressed in Section 5.

4.6 Discussions

We discuss the relationships of our protocol with several existing protocols.

1. Unlike Conflux, which tries to separate links into two types: main-chain links
and reference links, in Prism 1.0 we separate blocks into two types: core
blocks, which go into the core blockchain and transaction blocks, which are
referenced by the core blocks. As a result, the Conflux’s security is limited
by GHOST, and because Conflux is not done in conjunction with transaction
scheduling (unlike Prism 1.0), its throughput-β tradeoff is exactly the same
as that of GHOST shown in Figure 6.
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Fig. 8. Tradeoff between λ̄ and τ̄p for different values of β. Throughput is normalized
as a fraction of the network capacity, and the processing latency is normalized as a
multiple of the speed-of-light propagation delay.

2. Prism 1.0 can be viewed as similar to BitcoinNG but avoiding the risk of
bribery attacks since the core block does not control which transactions to
put into the ledger. Moreover, the core blocks incorporate transaction blocks
from various nodes, thus increasing decentralization and fairness, unlike Bit-
coinNG where the leaders are entitled to propose blocks till a new leader
comes up.

3. Fruitchains [22] was designed as a mechanism to increase reward fairness
and Prism 1.0 is designed for a totally different purpose of maximizing
throughput, but the structure of Prism 1.0 has similarity to Fruitchains. The
transaction blocks are roughly analogous to fruits, though there are a few
differences. The fruit-set is stored directly inside the block in Fruitchains but
we only store references (hash-pointers) to transaction blocks in the core
blocks in order to optimize for throughput. The fruits hang-off an earlier
block in Fruitchains for short-term reward equitability, but we do not need
that for throughput optimality. The 2-for-1 mining protocol [10,22] used in
Fruitchains is somewhat different from our protocol. But more importantly,
as we saw, transaction scheduling is crucial for achieving optimal throughput
but is not present in Fruitchains .

4. Our two-threshold protocol is also similar to the ones used in mining pools
[14]. Indeed, in mining-pools, partial Proof-of-Work using a higher hash
threshold is used by participants to prove that they have been working (since
they may be unable to generate full proof-of-work messages at regular inter-
vals).

5. Our protocol is somewhat reminiscent of an approach called Subchains [25] or
weak blocks [3,31]. Both methods employ blocks with lower hash threshold
(“weak blocks”) along with regular blocks. However, unlike our protocol,
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these weak blocks have to form a chain structure. Thus, if the PoW rate of
weak blocks is increased significantly, it will lead to high forking on the weak
blocks, thus leading to lower throughput.

6. We note that a version of transaction scheduling appears in Inclusive [15]
for incentive compatibility. In order to maximize the reward gained, selfish
users select a random subset of transactions to include in the ledger. In our
protocol, we show this is required to maximize transaction throughput, even
with altruistic users.

5 Near physical limits: Latency and Throughput

Prism 1.0 scales throughput to the network capacity limit by decoupling trans-
action blocks from the core blockchain, so that we can run Bitcoin on the core
blockchain for high security and simultaneously maximize throughput by having
many transaction blocks. However, the confirmation latency of Prism 1.0 is the
same as Bitcoin, which is poor. In this section, our goal is to upgrade Prism 1.0
to design Prism, which has fast latency (on list ledger decoding and on honest
transactions) as well as high throughput. The key idea is to further decouple the
core blocks into proposer and voter blocks.

We start by describing the latency of Bitcoin, our baseline, in Section 5.1. In
Section 5.2, we specify the Prism protocol. There are two parts to the specifi-
cation: 1) the backbone (in the spirit of [10]), which specifies how the proposer
blocks and voter blocks are organized, 2) how the transactions are linked from
the proposer blocks. In Section 5.3, we provide a formal model for Prism based on
a refinement of the model in Section 3. In Section 5.4, we prove several key prop-
erties of the Prism backbone, analogous to the common prefix and chain quality
properties of Bitcoin proved in [10], and use it to show that it can achieve total
ordering of all transactions and has optimal throughput. Finally in 5.5, we show
that Prism can achieve ledger list and honest transactions confirmation with fast
latency,

5.1 Bitcoin latency

Bitcoin runs the longest chain protocol where each node mines blocks on the
longest chain. These blocks have two roles: proposing to become a leader and
voting on its ancestor blocks for them to be elected leaders. In this protocol, a
current main chain block remains in the future main-chain with probability 1−ε
if on the order of log 1/ε successive blocks are mined over it. More precisely, it
can be shown that at a mining rate of f , it takes on average (Corollary F1):

E[τ ] =
1

(1− 2β)2f
log

1

ε
seconds

to provide 1− ε reliability to confirm blocks and the transactions in it. Since the
expected latency τ is inversely proportional to the mining rate f , one might be-
lieve that increasing the mining rate will reduce latency. However, in the previous
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sections we have seen that naively increasing the mining rate will also increase
forking, which reduces security in terms of β. To be more precise, Equation (5)
limits the mining rate per round f̄ := f∆ to satisfy:

1− e−(1−β)f̄ > βf̄.

For β close to 0.5, this leads to the following upper bound on f̄ :

f̄ <
1− 2β

(1− β)2
.

Therefore, this imposes a lower bound on the the expected latency of

E[τ ] >
∆(1− β)2

(1− 2β)3
log

1

ε
seconds. (17)

This lower bound is far from the physical limit D, the speed-of-limit propagation
delay, for two reasons. First, the network delay ∆ = B/C + D depends on the
block size B as well as the propagation delay. From the analysis of the throughput
of Bitcoin, we know from (6) that to have decent throughput, the block size B
should be chosen to be significantly larger than the bandwidth-delay product
CD. But this implies that the network delay ∆ is significantly larger than the
propagation delay. Second, the lower bound is proportional to log 1

ε , and hence
is dependent on the confirmation reliability requirement.

By decoupling transaction blocks from the blockchain, we learnt from our
analysis of Prism 1.0 that we can choose the block size B small to keep the
network delay near the speed-of-light propagation delay while achieving optimal
throughput. Prism inherits this property of Prism 1.0, which overcomes the first
reason why Bitcoin’s latency is far from the physical limit. The focus of the
remaining section is the design and analysis of a voting architecture to overcome
the second issue, i.e. to make the confirmation latency ε-independent.
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Fig. 9. Prism : Separating proposer and voter roles.

5.2 Prism

5.2.1 Prism: Backbone

We begin by describing Prism’s backbone, or blockchain architecture, in which
we will explain how blocks relate to each other, and which blocks will find a
place in the final ledger. We will describe how individual blocks are packed with
transactions in Section 5.2.2. Each block in Bitcoin acts as both a proposer and
a voter, and this couples their proposing and voting functionalities. As a result,
the security requirements of the proposer role upper bounds the mining rate,
which in turn upper bounds the voting rate. In the spirit of deconstructing the
blockchain, we decouple these roles as illustrated in Figure 9. The backbone of
Prism has two types of blocks: proposer and voter blocks. The role of the proposer
block is to propose an extension to the transaction ledger. The voter blocks elect
a leader block by voting among the proposer blocks at the same level. The
sequence of leader blocks on each level determine the ledger. The voter blocks
are mined on many independent blocktrees, each mined independently at a low
mining rate. The voter blocktrees follow the longest chain protocol to provide
security to the leader election procedure which in turn provides security to the
transaction ledger. We now state the Prism backbone protocol from a node’s
local view:

– Proposer blocks: Proposer blocks are mined on a proposer blocktree as shown
in Figure 9, using the longest-chain rule. The level of a proposer block is
defined as the length of its path from the genesis block. Each proposer block
includes a reference link to an existing proposer block to certify the level of
the proposer block.

– Voter blocks: Voter blocks are mined independently on m separate voter
trees, as shown in Figure 9. Each of these blocktrees has its own genesis
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Fig. 10. Prism: Honest users mine a proposer block pnew at a level one deeper than
the current deepest level—in this example, pnew has level 5. The voter block vnew is
mined on the longest chain. It votes (via reference links) to all proposer block on level
{3, 4} because its ancestors have votes only till level 2. Since v1 is not part of the main
chain, it’s vote will not be taken into account for leader block election.

block and nodes mine on the longest chain. Each voter block votes one or
more proposer blocks using reference links.

– Vote Interpretation: Each voter blocktree votes only on one proposer block
at each level in the proposer blocktree. The vote of the voter blocktree is
decided by the vote caste by the earliest voter block along its main chain.
Thus the proposer blocks on each level has m votes in total. A voter block
voting for multiple blocks at the same proposer level is invalid.

– Voting rule: The ancestor blocks of a voter block are all the blocks on its
path to the genesis block. A voter block has to vote on a proposer block on
all the levels which have not been voted by its ancestors voter blocks.

– Leader blocks: The proposer block that receives the most votes on each level
is the (current) leader block for that level. The sequence of leader blocks
across the levels is called the leader sequence.

– Sortition: A block is mined before knowing whether it will become a proposer
block or a voter block. In case it becomes a voter block, the miner will not
know a priori which voter tree it will be part of. This is enforced by using
a sortition scheme, similar to the sortition described earlier in Prism 1.0
between core and transaction blocks, except now the hash range is divided
into m + 1 instead of 2 intervals. This division is adjusted to ensure that
the proposer tree has proposer rate fp and each of the m voter trees have
block mining rate fv, with a total mining rate f = fp+mfv. By the security
property of the hash function, a miner cannot know which range it will land
in. This ensures that the adversarial power is uniformly distributed across
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the different voter trees and hence we assume the adversarial hash power is
β in each of the voter trees as well as the proposer chain.

– Choice of parameters: Our protocol can operate with general settings of the
parameters, but for good performance we set some specific numbers here.
We set the block size B = 1 transaction, which as we discussed earlier is
a good choice both for latency and for throughput. Under the assumption
that CD � 1, the network delay ∆ = D, the smallest possible. To minimize
latency, we want to maximize the vote generation rate, i.e. we set f = C, the
capacity limit. The mining rate f̄v , fvD on each voting tree is chosen such
that each voting tree is secure under the longest chain rule and according to
(12) it should satisfy

f̄v <
1

1− β
ln

1− β
β

.

For notational simplicity, we choose f̄v = (1−2β)
2 , which is less than 1

1−β ln 1−β
β

and set fp = fv. This implies that

m =
2CD

1− 2β
− 1, (18)

i.e. the number of voting trees is proportional to the bandwidth-delay prod-
uct CD. This number is expected to be very large, which is a key advantage
of our protocol.

5.2.2 Prism: Transaction Structure

Having presented the Prism backbone protocol, we now proceed to describe how
the transactions are embedded into this backbone structure. We also give more
details on the content of the blocks. In Prism, the structure of the block has to
be fixed prior to determining whether the block will be a proposer-block or a
voter-block; therefore both blocks will have the same fundamental structure.

Block contents: Any block needs to contain the following data items.

1. Hash of Voter / Proposal Metadata The block includes the hash of voter
metadata as well as the hash of proposal metadata. Once it is known which
type of block it becomes, then that particular metadata is attached to the
block.

2. Transactions: Each block contains transactions that are not in the current
ledger, and furthermore are not included in any of the referred blocks. The
honest nodes utilize transaction scheduling given in Section 4.4 to choose a
random subset of transactions.

