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Abstract. Message franking enables a receiver to report a potential
abuse in a secure messaging system which employs an end to end encryp-
tion. Such mechanism is crucial for accountability and is already widely
adopted in real world product such as Facebook messenger. Grubs et al
[5] initiated a systematic study of such a new primitive, and Dodis et al
[2] gave a more efficient construction.
We observe that in all existing message franking schemes, the receiver
has to reveal the whole communication for a session in order to report
one abuse. This is highly undesirable in many settings where revealing
other non-abusive part of the communication leaks too much informa-
tion; what is worse, a foxy adversary may intentionally mixing private
information of the receiver with the abusive message so that the receiver
will be reluctant to report. This essentially renders the abuse reporting
mechanism ineffective.
To tackle this problem, we propose a new primitive called targeted open-
ing compactly committing AEAD (TOCE for short). In a TOCE, the
receiver can select arbitrary subset of bits from the plaintext to reveal
during opening, while keep all the rest still secure as in an authenticated
encryption. We gave a careful formulation and give a generic construc-
tion. The generic construction allowing a bit level opening may require a
substantial number of passes of symmetric key ciphers when encrypting
a large message such as a picture. We thus further set forth and give
a more efficient non-black-box construction allowing a block-level (e.g.,
256 bit) opening. We also propose a privacy-efficiency trade off if we can
relax the security of non-opened messages to be one way secure (they
are still semantically secure if no opening).

1 Introduction

End-to-end encryption enables users to securely communicate with each other,
without worrying the message to be seen to any third party including the plat-
form that hosts the secure messaging service. Multiple large scale secure messag-
ing systems such as WhatsApp, Signal, and Facebook Messenger have already
been deployed to serve more than a billion users across the globe. On the other
hand, confidentiality also brings new challenges of other security goals.



Most notably, when one user spreads misinformation such as harassing mes-
sages, phishing links and/or any other improper contents, the recipients should
be allowed to report the malicious behavior to the service provider, so that the
sender could be penalized (e.g., blocked). On the same time, no dishonest re-
porter should be able to fabricate any fake message to frame an innocent sender.
To address this pressing challenge, Facebook Messenger [3, 4] recently introduced
the concept of message franking for such verifiable abuse reporting in encrypted
systems. Also, a new cryptographic primitive called compactly committing au-
thenticated encryption with associated data (ccAEAD) was proposed in recent
cryptography literature [5, 2] to provide formal investigations.

A ccAEAD first is a standard authenticated encryption, but with the extra
property that enables a receiver to open the plaintext if he chooses to. Two
natural properties arise: a malicious sender could not deny the opening of an
honest receiver, and a malicious receiver cannot arbitrarily open the message to
frame an honest sender. Besides these two, in practice, it is preferable to add a
short tag to enable these two properties whose size is independent of the message
size (this property refers to compactness).

Intuitively, in a message franking system, some short tag served as a proof
will be attached to the ciphertext so that a later “opening” of the ciphertext
can be verified with this tag. Imagine a user Bob receives a ciphertext which
is “stamped” by the server from a user Alice, (server signs or even stores the
tag ensuring the ciphertext is indeed sent from Alice to Bob). If Bob decodes
the ciphertext, validates the tag, and obtains an improper message, he will then
reveal either the message or the secret key, so that the service provider can check
the reported abuse. Existing methods including the one deployed in Facebook
Messenger and the constructions in [5, 2] all follow this pattern.

The undesirability of “all or nothing” abuse reporting. However, revealing the
whole piece of the plaintext transmitted during a session when reporting an abu-
sive message in many cases is undesirable to the recipient, as some parts of the
plaintext (or the existence of the conversation itself) could contain private infor-
mation. Consider the following exemplary scenarios: a doctor or a pharmacist is
communicating with one patient about the situation of some diseases the patient
is suffering from or the medicine the patient is taking; two members of a cult
group are discussing or debating on some issue regarding their special interests;
a merchant on Ebay is explaining to a customer about the product (which could
be for some special hobby and the customer would prefer to keep private) he is
selling. In all those scenarios, the conversations contain some private information
of the recipient, if improper messages such as harassing messages are generated
during those conversations, the recipients may feel reluctant to reveal his name
or the other personal information, thus not reporting the abuse.

What’s worse, having this in mind, a malicious sender would intentionally
insert some kind of personal information of the receiver when sending improper
messages. Given current all-or-nothing type of opening in ccAEAD schemes,
the attacker can simply concatenate some piece of receiver personal information
with the abusive message and send over together via the secure messaging sys-
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tem. Doing this essentially renders abuse reporting in message franking as an
ineffective deterrence towards resolving the misinformation problem in secure
messaging. Such potential threat of existing message franking schemes calls for
a formal study that whether the abuse reporting can be done in a way that the
receiver can choose flexibly which part to reveal. In this paper, we are seeking
to answer the following question:

Can we design a message franking scheme that enables the receiver to
selectively report the abusing message, without revealing any information about

other parts of the plaintext?

Our contributions. To defend against the above attack to message franking, we
strengthen the ccAEAD notion to enable a targeted opening. In more details:

Targeted opening ccAEAD: modeling. It turns out that adding a targeted
opening property influences all security properties. We formally define the tar-
geted opening property for ccAEAD, such that a recipient could reveal any part
of the message of his choice, while other parts remain as secure as in an authen-
ticated encryption. This means for both confidentiality and ciphertext integrity,
we need to allow the attacker an extra query about opening of a targeted part of
the plaintext. Furthermore, the two binding properties also need to be revised ac-
cordingly. More specifically, it means that the sender must not be able to provide
a valid ciphertext which can be decrypted successfully but can not be targeted
opened correctly for some positions. Also the receiver can not maliciously open
any targeted part of the ciphertext to a abusive message.

Targeted opening ccAEAD: a generic construction. Unfortunately, none
of existing constructions of ccAEAD satisfies targeted opening, since their open-
ing algorithm will reveal the whole information about the message. To follow
the generic commit-then-encrypt methodology in [5] to construct a ccAEAD
and also to support targeted opening, we propose a modular approach. We first
introduce a cryptographic notion of targeted opening commitment scheme. The
most attractive property for this primitive is that it allows one to open any part
of the message while the rest remain hidden. Moreover, the verifier can confirm
that the partial message is indeed extracted from the exact bit positions of the
original message. Such a special instance of a more advanced notions like a func-
tional commitment [7] or vector commitment [1] allows us to give a very simple
construction that only utilizes collision resistant hash. We then give a generic
construction from a targeted opening commitment and an AEAD and gave a
detailed security analysis.

Targeted opening ccAEAD: more efficient constructions. Our generic
construction leverages bitwise operations thus incurs large overhead for AEAD,
this makes the scheme only applicable when encrypting short messages such
as texts. To also consider the applicability in the setting of encrypting large
messages such as pictures, and even videos, we set forth to consider more effi-
cient constructions. We first consider a block-wise targeted opening. However,
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straightforward instantiation of our generic construction, yields an encryption al-
gorithm that needs four passes of block cipher operations for a string of message.
We observe that, if we reuse some intermediate results of the encryption part
to the commitment part, we can construct a nonce based block wise targeted
opening ccAEAD with three passes in the random oracle model. Furthermore,
if we weaker the confidentiality definition and allow the unopened message part
to be one-way secure instead of semantic secure, we can get a construction of
toccAEAD with only two passes. Note that even for our latter weaker version
construction, its security is still strictly stronger than previous ccAEAD con-
structions in [5, 2].

Scheme Without Opening Targeted Opening Pass

CtE1/CtE2[5] Semantic No 2

CEP [5] Semantic No 2

HFC [2] Semantic No 1

CEP2 [6] Semantic No 2

CEP-AOP1/2 [6] Semantic Semantic 4

TOCE Semantic Semantic 4

bTOCE Semantic Semantic 3

wbTOCE Semantic One-Way 2
Table 1. Comparison for existing schemes. Without Opening and Targeted Opening
denote the security level of the confidentiality without opening and targeted opening
respectively. Pass denotes the complexity of encryption and decryption.

Related work and Comparisons. Grubs et al. [5] initiated a systematic formal
study of message franking, and formalized a cryptographic scheme called com-
pactly committing authenticated encryption with associated data (ccAEAD).
The authors did a thorough examination of existing concrete AEAD schemes
and generic constructions in use. Finally, they also provide a nonce based con-
struction for ccAEAD with two passes, which is as efficient as our weaker confi-
dentiality toccAEAD. Dodis et al. [2] demonstrated a concrete attack that the
Facebook message franking scheme is actually insecure. They also gave an effi-
cient construction of ccAEAD that only involves a one-pass of symmetric key
ciphers. We stress that all constructions do not support a selective opening of
only a part of the plaintext.

