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Abstract. We present here a new family of trapdoor one-way Preimage Sampleable Func-
tions (PSF) based on codes, the Wave-PSF family. The trapdoor function is one-way under
two computational assumptions: the hardness of generic decoding for high weights and the
indistinguishability of generalized (U,U + V )-codes. Our proof follows the GPV strategy
[GPV08]. By including rejection sampling, we ensure the proper distribution for the trap-
door inverse output. The domain sampling property of our family is ensured by using and
proving a variant of the left-over hash lemma. We instantiate the new Wave-PSF family with
ternary generalized (U,U + V )-codes to design a “hash-and-sign” signature scheme which
achieves existential unforgeability under adaptive chosen message attacks (EUF-CMA) in
the random oracle model. For 128 bits of classical security, signature sizes are in the order
of 13 thousand bits, the public key size in the order of 3 megabytes, and the rejection rate
is limited to one rejection every 10 to 12 signatures.

1 Introduction

Code-Based Signature Schemes. It is a long standing open problem to build an efficient
and secure digital signature scheme based on the hardness of decoding a linear code which could
compete with widespread schemes like DSA or RSA. Those signature schemes are well known to
be broken by quantum computers and code-based schemes could indeed provide a valid quantum
resistant replacement. A first answer to this question was given by the CFS scheme proposed
in [CFS01]. It consisted in finding parity-check matrices H ∈ Fr×n2 such that the solution e of
smallest weight of the equation

eH
ᵀ

= s. (1)

could be found for a non-negligible proportion of all s in Fr2. This task was achieved by using
high rate Goppa codes. This signature scheme has however two drawbacks: (i) for high rates
Goppa codes the indistinguishability assumption used in its security proof has been invalidated
in [FGO+11], (ii) security scales only weakly superpolynomially in the keysize for polynomial
time signature time. A crude extrapolation of parallel CFS [Fin10] and its implementations [LS12,
BCS13] yields for 128 bits of classical security a public key size of several gigabytes and a signature
time of several seconds. Those figures even grow to terabytes and hours for quantum-safe security
levels, making the scheme unpractical.

This scheme was followed by other proposals using other code families such as for instance
[BBC+13, GSJB14, LKLN17]. All of them were broken, see for instance [PT16, MP16]. Other
signature schemes based on codes were also given in the literature such as for instance the KKS
scheme [KKS97, KKS05], its variants [BMS11, GS12] or the RaCoSS proposal [FRX+17] to the
NIST. But they can be considered at best to be one-time signature schemes and great care has to
be taken to choose the parameters of these schemes in the light of the attacks given in [COV07,
OT11, HBPL18]. Finally, another possibility is to use the Fiat-Shamir heuristic. For instance
by turning the Stern zero-knowledge authentication scheme [Ste93] into a signature scheme but
this leads to rather large signature lengths (hundred(s) of kilobits). There has been some recent
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progress in this area for another metric, namely the rank metric. A hash and sign signature scheme
was proposed, RankSign [GRSZ14], that enjoys remarkably small key sizes, but it got broken too
in [DT18]. On the other hand, following the Schnorr-Lyubashevsky [Lyu09a] approach, a new
scheme was recently proposed, namely Durandal [ABG+18]. This scheme enjoys small key sizes
and managed to meet the challenge of adapting the Lyubashevsky [Lyu09b] approach for code-
based cryptography. However, there is a lack of genericity in its security reduction, the security
of Durandal is reduced to a rather convoluted problem, namely PSSI+ (see [ABG+18, §4.1]),
capturing the problem of using possibly information leakage in the signatures to break the secret
key. This is due to the fact that it is not proven in their scheme that their signatures do not leak
information.

One-Way Preimage Sampleable Trapdoor Functions. There is a very powerful tool for
building a hash-and-sign signature scheme. It is based on the notion of one-way trapdoor preimage
sampleable function [GPV08, §5.3] (PSF in short). Roughly speaking, this is a family of trapdoor
one-way functions (fa)a such that with overwhelming probability over the choice of fa (i) the
distribution of the images fa(x) is very close to the uniform distribution over its range (ii) the
distribution of the output of the trapdoor algorithm inverting fa samples from all possible preim-
ages in an appropriate way. This trapdoor inversion algorithm should namely sample for any x
in the output domain of fa its outputs e such that the distribution of e is indistinguishable in a
statistical sense from the input distribution to fa conditioned on fa(e) = x. This notion and its
lattice-based instantiation allowed in [GPV08] to give a full-domain hash (FDH) signature scheme
with a tight security reduction based on lattice assumptions, namely that the Short Integer Solu-
tion (SIS) problem is hard on average. Furthermore, this approach also allowed to build the first
identity based encryption scheme that could be resistant to a quantum computer. We will call in
this paper, this approach for obtaining a FDH scheme, the GPV strategy (the authors of [GPV08]
are namely Gentry, Peikert and Vaikuntanathan). This strategy has also been adopted in Falcon
[FHK+], a lattice based signature submission to the NIST call for post-quantum cryptographic
primitives that was recently selected as a second round candidate.