3. Nonce: The nonce is a string discovered during PoW mining that seals the
block; a valid nonce ensures that the hash value of the block (concatenated
with the nonce) is less than a predetermined threshold. Our sortition mech-
anism uses the value of the hash to decide what type of block it becomes. In
particular, we produce a sortition as follows:
– Hash < αp ⇒ Block is a proposer.
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Fig. 11. Summary of the block structure and the sortition procedure.

– (i− 1)αv +αp < Hash < iαv +αp ⇒ Block belongs to voter blocktree i .

– The proposer PoW rate fp will be proportional to αp, and PoW rate on
any voter blocktree fv is proportional to αv.

Voter Block Metadata: The voter block meta-data needs to contain two items:
votes on the proposal blocks as well as where the parent block on the voter
blocktree where it needs to be attached.

1. Votes: The votes are of the form (`, p`) for ` ∈ {`min, `max} where p` is a
hash of a proposer-block on level `. The honest strategy is to vote on the
block on level ` that it heard about the earliest. Also, for honest nodes `max

is the highest level that the node knows of, and `min is the smallest level for
which some blocktree has not yet voted.

2. Parent link: A voter block specifies one parent in each voter blocktree, bi, i =
1, 2, ...,m. Honest nodes specify bi as the leaf node in the longest chain of
blocktree i. For efficiency, instead of storing all the m potential parents in
the block, these potential parents are specified in a Merkle tree and only the
root of the Merkle tree is specified in the block. If a block ultimately ends
up in voter blocktree i, then it provides a proof of membership of bi in the
Merkle tree and is attached to voter block bi.

Proposal Block Metadata: A proposal block needs to contain two metadata
items, described as follows.
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1. Certificate of level: A block that wants to be proposed for level ` contains a
hash of a block in level `− 1.

2. Reference links: A proposal block p contains a list of reference links R(p) to
other blocks. The honest strategy is to refer to all proposal and voter blocks,
which are leaves in the DAG. Here, the directed acyclic graph (DAG) is
defined on the set of nodes equal to all the proposer and voter blocks. The
edges include reference links from the proposer blocks to the voter blocks as
well as the links from each voter block to its parent.

5.2.3 Generating the ledger

Given a sequence of proposer-blocks, p1, ..., p`, the ledger is defined as follows
(our ledger construction procedure is similar to the one in Conflux [16]). Each
proposer-block pi defines an epoch; in that epoch is included all the blocks
referenced from that proposer block pi, as well as all other blocks reachable from
pi but not included in the previous epochs. In each epoch the list of blocks is
sorted topologically (according to the DAG), and ties are broken deterministicaly
based on the content of the block. The ledger comprises the list of blocks ordered
by epoch. Since the transactions in the reference blocks may have been mined
independently,there may be redundant transactions or double-spend in the ledger
of transactions. Any end-user can create a sanitized version of this ledger by
keeping only the first time a given transaction output is spent. We note that
this approach decouples transaction validation from mining, unlike in Bitcoin,
where nodes only put in valid transactions with respect to the current ledger.
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Fig. 12. Prism: Generating the ledger. The proposer blocks for a given proposer block
sequence are highlighted in blue, and the referenced blocks are shown in green. Each
shade of grey corresponds to an epoch. In step 1, all the blocks are incorporated and .
In step 2, they are expanded out to give a list of transactions.

5.3 Prism: Model

We provide a formal model of Prism based on a refinement of the round-by-round
synchronous model in Section 3.

Let Hi[r] and Zi[r] be the number of voter blocks mined by the honest nodes
and by the adversarial nodes in round r on the i-th voting tree respectively, where
i = 1, 2, ..,m. Note that by the sortition process, Hi[r], Zi[r] are Poisson random
variables with means (1 − β)fv∆ and βfv∆ respectively, and are independent,
and independent across trees and across rounds. Similarly, Hp[r], Zp[r] are the
numbers of proposer blocks mined by the honest nodes and by the adversarial
nodes in round r respectively, they are also Poisson, with means (1 − β)fp∆
and βfp∆ respectively. They are independent, and independent of all the other
random variables. We will also define Yi[r] (Y p[r]), which is 1 if Hi[r] = 1
(Hp[r] = 1) and zero otherwise. We denote Yi[r1 : r2] :=

∑r2
r=r1+1 Yi[r], similarly

for Zi and Hi.
The adversary decides to release blocks (either kept in private or just mined)

in each tree (either the proposer tree or one of the voter trees) after observing all
the blocks mined by the honest nodes in all trees in that round. It can also decide
which proposal block each vote of the honest nodes go (but it cannot remove the
vote, nor change the proposal block level of the vote.) The adversary is powerful
as it can observe what is happening in all the trees to make a decision on its
action in any individual tree. In particular, this adversarial power means that
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the evolution of the trees are correlated even though the mining processes on
the different trees are independent because of the sortition procedure. This fact
makes the analysis of Prism more subtle, as we need to prove some kind of law
of large numbers across the voter trees, but can no longer assume independence.

As in our basic model (which follows [10]), all the nodes have a common view
of the (public) trees at the end of each round.

5.4 Total transaction ordering at optimal throughput

In this subsection, we will show that Prism can achieve total transaction ordering
for any β < 0.5, but with an ε-dependent latency. Following the framework of
[10], we will do so by first establishing two backbone properties: common-prefix
and quality of a certain leader sequence of proposer blocks, analogous to the
longest chain under Bitcoin .

The blockchain runs for rmax rounds. Let P(r) denote the set of proposer
blocks mined by round r. Let P`(r) ⊆ P(r) denote the set of proposer block
mined on level ` by round r. Let the first proposer block on level ` be mined
in round R`. Let Vp(r) denote the number of votes on proposer block p ∈ P(r)
at round r. (Recall that only votes from the main chains of the voting trees
are counted.) The leader block on level ` at round r, denoted by p∗` (r), is the
proposer block with maximum number of votes in the set P`(r) i.e,

p∗` (r) , argmax
p∈P`(r)

Vp(r),

where tie-breaking is done in a hash-dependent way.
A proposer sequence up to level ` at round r is given by [p1, p2, · · · , p`],

where pj ∈ Pj(r). The leader sequence up to level ` at round r, denoted by

LedSeq `(r), is a proposer sequence with pj = p∗j (r), in other words LedSeq `(r) ,
[p∗1(r), p∗2(r), · · · , p∗` (r)]. The leader sequence at the end of round rmax, the end
of the horizon, is the final leader sequence, LedSeq `(rmax).

The leader block p∗` (r) for a fixed level ` can change with round r due to
the adversary displacing some of the votes from their voter chains. However as r
increases changing p∗` (r) is harder as the votes become deeper in their respective
voter chains. The theorem below characterizes this phenomenon.

Theorem 1 (Leader sequence common-prefix property). Suppose β <
0.5. For a fixed level `, we have

LedSeq `(r) = LedSeq `(rmax) ∀r ≥ R` + r(ε) (19)

with probability 1 − ε, where r(ε) = 12
f̄v(1−2β)2 log( 3m

ε ), and R` is the round in

which the first proposer block on level ` was mined. Thus, in terms of physical
parameters, the latency is bounded by:

24D

(1− 2β)3

[
log

1

ε
+ log

(
6CD

1− 2β
− 3

)]
seconds.
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Proof. Lemma 20 in the Appendix shows that all the votes on proposer blocks
up to level ` are permanent by round R` + r(ε) with probability 1− ε. Thus we
have

p∗`′(r) = p∗`′(rmax) ∀`′ ≤ ` and r ≥ R` + r(ε) (20)

w.p 1 − ε. Since leader block at all levels ≤ ` satisfy Equation (20), the main
result of the theorem follows from the definition of the leader sequence. �

Theorem 1 is the analog of Theorem 15 of [10], which establishes the common-
prefix property of the longest chain under the Bitcoin backbone protocol. Hence,
the leader sequence in Prism plays the same role as the longest chain in Bitcoin.
Note however that the leader sequence, unlike the longest chain, is not supported
by parent-link relationships between the leader blocks. Rather, each leader block
is individually supported by the (many) votes from the voter chains.

The common-prefix property of Bitcoin’s longest chain guarantees consistency
of the ledger produced by the protocol. Ledger liveness, on the other hand,
is guaranteed by the chain quality property. This is Theorem 16 of [10]. The
analogous result for Prism is given in the following theorem.

Theorem 2 (Leader sequence quality). Suppose β < 0.5. At least 1−2β
3

fraction of blocks in the final leader sequence, LedSeq Lmax
(rmax), are mined by

honest users with probability 1− 2e−
rmaxfv(1−2β)2

200 . Here Lmax is the length of the
final leader sequence.

Proof. The total number of unique proposer blocks mined by the honest users
is Y p[0 : rmax] and the total number of proposer blocks mined by the adversary
is Zp[0 : rmax]. Lemma 17 in the Appendix proves the following inequalities:

Y p[0 : rmax] >
fvrmax(3 + 2β)

8
(21)

Zp[0 : rmax] <
fvrmax(1 + 6β)

8
(22)

with probability 1− 2e−
rmaxfv(1−2β)2

200 . In the worst case, all the adversary’s pro-
poser blocks will become leader blocks and the fraction of honest leader blocks
is

Y p[0 : rmax]− Zp[0 : rmax]

Y p[0 : rmax]
>

2− 4β

3 + 2β

>
1− 2β

3
.

The factor 1−2β appears in the chain quality property in bitcoin backbone paper
[10] (Theorem 16). This factor also comes up in selfish mining results [9,26,20].

Together, Theorem 1 and Theorem 2 guarantee that Prism achieves a total
ordering of all transactions, with consistency and liveness properties, but requir-
ing a confirmation latency of order log m

ε for a confirmation error probability of
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ε. Just like the longest chain in the core tree of Prism 1.0 , the leader sequence
blocks of Prism orders all the transactions in the transaction blocks they refer to.
In conjunction with transaction scheduling, Prism, just like Prism 1.0 , achieves
a worst-case optimal throughput of (1− β)C transactions per second.

While being able to achieve a total ordering of transactions at optimal
throughput is an important property of a consensus protocol, this goal was
already accomplished in the simpler Prism 1.0 , using the longest chain protocol
on the core tree. The use of a more sophisticated voting structure in Prism is to
meet a more ambitious goal: a confirmation latency that is ε-independent. We
turn to this goal in the next subsection.

5.5 Fast confirmation of ledger list and honest transactions

5.5.1 An example

Let us start with an example to get some feel why and what we can confirm
with latency much shorter than Bitcoin latencies.

Suppose CD = 5000, D = 0.2 seconds and β = 0.4, so we have m =
2CD/(1−2β) = 50, 000 votes at each level and votes are mined at rate 1−e−f̄v =
1 − e−(1−2β)/2 ≈ 0.1 votes per round per voter chain. Two proposer blocks are
mined from genesis at round 1 and appear in public at level 1. At the next round,
on the average, f̄vm = 5000 votes are generated to vote on these two proposer
blocks. At the round after that, only the voter chains that have not voted in the
last round can generate new votes, and on the average 0.1·(50000−5000) = 4500
votes will be generated. The total number of chains that have not voted after r
rounds is:

m(1− f̄v)r,
decreasing exponentially with r. After 20 rounds, or 4 seconds, about 6000 chains
have not voted. That means at least one of the two proposer blocks has at least
(50, 000− 6000)/2 = 22, 000 votes.