Concurrent work. Recently Leontiadis and Vaudeny [6] considered a similar
security definition for the message franking scheme, named after opening privacy.
This property allows only the abusive blocks are opened while the rest non-
abusive blocks of the message remain private. While we further considered other
properties under the targeted open capability. They also gave two constructions
to show feasibility, thus their constructions at least need four passes block cipher
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operations, while our efficient construction reduces it to three and even fewer
when taking the privacy-efficiency trade off.

2 Preliminary and Background

In this section, we explain several definitions of cryptographic primitives neces-
sary as our preliminary.

2.1 Classical cryptographic primitives

Let {0, 1}n denote the bit string with length n. Specifically, {0, 1}∗ denote the
bit string with arbitrary length.

Nonce-based pseudorandom generator. a nonce based pseudo random gen-
erator (PRG) G is a deterministic algorithm that takes as input a key K, a nonce
N , and an output length l. It outputs a string of length l bits. The PRG advan-
tage of an adverary A against G is defined by

AdvprgG (A) =

∣∣∣∣ Pr
K←{0,1}k

[
AG(K,·,·) = 1

]
− Pr

[
AR(·,·) = 1

]∣∣∣∣
where R works as follows. On query N , l it checks if a previous query N ,l′

was submitted. If l′ < l it picks a new random string of length l − l′, appends
it to the previous returned string for N , records it in a table indexed by N ,
and returns the concatenated random string. If no previous query exists, then
it picks a random string of length l, records and then returns it. We call a PRG
adversary A nonce-respecting if all its queries use a unique nonce N . One can
build a nonce-based pseudorandom generator from a block cipher in CTR mode.

Commitment scheme. A commitment scheme with verification CS = (Com,VerC)
consist of two algorithms. Associated to any commitment scheme is an open-
ing space Kf ⊆ {0, 1}∗, and a commitment space C ⊆ {0, 1}∗. The algorithm
Com is randomized and takes as input a M ∈ {0, 1}∗ and outputs a pair
(K,C) ∈ Kf × C or an error symbol ⊥. We assume that Com return ⊥ with
probability one if M /∈ M. The algorithm VerC is deterministic. It takes input
a tuple (K,C,M) ∈ {0, 1}∗ and outputs a bit. We assume that VerC returns 0
if its input (K,C,M) /∈ Kf × C ×M.

– Correctness. A commitment is correct if for allM ∈M, Pr[VerC(Com(M),M) =
1] where the probability is over the coins used by Com

– Binding. A commitment is binding if no (computational or unbounded) ad-
versary can output a tuple (Kc,M,K ′c,M

′, C) where both (Kc,M,C) and
(K ′c,M

′, C) can pass the verification.
– Hiding. A commitment is hiding if a commitment is indistinguishable from

a random bit string while the opening remaining secret.
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2.2 ccAEAD and message franking

In this section, we will revisit the definition of ccAEAD in [5], and how the
kidnapping attack works.

Definition of ccAEAD A committing AEAD scheme CE consists of four algo-
rithms (KeyGen,Enc,Dec,Ver). Let us represent the key space as K ⊆ {0, 1}∗, the
header space as H ⊆ {0, 1}∗, the message space as M ⊆ {0, 1}∗, the ciphertext
space as C ⊆ {0, 1}∗, the opening space as Kf ⊆ {0, 1}∗, and the franking tag
space T ⊆ {0, 1}∗.

– KeyGen: The randomized key generation algorithm KeyGen outputs a secret
key K ∈ K.

– Enc: The randomized algorithm Enc takes a triple (K,H,M) ∈ K ×H×M
as input and outputs a pair (C1, C2) ∈ C ×T . Here C1 is the ciphertext and
C2 is the franking tag.

– Dec: The deterministic algorithm Dec takes a tuple (K,H,C1, C2) ∈ K×H×
C×T as input and outputs a message, opening value pair (M,Kf ) ∈M×Kf
or a distinguished error symbol ⊥.

– Verify: The deterministic algorithm Ver takes a tuple (H,M,Kf , C2) ∈ H ×
M×Kf × T as input and output a bit b. Specifically, we assume that Ver
outputs 0 for (H,M,Kf , C2) /∈ H ×M×Kf × T .

Definition of nessage franking. We notice that in the verification algorithm,
the input includes the entire message.

Alice Server Bob

(C1, C2)← Enc(K,H,M)

(C1, C2)

md← Alice‖Bob‖timestamp
s← C2‖md
a← HMAC(Kserver, s)

C1, C2, a

(M,Kf )← Dec(K,H,C1, C2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Report Abuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(M,Kf ,md, a)

b← Ver(H,M,Kf , C2)

a′ ← HMAC(Kserver, C2‖md)

Report b ∧ (a = a′)
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Since in the report phase, Bob will provide the whole message to the server,
otherwise the server can not proceed the correct verification.

Security definition of ccAEAD. For a secure CE scheme, we require that it
can satisfies the following properties: confidentially, ciphertext integrity, sender
binding and receiver binding.

Specifically, the confidentially can be defined as the difference between the
probability of returning 1 in the game REALACE and RANDACE in Figure 2.2 is
negligible, while the integrity is defined as the probability of returning 1 in the
game RANDACE is negligible.

REALACE RANDACE CTXTACE
K ← KeyGen K ← KeyGen K ← KeyGen; win← 0

b← AEnc,Dec,ChalReal b← AEnc,Dec,ChalRand AEnc,Dec,ChalDec

Return b Return b Return win

Oracle Enc(H,M) Oracle Dec(H,C1, C2) Oracle Dec∗(H,C1, C2)
(C1, C2)← EncK(H,M) If (H,C1, C2) /∈ Y1 Return DecK(H,C1, C2)
Y1 ← Y1 ∪ {(H,C1, C2)} then Return ⊥
Return (C1, C2) (M,Kf )← DecK(H,C1, C2)

Oracle ChalReal(H,M) Oracle ChalRand(H,M) Oracle ChalDec∗(H,C1, C2)
(C1, C2)← EncK(H,M) (C1, C2)← C × T If (H,C1, C2) ∈ Y
Return (C1, C2) Return (C1, C2) Return ⊥

(M,Kf )← DecK(H,C1, C2)
If M 6= ⊥

then win← 1
Return (M,Kf )

Fig. 1. Security Games for confidentially and integrity for ccAEAD

The CE scheme not only require confidentially and ciphertext binding, but
also the sender binding security and the receiver binding security. Sender binding
ensures the sender of a message is bound to the message it actually sent. This
property can prevent the sender to generate a bogus commitment that does not
give the receiver the ability to report the message. It is formal defined as that the
probability of the game s-BINDACE on the left column of returning ture of Figure
2 is negligible. The receiver binding is adopted from the traditional binding
notions for the commitment. It formalizes the intuition that a malicious receiver
should not be able to accuse a non-abusive sender of having said something
malicious, which can be defined as the probability of the game r-BINDACE return
1 on the right column of Figure 2 is negligible.
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s−BINDACE r −BINDACE
(K,H,C1, C2)←$A ((H,M,Kf ), (H ′,M ′,K′f ), C2)←$A
(M ′,Kf )← Dec(K,H,C1, C2) b← Ver(H,M,Kf , C2)
If M ′ = ⊥ then Return false b′ ← Ver(H ′,M ′,K′f , C2)
b← Ver(H,M ′,Kf , C2) If (H,M) = (H ′,M ′) then
If b = 0 then Return false

Return true Return(b = b′ = 1)
Return false

Fig. 2. The security games for the binding properties for ccAEAD.

3 Targeted Opening Compactly Committing AEAD

As briefly discussed in the introduction, a foxy attacker in a message franking
scheme (or the underlying ccAEAD scheme) could leverage the fact that recip-
ients may be reluctant to report an abusive message if his private information
is contained in the session plaintext, when the opening requires the recipient to
reveal the whole piece of the plaintext. The attacker could intentionally embed
private information about the recipient to make abuse reporting functionality es-
sentially nullified. For this reason, we initiate a systematic study about targeted
opening property in a ccAEAD scheme. The targeted opening property allows a
recipient to pick exclusively the abusive message from the plaintext, only reveal-
ing the abusive message to the server as evidence, while keep all other plaintext
still confidential.

A targeted opening compactly committing AEAD scheme (tocc-AEAD for
short, sometimes we also use TOCE) consists of five algorithms, i.e., TOCE =
(KG,Enc,Dec,TOpen,TVer). Let us represent the key space as K ⊆ {0, 1}∗, the
header space as H ⊆ {0, 1}∗, the message space as M ⊆ {0, 1}∗, the ciphertext
space as C ⊆ {0, 1}∗, the opening space as Kf ⊆ {0, 1}∗, the targeted opening
space as S ⊆ {0, 1}∗and the franking tag space T ⊆ {0, 1}∗.