This PSF primitive is notoriously difficult to obtain when the functions fa are not trapdoor
permutations but many-to-one functions. This is typically the case when one wishes quantum
resistant primitives based on lattice based assumptions. The reason is the following. The hard
problem on which this primitive relies is the SIS problem where we want to find for a matrix A
in Zn×mq (with m ≥ n) and an element s ∈ Znq a short enough (for the Euclidean norm) solution
e ∈ Zmq to the equation

eA
ᵀ

= s mod q. (2)

Such a matrix defines a corresponding PSF function as fA(e) = eAᵀ and the input to this function
is chosen according to a Gaussian distribution that outputs e of large enough euclidean norm W
so that (2) has a solution. Obtaining a nearly uniform distribution for the fA(e)’s over its range
requires to choose W large enough so that there are actually exponentially many solutions to (2).
It is a highly non-trivial task to build in this case a trapdoor inversion algorithm that samples
appropriately among all possible preimages, i.e. that is oblivious of the trapdoor.

The situation is actually exactly the same if we want to use another candidate problem for
building this PSF primitive for being resistant to a quantum computer, namely the decoding
problem in code-based cryptography. Here we rely on the difficulty of finding a solution e of
Hamming weight exactly w with coordinates in a finite field Fq for the equation

eH
ᵀ

= s. (3)

where H is a given matrix and s (usually called a syndrome) a given vector with entries in Fq.
The weight w has to be chosen large enough so that this equation has always exponentially many
solutions (in n the length of e). As in the lattice based setting, it is non-trivial to build trapdoor
candidates with a trapdoor inversion algorithm for fH (defined as fH(e) = eHᵀ) that is oblivious
of the trapdoor.
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Our Contribution: a Code-Based PSF Family and a FDH Scheme. Our main contribution
is to give here a code-based PSF family that relies on the difficulty of solving (3). We derive
from it an FDH signature scheme which is shown to be existentially unforgeable under a chosen-
message attack (EUF-CMA) with a tight reduction to solving two code-based problems: one is a
distinguishing problem related to the trapdoor used in our scheme, the other one is a multiple
targets version of the decoding problem (3), the so called “Decoding One Out of Many” problem
(DOOM in short) [Sen11]. In [GPV08] a signature scheme based on preimage sampleable functions
is given that is shown to be strongly existentially unforgeable under a chosen-message attack if in
addition the preimage sampleable functions are also collision resistant. With our choice of w and
Fq, our preimage sampleable functions are not collision resistant. However, as observed in [GPV08],
collision resistance allows a tight security reduction but is not necessary: a security proof could
also be given when the function is “only” preimage sampleable. Moreover, contrarily to the lattice
setting where the size of the alphabet q grows with n, our alphabet size will be constant in our
proposal, it is fixed to q = 3.

Our Trapdoor: Generalized (U,U + V )-Codes. In [GPV08] the trapdoor consists in a short
basis of the lattice considered in the construction. Our trapdoor will be of a different nature, it
consists in choosing parity-check matrices of generalized (U,U + V )-codes. In our construction, U
and V are chosen as random codes. The number of such generalized (U,U+V )-codes of dimension
k and length n is of the same order as the number of linear codes with the same parameters,

namely qΘ(n2) when k = Θ (n). A generalized (U,U + V ) code C of length n over Fq is built from

two codes U and V of length n/2 and 4 vectors a,b, c and d in Fn/2q as the following “mixture”
of U and V :

C = {(a� u + b� v, c� u + d� v) : u ∈ U, v ∈ V }

where x � y stands here for the component-wise product, also called the Hadamard or Schur
product. It is defined as:

x� y
4
=(x1y1, · · · , xn/2yn/2).

Standard (U,U + V )-codes correspond to a = c = d = 1n/2 and b = 0n/2, the all-one and the
all-zero vectors respectively.