At this point:

1. If the adversary later presents a proposer block that it has mined in private
at this level, then it can gather at most 6000 votes and therefore not sufficient
to displace both these two public blocks and become a leader block. Thus,
no private attack is possible, and we are ensured that anytime in the future
one of the two proposer blocks already in public will be a leader block.

2. If one of the public proposer blocks has significantly more votes than the
other block, by much more than 6000, then we can already confirm that the
current leader block will remain the leader forever, because there are not
enough new votes to change the ordering.

Interestingly, when these events occur, an observer observing the public
blockchain knows that it occurs. Moreover, we know that the first event will
definitely occur after r rounds, where r is the smallest number of rounds such
that

m(1− f̄v)r <
m−m(1− f̄v)r

2
,
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i.e. r = 12 rounds.
The above analysis gives some evidence that fast confirmation is possible,

but the analysis is simplistic, due to three reasons:

1. 1 − e−f̄v is the growth rate of each voter chain if every node follows the
protocol. However, some fraction of the voter blocks on the chains may belong
to adversarial nodes who decide not to vote on any proposer block; in fact,
this fraction may be greater than β due to selfish mining [9,26,20]. Thus, the
number of outstanding votes calculated above may be on under-estimation.
However, we do know that the longest chain quality is non-zero (Theorem
16 of [10]). Hence, the qualitative behavior of the voting dynamics remain
the same but the voting rate has to be reduced to account for adversarial
behavior.

2. The above analysis assumes that votes that have already been cast cannot be
reversed. That is not true because the adversary can grow private chains to
reverse some of the votes. However, because the adversary power is limited,
the fraction of such votes that can be reversed is also limited. Moreover, as
we wait longer, the fraction of votes that can be reversed in the future also
gets smaller because there the votes get deeper in their respective chain.
This needs to be accounted for, but again the qualitative picture from the
simplistic analysis remains unchanged: after waiting for a finite number of
rounds, one can be sure that the eternal leader block will be one of a list of
current public proposer blocks.

3. The simplistic analysis assumes the total number of votes that are mined at
each round is deterministic, at the mean value. In reality, the actual number
of votes mined at each round is random, fluctuating around the mean value.
However, due to a law of large number effect, which we will formally show,
the fluctuations will be very small, since there are large number of voting
chains. This justifies a deterministic view of the dynamics of the voting
process.

5.5.2 Fast list confirmation

We convert the intuition from the above example to a formal rule for fast con-
firming a list of proposer blocks, which then allows the confirmation of a list of
proposer sequences. The idea is to have confidence intervals around the number
of votes cast on each proposer block. Figure 13 gives an example where there are
5 proposal blocks in public at a given level, and we are currently at round r. The
confidence interval [Vn(r), V n(r)] for the votes on proposer block pn bounds the
maximum number of votes the block can lose or gain from votes not yet cast
and from the adversary reversing the votes already cast. In the running there is
also potentially a private hidden block, with an upper bound on the maximum
number of votes it can accumulate in the future. We can fast confirm a list of
proposal blocks whenever the upper confidence bound of the private block is
below the lower confidence bound of the public proposal block with the largest
lower confidence bound.
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Fig. 13. In the above example, Public proposer block p1 has the largest lower confidence
bound, which is larger than the upper confidence bound of the private block. So list
confirmation is possible and the list confirmed is Π`(r) = {p1, p2, p3}.

More formally: Let P`(r) = {p1, p2...} be the set of proposer blocks at level
` at round r. Let θ be the fraction of blocktrees which have not voted for any
proposer block in P`(r). Let V dn (r) be the number of votes at depth d or greater
for proposer block pn at round r. Let V d−n(r) be the the number of votes at depth
d or greater for a proposer blocks in the subset P`(r)− {pn}. Define:

δd ,

(
1

4f̄vd
∨ 1− 2β

24 logm

)
and

Vn(r) , max
d≥0

(
V dn (r)− δdm

)+
,

V n(r) , Vn(r) +

(
V−n(r)−max

d≥0

(
V d−n(r)− δdm

)+)
+ θ,

Vprivate(r) , 0,

V private(r) , min
d≥0

δdm+ θ.

Proposer list confirmation policy: If

max
n

Vn(r) > V private(r),

then we confirm the the list of proposer blocks Π`(r), where

Π`(r) , {pn : V n(r) > max
i

Vi(r)}.
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The following theorem shows that one can confirm proposer lists up to level
` with an expected latency independent of ε; moreover the final leader sequence
is contained in the product of the confirmed lists.

Fig. 14. A possible scenario after the final round.

Theorem 3 (List Common-prefix property ). Suppose β < 0.5. Suppose

the first proposer block at level ` appears at round R`. Then w.p 1−r2
maxe

− (1−2β)m
48 logm ,

we can confirm proposer lists Π1(r), Π2(r), . . . ,Π`(r) for all rounds r ≥ R` +

Rconf
` , where

E[Rconf
` ] ≤ 8

(1− 2β)2f̄v
+

288

(1− 2β)3m
.

Moreover,w.p 1− r2
maxe

− (1−2β)m
48 logm ,

LedSeq `(rmax) ∈ Π1(r)×Π2(r)× · · · ×Π`(r), ∀r ≥ R` +Rconf
` .

Thus, for CD � 1, the average latency is bounded by:

16D

(1− 2β)3
seconds.

Proof. Lemma 10 in the Appendix shows that in round R`+Rconf` , proposer list
for all levels up to level ` can be confirmed where E[Rconf

` ] ≤ 16
(1−2β)3 + 288

(1−2β)3m

for fv = 1−2β
2 . Applying this in Lemma 8 in the Appendix, we get

LedSeq `(rmax) ∈ L`(r) ∀r ≥ R` +Rconf
` .

�
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5.5.3 Fast confirmation of honest transactions

In the previous subsection we have shown that one can fast confirm a list of pro-
poser block sequences which is guaranteed to contain the prefix of the final totally
ordered leader sequence. As discussed in Section 5.2.3, each of these proposer
block sequence creates an ordered ledger of transactions using the reference links
to the transaction blocks. In each of these ledgers, double-spends are removed to
sanitize the ledger. If a transaction appears in all of the sanitized ledgers in the
list, then the transaction is guaranteed to be in the final total ordered sanitized
ledger, and the transaction can be fast confirmed. (See Figure 1.) All honest
transactions without double-spends eventually have this list-liveness property;
When only a single honest proposer block appears in a level and becomes the
leader, it will add any honest transactions that have not already appeared in at
least one of the ledgers in the list. Due to the positive chain quality of the leader
sequence (Theorem 2, this event of ”uniquely honest ” level eventually occurs.
The latency of confirming honest transactions is therefore bounded by the sum
of the latency of list confirmation in Theorem 3 plus the latency of waiting for
this event to occur. The latter is given by the following theorem.

Theorem 4. Assume β < 0.5. If a honest transaction without double spends is
mined in a transaction block in round r, then wp 1− r2

maxe
− m

48 logm it will appear
in all of the ledgers corresponding to proposer block sequences after an expected
latency no more than

3

(1− 2β)2f̄v
rounds

i.e.
6D

(1− 2β)3
seconds.

Proof. Theorem 2 shows that the leader block sequence quality is positive using
the fact that honest users mine more proposer blocks than the adversary. This
ensures liveness for honest transactions. In order to give latency guarantees, we
need to prove that these honest leader blocks are frequent. We will consider a
Good event and show that this event occurs in finite number of expected rounds.

Good event: After round r, consider the event E when 1) only one proposer
block p is mined by the honest users at level ` at round R`. 2) No further proposal
blocks are mined at level ` in the next kgood rounds by the adversary and by
round R` + kgood block p permanently obtains more than 1/2 the fraction of

votes wp 1− r2
maxe

− m
48 logm .

If this event occurs, Π`(r
′) = {p} ∀r′ > R` +kgood wp 1− r2

maxe
− m

48 logm , and
tx will be present in all the ledgers in any future list of proposal sequences. We
show that the number of rounds R` − r in expectation is at most 3

(1−2β)2f̄v
in

expectation in Appendix D.
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Combining Theorem 3 and 4, the expected latency for confirming a honest
transaction is bounded by

22D

(1− 2β)3
seconds.

6 Discussions

6.1 Prism: Incentives

Our discussion on Prism has mostly focussed on honest users and adversarial be-
havior. Here we briefly discuss rational behavior, and the accompanying reward
structure that incentivizes rational users to participate in the system without
deviating from the proposed protocol. It is easy to add a reward structure to
Prism . Each block, whether a voter block or a proposal block, that finds its place
in the ledger is assigned a block reward. To allocate transaction fees, we follow
the method proposed in Fruitchains [22]. The transaction fees are distributed
among the past Q blocks, where Q is a design parameter. In Prism, all blocks
eventually find a place in the ledger, and thus the proportion of blocks con-
tributed by a miner to the ledger is proportional to the hash rate of the miner.
For large values of Q, our design ensures that incentives are fairly distributed
and there is no gain in pursuing selfish-mining type attacks [26].

6.2 Prism: Smart Contracts

Most of our discussion on Prism has focused on transactions. However, we point
out here that Prism is not restricted to processing transactions and can be ex-
tended to process complex smart contracts. Smart contracts are pieces of code
which are executed based on the current state of the ledger. Importantly, they
can depend on the history of the ledger, including on the timing of various events
recorded on the ledger. While many of the basic blockchain protocols such as
longest-chain consensus or GHOST protocol can accommodate smart contracts,
newer schemes such as Spectre and Avalanche are specific to transactions and
do not confirm smart contracts. We note that Prism is naturally able to confirm
the output and final-state of every smart contract at the ε-dependent latency
since we get total order. We also note that this is the behavior desired in hybrid
algorithms like Phantom+ Spectre .

We note that Prism has an additional attractive property for smart contracts
- the ability to confirm several smart contracts at a short latency (proportional
to propagation delay). Since Prism is able to confirm a list of ledgers within a
short latency, this can be exploited to confirm some smart contracts. If a smart
contract will execute to the same final state and output in all the ledgers in this
list, then this output and final state can be confirmed for the smart contract
even before confirming a unique ledger. We recall that Prism guarantees short
confirmation time for honest transactions. Analogous to the notion of honest
transactions, we can define a notion of uncontested smart contracts, where there
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is no alternate view of how the events happened in any of the blocks. Such
uncontested smart contracts can then be shown to be confirmed within a short
ε-independent latency proportional to the propagation delay - thus enhancing
the scope and utility of Prism beyond payment systems.

6.3 Prism: Proof-of-Stake

In this paper we have described Prism in the proof-of-work (PoW) setting that
scales the throughput by three orders of magnitude over Bitcoin . Despite this
significant increase, PoW is nevertheless energy inefficient (Bitcoin consumes as
much energy as medium sized countries [6]) and a leading alternative is the so-
called proof-of-stake (PoS) paradigm. PoS restricts involvement in the consensus
protocol to nodes who deposit a requisite amount of stake, or currency, into the
system. This stake is used as a security deposit in case the nodes misbehave
– for instance, by trying to unduly influence the outcome of consensus. PoS is
appealing for several reasons, including the fact that it can be much more energy-
efficient than PoW and also because it can be more incentive-compatible.