Before we describe the syntax, we first define the position function ϕ as
follows. If M is a bit string with length n, ϕ is a function that take as input the
message M , picks the bits of M with the indices {i1, i2, . . . , ij}, (for each index
chosen from {1, . . . , n}) depending on ϕ’s definition. Without loss of generality,
we denote the identity function I as choosing all the positions from {1, . . . , n},
i.e., I(M) = M . We define the space of all position functions as Φ.

– Key generation: The randomized algorithm KeyGen outputs a secret key
K ∈ K.

– Encryption: The randomized algorithm Enc takes a triple (K,H,M) ∈
K × H ×M as input and outputs a pair (C1, C2) ∈ C × T . Here C1 is the
ciphertext that carries the payload and C2 is the franking tag, and H is the
associated data.
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– Decryption: The deterministic algorithm Dec takes a tuple (K,H,C1, C2) ∈
K × H × C × T as input and outputs a message and opening value pair
(M,Kf ) ∈M×Kf or the error symbol ⊥.

– Targeted open: The deterministic algorithm TOpen takes as input a tuple
(H,M,Kf , C2, ϕ) ∈ H ×M×Kf × T × Φ, and outputs the targeted value
represented as ϕ(M) and the corresponding targeted opening S.

– Verification: The deterministic algorithm TVer takes as input a tuple values
of (H,ϕ(M), S, ϕ, C2) and output a bit b. Specifically, we assume that Ver
outputs 0 if the targeted opening is not valid.

Compactness. Similarly to previous work [5, 2], we also require the tocc-
AEAD scheme to be compact, which means the length of the tag part of the
ciphertext is independent with the message length. This is important for the
server to authenticate the tag and even store the short tag.

With the revised syntax, the message franking protocol would now be mod-
ified correspondingly as follows.

Alice Server Bob

(C1, C2)← Enc(K,H,M)

(C1, C2)

md← Alice‖Bob‖time
s← C2‖md
a← HMAC(Kserver, s)

C1, C2, a

(M,Kf )← Dec(K,H,C1, C2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Report Abuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S ← TOpen(H,M,Kf , C2, ϕ)

(H,ϕ(M), S, ϕ,md, a)

b← TVer(H,ϕ(M), S, ϕ, C2)

a′ ← HMAC(Kserver, C2‖md)

Report b ∧ (a = a′)

Fig. 3. Message franking supporting targeted opening

Correctness. We say a TOCE scheme has decryption correctness if for all
(K,H,M) ∈ K × H ×M it holds that Pr[Dec(K,H,C1, C2) = M ] = 1 where
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the probability is taken over the coins in the key generation Kg and the en-
cryption Enc. We say a target commitment ccAEAD scheme has targeted open
commitment correctness if for all (H,M,S, ϕ) ∈ H ×M×S × Φ it holds that

Pr[TVer(H,ϕ(M), S, ϕ, C2) = 1] = 1

where the probability is taken over the random variables in the following proce-
dure:

1. K ←$KeyGen;
2. (C1, C2)←$EncK(H,M);
3. (M,Kf )← DecK(H,C1, C2);
4. S ← TOpen(H,M,Kf , C2, ϕ).

3.1 Security definitions

In this section, we will give a detailed characterization of the security notions
in the new setting allowing targeted opening (which could be multiple times for
the same plaintext). We note that a TOCE would still satisfy the confidentiality,
ciphertext integrity, sender binding, and receiver binding, but all of them are
influenced by the targeted opening functionality thus we need to adapt carefully.

Message confidentiality. In a TOCE scheme, we require that the messages bits
that have not been opened, remain semantically secure. This requires no single
bit of information will be leaked except the explicitly revealed part. In the TO-
IND game defined in Fig 4 below, we further allow the adversary to have access
to TOpen oracle. To avoid trivial impossibility, we require that for the two
challenge messages, the opened part to be identical. It is straightforward that if
the recipient does not open any bits, the standard IND-CPA security will apply.

Ciphertext integrity. We also require that any adversary without the secret key
can not generate new valid ciphertexts from existing ciphertexts. Thus we define
the TO-CTXT game in Fig 4.

Sender binding ensures the sender of a message is bound to the message it
actually sent. So we define the s-BIND game in Fig 4. Note that a CE scheme
can generically meet sender binding by running the verification algorithm during
the decryption and return ⊥ if the verification returns 0. [2]

Receiver binding is shown in the r-BIND game in Fig 4.

3.2 A generic construction of toccAEAD

Targeted opening commitment scheme. In order to construct the targeted
opening compactly committing AEAD, we first introduce a primitive named
Targeted opening commitment scheme (TOC). The TOC allows to commit an
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TO − INDACE TO − r −BINDACE
K ←$KG ((m,S), (m′, S′), C2, ϕ)←$AEnc,Dec,TOpen

state← AEnc,Dec,TOpen b← TVer(m,S,C2, ϕ)
{H∗, (M0,M1)} ←$A(st) b′ ← TVer(m,S′, C2, ϕ)
(C∗1 , C

∗
2 )← EncK(H∗,Mb) If m = m′ then

for b←$ {0, 1} Return false
b←$AEnc,Dec,TOpen(C∗1 , C

∗
2 , st) Return(b = b′ = 1)

Return b

TO − CTXTACE TO − s−BINDACE
K ←$Kg (K,H,C1, C2, ϕ)←$AEnc,Dec,TOpen

win← false (M ′,Kf )← Dec(K,H,C1, C2)

AEnc,Dec∗,TOpen,ChalDec If M ′ = ⊥ then Return false
Return win S ← TOpen(H,M ′,Kf , C2, ϕ)

b← TVer(H,ϕ(M), S, C2)
If b = 0 then Return true
Else Return false

Oracle Enc(H,M) Oracle Dec(H,C1, C2)
(C1, C2)← EncK(H,M) If (H,C1, C2) /∈ Y1

Y1 ← Y1 ∪ {(H,C1, C2)} then Return ⊥
Return (C1, C2) If (H,C1, C2) = (H∗, C∗1 , C

∗
2 )

then Return ⊥
(M,Kf )← DecK(H,C1, C2)
Return (M,Kf )

Oracle TOpen(H,C1, C2, ϕ) Oracle Dec∗(H,C1, C2)
If (H∗, C∗1 , C

∗
2 ) = (H,C1, C2) then Return DecK(H,C1, C2)

If ϕ(M0) 6= ϕ(M1) then
Return ⊥ Oracle ChalDec(H,C1, C2)

If (H,C1, C2) /∈ Y1 then If (H,C1, C2) ∈ Y1 then
Return ⊥ Return ⊥

(M,Kf )← DecK(H,C1, C2) (M,Kf )← DecK(H,C1, C2)
(ϕ(M), S)← TOpenK(M,Kf , ϕ) If M /∈ ⊥ then
Return (m = ϕ(M), S) win← true

Fig. 4. Security games
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bit string with length ` in such a way that one can later open the commitment of
certain segment with length at specific positions (or arbitrary non-consecutive
substring), so it can open in a way that mi is the i-th bit of the committed
message. 1. Specifically, TOC can be formalized as follows.

– TOC.KeyGen(1λ): Given the security parameter λ, the key generation out-
puts some public parameters pp.

– TOC.Com(pp,M): On input a bit string M and the public parameters pp,
the committing algorithm outputs a commitment string C and the commit
key K.

– TOC.TOpen (pp, C,K, φ,M) : On input the public parameter pp, the com-
mitment C, the commitment key K, the position function φ and the message
M . This target opening algorithm is to produce a opening S which prove
that ϕ(M) consists of the certain bits according to the position function ϕ.

– TOC.TVer(pp, C, S,m, ϕ): The verification algorithm accepts (i.e., it outputs
1) only if S is a valid proof that C was created to a bit string M such that
φ(M) = m.

The basic property of a target opening commitments is that it meets a at-
tractive security requirement named position binding. Informally, this says that
it should be infeasible, for any polynomially bounded adversary having knowl-
edge of pp, to come up with a commitment C and two different valid openings
for the same position i. More formally:

Definition 1 (position binding). A target open commitment satisfies position
binding if for every PPT adversary A and position function ϕ the following
probability (which is taken over all honestly generated parameters) is at most
negligible in λ:

Pr[TOC.TVer(C,m, S, ϕ) = 1∧TOC.TVer(C,m′, S′, ϕ) = 1∧m 6= m′|(C,m,m′, S, S′, ϕ)←$A]

Target open commitments also require the targeted hiding property, i.e., the
bits that have not been opened will remain semantically secure. Informally, a
TOC is hiding if an adversary cannot distinguish whether a commitment was
created to a bit string M or to M ′, even after seeing some openings at certain
bit positions where the two sequences agree.