The point of introducing such codes is that they have a natural decoding algorithm DUV solving
the decoding problem (3) that is based on a generic decoding algorithm Dgen for linear codes. DUV
works by combining the decoding of V with Dgen with the decoding of U by Dgen. The nice feature
is that DUV is more powerful than Dgen applied directly on the generalized (U,U + V )-code: the
weight of the error produced by DUV can be much smaller than the weight of the error produced
by Dgen applied directly to the generalized (U,U + V )-code. In our case, Dgen will be here a very
simple decoder, namely a variation of the Prange decoder [Pra62] that is able to produce for any
parity-check matrix H ∈ Fr×nq at will a solution of (3) when w is in the range J q−1

q r, n− r
q K. Note

that this algorithm works in polynomial time and that outside this range of weights, the complexity
of the best known algorithms is exponential in n for weights w of the form w = ωn where ω is a

constant that lies outside the interval [ q−1
q ρ, 1 − ρ

q ] where ρ
4
= r

n . The point of using DUV is that
it produces errors outside this interval. This is in essence the trapdoor of our signature scheme.
A tweak in this decoder consisting in performing only a small amount of rejection sampling (with
our choice of parameters one rejection every 10 or 12 signatures) allows to obtain solutions that
are uniformly distributed over the words of weight w. This is the key for obtaining a PSF family
and a signature scheme from it.

Finally, a variation of the proof technique of [GPV08] allows to give a tight security proof of
our signature scheme that relies only on the hardness of two problems, namely

Decoding Problem: Solving at least one instance of the decoding problem (1) out of multiple
instances for a certain w that is outside the range J q−1

q r, n− r
q K

Distinguishing Problem: Deciding whether a linear code is a permuted generalized (U,U +V )
code or not.
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Hardness of the Decoding Problem. All code-based cryptography relies upon that problem.
Here we are in a case where there are multiple solutions of (3) and the adversary may produce
any number of instances of (3) with the same matrix H and various syndromes s and is interested
in solving only one of them. This relates to the, so called, Decoding One Out of Many (DOOM)
problem. This problem was first considered in [JJ02]. It was shown there how to adapt the known
algorithms for decoding a linear code in order to solve this modified problem. This modification
was later analyzed in [Sen11]. The parameters of the known algorithms for solving (3) can be
easily adapted to this scenario where we have to decode simultaneously multiple instances which
all have multiple solutions.

Hardness of the Distinguishing Problem. This problem might seem at first sight to be
ad-hoc. However, even in the very restricted case of (U,U + V )-codes, deciding whether a code
is a permuted (U,U + V )-code or not is an NP-complete problem. Therefore the Distinguishing
Problem is also NP-complete for generalized (U,U+V )-codes. This theorem is proven in the case of
binary (U,U +V )-codes in [DST17b, §7.1, Thm 3] and the proof carries over to an arbitrary finite
field Fq. However as observed in [DST17b, p. 3], these NP-completeness reductions hold in the
particular case where the dimensions kU and kV of the code U and V satisfy kU < kV . If we stick
to the binary case, i.e. q = 2, then in order that our (U,U + V ) decoder works outside the integer
interval J r2 , n −

r
2K it is necessary that kU > kV . Unfortunately in this case there is an efficient

probabilistic algorithm solving the distinguishing problem that is based on the fact that in this
case the hull of the permuted (U,U +V )-code is typically of large dimension, namely kU −kV (see
[DST17a, §1 p.1-2]). This problem can not be settled in the binary case by considering generalized
(U,U + V )-codes instead of just plain (U,U + V )-codes, since it is only for the restricted class of
(U,U + V )-codes that the decoder considered in [DST17a] is able to work properly outside the
critical interval J r2 , n−

r
2K. This explains why the ancestor Surf [DST17a] of the scheme proposed

here that relies on binary (U,U + V )-codes can not work.
This situation changes drastically when we move to larger finite fields. In order to have a

decoding algorithm DUV that has an advantage over the generic decoder Dgen we do not need to
have a = c = d = 1n/2 and b = 0n/2 (i.e. (U,U+V )-codes) we just need that a�c and a�d−b�c
are vectors with only non-zero components. This freedom of choice for the a,b, c and d thwarts
completely the attacks based on hull considerations and changes completely the nature of the
distinguishing problem. In this case, it seems that the best approach for solving the distinguishing
problem is based on the following observation. The generalized (U,U + V )-code has codewords
of weight slightly smaller than the minimum distance of a random code of the same length and
dimension. It is very tempting to conjecture that the best algorithms for solving the Distinguishing
Problem come from detecting such codewords. This approach can be easily thwarted by choosing
the parameters of the scheme in such a way that the best algorithms for solving this task are of
prohibitive complexity. Notice that the best algorithms that we have for detecting such codewords
are in essence precisely the generic algorithms for solving the Decoding Problem. In some sense, it
seems that we might rely on the very same problem, namely solving the Decoding Problem, even
if our proof technique does not show this.