There are two key issues associated with designing a PoS version of Prism.
First, a cryptographically secure source of randomness, that is distributed and
verifiable, is needed to replace the source of randomness currently used in Prism
– this includes the various mining steps, transaction scheduling and sortition
operations. Second, PoS does not have the conservation of work that is implicit
in PoW and this allows adversaries to “mine” at no cost in parallel and only
report the outcomes that can be successfully verified – this exposes new security
vulnerabilities (popularly known as the “grinding” [1] and “nothing at stake”
attacks [17,12]) and a PoS design of Prism will have to contend with this attack.
Both these obstacles can be successfully surmounted and will be the topic of a
forthcoming paper [4].
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A Appendix: Attack on GHOST

This attack is similar to the balancing attack in [19]. We would like to analyze
its constraint on the mining rate f which in turns constrains the throughput.

The adversary strategy is to divide the work of honest users by maintaining
two forks:

1. Say two blocks b1, b2 are mined over the main chain block b0 in the first
round.2. The adversary will broadcast both these blocks (and all previous
blocks) to all the honest users. This is when the attack starts.

2. At this time instance (say r = 1) all the honest nodes have the same view of
the blocktree – which has two main chains ending at blocks b1 and b2.

3. The honest users are divided into two equal groups G1 and G2, mining over
b1 and b2 respectively. These groups are mining at average rate (1−β)f∆/2
blocks per round each.

4. The adversary’s goal is to maintain the forking - make sure that G1 chooses
block b1 in its main chain, whereas G2 chooses block b2 in its main chain.
To do this, it divides its own resources into two equal parts A1 and A2,
each with average mining rate f∆/2 blocks per round. The first part A1

mines only (direct) children of block b1 and second part mines A2 (direct)
children of block b2. Suppose at round r, H1[r], H2[r] ∼ Poiss(1 − β)f∆/2)
honest blocks are mined in subtree 1 (below b1) and subtree 2 (below b2)
respectively.

5. Attack Strategy:
– If H1[r] = H2[r], then the adversary does nothing.
– If say H1[r] is larger, then adversary releases H1[r] −H2[r] blocks that

it has mined in subtree 2 (either in private or just mined in this round).
Vice versa for the case when H2[r] is larger. This (re)balances the weight
of the two subtrees and the honest work is again split in the next round.

6. Analysis: The expected number of blocks the adversary needs to release in
subtree 1 per round is E[(H2[r]−H1[r])+]. So a necessary condition for this
attack to not be able to continue indefinitely with non-zero probability is

E[(H2[r]−H1[r])+] > βf∆/2,

or equivalently:
E[|H2[r]−H1[r]|] > βf∆.

B Appendix: Latency Formal Proofs

As alluded to earlier, we show that in a constant number of rounds after the
first proposer block at level ` appears, our protocol produces a list of proposer
block sequences which contain the final leader sequence upto level ` with high
probability3. In this subsection, the constants are of the order O( 1

(1−2β)3 ). The

2 Say the adversary mines b1 and the honest nodes mine b2
3 The probability being 1− r2

maxe
−m(1−2β)

48 logm .
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proof broadly has four sub-parts. Each of these sub-parts proves that a certain
class of events occurs in a constant number of rounds with high probability:

1. Consistency of Votes: We first show among all the votes embedded at a
depth, a significant fraction of them will remain forever. Thus the voting
pattern cannot be modified significantly after constant number of rounds.

2. Liveness of Votes: We then show that after a constant number of rounds from
when the first proposer block at level ` showed up, a significant fraction of
the voter trees will have votes on this level embedded with a constant depth.

3. List confirmation policy: We define a proposer block list confirmation policy,
which specifies when we confirm a list of proposal blocks at a given level.
After this list is confirmed, we show that the (final) leader block at this level
will be from this confirmed proposer-list whp.

4. Proposer-list confirmation latency: Using the consistency and liveness of the
votes results from the first and second point, we show that the proposer list
at a given level is confirmed in constant number of rounds in expectation.
We then further proceed to show that all the proposer lists upto that level
are confirmed in constant number of rounds in expectation. This result forms
the basis for Theorem 3.

In the next subsection we define a set of typical events which will be used
to prove our results. Afte that, the later four subsections prove each of these
above four points.

B.1 Typical events

Along the lines of events defined in the bitcoin backbone paper [10], we define
the following events:

Ej [r : r + k] =
{
Yj [r : r + k] > Zj [r : r + k] +

1

8
f̄v(1− 2β)k

}
(23)

Fj [r : r + k] =
⋂
a,b≥0

Ej [r − a : r + k + b] (24)

In the above expression, Ej [r : r + k] is an event where the honest users mined
1
8 f̄v(1 − 2β)k unique blocks more than the total blocks mined by adversary in
the interval [r : r+k]. Next, Fj [r : r+k] is an event where the honest users mine
more than 1

8 f̄v(1−2β)k blocks than the adversary in all the intervals containing
the interval [r : r + k].

Lemma 1. For all r, k, P(Fj [r : r + k]) > 1− 2e−γk, where γ ≥ 1
12fv(1− 2β)2.

Proof. Appendix C.1.
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Theorem 5. The typical event T defined below occurs with high probability 1−
r2
maxe

− (1−2β)m
48 logm .

Tr,r+k ,

 1

m

m∑
j=1

1
(
Fj [r : r + k]) ≥ 1−

(
1

8f̄vk
∨ 1− 2β

24 logm

)
T ,

⋂
0≤r,k≤L

Tr,r+k.

For rmax = O(eo(m)), T is a high probability event.

Proof. For a fixed r, k, 1
(
F cj
(
[r : r+k]

))
are identical and independent indicator

random variables ∀j ∈ [m] with probability at most 2e−γk (Lemma 1). Using
Chernoff bound4 , we have

P
{ 1

m

m∑
j=1

1
(
F cj [r : r + k]

)
≥ (1 + δ)2e−γk

}
≤ e−

δ2

δ+2 2e−γkm

For δ + 1 = eγk
(

1
16f̄vk

∨ 1−2β
48 logm

)
, where ∨ denotes the maximum, we get

P
{ 1

m

m∑
j=1

1
(
F cj [r : r + k]

)
≥
( 1

8f̄vk
∨ 1− 2β

24 logm

)}
≤ e−

m
48 logm .

Since r, k can take at most r2
max different values, the event T intersection of r2

max

Tr,r+k events, and hence T occurs wp greater than 1 − L2e−
m

48 logm . Therefore,
for large values m and rmax = O(eo(m)), T is a high probability event.

B.2 Consistency of Votes

Along the lines of [10], we show that at any given round, a fraction of d-deep
votes on the voter main chains are permanent with high probability. i.e, they
will not be reverted in future.

Theorem 6 (Consistency). At any round r, among all the d-deep blocks on

m voter blocktrees, 1 −
(

1
4f̄vd
∨ 1−2β

12 logm

)
fraction of these blocks are permanent

wp 1− r2
maxe

− (1−2β)m
48 logm .

Proof. First, Lemma 2 proves that most of the blocks d-deep blocks in round r
are mined before round r − d

2f̄v
. Next, Lemma 3 proves that most of the blocks

mined before round r − d
2f̄v

are permanent.

Let bj denote the d-deep voter block on the main chain of voter blocktree j.
Consider the fixed round r′ = r − d

2f̄v
.

4 http://math.mit.edu/ goemans/18310S15/chernoff-notes.pdf
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Lemma 2. The fraction of blocks {bj}mj=1 mined before round r′ is greater than

1−
(

1
8f̄vd
∨ 1−2β

24 logm

)
with probability 1− e−

(1−2β)m
48 logm .

Proof. Refer to Appendix subsection C.2.

Lemma 3. If the event Fj [r
′ : r] occurs then block bj permanently remains in

the main chain of voter blocktree j.

Proof. Refer to Appendix subsection C.3.

From Lemma 2, at least 1−
(

1
8f̄vd
∨ 1−2β

24 logm

)
fraction of the voting blocktree,

voter block bj is mined before round r′. Theorem 5 shows that Fj [r
′ : r] occurs in

at least 1 −
(

1
8f̄vd
∨ 1−2β

24 logm

)
fraction of voter blocktrees with high probability.

This combined with Lemma 3, proves that 1 −
(

1
4f̄vd
∨ 1−2β

12 logm

)
fraction of d

deep voter blocks are permanent. �

B.3 Liveness of Votes

After the first proposal of block(s) at level `, we show that after a constant
number of rounds, a large fraction of the voter trees will permanently vote on a
proposal block at level `.

Theorem 7 (Liveness). The first proposer block(s) at level ` is proposed in

round R`. At round R` + k, 1−
(

1
8f̄vk

∨ 1−2β
24 logm

)
fraction of voter blocktree will

have a permanent vote on a proposer block at level ` and these votes will be at

least αk-deep wp 1− r2
maxe

− (1−2β)m
48 logm . Here α = 1

8 f̄v(1− 2β).

Proof. First, Lemma 4 shows that by round R` + k, a large fraction of voter
blocktree’s main chain has a αk deep vote on a proposer block at level `. Next,
Lemma 5 shows this a large fraction of these votes permanently remain in the
main chain.

Lemma 4. If event Fj [R` : R`+k] occurs, then by round R`+k, a honest voter
block is at least αk-deep in voting chain j.

Proof. Refer to Appendix subsection C.4.

Lemma 5. If event Fj [R` : R`+k] occurs, the fixed αk-deep voter block b in the
main chain of voter blocktree j at round R` + k will permanently remain in the
main chain.

Proof. Refer to Appendix subsection C.5.

From typicality in Theorem 5, we know that event Fj [R` : R` + k] occurs for

1−
(

1
8f̄vd
∨ 1−2β

24 logm

)
fraction of voter blocktrees with probability 1− e−

(1−2β)m
48 logm

and this along with Lemma 4 and 5 completes the proof. �
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B.4 Proposer-list confirmation policy

We repeat the definitions subsubsection 5.5.2 for the sake of readability. Let
P`(r) = {p1, p2...} be the set of proposer blocks at level ` at round r. Let θ be
the fraction of blocktrees which have not voted for any proposer block in P`(r).
Let V dn (r) be the number of votes at depth d or greater for proposer block pn
at round r. Let V d−n(r) be the the number of votes at depth d or greater for a

proposer blocks in the subset P`(r)−{pn}. Let δd ,
(

1
4f̄vd
∨ 1−2β

24 logm

)
. The next

lemma bounds the future number of votes on a block.

Lemma 6. The number of votes in a future round r′ ≥ r, Vp(r′), satisfies

Vn(r) ≤ Vn(r′) ≤ V n(r),

wp 1− r2
maxe

− (1−2β)m
48 logm , where

Vn(r) , max
d≥0
{(V dn (r)− δdm)+},

V n(r) , Vn(r) +

(
V−n(r)−max

d≥0
{(V d−n(r)− δdm)+}

)
+ θ.

Proof. Appendfix C.6.

Any private hidden block pprivate 6∈ P`(r), has zero votes in round r. From
Theorem 6, we know that pprivate can have at most mind≥0 δdm + θ votes in
future round r′ ≥ r. Thus we have

Vprivate(r′) ≤ V private(r) , min
d≥0

δdm ∀r′ ≥ r.