Definition 2 (targeted hiding). A target open commitment satisfies targeted
hiding if for every PPT adversary A and position function ϕ the following proba-
bility (which is taken over all honestly generated parameters) is at most negligible
in λ:

1 We may view a TOC as a special case of the more general notion of vector com-
mitment [?] or functional commitment [?]. Both of them rely on algebraic structure
and public key operations. We formulate the notion of ToC simply for the sake of
potential efficient constructions that are more suitable for secure messaging.
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IND-CPAAEnc

1 : b←$ {0, 1}
2 : pp←$KGen(1n)

3 : (M0,M1)←$AO(1n, pp)

4 : (C∗,Kf )←$TOC.Com(pp,Mb)

5 : b′ ←$ATOpen(1n, pp, C)

6 : return b = b′

Oracle TOpen(C,ϕ)

1 : if C = C∗

2 : if ϕ(M0) 6= ϕ(M1)

3 : return ⊥
4 : else S ← TOC. TOpen(pp, C,Kf , ϕ,M)

5 : return (S, ϕ(M))

A simple instantiation of TOC. We can give a very simply construction of
TOC that only involves a collision resistant hash.

– TOC.KeyGen(1λ): Given the security parameter λ, the key generation out-
puts some public parameters pp.

– TOC.Com(pp,M): On input a bit string M = m1m2 . . .m` with length `, and
the public parameters pp, the committing algorithm first commits each bit
running the bit commitment algorithm bCom(mi, pp) and outputs a commit-
ment ci and the opening ri. In particular, bCom can be instantiated simply
with a collision resistant hash. Then apply a collision resistant hash H on
the commitments of the message bit to build a Merkle tree using c1, . . . , c`
as leaves, and the resulting root is denoted as C. The algorithm outputs
commitment C and openings (or commitment key) K := r1, . . . , r`.

– TOC.TOpen (pp, C,K, φ,M) : On input the public parameter pp, the com-
mitment C, the commitment key K, the position function φ and the message
M . This target opening algorithm first evaluates ϕ(M), suppose ϕ(M) :=
{mij}, where ij is the index that the corresponding bit to be opened. For
each ij , the algorithm first reveals cij and the corresponding Merkle proof
πij , and the corresponding openings rij

– TOC.TVer(pp, C, S,m, ϕ): For each ij , the verification algorithm first checks
whether the Merkle proof πij is correctly formed, and then checks whether
h(mij , rij ) = cij . If all passes, the algorithm outputs 1, otherwise outputs 0.

Security sketch. The above construction is fairly simple, we only briefly explain
the security here and defer a detailed proof to the full version. Regarding posi-
tion binding, it is fairly easy to see. For an index i, supposed it is opened, the
actual commitment ci with its Merkle proof can be verified. Then following the
property of the underlying bit commitment , the opening of ci can be ensured by
the binding property (or simply the collision resistance of the hash). Regarding
targeted hiding, in the first step, the revealed contains only information about
commitments of the unopened message bits, which are simulatable with nothing,
thus the remaining bits are still semantically secure.

A generic construction of toccAEAD In this section, we will provide a
generic construction of toccAEAD from a TOC and any AEAD. Let us represent
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the key space asKEC ⊆ Σ∗, the header space asHEC ⊆ Σ∗, the message space as
MEC ⊆ Σ∗, the ciphertext space as CEC ⊆ Σ∗, the opening space as Kf ⊆ Σ∗,
the selective opening space as S ⊆ Σ∗and the franking tag space T ⊆ Σ∗.

– Key generation TOCE.Kg(1λ): On input the security parameter λ, use
the key generation algorithm for AEAD scheme AEAD.Kg to generate the
secret key K. Output K as the secret key for the AEAD scheme.

– Encryption TOCE.Enc(M): First, we commit the message M under the
target opening commitment scheme and get the commitment C2 and the
commitment key Kf . Second, We encrypt the C2, message M and the com-
mitment key Kf and get C1 = Enck(C2,M‖Kf ). Finally, the algorithm
outputs the ciphertext (C1, C2).

– DecryptionTOCE.Dec Firstly, use the AEAD decryption Dec to recover
M and Kf . If M = ⊥ then return ⊥. Second, use the target opening al-
gorithm S ← TOpen(C2,M,Kf , I) for the identity position functionI. If
TVer(S,Kf ,M, I) = 0, abort; Else,return (M,Kf )

– Targeted open: If choose to open according the position function ϕ. use the
target opening algorithm S ← TOpen(C2,M,Kf , I) for the identity position
function I.

– Verification: If TVer(C2, S,M, I) = 0, output 0; otherwise output 1.

3.3 Security analysis

Theorem 1. Let CtE = TOCtE[TOC, SE]. Let A be an TO−INDCtE adver-
sary Then we give the adversary B against the TOC scheme and the adversary
C against the AEAD scheme, which satisfy

AdvtoceA,PRF(n) ≤ AdvaeadC (n) + AdvtocB (n)

Proof. We start from the Game 1, which is the real game that the adversary
faces. According to the confidentiality of the AEAD, we can replace the encryp-
tion result of the AEAD to the encryption of random message, then we get the
Game 2.

Next, we will reduce the hiding property of the target opening commitment
to Game 2. Precisely, given the adversary A to attack the Game 2, we can
construct an adversary B to attack the hiding property of the TOC scheme. B
works as follows. He first generates the secret key K for AEAD, provide public
parameter forA, then answer the oracles forA. Note that B can easily answer the
Enc oracle by generate the commitment by himself as C1 and encrypt a random
message by K as C2. B answer the decryption oracle by search (H,M1,M2) in
the list Y1 and find the corresponding (M,Kf ). When A output the message pair
(M1,M2), B provide same message pair to the challenger. When the challenger
reply the commitment C∗, B output the challenge ciphertext (C∗1 , C

∗
2 ) to adv

where C∗1 is the AEAD encryption of H and a random message M and C∗2 is
the commitment.
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To answer the oracle TOpen, given (H,C1, C2, φ), if (H,C1, C2) is the chal-
lenge ciphertext, B first check whether ϕ(M0) 6= ϕ(M1), then use the (C2, ϕ)
to ask the TOC.TOpen oracle and output S, ϕ(M), otherwise return ⊥. If
(H,C1, C2) is not the challenge ciphertext, Bfirst check whether (H,C1, C2) is
in Y∞. If not, return ⊥. Otherwise Bcan find corresponding (M,Kf ) and com-
pute the TOC.TOpen by himself.

Finally, we get the result

AdvtoceA,PRF(n) ≤ AdvaeadC (n) + AdvtocB (n)

Theorem 2. Let CtE = TOCtE[TOC, SE]. Let A be an TO − CTXTCtE ad-
versary making at most q queries to its oracles. Then we give adversaries B.

Proof. We have the TO-CTXT game as follows. First of all, we can transform
the TO-CTXT game to the game G1. In game G1, the only difference is that we
replace the oracle Dec∗ with the oracle Dec′.

Game G1

K ← AEAD.Kg

win← false

AEnc,Dec,SOpen

return win

Oracle Enc(H,M)

(C2,Kf ) = TOC.Com(H,M)

C1 ← AEAD.Enck(C2,M‖Kf )

Y1 ← Y1 ∪ {H,C1, C2}
D[H,C1, C2]← (M,Kf )

Return (H,C1, C2)

Oracle Dec∗(H,C1, C2)

if D[H,C1, C2] 6= ⊥ then

return D[H,C1, C2]

else if ⊥ ← AEAD.Dec(H,C1, C2) then

return ⊥
else (M,Kf )← AEAD.Dec(H,C1, C2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

return ⊥
else win← true

return (M,Kf )

Oracle TOpen(H,C1, C2, ϕ)

if D(H,C1, C2) 6= ⊥
return (M,Kf )← D(H,C1, C2)

else (M,Kf )← AEAD.DecK(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0 then

return ⊥
else S ← TOpen(C2,M,Kf , ϕ)

win← true

return (S, ϕ(M))

Oracle ChalDec(H,C1, C2)

if (H,C1, C2) ∈ Y1

return ⊥
if ⊥ ← AEAD.Dec(H,M1,M2)

return ⊥
else (M,Kf )← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

return ⊥
if M 6= ⊥
win← true

else return (M,Kf )

15



Game1(n)

K ← AEAD.Kg

(H,M1,M2, state)← AEnc,Dec,SOpen

(C∗2 ,Kf ) = TOC.Com(H‖Mb)