q = 3 and Large weights Decoding. In terms of simplicity of the decoding procedure used
in the signing process, it seems that defining our codes over the finite field F3 is particularly
attractive. In such a case, the biggest advantage of DUV over Dgen is obtained for large weights
rather than for small weights (there is an explanation for this asset in the paragraph “Why is
the trapdoor more powerful for large weights than for small weights?” §4.3). This is a bit unusual
in code-based cryptography to rely on the difficulty of finding solutions of large weight to the
decoding problem. However, it also opens the issue whether it would not be advantageous to make
certain (non-binary) code-based primitives rely on the hardness of solving the decoding problem
for large weights rather than for small weights. Of course these two problems are equivalent in the
binary case, i.e. q = 2, but this is not the case for larger alphabets anymore and still everything
seems to point to the direction that large weights problem is by no means easier than its small
weight counterpart.
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All in all, this gives the first practical signature scheme based on ternary codes which comes
with a security proof and which scales well with the parameters: it can be shown that if one wants a
security level of 2λ, then signature size is of order O(λ), public key size is of order O(λ2), signature
generation is of order O(λ3), whereas signature verification is of order O(λ2). It should be noted
that contrarily to the current thread of research in code-based or lattice-based cryptography which
consists in relying on structured codes or lattices based on ring structures in order to decrease the
key-sizes we did not follow this approach here. This allows for instance to rely on the NP-complete
Decoding Problem which is generally believed to be hard on average rather that on decoding in
quasi-cyclic codes for instance whose status is still unclear with a constant number of circulant
blocks. Despite the fact that we did not use the standard approach for reducing the key sizes
relying on quasi-cyclic codes for instance, we obtain acceptable key sizes (about 3.2 megabytes
for 128 bits of security) which compare very favorably to unstructured lattice-based signature
schemes such as TESLA for instance [ABB+17]. This is due in part to the tightness of our security
reduction.

2 Notation

We provide here some notation that will be used throughout the paper.

General Notation. The notation x
4
= y means that x is defined to be equal to y. We denote by

Fq the finite field with q elements and by Sw,n, or Sw when n is clear from the context, the subset
of Fnq of words of weight w. For a and b integers with a ≤ b, we denote by Ja, bK the set of integers
{a, a+ 1, . . . , b}.

Vector and Matrix Notation. Vectors will be written with bold letters (such as e) and upper-
case bold letters are used to denote matrices (such as H). Vectors are in row notation. Let x and y
be two vectors, we will write (x,y) to denote their concatenation. We also denote by xI the vector
whose coordinates are those of x = (xi)1≤i≤n which are indexed by I, i.e. xI = (xi)i∈cI . We will
denote by HI the matrix whose columns are those of H which are indexed by I. Sometimes we
denote for a vector x by x(i) its i-th entry, or for a matrix A, by A(i, j) its entry in row i and
column j. We define the support of x = (xi)1≤i≤n as

Supp(x)
4
={i ∈ J1, nK such that xi 6= 0}

The Hamming weight of x is denoted by |x|. By some abuse of notation, we will use the same
notation to denote the size of a finite set: |S| stands for the size of the finite set S. It will be clear
from the context whether |x| means the Hamming weight or the size of a finite set. Note that
|x| = |Supp(x)|. For a vector a ∈ Fnq , we denote by Diag(a) the n × n diagonal matrix A with
its entries given by a, i.e. A(i, i) = ai for all i ∈ J1, nK and A(i, j) = 0 for i 6= j.

Probabilistic Notation. Let S be a finite set, then x ←↩ S means that x is assigned to be a
random element chosen uniformly at random in S. For two random variables X,Y , X ∼ Y means
that X and Y are identically distributed. We will also use the same notation for a random variable
and a distribution D, where X ∼ D means that that X is distributed according to D. We denote
the uniform distribution on Sw by Uw.

The statistical distance between two discrete probability distributions over a same space E is
defined as:

ρ(D0,D1)
4
=

1

2

∑
x∈E
|D0(x)−D1(x)|.