Let us assume without loss of generality V1(r) ≥ Vi(r) for list P`(r) =
{p1, p2...}.

Definition 1. If V1(r) > V private(r), then the level ` has a well defined proposer
list Π`(r):

Π`(r) , {pi : V i(r) > V1(r)}.

Proposer list confirmation policy : If the proposer list at level ` is well defined
in round r, then we confirm the list of proposer blocks Π`(r).

Lemma 7. If the proposer list at level ` is confirmed in round r, then the (final)
leader block at level `, p∗` (rmax), whp satisfies

p∗` (rmax) ∈ Π`(r),

Proof. Appendix C.7.

Lemma 8. If the proposer lists at all levels `′ ≤ ` are confirmed by round r,
then the (final) leader sequence up to level `, LedSeq `(rmax), whp satisfies

LedSeq `(rmax) ∈ Π1(r)× · · · ×Π`(r),

Proof. Appendix C.8.
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Fig. 15. In the above example, the proposer list is well defined at level ` and it is
Π`(r) = {p1, p2, p3}.

B.5 Latency: Confirming a list of proposer blocks at level `

Proposition 1. The first proposer block at level ` is mined at round R` and let
r = R` + k. The proposer list at level ` can be confirmed if

Case 1.
∣∣P`(R` + k)

∣∣+ 1 <
1

δk
, (25)

Or Case 2. k = c1m

wp e−
(1−2β)m
48 logm . Here δk ,

(
1

4f̄vk
∨ 1−2β

24 logm

)
and c1 = 12

f̄v(1−2β)
.

Proof. By definition the `′-th element in LedSeq `(rmax) is L`′(rmax) and thus
the proof directly follows from Lemma 7.

We now use the above lemma to calculate the expected number of rounds to
well define the proposer block list at level `. The first proposer block at level ` is
mined in round R`. The honest users do not mine new proposer blocks at level `
after round R`, however, the adversary can mine new blocks on on level ` after
round R`. At a future round R` + k, the number of of proposer blocks at level `
is
∣∣P`(R` + k)

∣∣. Let us define the stopping round for Case 1 (25):

K` =
{

min k s.t P`
(
R` + k

)
+ 1 <

1

δk

}
. (26)

Lemma 9. The proposer list at level ` can be confirmed at round R`+(K`∧c1m)
and we have

E[K` ∧ c1m logm] ≤ 6

f̄v(1− 2β)
+

12

f̄v(1− 2β)m2
.
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Proof. Appendix C.9

Lemma 9 upper bounds the expected number of rounds to well define the pro-
poser list at level `.

B.6 Latency: Well defining a list of proposer blocks up to level `

To form a list of proposal blocks sequences upto level `, we have to confirm
the proposer-block list for all levels `′ ≤ ` and we now analyze the expected
number of rounds to confirm proposal block list up to level `. Let us define
D`′,` , R` − R`′ be the difference between the rounds when the first block at
level ` and `′ was mined.

Proposition 2. The first proposer block at level `′(< `) is mined at round R`′

and let r = R` + k. All the proposer lists up to level `′ can be confirmed if

Case 1.
∣∣P`(R` + k)

∣∣+ 1 <
1

δk+D`′,`

, ∀`′ ≤ ` (27)

Or Case 2. k = max
`′≤`

(c1m−D`′,`)+

wp e−
(1−2β)m
48 logm . Here δk+D`′,` ,

(
1

4f̄v(k+D`′,`)
∨ 1−2β

24 logm

)
and c1 = 12

f̄v(1−2β)
.

Proof. This is a direct consequence of Propositions 9 and 13. �

Along the lines of Equations (26) and (47), Let us define the stopping round for
Case 1 (27):

K∗` =
{

min k s.t P`′ [R`′ : R` + k] + 1 <
1

δk+D`′,`

∀`′ ≤ `
}
.

Lemma 10. All the proposal lists up to level ` are well defined confirmed by
round R` +Rconf

` , where ` is given by

E[Rconf
` ] =

[
K∗` ∧max

`′≤`
(c1m−D`′,`)+

]
≤ 8

f̄v(1− 2β)2
+

144

f̄v(1− 2β)2m
.

Along with this

Proof. Appendix C.10

C Appendix: Proofs of Lemmas used in Appendix B

C.1 Proof of Lemma 1

In order to prove the result, let us define an event Dj [r : r+k] =
{
Yj([r : r+k]) <

Zj([r : r + k]) + 1
2 f̄v(1− 2β)k

}
and upper bound its probability:

P
(
Dj [r : r + k]

)
=P
(
Yj([r : r + k])− Zj([r : r + k]) <

1

4
f̄v(1− 2β)k

)
=P
(
Yj([r : r + k])− Zj([r : r + k])− 1

2
f̄v(1− 2β)k < −1

4
f̄v(1− 2β)k

)
(a)

≤ e−γ1k. (28)
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The value of γ1 is 1
12 f̄v(1−2β). The inequality (a) follows from Chernoff bounds.

Here the random variables Yj([r : r+k]) ∼ Bin(f̄v
′
(1−β), k) 5 and Zj([r : r+k]) ∼

Poiss(f̄vβk). The probability of the event Fj [r : r + k] is given by:

Fj [r : r + k] = 1− P
(
F cj [r : r + k]

)
= 1− P

(
Dj [r : r + k]

)
− P

(
F cj [r : r + k]

∣∣ Di[r : r + k]
)

≥ 1− e−γ1k − e−γ2k

≥ 1− 2e−γk. (29)

The values of γ = γ2 ≥ 1
12fv(1− 2β)2 and is obtained by using c1 = 1

4 f̄v(1− 2β)
in Lemma 23.

C.2 Proof of Lemma 2

For voter blocktree j, let bj denote the d-deep voter block on its main chain
mined in round r(bj). Consider the following event for voter blocktree j:

Gj([r
′, r]) =

{
Yj([r

′ : r]) + Zj([r
′ : r]) < d

}
. (30)

Event Gj([r
′, r]) implies that less than d voter blocks were mined rounds [r′ :

r] = {r′+ 1, r′+ 2, · · · , r} and this further implies that r(bj) < r′ because block
bj is d-deep. The probability of this event is :

P
(
Gj([r

′ : r])
)

= 1− P
(
Gcj([r

′ : r])
)

= 1− P
(
Bin(f̄v

′
(1− β),

d

2f̄v

)
+ Poiss(

βd

2
) > d

)
= 1− P

(
Poiss(

d

2
) > d

)
(a)

≥ 1− e− d2 .

The inequality (a) is obtained using Chernoff bound6. We now consider indicator
random variables 1

(
Gj [r

′ : r]
)

for j ∈ [m]. These random variables are identical

and independent random variables with probability 1−e− d2 . Thus using Chernoff
bound, similar to proof of Theorem 5 , the fraction of voting chains for where
Gj([r

′, r]) occurs is

1

m

m∑
j=1

1
(
Gj [r

′ : r]
)
≥ 1− 1

8d

(a)

≥ 1− 1

8f̄vd
wp 1− e−

m
48 logm .

Inequality (a) follows because our regime of interest is f̄v < 1.

5 f̄v
′

= f̄ve
−f̄v∆

6 https://github.com/ccanonne/probabilitydistributiontoolbox/blob/master/

poissonconcentration.pdf

https://github.com/ccanonne/probabilitydistributiontoolbox/blob/master/poissonconcentration.pdf
https://github.com/ccanonne/probabilitydistributiontoolbox/blob/master/poissonconcentration.pdf
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C.3 Proof of Lemma 3

We will prove this by contradiction. Refer Fig. 16 for a visual proof. Say at a
future round r + a (a > 0), there are two chains C1, C2 s.t bj ∈ C1, 6∈ C2 and
length(C2) = length(C1).

Consider the latest block b̃ on the common prefix of C1 and C2 that was
mined by an honest party. Let r̃ be the round on which b̃ was mined7. It is
important to note that r̃ ≤ r(bj) < r′ because a) bj 6∈ C2, and b) Gj([r

′, r])
(Equation 30) occurs. Consider the set of rounds [r̃ : r]. For each unique level
`, only one of the level ` blocks in C1 and C2 is mined by honest users and
thus Zj([r̃ : r + a]) ≥ Yj([r̃ : r + a]). However, since event Fj([r

′ : r]) occurred,
we know that Yj([r̃ : r + a]) > Zj([r̃ : r + a]) + 1

4 f̄v(1 − 2β)(r + a − r̃), hence a
contradiction. �

Fig. 16.

C.4 Proof of Lemma 4

Let the main chain of this blocktree j at round R` + k be denoted by C =
{b1, b2, · · · }. Let block bn be computed in round r(bn). Let block b˜̀ ∈ C be the
last honest block computed before round R` and R˜̀ be the round in this block

b̃` was mined. i.e,

` ,
{

maxn s.t r(bn) ≤ Rn and bn is a honest block.
}

R̃` , r(b̃`)

7 If no such block exists then r̃= 0 (voter genesis block).



52

Observation: All the blocks B` ∈ C mined in rounds between R̃` and R` are
adversarial blocks by definition.

Proposition 1. If Yj
(
[R̃` : R` + k]

)
- Zj

(
[R̃` : R` + k]

)
≥ αk, then at round

R` + k, there is a vote at least αk-deep.

Proof. If Yj
(
[R̃` : R` + k]

)
- Zj

(
[R̃` : R` + k]

)
≥ αk, then the main chain of

blocktree j has at least αk honest vote-blocks. From previous observation we
know that there are no honest blocks on the main chain between rounds R̃` and
R`, and thus all these αk honest vote-blocks on the main chain are mined after
round R`. The earliest of these αk vote-blocks votes on a leader block at depth
` and is at least αk-deep. �

As before, Yj
(
[R̃` : R`+k]

)
, Zj

(
[R̃` : R`+k]

)
are the number of blocks mined

between rounds R̃` and R`+k by honest and adversary respectively. Since event
Fj [R` : R`+k]

)
occurs, the event Yj([R̃` : R`+k]) > Zj([R̃` : R`+k]) ≥ 1

8 f̄v(1−
2β) also occurs. Using the above proposition we obtain the result for α ≥ 1

8 f̄v(1−
2β). �

C.5 Proof of Lemma 5

We will prove this by contradiction. Refer Fig 17. Suppose until round r−1, the
main chain of voter blocktree j has block B. At at round r(> R` + k) there are
two chains C1, C2 s.t B ∈ C1, 6∈ C2 and len(C2) > len(C1).

Consider the last block B̃ on the common prefix of C1 and C2 that was mined
by an honest party and let r̃ be the round on which B̃ was mined (if no such
block exists let r̃= 0). It is important to note r̃ ≤ R` because a) all the voter
blocks on C1 mined after round R` and before block B are private blocks, b)
B 6∈ C2. Consider the set of rounds between r̃ and r, [r̃ : r]. For each depth
`, only one of the depth ` blocks in C1 and C2 is mined by honest users and
thus Z([r̃ : r]) ≥ Y ([r̃ : r]). However since event Fj

(
[R` : R` + k]

)
occurred and

r̃ < R`, R` + k < r, we know that Yj([r̃ : r]) > Zj([r̃ : r]) + 1
4 f̄v(1− 2β)(r̃ − r),

hence a contradiction. �



Deconstructing the Blockchain to Approach Physical Limits 53

Fig. 17.