C∗1 ← AEAD.Enck(C∗2 ,Mb‖Kf )

b′ ← AEnc,Dec,SOpen(state, C∗1 , C
∗
2 )

Return b′ = b

Oracle Enc(H,M)

(C2,Kf ) = TOC.Com(H‖M)

C1 ← AEAD.Enck(C2, {0, 1}|M‖Kf |)

Y1 ← Y1 ∪ {H,C1, C2}
Return (H,C1, C2)

Oracle Dec(H,C1, C2)

if (H,C1, C2) /∈ Y1

then return ⊥
(M,Kf )← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

then return ⊥

Oracle TOpen(H,C1, C2, ϕ)

if (H∗, C∗1 , C
∗
2 ) = (H,C1, C2) then

if ϕ(M0) 6= ϕ(M1)

then return ⊥
if (H,C1, C2) /∈ Y1

then return ⊥
(M,Kf )← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

then return ⊥
S ← TOpen(C2,M,Kf , ϕ)

return S, ϕ(M)

Game2(n)

K ← AEAD.Kg

(H,M1,M2, state)← AEnc,Dec,SOpen

(C∗2 ,Kf ) = TOC.Com(H‖Mb)

C∗1 ← AEAD.Enck(C∗2 , {0, 1}|Mb‖Kf |)

b′ ← AEnc,Dec,SOpen(state, C∗1 , C
∗
2 )

return b′ = b

Oracle Enc(H,M)

(C2,Kf ) = TOC.Com(H‖M)

C1 ← AEAD.Enck(C2, {0, 1}|M‖Kf |)

Y1 ← Y1 ∪ {H,C1, C2}
return (H,C1, C2)

Oracle Dec(H,C1, C2)

if (H,C1, C2) /∈ Y1

then return ⊥
Search (H,M1,M2) in Y1 and find (M,Kf )

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

then return ⊥

Oracle TOpen(H,C1, C2, ϕ)

if (H∗, C∗1 , C
∗
2 ) = (H,C1, C2) then

if ϕ(M0) 6= ϕ(M1)

then return ⊥
if (H,C1, C2) /∈ Y1

then return ⊥
Search (H,C1, C2) in Y1 and find (M,Kf )

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

then return ⊥
S ← TOpen(C2,M,Kf , ϕ)

return S, ϕ(M)

The Confidentiality of AEAD
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decryption of previously encrypted value in oracle Dec and TOpen is done
by the table lookup. If a ciphertext is submitted to oracle Dec that can be
successfully decrypted but not present in the table, the flag win will be setted to
true. Then we have that

AdvTO−CTXTTOCtE (A) ≤ Pr[GA1 ⇒ true]

Note that for win to be set with a query (H,C1, C2), it must be that no
previous encryption query (H,M) for someM returned (C1, C2). Let the winning
query be on the values (H∗, C∗1 , C

∗
2 ). We partition the probability of setting win

into two cases, either (C∗1 , C
∗
2 ) is distinct from all encryption outputs, or (C∗1 , C

∗
2 )

is one of the encryption outputs and H∗ is not the header for the encryption
query that returned C∗1 , C

∗
2 . Let winH be the event that A wins with a query

where H∗ is a different header, and winC be the event that A wins with a query
where (C∗1 , C

∗
2 ) is distinct. Then

Pr[GA0 ⇒ true ≤ Pr[winH ] + Pr[winC ]

We’ll first bound Pr[winC ]. In this case we will construct an adversary B in
the CTXT game of AEAD. This adversary simulates G0 for A, as follows. When
A queries (H,M) to Enc, B first generates a targeted opening commitment and
opening Kf , C2. Then, B queries enc(C2,M‖Kf ). It stores the result in a table,
then outputs C1, C2 to A. It simulates Dec∗, TOpen and ChalDec queries
that are outputs of previous Enc queries by consulting its table and outputting
either the proper value (for Dec and TOpen) or ⊥ (for ChalDec). When
Aqueries Dec∗, TOpen and ChalDec with a value not in the table, B submits
(C2, C1) as a forgery to its decryption oracle, and use the returned results in the
further calculations. Our Bperfectly simulates G0 for A. Since A’s query must
be a successful forgery and B will break CTXT of AEAD in this reduction with
probability at least Pr[winC ], i.e., Pr[winC ] ≤ AdvCTXTAEAD(B).

To bound Pr[winH ] and complete the proof we can build another reduction
using a tBINDTOC adversary C. The adversary C simulates A’s view of G0

as Bdid, except Cgenerates a random encryption key and computes AEAD.Enc
and AEAD.Dec internally. When A makes a query (H,C1, C2) to Dec∗, TOpen
or ChalDec where H is not the header input to the encryption query that
output C1, C2, Cfetches from its stored values the message M and opening Kf

corresponding to C2, as well as H0, the header part of the encryption query
that produced C1, C2. In its game Coutputs ((H,M,Kf ), (H0,M,Kf ), C2). The
environment of G0 is perfectly simulated by C. Since in this case the winning
query must cause TOC.V er output 1. In this case, Ahas broken binding property
of the commitment.
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TO-CTXT

K ← AEAD.Kg

win← false

AEnc,Dec,SOpen

return win

Oracle Enc(H,M)

(C2,Kf ) = TOC.Com(H‖M)

C1 ← AEAD.Enck(C2,M‖Kf )

Y1 ← Y1 ∪ {H,C1, C2}
Return (H,C1, C2)

Oracle Dec∗(H,C1, C2)

if ⊥ ← AEAD.Dec(H,M1,M2)

return ⊥
else (M,Kf )← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

return ⊥
else return (M,Kf )

Oracle TOpen(H,C1, C2, ϕ)

if ⊥ ← AEAD.Dec(H,M1,M2) then

return ⊥
else (M,Kf )← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0 then

return ⊥
S ← TOpen(C2,M,Kf , ϕ)

return (S, ϕ(M))

Oracle ChalDec∗(H,C1, C2)

if (H,C1, C2) ∈ Y1

return ⊥
if ⊥ ← AEAD.Dec(H,M1,M2)

return ⊥
else (M,Kf )← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

return ⊥
if M 6= ⊥

win← true

else return (M,Kf )

3.4 An efficient instantiation

In this section, we will provide an efficient instantiation for our targeted open
commitment.

– TOC.Com(M) : Given the message M as the input, parse M into a sequence
of bits m1, . . . ,ml. Then use the pseudo-random generator G with seed sd
to generate a sequence of r1, . . . , rl ∈ {0, 1}λ, and compute hi = H(ri,mi)
for i = 1, . . . , l. Then use the Merkle tree to hash all hi together and get the
final commitment C. The corresponding opening is Kf = sd.

– TOC.TOpen(M, sd, φ): Given the seed sd, we can generate the random num-
ber r1, . . . , rl. Then we can easily compute each hi from ri and mi . Suppose
that the position function ϕ denotes to targeted open the bitsmi1 ,mi2 , . . . ,min

while conceal the rest bits mj1 , . . . ,mjm , so the targeted opening S should
be the values hj for j ∈ {j1, . . . , jm} and (ri,mi) for i ∈ {i1, . . . , in}.

– TOC.TVer(C, S, ϕ(M)): Given the targeted opening S as hj for j ∈ {j1, . . . , jm}
and (ri,mi) for i ∈ {i1, . . . , in}, the verifier compute hi = H(ri,mi) and
gather all hi for i = 1, . . . , l. Then verifier checks whether H(h1, . . . , hl) = C.
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The targeted hiding property can easily obtain if we model the hash function
as the random oracle. Also, the targeted binding property can easily obtain from
the collision resistance of the function H.

4 More Efficient TOCE

Our generic construction above can achieve targeted opening in an ideal case,
i.e., the receiver can choose arbitrary bit to open, thus requires cryptographic
operations such as committing, to be called on each bit of the message. Such
kind of selective capability is unnecessarily strong. For example, when the abu-
sive message is an improper picture, the revealed message would not need the
precision to bit. Even the abusive message is simply some texts, a meaningful
sentence is also composed of multiple consecutive characters which are at least
hundreds of bits. Moreover, such a method incurs large overhead when the mes-
sage size is large, for instance, when one user is sending a picture, or a short
video via secure messaging, applying the above construction may require a large
number of hash operations.

In this section, we seek for more efficient constructions of toccAEAD with a
slightly weaker targeted open capability which is still useful in many settings.
In particular, as all AEAD schemes apply some ciphers on message blocks with
size λ bits (λ could be 256 for example), we will restrict the targeted opening
at the block level: plaintext M is now divided into m1, . . . ,m`, each mi is with
length λ. During the opening phase, the receiver will reveal the message blocks
according to the indices, i.e., {mj} = ϕ(M,λ), now the selection function ϕ
takes an extra input of message block size λ, and the indices are chosen by the
recipient from {1, . . . , `}, and ` = |M |/λ.