Recall that a function f(n) is said to be negligible, and we denote this by f ∈ negl(n), if for all
polynomials p(n), |f(n)| < p(n)−1 for all sufficiently large n.
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Coding Theory. For any matrix M we denote by 〈M〉 the vector space spanned by its rows. A
q-ary linear code C of length n and dimension k is a subspace of Fnq of dimension k and is often
defined by a parity-check matrix H over Fq of size r × n as

C = 〈H〉⊥ =
{
x ∈ Fnq : xH

ᵀ
= 0

}
.

When H is of full rank (which is usually the case) we have r = n− k. A generator matrix of C is
a k × n full rank matrix G over Fq such that 〈G〉 = C. The code rate, usually denoted by R, is
defined as the ratio k/n.

An information set of a code C of length n is a set of k coordinate indices I ⊂ J1, nK which
indexes k independent columns on any generator matrix. Its complement indexes n−k independent

columns on any parity check matrix. For any s ∈ Fn−kq , H ∈ F(n−k)×n
q , and any information set I

of C = 〈H〉⊥, for all x ∈ Fnq there exists a unique e ∈ Fnq such that eHᵀ = s and xI = eI .

3 The Wave-family of Trapdoor One-Way Preimage Sampleable
Functions

3.1 One-way Preimage Sampleable Code-based Functions

In this work we will use the FDH paradigm [BR96, Cor02] using as one-way the syndrome function:

fw,H : Sw −→ Fn−kq

e 7−→ eHᵀ

The corresponding FDH signature uses a trapdoor to choose σ ∈ f−1
w,H(h) where h is the digest of

the message to be signed. Here, the signature domain is Sw and its range is the set of syndromes
Fn−kq according to H, an (n−k)×n parity check matrix of some q-ary linear [n, k] code. The weight
w is chosen such that the one-way function fw,H is surjective but not bijective. Building a secure
FDH signature in this situation can be achieved by imposing additional properties [GPV08] to
the one-way function (we will speak of the GPV strategy). This is mostly captured by the notion
of Preimage Sampleable Functions (PSF), see [GPV08, Definition 5.3.1]. We express below this
notion in our code-based context with a slightly weaker definition that drops the collision resistance
condition. This will be sufficient for proving the security of our code-based FDH scheme. The key
feature is a trapdoor inversion of fw,H which achieves (close to) uniform distribution over the
domain Sw.

Definition 1 (One-way Preimage Sampleable Code-based Functions). It is a pair of
probabilistic polynomial-time algorithms (Trapdoor, InvertAlg) together with a triple of functions
(n(λ), k(λ), w(λ)) growing polynomially with the security parameter λ and giving the length and
dimension of the codes and the weights we consider for the syndrome decoding problem, such that

– Trapdoor when given λ, outputs (H, T ) where H is an (n− k)× n matrix over Fq and T the
trapdoor corresponding to H. Here and elsewhere we drop the dependence in λ of the functions
n, k and w.

– InvertAlg is a probabilistic algorithm which takes as input T and an element s ∈ Fn−kq and
outputs an e ∈ Sw,n such that eHᵀ = s.

The following properties have to hold for all but a negligible fraction of H output by Trapdoor.

1. Domain Sampling with uniform output:

ρ(eH
ᵀ
, s) ∈ negl(λ)

where e and s are two random variables, with e being uniformly distributed over Sw,n and s
being uniformly distributed over Fn−kq .
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2. Preimage Sampling with trapdoor: for every s ∈ Fn−kq , we have

ρ (InvertAlg(s, T ), es) ∈ negl(λ),

where es is uniformly distributed over the set {e ∈ Sw,n : eHᵀ = s}.
3. One wayness without trapdoor: for any probabilistic poly-time algorithm A outputting an el-

ement e ∈ Sw,n when given H ∈ F(n−k)×n
q and s ∈ Fn−kq , the probability that eHᵀ = s

is negligible, where the probability is taken over the choice of H, the target value s chosen
uniformly at random, and A’s random coins.

Given a one-way preimage sampleable code-based function (Trapdoor, InvertAlg) we easily define
a code-based FDH signature scheme as follows. We generate the public/secret key as (pk, sk) =
(H, T ) ← Trapdoor(λ). We also select a cryptographic hash function Hash : {0, 1}∗ → Fn−kq and

a salt r of size λ0. The algorithms Sgnsk and Vrfypk are defined as follows

Sgnsk(m): Vrfypk(m, (e′, r)):
r←↩ {0, 1}λ0 s← Hash(m, r)
s← Hash(m, r) if e′Hᵀ = s and |e′| = w return 1
e← InvertAlg(s, T ) else return 0
return(e, r)

A tight security reduction in the random oracle model is given in [GPV08] for PSF signature
schemes. It requires collision resistance. Our construction uses a ternary alphabet q = 3 together
with large values of w and collision resistance is not met. Still, we achieve a tight security proof
by considering in §7 a reduction to the multiple target decoding problem.