C.6 Proof of Lemma 6

Theorem 6 shows that 1−δd fraction of votes at depth d or greater are permanent
whp8. Therefore Vn(r) , maxd≥0{(V dn (r)− δdm)+} is a lower bound on Vn(r′)
– the number of votes in a future round r′ > r.

Following the same line of reasoning, V−n(r) , maxd≥0{(V d−n(r) − δdm)+}
is a lower bound on V−n(r′). Thus at most (V−n(r) − V−n(r)) + θ can existing
votes can be removed from blocks in P`(r)− {pn} and added to block pn. Also
the θ chains which have not yet voted could also vote on block pn. These two
combined gives us the upper bound on Vn(r′).

C.7 Proof of Lemma 7

We prove by contradiction. Say the final leader block is bi and is not in set
Π`(r). Since bi 6∈ Π`(r), by definition of Π`(r) and Lemma 6, for any future
round r′ ≥ r we have

V i(r) < V 1(r) ≤ V1(r′). (31)

8 By high probability in this subsection, we mean probability at least 1 −
R2

maxe
− (1−2β)m

48 logm .
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Lemma 6 we gives us

Vi(r
′) ≤ V i(r). (32)

From Equations (31) and (32), we have Vi(r
′) < V1(r′) and therefore bi cannot

be the leader block in any future rounds r′ ≥ r which includes the round Rmax.

C.8 Proof of Lemma 8

By definition the `′-th element of LedSeq `(rmax) is p∗`′(rmax). From Lemma 7 we
have p∗`′(rmax) ∈ Π`′(r) for all levels `′ ≤ ` and thus the required result follows.

C.9 Proof of Lemma 9

Proof. The random variable P`(R` + k) satisfies P`(R` + k) ≤ 2 + Zp` (R`) +
Zp` ([R` : R`+k]), where a) ‘2’ corresponds to the number of blocks mined by the
honest users, b) Zp` (R`) denote the number of proposer blocks at level ` presented
by the adversary at round R`, and c) let 1+Zp` ([R` : R`+k]) denote the number
of proposer blocks mined by the adversary at level ` from round R`+ 1 to round
R` + k. It is shown in Appendix G.1 that Zp` (R`) ∼ Geometric(1 − 2β), and
Zp` ([R` : R` + k]) ∼ Poiss(f̄vβk). Therefore, P`(R` + k) is random variable and
it can increase with k.

It is easy to see that the tail event {K` > k} = {P`(R` + k) + 1 > 1
δk
}. For

kfv <
6 logm
1−2β , we have

P
(
K` > k

)
= P

(
P`(R` + k) + 1 > 4f̄vk

)
= P

(
Zp` (R`) + Zp` ([R` : R` + k]) + 2 > 4f̄vk

)
= P

(
Zp` ([R` : R` + k]) > 4f̄vk − Zp` (R`)− 2

)
(33)

Remark 1. Observe f̄vk − 2 > 0 ∀k ≥ 2
f̄v

. Here let

k1 =
2

f̄v
(34)

Using the above remark, LHS of Equation 33 can be divided into three cases

P
(
K` > k

)
≤


1 k ≤ k1

P
(
Zp` ([R` : R` + k]) > 3kf̄v − Zp` (R`)

)
k1 < k ≤ 6 logm

fv(1−2β)

P
(
Zp` ([R` : R` + k]) > 6 logm

1−2β − 1− Zp` (R`)
)

k > 6 logm
fv(1−2β)

(35)
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Now let us upper bound P
(
K` > k

)
as Case 2 in Equation (35):

P
(
Zp` ([R` : R` + k]) > 3kf̄v − Zp` (R`)

)
= P

(
Zp` ([R` : R` + k])− kf̄v > 2kf̄v − Zp` (R`)

)
≤ P

(
Zp` ([R` : R` + k])− kf̄v > 2kf̄v − Zp` (R`)

∣∣Zp` (R`) < kf̄v) + P
(
Zp` (R`) > kf̄v

)
≤ P

(
Zp` ([R` : R` + k])− kf̄v > kf̄v

∣∣Zp` (R`) < kf̄v) + P
(
Zp` (R`) > kf̄v

)
≤ P

(
Zp` ([R` : R` + k])− kf̄v > kf̄v

)
+ P

(
Zp` (R`) > kf̄v

)
≤

(a)e−
kf̄v

2 + e−kf̄v
(1−2β)

2 ≤ 2e−
(1−2β)f̄vk

2 . (36)

The inequality (a) is due to Chernoff bound and ccdf of a geometric random
variable. Using Equation (36) we directly obtain upper bound P

(
K` > k

)
as

Case 3 in Equation (35):

P
(
Zp` ([R` : R` + k]) >

6 logm

1− 2β
− 1− Zp` (R`)

)
≤ 2e−3 logm =

2

m3
. (37)

Using Equations (33),(35), (36), and (37), we obtain

E[K` ∧ c1m] =

∫ c1m

k=0

P
(
K` ≥ k) + P

(
K` > c1m)(c1m)

(38)

=

∫ k1

k=0

1 +

∫ c1m

k=k1

P
(
Zp` ([R` : R` + k] > 3kf̄v − Zp` (R`)

)
+ P

(
K` > c1m)(c1m)

≤ k1 +

∫ ∞
k=k1

2e−
(1−2β)f̄vk

2 +
c1
m2

≤ k1 +
4

f̄v(1− 2β)
+

c1
m2

≤ 2

f̄v
+

4

f̄v(1− 2β)
+

c1
m2

≤ 6

f̄v(1− 2β)
+

c1
m2

. (39)

�

C.9.1 Proof of Proposition 1

Let us first consider Case 1. From Theorem 7, we know that at round r = R`+k,
the lower bound on total number of permanent votes on blocks in set P`(r) is

at least 1 − δk. Therefore, the lower bound V1(r) ≥ m(1−δk)
|P`(r)| . Thus the upper

bound on votes on a private block bprivate is V private(r) < mδk. It is easy to see∣∣P`(R` + k)
∣∣+ 1 <

1

δk
=⇒ V1(R` + k) > V private(R` + k).
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Now let us focus on Case 2. From Lemma 20, we know that the all m votes are
permanent wp 1− ε for

k =
12

f̄v(1− 2β)2
log

2m

ε
.

Substituting ε = e−
(1−2β)m
48 logm in the above equation, we conlcude that that at

round r = R` + c1m, the upper bound on the number of votes on private block,
V private(r) = 0 and thus V1(R` + k) ≥ 1 > V private(R` + k) whp.

C.10 Proof of Lemma 10

Proof. Recall, the first proposer block at level `′ is proposed at round R`′ .
It is important to note that these blocks can be presented by honest users
or the adversary. Let the honest users first propose proposer blocks on levels
{Lh1 , Lh2 , · · · , Lhi , · · · , Lhn}, Li < `. Here Li’s are a random variables. The sub-
script h stands for ‘honest’. The first proposer block at level Lhi is produced in
round RLhi . Let Ln+1 = `. If the adversary produces a block at level `′, satis-

fying Li < `′ < Li+1, then the monotonicity gives us the following constraint

RLi ≤ R`′ ≤ RLi+1
. Let k1 = 2

f̄v
and γ4 = f̄v(1−2β)

2 , then from Lemma 13 we

have

E
[
K∗` ∧max

`′≤`
(c1m−D`′,`)+|{RLi}ni=1, {Li}ni=1

]
≤
∑
`′≤`

((
k1 −D`′,`

)
+

+
2

γ4
e−γ4D`′,` +

(c1m−D`′,`)+

m3

)
≤
∑
`′≤`

((
k1 − (R` −R`′)

)
+

+
2

γ4
e−γ4(R`−R`′ ) +

(c1m− (R` −R`′))+

m3

)
≤
∑
i∈[n]

∑
Li<`′≤Li+1

((
k1 − (R` −R`′)

)
+

+
2

γ4
e−γ4(R`−R`′ ) +

(c1m− (R` −R`′))+

m3

)
(a)

≤
∑
i∈[n]

(Li+1 − Li)
((
k1 − (RLn+1

−RLi+1
)
)

+
+

2

γ4
e−γ4(RLn+1

−RLi+1
) +

(c1m− (RLn+1 −RLi+1))+

m3

)
.

(40)

The inequality (a) is because R`′ ≤ RLi+1
.

Let Gj for j be iid random variables s.t Gj ∼ Geometric( 1
f̄v

). Since the levels

Li and Li+1 are mined by the honest users, we have RLi+1
− RLi ≥

∑Li+1

j=Li
Gj

and RLn+1 − RLi+1 ≥
∑j=Ln+1

j=Li+1
Gj . Thus Equation (40) can be further upper

bounded by

E
[
K∗` |{Gj}, {Li}ni=1

]
≤
∑
i∈[n]

(Li+1−Li)
((
k1−

j=Ln+1∑
j=Li+1

Gj
)

+
+

2

γ4
e−γ4(

∑j=n
j=i Gj)+

(c1m−
∑j=Ln+1

j=Li+1
Gj)+

m3

)
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Conditioning on Li’s and taking expectation over Gj ’s give us

E
[
K∗` |{Li}ni=1

]
≤
∑
i∈[n]

(Li+1 − Li)
((
k1 −

(Ln+1 − Li+1)

f̄v(1− β)

)
+

+
2

γ4

( f̄v(1− β)

f̄v(1− β) + γ4

) (Ln+1−Li+1)

f̄v(1−β)

+
(c1m− (Ln+1−Li+1)

f̄v(1−β)
)+

m3

)
From Appendix G.1, we know that (Li+1−Li−1) ∼ Geometric(1−2β) and thus
on taking expectation over {Li}ni=1, we obtain

E
[
K∗`
]
≤
(2− 3β

1− 2β

) ∑
i∈[n]

((
k1 −

(n− i)(1− β)

f̄v(1− 2β)

)
+

+
2

γ4

( f̄v(1− β)

f̄v(1− β) + γ4

)n−i 1− 2β

1− β
+

(c1m− n−i
f̄v(1−2β)

)+

m3

)
(41)

≤
(2− 3β

1− 2β

)(k2
1 f̄v(1− 2β)

2(1− β)
+

2f̄v(1− 2β)

γ2
4

+
f̄v(1− 2β)c21

m

)
≤ 8

f̄v(1− 2β)3
+
f̄v(1− 2β)c21

m
. (42)

�

C.11 Lemma 11

Lemma 11. E
[
K∗` |

{
D`′,`

}
`′≤`

]
≤
∑
`′≤`

[(
2
f̄v
−D`′,`

)
+

+ 4
f̄v(1−2β)

e−
f̄v(1−2β)

2 D`′,`

]
.

Here D`′,` = R` −R`′ .

Lemma 12. The expected rounds to well define the propose list up to level ` is
given by

E
[
K∗` ∧max

`′≤`
(c1m−D`′,`)+|

{
D`′,`

}
`′≤`

]
(43)

≤
∑
`′≤`

[( 2

f̄v
−D`′,`

)
+

+
4

f̄v(1− 2β)
e−

f̄v(1−2β)
2 D`′,`

]
+

(c1m−D`′,`)+

m3
,

where D`′,` = R` −R`′ .