There are two reasons to explore in depth such a block-wise targeted open-
ing: (1) the recipient would still be able to choose some of the blocks to reveal
to report abusive messages. If a block of 256 bits (just 32 English characters) al-
ready contains substantial amount of personal information, there won’t be much
room for abusive messages; even if the recipient chooses not to reveal this block,
the missing tiny piece of information in this hidden block would not influence
the abuse reporting much. To put it another way, in a revealed block of 256 bits
chosen by the recipient, the leaked information excluding the abusive message
would be insignificant to him. (2) trivial application of the generic construc-
tion to message blocks still has an large overhead, thus more specially designed
constructions are needed.

To be more precise about the overhead, one efficiency metric we consider is
the pass defined in [2], which characterizes the ratio of the number of calls of
symmetric key cryptographic building block such as a cipher (or hash) needed for
a ccAEAD over the number of calls for a regular AEAD scheme. In particular,
in [2], the authors gave an elegant construction of ccAEAD that only requires
one pass! The intuition is to chain the ciphertext together so that the binding
properties are generated along the way of encryption.
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Inefficiency of toccAEAD constructions. The toccAEAD of the previous
generic construction can be bit-wise targeted opening. Essentially, it can also
be trivially extended to blockwise targeted open. However, since the pseudo
random generator need at least one path to generate enough randomness, the
TOC scheme need at least two pass to compute the commitment and the AEAD
scheme need at least one pass to encrypt, the generic construction of toccAEAD
need at least four pass to compute encryption. Obviously, it is far from one desires
for practical use, and we need to design more efficient specific constructions for
block wise targeted opening.

4.1 Block-wise targeted open ccAEAD definitions

Now let us define the block-wise toccAEAD. The syntax is essentially the same as
regular toccAEAD, with the only exception that each message bit now becomes
a message block with length λ.

Targeted opening, compactness, and using few passes seem to be antagonistic
to each other. The cascaded construction in [2] achieved both compactness and
using only one pass; however, the messages are all chained together, verifying mi

requires knowledge of m−1, thus inherently difficult to enable targeted opening.
On the other hand, processing each data block separately to enable targeted
opening, then different randomness seems required for each message block. Gen-
erating those randomness already somehow requires one pass of crypto calls.
Together with the encryption itself, and the commitment, this already causes
three passes. (If we need further compress all the commitments for compactness,
requires one more pass such as the trivial instantiation of our generic construc-
tion). Those attempts motivate us to consider a potential weaker notion, and
seek for a non-black box construction to reduce the number of passes needed.

Nonce-based scheme. The above generic construction of targeted opening
committing AEAD is randomized. However, cryptographers have advocated that
modern AEAD schemes should be designed as nonce-based instead. Thus the
internal randomness during the encryption should be replaced with an input
nonce, and the security should hold as long as the nonce never repeats throughout
the course of encrypting messages with a particular key.

Formally, a nonce-based block-wise targeted opening committing AEAD is
a following tuple of algorithms (KeyGen,Enc,Dec,TOpen,TVer), which is similar
to the previous definition. In addition to the other sets, we associate to any
nbTOCE scheme a nonce space N ∈ {0, 1}∗. We also define the block-wise
position function ϕ as follows. If M is a bit string with length n2, ϕt is a function
that divides M into l = n/t blocks m1, . . . ,ml of size t, then picks a subset of the
blocks mi with the indices i1, i2, . . . , ij depending on ϕt’s definition. The space
of all the block-wise position functions is Φt.

2 For simplicity, we assume that l can be divided by t, otherwise we can pad M with
bits zeros.
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– Key generation: The randomized algorithm KeyGen outputs a secret key
K ∈ K.

– Encryption: The deterministic algorithm Enc takes a triple (K,N,H,M) ∈
K ×N ×H ×M as input and outputs a pair (C1, C2) ∈ C × T . Here C1 is
the ciphertext that carries the payload and C2 is the franking tag.

– Decryption: The deterministic algorithm Dec takes a tuple (K,N,H,C1, C2) ∈
K×N ×H×C × T as input and outputs a message and opening value pair
(M,Kf ) ∈M×Kf .

– Targeted open: The deterministic algorithm TOpen takes as input a tuple
(H,M,Kf , C2, ϕt) ∈ H×M×Kf × T × Φt, the targeted value represented
as ϕt(M), and the corresponding opening S.

– Verification: The deterministic algorithm TVer takes as input a tuple values
of (H,ϕt(M), S, C2, , ϕt) ∈ H × ϕt(M) × S × T × Φt and output a bit b.
Specifically, we assume that TVer outputs 0 if the targeted opening is not
valid.

Blockwise toccAEAD security definitions. We weaken the confidentiality
after opening part of the message blocks of a toccAEAD, which enables us to
search for a more efficient construction that uses fewer passes. There are multi-
ple ways of weakening on confidentiality of the remaining message blocks. The
first one requires that a message block that has not been opened, will remain
semantically secure, if the message block is unpredictable, i.e., generated from a
distribution that has sufficient entropy. The second one requires that a message
block that has not been opened, will remain one way secure, i.e., adversary who
sees the opening of some other message blocks, cannot recover the remaining un-
opened ones. Clearly, the first definition is strictly stronger, so we adopt the first
weakened definition. We emphasize here that all messages satisfy the standard
semantic security if no message blocks are revealed by the receiver.

Formally, we define the security games for the nonce based block wise targeted
opening ccAEAD in Figure 5. Note that the adversary never repeat the same
N across a pair of encryption queries, and the challenge nonce N∗ also will not
be queried for the Enc oracle. To achieve more efficient construction, we also
provide a more weaker notion of confidentiality as follows:

4.2 Block wise toccAEAD construction

We now proceed to describe our nonce based block-wise targeted open ccAEAD
construction. Let G is a nonce-based pseudo-random generator. H is a collision
resistant hash function which can be modelized as a random oracle. Integer t
denotes the block size of the message (e.g., 256 for popular ciphers). So the
scheme is as follows.

– bTOCE.KeyGen(1λ): Generate a seed sd for the pseudo random generator G.
The secret key K is sd.

– bTOCE.Enc(N,H,K,M): Given the nonce N , the secret key K = sd and
the message M ∈ {0, 1}lt, do the following steps:
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TO − nINDAnTOCE TO − r − nBINDAnTOCE
K ←$KeyGen ((m,S), (m′, S′), C2, ϕ)←$AEnc,Dec,TOpen

st1 ← AEnc,Dec,TOpen b← TVer(m,S,C2, ϕ)
{N∗, H∗, (M0,M1), st2} ←$A(st1) b′ ← TVer(m,S′, C2, ϕ)
b←$ {0, 1} If m = m′ then
(C∗1 , C

∗
2 )← Enc(K,N∗, H∗,Mb) Return false

b←$AEnc,Dec,TOpen(C∗1 , C
∗
2 , st2) Return(b = b′ = 1)

Return b

TO − nCTXTACE TO − s− nBINDACE
K ←$KeyGen (K,H,C1, C2, ϕ)←$AEnc,Dec,TOpen

win← false (M ′,Kf )← Dec(K,N,H,C1, C2)

AEnc,Dec∗,TOpen,ChalDec If M ′ = ⊥ then Return false
Return win S ← TOpen(H,M ′,Kf , C2, ϕ)

b← TVer(H,ϕ(M ′), S, C2)
If b = 0 then Return true
Else Return false

Oracle Enc(N,H,M) Oracle Dec(N,H,C1, C2)
(C1, C2)← Enc(K,N,H,M) If (N,H,C1, C2) /∈ Y1

Y1 ← Y1 ∪ {(N,H,C1, C2)} then Return ⊥
Return (C1, C2) If (N,H,C1, C2) = (N∗, H∗, C∗1 , C

∗
2 )

then Return ⊥
(M,Kf )← Dec(K,N,H,C1, C2)
Return (M,Kf )

Oracle TOpen(N,H,C1, C2, ϕ) Oracle Dec∗(N,H,C1, C2)
If (H∗, C∗1 , C

∗
2 ) = (H,C1, C2) then Return Dec(K,N,H,C1, C2)

If ϕ(M0) 6= ϕ(M1) then
Return ⊥ Oracle ChalDec(N,H,C1, C2)

If (N,H,C1, C2) /∈ Y1 then If (N,H,C1, C2) ∈ Y1 then
Return ⊥ Return ⊥

(M,Kf )← Dec(K,N,H,C1, C2) (M,Kf )← Dec(K,N,H,C1, C2)
(ϕ(M), S)← TOpen(H,M,Kf , C2, ϕ) If M /∈ ⊥ then
Return (m = ϕ(M), S) win← true

Return (M,Kf )

Fig. 5. The security games for the nonce based block wise targeted opening ccAEAD.
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1. Use the pseudorandom generator G with the seed sd and the nonce N
to generate bits strings R with the size of lt, i.e.,R = (r1, . . . , r`) ←
G(sd,N, lt) where each ri ∈ {0, 1}t.

2. Divide each M into ` blocks m1, . . . ,m`, and every block has t bits.
Then use one time pad to encrypt each message mi, i.e., Ci1 = ri ⊕mi,
for i = 1, . . . , `;

3. Hash each ri together with mi and get hi = H(ri,mi);
4. Compute the final tag C2 = H(H,h1, . . . , hl).

The finally output ciphertext is C1 = {Ci1}li=1 and the tag C2.
– bTOCE.Dec(K,N,H, (C1, C2)): Firstly, use seed K = sd to recover R =

(r1, . . . , r`). Then one can getmi = Ci1⊕ri and hi = H(mi, ri) for i = 1, . . . , l.
If C2 = H(H,h1, . . . , hl), output the message M = {m1, . . . ,ml} and the
opening Kf = R = {r1, . . . , rl}, otherwise output ⊥.

– bTOCE.TOpen(H,M,R, ϕt): If the position function ϕt denotes to open the
blocks with index i1, . . . , ij , one just compute each hi = H(ri,mi) and output
the targeted opening S =

{
{hi}i/∈{i1,...,ij}, {ri}i∈{i1,...,ij}

}
and the opened

messages ϕt(M) = {mi}i∈{i1,...,ij}.
– bTOCE.TVer(H,ϕt(M), S, C2, ϕt): If the position function ϕt denotes to open

the blocks with index i1, . . . , ij , one parse the targeted opening S as {hi}i/∈{i1,...,ij}
and {ri}i∈{i1,...,ij} and ϕt(M) as {mi}i∈{i1,...,ij}. Then compute hi = H(ri,mi)
for i ∈ {i1, . . . , ij} and check whether C2 = H(H,h1, . . . , hl). If the check is
passed, output 1 otherwise output 0.

Comparison. The main advantage of bTOCE is efficiency. Note that bTOCE
only need tree pass, while the generic construction need at least four passes.

4.3 Security Analysis

Next we will provide a security analysis for our bTOCE scheme.

Confidentiality. The confidentiality of the scheme can be seen from the fol-
lowing theorem.

Theorem 3 (Confidentiality). Let G is a nonce-based pseudo-random genera-
tor. H is a collision resistant hash function which can be modelized as a random
oracle. Let A be the TO-nIND adversary, and B be the adversary against the
pseudo random generator G.

AdvATO-nIND ≤ negl(n) + AdvBG

Proof. Let G0 = TO-nINDAbTOCE . Firstly, we replace the pseudo random string
R with truly random string and obtain game G1 in Figure 6. Hence we have

AdvATO-nIND ≤ AdvAG1
+ AdvBG

where B is the adversary to attack the PRG G.
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Secondly, we replace each hi in game G1 with newly generated random string
according to the random oracle model and get Game G2. Hence we have

AdvAG1
≤ AdvAG2

.

Since C1 and C2 in Game G2 are both independent of the message Mb, we have

AdvAG2
≤ negl(n)

Game G1

K ←$KeyGen

st1 ← AEnc,Dec,TOpen(1λ)

{N∗, H∗, (M0,M1), st2} ←$A(st1)

b←$ {0, 1}
(H∗, C∗1 , C

∗
2 )← EncK(N∗, H∗,Mb)

b′ ←$AEnc,Dec,TOpen(C∗1 , C
∗
2 , st2)

return b = b′

Oracle Enc(sd,N,H,M)

R = (r1, . . . , rl)←$ {0, 1}lt

for i from 1 to n

Ci1 = mi ⊕ ri
hi = H(ri,mi)

C1 = {Ci1}ni=1

C2 = H(H,h1, . . . , hl)

Y1 ← Y1 ∪ {N,H,C1, C2}
D[N,H,C1, C2]← (M,Kf )

Return (N,H,C1, C2)

Oracle Dec(sd,N,H,C1, C2)

if D[N,H,C1, C2] 6= ⊥ then

return D[N,H,C1, C2]

else return ⊥

Oracle TOpen(sd,N,H,C1, C2, ϕ)

if D[N,H,C1, C2] = ⊥ then

return ⊥
else (M,R)← D[N,H,C1, C2]

parse M as (m1, . . . ,ml)

parse R as (r1, . . . , rl)

ϕ corresponds to positions (i1, . . . , ij)

for j from 1 to s

hij = H(rij ,mij )

S =
(
{hi}i∈{l}/{i1,...,ij}, {ri}i∈{i1,...,ij}

)
return (S, ϕ(M))

Fig. 6. Game G1 for confidentiality proof

ut

Integrity. Next we will show the integrity of our bTOCE scheme.

Lemma 1. Let H be a collision resistant hash function. M = (m1, . . . ,ml) ∈
{0, 1}lλ and R = (r1, . . . , rl) ∈ {0, 1}lλ. So the function

F(H,M,R) = H(H,H(r1,m1), . . . ,H(rl,ml)) (1)

is a MAC scheme with respect to the key R and the message (H,M). Specifically,
F is collision resistance and multi-user unforgeable under chosen-message attack.
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Theorem 4 (Integrity). Let A be the TO-nCTXT adversary, B be the ad-
versary against the collision resistance of F defined in (1), C be the multi-user
unforgeability under chosen-message attack (MU-UF-CMA) for F .

AdvbTOCETO-nCTXT(A) ≤ AdvCRF (B) + AdvMU−UF−CMA
F (C)

Proof. Let G0 = TO-nCTXTAbTOCE . We modify game G0 to obtain game G1.
The differences are that:

1. queries to Dec∗ on tuples (N,H,C1, C2) for which there was a previous
query to Enc(N,H,M) that returned C1,C2 simply reply with (M) without
bothering to do decryption;

2. we set win to true if any other query to Dec successfully decrypts.

The first difference is without loss, since the Dec∗ in G1 would have anyway
returned (M,S). The second difference only increases the adversary’s probability
of success. Thus

Pr[GA0 )⇒ 1] ≤ Pr[GA1 ⇒ 1].

We now bound A’s probability of success in G1 by its ability to forge against
the MAC F in the equation (1). The MU−UF−CMA adversary C can simulate
the environment Aby using the Tag and Ver oracles to perform tagging and
verification via F .

We need to show that anytime win would have been set in G2 for ciphertext
(N∗, H∗, C∗1 , C

∗
2 ), the corresponding query to Ver(N∗, (H∗,M∗), C∗2 ) is a suc-

cessful forgery for the MAC scheme F ,i.e., C∗2 is not generated from the oracle
Tag. To proof this claim, we need to consider two scenarios. The first scenario
is that C∗2 did not exist in previous answers of Enc queries, so obviously the
C∗2 can not be the answer of the Tag oracle and (N∗, (H∗,M∗), C∗2 ) is a suc-
cessful MAC forgery. The second scenario is that C∗2 is included in previous
answers of Enc which corresponding input is (N,H,M). Let the return from
the corresponding Enc query on inputs (N,H,M) be the pair (N,H,C1, C

∗
2 ).

Let the ciphertext (N∗, H∗, C∗1 , C
∗
2 ) is decrypted to the message M∗. According

to the collision resistance of F , (N,H,M) = (N∗, H∗,M∗) with the probabil-
ity 1 − AdvcsF . Then since the encryption algorithm is deterministic, C1 = C∗1
due to the same input (N∗, H∗,M∗) of the Enc query. This is contradict to
our assumption which states (N∗, H∗, C∗1 , C

∗
2 ) is not generate from Enc oracle,

because in the second scenario the Ahave queried the Enc oracle with the point
(N,H,M) = (N∗, H∗,M∗). Hence we have

Pr[GA1 ⇒ 1] ≤ AdvCRF (B) + AdvMU−UF−CMA
F (C)

ut

Receiver Binding. We have the following theorem.

Theorem 5. Let A be the TO-nCTXT adversary. There is an adversary against
the collision resistance of the hash function H.