Proof. Let us re-write K∗`

K∗` =
{

min k s.t P`′([R`′ : R` + k]) + 1 < 4f̄v(k +R` −R`′) ∀`′ ≤ `
}
.

Following the definition of K∗` , we have

P
(
K∗` ∧max

`′≤`
(c1m−D`′,`)+ > k|

{
D`′,`

}
`′≤`

)
(44)

≤
∑
`′≤`

P
(
K`′,` ∧ (c1m−D`′,`)+ > k|D`′,`

)
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This gives us that

E
(
K∗` ∧max

`′≤`
(c1m−D`′,`)+|

{
D`′,`

}
`′≤`

)
=

∫ ∞
k=0

P
(
K∗` ∧max

`′≤`
(c1m−D`′,`)+ > k|D`′,`

)
≤
∑
`′≤`

∫ ∞
k=0

P
(
K`′,` ∧ (c1m−D`′,`)+ > k|D`′,`

)
=
∑
`′≤`

E
(
K`′,` ∧ (c1m−D`′,`)+|D`′,`

)
≤
∑
`′≤`

[( 2

f̄v
−D`′,`

)
+

+
4

f̄v(1− 2β)
e−

f̄v(1−2β)
2 D`′,`

+
(c1m−D`′,`)+

m3
+

]
(45)

The last inequality follows from Lemma 13. �

Lemma 11 upper bounds the latency to confirm a list of ledgers up to level
`. This lemma is derived for conditional values of D`′,` ∀`′ ≤ `. In Lemma 10,
we take an expectation over D`′,` to complete the latency bound.

C.12 Tools for proving Lemma 10

Proposition 3. The first proposer block at level `′(< `) is mined at round R`′

and let r = R` + k. The proposer list at level `′ can be confirmed if

Case 1.
∣∣P`(R` + k)

∣∣+ 1 <
1

δk+D`′,`

, (46)

Or Case 2. k = (c1m−D`′,`)+

wp e−
(1−2β)m
48 logm where δk+D`′,` ,

(
1

4f̄v(k+D`′,`)
∨ 1−2β

24 logm

)
.

Proof. This follows the same logic of the proof of Proposition 9.

The analysis here is very similar to the analysis in the previous subsection.
Similar to Equation (26), let us define the stopping round for Case 1 (46):

K`′,` =
{

min k s.t P`′(R` + k) + 1 <
1

δk+D`′,`

}
. (47)

Lemma 13. The proposer list at level `′ is well defined at round R` + (K` ∧
(c1m−D`′,`)+) and we have

E
[
K`′,` ∧ (c1m−D`′,`)+

∣∣D`′,`

]
≤ 4

f̄v(1− 2β)
e−

f̄v(1−2β)
2 D`′,`

+
( 2

f̄v
−D`′,`

)
+

+
(c1m−D`′,`)+

m3
,

where D`′,` = R` −R`′ .
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Proof. Similar to notations in the proof of Lemma 9,
∣∣P`′([R`′ : R` + k])

∣∣ is the
number of proposer blocks at level `′ mined from time R`′ tp R` + k. Note that
the starting round has changed to R`′ .

Here
∣∣P`([R`′ : R`′ + k])

∣∣ ≤ 2 + Zp`′(R`′) + Zp`′([R`′ : R` + k]), where 1
corresponds to the number of blocks mined by the honest users, 1 + Zp`′(R`′) is
the number of proposer blocks at level ` presented by the adversary at round R`′ ,
and Zp`′([R`′ : R`+k]) is the number of proposer blocks at level ` from round R`′

to round R`+k. It is shown in Appendix G.1 that Zp`′(R`′) ∼ Geometric(1−2β),
and Zp`′([R`′ : R` + k]) ∼ Poiss(f̄vβ(k +R` −R`′)).

Starting round R`, the number of rounds required to fix the proposer list at
level `′ is denoted by K`′,`. As seen previously, it must satisfy

K`′,` =
{

min k s.t
∣∣P`′([R`′ : R` + k])

∣∣+ 1 < 4f̄v(k +R` −R`′)
}
.

Let us define D`′,` , R`−R`′ . It is easy to see that the tail event {K`′,` > k} =
{P`([R`′ : R`′ + k]) + 1 > eγ(k+D`′,`)} and that gives us

P
(
K`′,` > k

)
= P

(∣∣P`′([R`′ : R` + k])
∣∣+ 1 > 4f̄v(k +D`′,`)

)
= P

(
Zp`′([R`′ : R` + k]) + Zp`′(R`′) + 2 > 4f̄v(k +D`′,`)

)
= P

(
Zp`′([R`′ : R` + k]) > 4f̄v(k +D`′,`)− Zp`′(R`′)− 2

)
(48)

Again using the Remark 1, similar to Equations (35), LHS of Equation 48 can
be divided into three cases

P
(
K`′,` > k

)
≤


1 k +D`′,` ≤ k1

P
(
Zp`′([R`′ : R` + k]) > 3(k +D`′,`)f̄v − Zp`′(R`′)

)
k1 < k +D`′,` ≤ 6 logm

fv(1−2β)

P
(
Zp`′([R`′ : R` + k]) > 6 logm

1−2β − Z
p
`′(R`′)

)
6 logm
1−2β < k +D`′,`.

(49)

Now let us upper bound P
(
K`′,` > k

)
as Case 2 in Equation (49):

P
(
Zp`′([R`′ : R`′ + k])− (k +D`′,`)f̄v > 2(k +D`′,`)f̄v − Zp`′(R`′)

)
≤ P

(
Zp`′([R`′ : R`′ + k])− (k +D`′,`)f̄v > 2(k +D`′,`)f̄v − Zp`′(R`′)

∣∣Zp`′(R`′) < (k +D`′,`)f̄v)

+ P
(
Zp`′(R`) > (k +D`′,`)f̄v

)
≤ P

(
Zp`′([R`′ : R`′ + k])− (k +D`′,`)f̄v > (k +D`′,`)f̄v

∣∣Zp`′(R`′) < (k +D`′,`)f̄v)

+ P
(
Zp`′(R`′) > (k +D`′,`)f̄v

)
≤ P

(
Zp`′([R`′ : R`′ + k])− (k +D`′,`)f̄v > (k +D`′,`)f̄v

)
+ P

(
Zp`′(R`′) > (k +D`′,`)f̄v

)
≤e−(k+D`′,`)

f̄v
2 + e−(k+D`′,`)

f̄v(1−2β)
2 ≤ 2e−(k+D`′,`)f̄v(1−2β). (50)
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Using Equation (50) we directly obtain upper bound P
(
K` > k

)
as Case 3 in

Equation (49):

P
(
Zp`′([R`′ : R` + k]) >

6 logm

1− 2β
− 1− Zp`′(R`′)

)
≤ 2e−3 logm =

2

m3
. (51)

Using Equations (48),(49), (50), and (51), we obtain

E[K`′,` ∧ c1m|D`′,`] =

∫ c1m−D`′,`

k=0

P
(
K`′,` ≥ k|D`′,`

)
+ P

(
K`′,` > c1m logm−D`′,`

)
(c1m−D`′,`)+

(52)

=

∫ k1−D`′,`

k=0

1 +

∫ c1m−D`′,`

k=k1−D`′,`
P
(
Zp`′([R`′ : R` + k] > 3kf̄v − Zp`′(R`′)

)
+ P

(
K`′,` > c1m logm−D`′,`)(c1m−D`′,`)+

≤ (k1 −D`′,`)+ +

∫ ∞
k=0

2e−
f̄v(1−2β)

2 (k+D`′,`) +
(c1m−D`′,`)+

m3

≤ (k1 −D`′,`)+ +
4

f̄v(1− 2β)
e−

f̄v(1−2β)
2 D`′,` +

(c1m−D`′,`)+

m3

≤
( 2

f̄v
−D`′,`

)
+

+
4

f̄v(1− 2β)
e−

f̄v(1−2β)
2 D`′,` +

(c1m−D`′,`)+

m3

(53)

�

The first proposer block at level `′ was proposed D`′,` rounds before the
proposer block at level `. Intuitively, the proposer list at level `′ should be well
defined D`′,` before the proposer list at level ` is well defined and Lemma pre-
cisely 13 characterizes that. Note that for `′ = `, we have D`′,` = 0 and the
result of Lemma 13 reduces to Lemma 9.

D Honest transactions:Proof of Theorem 4

At the current round r the honest users are mining on level `current over proposer
block (say) p1 and adversary is mining over blocks p2. Let p̃ be the common
honest ancestor of blocks p1, p2 and it (say) was proposed in round R̃, at level ˜̀

as shown in Fig 18

Remark 2. By definition of the ancestor block pancestor, the number of adversarial
blocks between level ˜̀and `current is at least equal to the number of honest blocks
between level ˜̀ and `current.

Let kgood = 1
2fv

. We divide the good event into the following two events:
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Fig. 18.

1. Event 1: At a future round r+k, the honest users will have a lead of Plead =
fvβkgood proposer blocks for *all* rounds r+k+a (a > 0) over the adversary
i.e ,

Ak =
{
Z[R̃ : r + k + a] < Y [R̃ : r + k + a]− Plead∀a ≥ 0

}
(54)

Mathematically r+ k is the last round in which random walk Y [R̃ : r+ k+
a]−Z[R̃ : r+k+a′] is on Plead and then never goes below that in the future
rounds.

2. Event 2: There is a round R′ > rk s.t from round R′ to round R′ + kgood,
the adversary mines less than Plead blocks i.e,

FR′ =
{
Z[R′ : R′ + kgood] < Plead

}
. (55)

Lemma 14. Say events Ak occurs and then FR′ occurs. Then the transactions
tx is included in block B which is proposed in round r(B) < R′ + kgood wp

1− e−rmax
m

48 logm .

Proof. Say event Ak occurs at round r + k. Then in any future round R′ there
is always are at least Plead = fβkgood + 1 levels which have only single honest
proposer blocks (and no adversarial blocks). Now suppose event FR′ occurs.
This implies that in the next kgood rounds, the adversary produces at most Plead

blocks. Since kgood = 1
2fv

, from Proposition 13 (substituting
∣∣P`(R` + k)

∣∣ = 1

in the Proposition ) at least one of above Plead levels will have only a single
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honest proposer block (say) ph with no competitor block and since this proposer
block gets more than 1

2 of the votes by kgood rounds wp 1 − e−rmax
m

48 logm after
its mined, Π`(r

′) = {ph}∀r′ > R′ + kgood and it be confirmed as a leader block
in round R′ + kgood. �

Let event AK1
occur in round r+K1. Then Event 2 occurs after K2 rounds.