AdvbTOCETO-nCTXT(A) ≤ l ·AdvCRH (B)
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CTag,Ver

sd← {0, 1}λ

win← false

AEnc,Dec,SOpen

return win

Oracle EncK(N,H,M)

R = (r1, . . . , rl)←$G(sd,N, l · t)
for i from 1 to n

Ci1 = mi ⊕ ri
C1 = {Ci1}ni=1

C2 = Tag(N, (H,M))

Y1 ← Y1 ∪ {H,C1, C2}
D[N,H,C1, C2]← (M,R)

Return (N,H,C1, C2)

Oracle Dec∗(N,H,C1, C2)

if D[N,H,C1, C2] 6= ⊥ then

return D[N,H,C1, C2]

R = (r1, . . . , rl)← G(sd,N, l · t)
for i from 1 to n

mi = Cii ⊕ ri
if 0←$Ver(N,C2, (H,M))

return ⊥
else win← true

return M = (m1, . . . ,ml) and R

Oracle TOpen(sd,N,H,C1, C2, ϕt)

if D[N,H,C1, C2] 6= ⊥ then

(M,R)← D[N,H,C1, C2]

R = (r1, . . . , rl)← G(sd,N, l · t)
ϕt corresponds to positions (i1, . . . , is)

for j from 1 to s

hij = H(rij ,mij )

S =
(
{hi}i∈{l}/{i1,...,ij}, {ri}i∈{i1,...,ij}

)
return (S, ϕ(M))

Oracle ChalDec(sd,N,H,C1, C2)

if (N,H,C1, C2) ∈ Y1

return ⊥
R = (r1, . . . , rl)← G(sd,N, lt)

for i from 1 to n

mi = Cii ⊕ ri
if 0← Ver(N,C2, (H,M))

return ⊥
else win← true

return (M,R)
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Game G1

K ← KeyGen

win← false

AEnc,Dec,ChalDec,TOpen

return win

Oracle Enc(sd,N,H,M)

R = (r1, . . . , rl)←$G(sd,N, lλ)

for i from 1 to n

Ci1 = mi ⊕ ri
hi = H(ri,mi)

C1 = {Ci1}ni=1

C2 = H(H,h1, . . . , hl)

Y1 ← Y1 ∪ {N,H,C1, C2}
D[N,H,C1, C2]← (M,R)

Return (H,C1, C2)

Oracle Dec∗(sd,N,H,C1, C2)

if D[N,H,C1, C2] 6= ⊥ then

return D[N,H,C1, C2]

else R = (r1, . . . , rl)← G(sd,N, lλ)

for i from 1 to n

mi = Cii ⊕ ri
hi = H(ri,mi)

if C2 6= H(H,h1, . . . , hl)

return ⊥
else win← true

return M = (m1, . . . ,ml) and R

Oracle TOpen(sd,N,H,C1, C2, ϕ)

if D[N,H,C1, C2] 6= ⊥ then

(M,R)← D[N,H,C1, C2]

else R = (r1, . . . , rl)← G(sd,N, lλ)

for i from 1 to n

mi = Cii ⊕ ri
hi = H(ri,mi)

if C2 6= H(H,h1, . . . , hl)

return ⊥
ϕ corresponds to positions (i1, . . . , is)

else win← true

S =
(
{hi}i∈{l}/{i1,...,ij}, {ri}i∈{i1,...,ij}

)
return (S, ϕ(M))

Oracle ChalDec(sd,H,C1, C2)

if (H,C1, C2) ∈ Y1

return ⊥
r1, . . . , rl ← G(sd,N, lλ)

for i from 1 to n

mi = Cii ⊕ ri
hi = H(ri,mi)

if C2 6= H(H,h1, . . . , hl)

return ⊥
else win← true

return (M, sd)

Fig. 7. Game G1 for integrity proof
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4.4 Construction with weaker confidentiality after opening

Definition 3 (Weak confidentiality after opening). We define two security
games for weaker confidentiality as Figure 8, where the oracle Enc and Dec are
as same as that in the previous games in Figure 5. Formally, We say a nonce
based block wise targeted opening ccAEAD scheme satisfies weaker confidentiality
if it satisfies:

– the standard IND-CPA security without opening, i.e.,

Pr[IND-CPAAnTOCE ⇒ 1] ≤ negl(λ);

– the targeted opening one-way security, i.e.,

Pr[One-WayAnTOCE ⇒ 1] ≤ negl(λ).

IND-CPAAnTOCE

K ←$KeyGen

st1 ← AEnc,Dec(1λ)

{N∗, H∗, (M0,M1), st2} ←$A(st1)

b←$ {0, 1}
(H∗, C∗1 , C

∗
2 )← EncK(N∗, H∗,Mb)

b′ ←$AEnc,Dec(C∗1 , C
∗
2 , st2)

return b = b′

One-WayAnTOCE

K ←$KeyGen

(N∗, H∗,M∗)←$N ×H×M
(N∗, H∗, C∗1 , C

∗
2 )← Enc(K,N∗, H∗,M∗)

M ′ ←$AEnc,Dec,TOpen∗
(N∗, H∗, C∗1 , C

∗
2 )

return M = M ′

Oracle TOpen∗(N,H,C1, C2, ϕ)

if (N,H,M) = (N∗, H∗,M∗)

if ϕ = I return ⊥
if (N,H,C1, C2) ∈ Y1 return ⊥
(M,Kf )← Dec(K,N,H,C1, C2)

(ϕ(M), S)← TOpen(H,M,Kf , C2, ϕ)

return (m = ϕ(M), S)

Fig. 8. The security games for weaker confidentiality

Next we will introduce a more efficient construction but with weaker confi-
dentiality. Similarly, H is a hash function and G is a pseudo random generator.

– bTOCE.KeyGen(1λ): Generate a seed sd for the pseudo random generator G.
The secret key K is sd.

– bTOCE.Enc(N,H,K,M): Given the nonce N , the secret key K = sd and
the message M ∈ {0, 1}lt, do the following steps:
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1. Use the pseudorandom generator G with the seed sd and the nonce N
to generate bits strings R with the size of lt, i.e.,R = (r0, r1, . . . , r`) ←
G(sd,N, (l + 1)t) where each ri ∈ {0, 1}t.

2. Divide each M into ` blocks m1, . . . ,m`, and every block has t bits.
Then use one time pad to encrypt each message mi, i.e., Ci1 = ri ⊕mi,
for i = 1, . . . , `;

3. Hash each ri together with mi and get hi = H(mi);
4. Compute the final tag C2 = H(H,h1, . . . , hl, r0).

The finally output ciphertext is C1 = {Ci1}li=1 and the tag C2.
– bTOCE.Dec(K,N,H, (C1, C2)): Firstly, use seed K = sd to recover R =

(r1, . . . , r`). Then one can get mi = Ci1 ⊕ ri and hi = H(mi) for i = 1, . . . , l.
If C2 = H(H,h1, . . . , hl, r0), output the message M = {m1, . . . ,ml} and the
opening Kf = R = {r1, . . . , rl}, otherwise output ⊥.

– bTOCE.TOpen(H,M,R, ϕt): If the position function ϕt denotes to open the
blocks with index i1, . . . , ij , one just compute each hi = H(mi) and output
the targeted opening S =

{
{hi}i/∈{i1,...,ij}, r0

}
and the opened messages

ϕt(M) = {mi}i∈{i1,...,ij}.
– bTOCE.TVer(H,ϕt(M), S, C2, ϕt): If the position function ϕt denotes to open

the blocks with index i1, . . . , ij , one parses the targeted opening S as {hi}i/∈{i1,...,ij}
and r0, and ϕt(M) as {mi}i∈{i1,...,ij}. Then compute hi = H(mi) for i ∈
{i1, . . . , ij} and check whether C2 = H(H,h1, . . . , hl, r0). If the check is
passed, output 1 otherwise output 0.

Security Analysis. One can easily prove that the wbTOCE scheme satisfies
the weak confidentially in Definition 3 in the random oracle model.

References

1. Dario Catalano and Dario Fiore. Vector commitments and their applications. In
Public-Key Cryptography–PKC 2013, pages 55–72. Springer, 2013.

2. Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast mes-
sage franking: From invisible salamanders to encryptment. In Annual International
Cryptology Conference, pages 155–186. Springer, 2018.

3. Facebook. Facebook messenger app, 2016. https://www.messenger.com/.
4. Facebook. Messenger secret conversations technical whitepaper, 2016.

https://fbnewsroomus.files.wordpress.com/2016/07/secret conversations whitepaper-1.pdf.
5. Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing

authenticated encryption. In Annual International Cryptology Conference, pages
66–97. Springer, 2017.

6. Iraklis Leontiadis and Serge Vaudenay. Private message franking with af-
ter opening privacy. Cryptology ePrint Archive, Report 2018/938, 2018.
https://eprint.iacr.org/2018/938.

7. Beno2̂t Libert, Somindu Ramanna, and Moti Yung. Functional commitment
schemes: From polynomial commitments to pairing-based accumulators from sim-
ple assumptions. In 43rd International Colloquium on Automata, Languages and
Programming (ICALP 2016), 2016.

29