Then E[RB − R] = E[K1 + K2]. The next two lemma shows that E[K1] ≤
1

(1−2β)fv
+ 1

(1−2β)2fv
, and E[K2] ≤ 1

fv
, thus giving us the required result

E[K1 +K2] ≤ 1

(1− 2β)fv
+

1

(1− 2β)2fv
+

1

fv

≤ 3

(1− 2β)2fv
(56)

Lemma 15. Let Event AK1
occur, then The expected number of rounds for

Event 1 is K1 which satisfies

E[K1] =
1

(1− 2β)fv
+

1

(1− 2β)2fv

Proof. Let us first define the following two rounds

Kfirst =
{

min k s.t Z[R̃ : R+ k] < Y [R̃ : R+ k]− Plead

}
Kstop =

{
min k ≥ Kfirst s.t Z[R̃ : R+ k + a] < Y [R̃ : R+ k + a]− Plead∀a ≥ 0

}
The number of rounds in which the random walk Y [R̃ : R + k′]− Z[R̃ : R + k′]
first time hits Plead is Plead

(1−2β)fv
in expectation and thus

E[Kfirst] =
Plead

(1− 2β)fv
≤ 1

(1− 2β)fv
. (57)

Next, the probability that the random walk never hits Plead is 1−2β. However,
if it does hits Plead again, in expectation it takes 1

(1−2β)fv
9 rounds between the

successive hits. Therefore Kstop −Kfirst =
∑N
i=0Gi, where N ∼ Geometric(2β)

and Gi’s are independent random variables with mean E[Gi] = 1
fv(1−2β) . This

implies that

E[Kstop −Kfirst] = E[N ]E[Gi] =
1

(1− 2β)2fv
(58)

By definition we have K1 = Kstop−Kfirst +Kfirst and we get the required result
from Equations (57) and (58).

9 The proof is in the link https://math.stackexchange.com/questions/2423777/

error-in-calculation-of-hitting-time-of-1-in-a-biased-random-walk-on-the-intege

https://math.stackexchange.com/questions/2423777/error-in-calculation-of-hitting-time-of-1-in-a-biased-random-walk-on-the-intege
https://math.stackexchange.com/questions/2423777/error-in-calculation-of-hitting-time-of-1-in-a-biased-random-walk-on-the-intege
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Lemma 16. Say event Ar+K1
occurred and event Fr+K1+K2

occurred. Then

E[K2] ≤ 1

fv
(59)

Proof. Divide the rounds from
{
r+K1,∞

}
into disjoint chunks of length kgood,

where the qth interval is [r + K1 + (q − 1)kgood : r + K1 + qkgood]. For Plead =
fvβkgood + 1, we have

P
(
Z[r +K1 + (q − 1)kgood : r +K1 + qkgood] < Plead

)
≥ 1

2
∀q ∈ Z+. (60)

Since the events
{
Z[R1 + (q − 1)kgood : R1 + qkgood] < Plead

}
are independent

for q ∈ Z+, we have

Qfinal =
{

min q ∈ I s.t Z[r +K1 + (q − 1)kgood : r +K1 + qkgood] < Plead

}
E[K2] = E[Qfinal]kgood ≤ 2kgood ≤

1

fv
.

�

E Chain quality

The total number of unique proposer blocks mined by the honest users is Y p[0 : rmax] ∼
Bin((1 − β)f̄ ′v, rmax) and the total number of proposer blocks mined by the ad-
versary is Zp[0 : rmax] ∼ Poiss(βf̄vrmax).

Lemma 17.

Y p[0 : rmax] >
f̄vrmax(3 + 2β)

8
(61)

Zp[0 : rmax] <
f̄vrmax(1 + 6β)

8
(62)

wp 1− 2e−
(1−2β)2f̄vrmax

200 .

Proof. On applying Chernoff bound on Y p[0 : rmax], we get

P
(
Y p[0 : rmax] < E[Y p[0 : rmax]]− a

)
< e−

a2

3E[Y p[0 : rmax]] . (63)

The mean is E[Y p[0 : rmax]] = (1 − β)f̄ ′vrmax which is greater than 1
2 f̄vrmax for

f̄ ′v = 1−2β
2 . Substituting the value of mean along with a =

(
1−2β

8

)
f̄vrmax in

Equation (63), give us

P
(
Y p[0 : rmax] <

f̄vrmax(3 + 2β)

8

)
< e−

(1−2β)2f̄vrmax
192(1−β)

< e−
(1−2β)2f̄vrmax

200 . (64)
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Similarly applying Chernoff bound on Zp[0 : rmax], we have

P
(
Zp[0 : rmax] > E[Zp[0 : rmax]] + a

)
< e−

a2

E[Zp[0 : rmax]]+a . (65)

The mean is E[Zp[0 : rmax]] = βf̄vrmax. Substituting the value of mean along

with a =
(

1−2β
8

)
f̄vrmax in Equation (65), gives us

P
(
Zp[0 : rmax] >

f̄vrmax(1 + 6β)

8

)
< e−

(1−2β)2f̄vrmax
8(+14−β)

< e−
(1−2β)2f̄vrmax

200 . (66)

Equations (64) and (66) proves Equations (61) and (62). �

F Unique ledger decoding: Slow latency

F.1 Unique decoding: Slow confirmation

Theorem 8 (Unique Ordering Latency). For β < 1/2, the unique ledger is
decoded with latency 12

f̄v(1−2β)2 log 2m
ε , and each transaction and its ordering is

permanent wp at least 1− ε.

The first proposer block at level ` was presented at round R`. Then we show
that the leader blocks upto level ` are permanent after Runique,ε = O( 1

f log( 2m
ε ))

rounds wp 1− ε. That is at round R` +Runique,ε, all the leader blocks upto level
` are permanent wp 1− ε.

Lemma 18. The first proposer block(s) at level ` is proposed in round R`. By
round R` + k, a main voting chain will have a permanent vote on depth d
proposer block w.p 1− 2e−γk. Here γ ≥ 1

12fv(1− 2β)2.

Proof. Consider the events from expressions (23) and (24):

Ej [r : r + k] =
{
Yj([r : r + k]) > Zj([r : r + k]) +

1

8
f(1− 2β)k

}
(67)

Fj [r : r + k] =
⋂
a,b≥0

Ei[r − a : r + k + b] (68)

If event Fj [R` : R + k] has occurred Lemma 4 and 5, we know that the voting
blocktree j is permanent. Lemma 1 prove that P(Fj [r : r + k]) > 1− 2e−γk and
hence completing the proof

Lemma 19 (Consistency). The first proposer block(s) at level ` is proposed
in round R`. By round R` + 12

f̄v(1−2β)2 log( 2m
ε ) the proposer block at level ` is

permanent wp 1− ε
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Proof. Substituting k = 1
γ log( 2m

ε ) in Lemma 18, we get that the vote of voter
blocktree j is confirmed wp ε

m . Thus using union bound over all the m voter
blocktree, votes on level ` proposer blocks from all the m voting blocktrees are
permanent whp 1−ε. This implies that the proposer block at level ` is permanent
with probability 1− ε �

Remark 3 (Adaptive confirmation:). Lemma 19 requires votes on each voter
blocktree to be secure with probability 1 − ε/m and this is an strong condi-
tion. This is because in the worst-case, the adversary can ensure that the top
two voted proposer blocks (at level `) have same number of votes. However, the
vote difference between the top two voted blocks (at level `) is an observable
quantity and if this vote difference is O(m), then the leader-block at level ` can
be confirmed in constant time for ε > e−O(m) because each vote needs to be
secure w.p 1 − c for c > 0. As a result, under no observable attack, Prism ob-
tains a constant latency for total ordering independent of ε. Note that this is
not true for Bitcoin because the adversary’s attack on bitcoin is in private, hence
non-observable.

Lemma 20. (Common-prefix) The first proposer block(s) at level ` is proposed
in round R`. By round R`+

12
f̄v(1−2β)2 log( 2m

ε ) all the proposer block up to level `

is permanent wp 1−ε. Hence the latency for unique decoding is 12
f̄v(1−2β)2 log( 2m

ε )

rounds.

Proof. For a given voter blocktree j, if it’s vote on proposer block at level `
is permanent and say it is cast by voter block Vj,`. Then from the Voting rule
of Prism in Section 5.2.1, all the proposer blocks up to level `′ ≤ ` are also
permanent because they are voted by either Vj,` or its ancestor blocks along the
its path to its genesis block. Thus this theorem directly follows from Lemma
19.

Proof. Lemma 20 proves that common-prefix property of the leader sequence. In
expectation it takes O(1) time for a transaction to enter a unique leader block.
Thus this result provides an overall latency of 12

f̄v(1−2β)2 log( 2m
ε ) for unique-ledger

decoding for β < 1
2 .

Corollary F1. Suppose β < 0.5. For 1− ε security, substituting m = 1 in The-
orem 8 we prove that the latency of Prism and Bitcoin is at most 12

f̄v(1−2β)2 log 1
ε

rounds.

G Others

G.1 Reserve proposer blocks by the adversary

Say the honest users mine the first proposer block at level ` in round R`. Let
1 + Zp` (R`) denote that the number of hidden proposal blocks blocks on level `
by the adversary. In order to maximize Zp` (R`), all these blocks should have a
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Fig. 19.

common honest parent proposer block at level (say) `honest linked via private
proposal blocks as shown in the Figure 19. The total number of reserve blocks
is given by

1 + Zp` (R`) = max
`honest≤`

Zp[R`honest + 1: R`]− Y p[R`honest + 1: R`] + 1. (69)

The random variable Y p[R`honest : R`] − Zp[R`honest : R`] is a random walk

in the variable `honest with a net drift of (1−2β)fv
2 . The ratio of left drift to the

right drift is 2β and from [2], we have

P(Zp` (R`) > k) = max
`honest≤`

P
(
Zp[R`honest : R`]− Y p[R`honest + 1: R`] > k

)
= (2β)k.

Thus Zp` (R`) ∈ Geometric(1− 2β).

G.2 Random Walk Proofs

Consider the following events from Equation (23) and (24)

Ej [r : r + k] =
{
Yj [r : r + k] > Zj [r : r + k] +

1

4
f(1− 2β)k

}
(70)

Fj [r : r + k] =
⋂
a,b≥0

Ej [r − a : r + k + b]. (71)

The random variable Wj [r : r+ k] = Yj [r : r+ k]−Zj [r : r+ k] is a random walk

with drift (1−2β)f
2 . This random walk escapes to ∞ as k →∞ wp 1.
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Lemma 21. If Wj [r : r + k] > c1k, for c2 < c1 we have

P
(
Wj [r : r + k + a] > c2k ∀ a > 0) = 1− (2β)(c1−c2+1)k

= 1− elog(2β)(c1−c2+1)k.

Proof. Refer [2].

If the random walk is to the right of c1k after k steps, the above lemma
calculates the probability of that the random walk remains to the right of c2k
in all future rounds.

Lemma 22. If Wj [r : r + k] > c1k, for c2 < c1, then we have

P
(
Wj [r − b : r + k] > c2k ∀ b > 0) = 1− (2β)(c1−c2+1)k

= 1− elog(2β)(c1−c2+1)k.

Proof. Refer [2].

The above lemma is mathematically characterizing the same event as Lemma
21.

Lemma 23. If Wj [r : r + k] > c1k, then we have

P
(
Wj [r − b : r + k + a] > 0 ∀ a > 0) ≥ 1− 2(2β)c1k/2

= 1− 2elog(2β)c1k/2

(a)

≥ 1− 2e−(1−2β)c1k/2

Proof. Using c2 = c1/2 in the above two Lemmas 21 and 22 we get the required
result. The inequality (a) uses log 2β < 2β − 1 for β > 0.
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