3.2 The Wave Family of One-Way Trapdoor Preimage Sampleable Functions

The trapdoor family of codes which gives an advantage for inverting fw,H is built upon the
following transformation:

Definition 2. Let a, b, c and d be vectors of Fn/2q . We define

ϕa,b,c,d : Fn/2q × Fn/2q → Fn/2q × Fn/2q

(x,y) 7→ (a� x + b� y, c� x + d� y).

We will say that ϕa,b,c,d is UV-normalized if

∀i ∈ J1, n/2K, aidi − bici = 1, aici 6= 0. (4)

For any two subspaces U and V of Fn/2q , we extend the notation

ϕa,b,c,d(U, V )
4
= {ϕa,b,c,d(u,v) : u ∈ U,v ∈ V }

Proposition 1 (Normalized Generalized (U,U + V )-code). Let n be an even integer and let
ϕ = ϕa,b,c,d be a UV-normalized mapping. The mapping ϕ is bijective with

ϕ−1(x,y) = (d� x− b� y,−c� x + a� y).

For any two subspaces U and V of Fn/2q of parity check matrices HU and HV , the vector space
ϕ(U, V ) is called a normalized generalized (U,U + V )-code. It has dimension dimU + dimV and
admits the following parity check matrix

H(ϕ,HU ,HV )
4
=

(
HUD −HUB
−HV C HV A

)
(5)

where A
4
= Diag(a), B

4
= Diag(b), C

4
= Diag(c) and D

4
= Diag(d).
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In the sequel, a UV-normalized mapping ϕ implicitly defines a quadruple of vectors (a,b, c,d)
such that ϕ = ϕa,b,c,d. We will use this implicit notation and drop the subscript whenever no
ambiguity may arise.

Remark 1. – This construction can be viewed as taking two codes of length n/2 and making a
code of length n by “mixing” together a codeword u in U and a codeword v in V as the vector
formed by the set of aiui + bivi’s and ciui + divi’s.

– The condition aici 6= 0 is here to ensure that coordinates of U appear in all the coordinates
of the normalized generalized (U,U + V ) codeword. This is essential for having a decoding
algorithm for the generalized (U,U+V )-code that has an advantage over standard information
set decoding algorithms for linear codes. The trapdoor of our scheme builds upon this advan-
tage. It can really be viewed as the “interesting” generalization of the standard (U,U + V )
construction.

– We have fixed aidi− bici = 1 for every i to simplify some of the expressions in what follows. It
is readily seen that any generalized (U,U + V )-code that can be obtained in the more general
case aidi − bici 6= 0 can also be obtained in the restricted case aidi − bici = 1 by choosing U
and V appropriately.

Defining Trapdoor and InvertAlg. From the security parameter λ, we derive the system pa-
rameters n, k, w and split k = kU + kV as described in §5.4. The secret key is a tuple sk =

(ϕ,HU ,HV ,S,P) where ϕ is a UV-normalized mapping, HU ∈ F(n/2−kU )×n/2
q , HV ∈ F(n/2−kV )×n/2

q ,

S ∈ F(n−k)×(n−k)
q is non-singular with k = kU + kV , and P ∈ Fn×nq is a permutation matrix. Each

element of sk is chosen randomly and uniformly in its domain.
From (ϕ,HU ,HV ) we derive the parity check matrix Hsk = H(ϕ,HU ,HV ) as in Proposition 1.

The public key is Hpk = SHskP. Next, we need to produce an algorithm Dϕ,HU ,HV
which inverts

fw,Hsk
. The parameter w is such that this can be achieved using the underlying (U,U+V ) structure

while the generic problem remains hard. In §5 we will show how to use rejection sampling to devise
Dϕ,HU ,HV

such that its output is uniformly distributed over Sw when s is uniformly distributed
over Fn−kq . This enables us to instantiate algorithm InvertAlg. To summarize:

sk← (ϕ,HU ,HV ,S,P)
pk← Hpk

(pk, sk)← Trapdoor(λ)

∣∣∣∣∣∣
InvertAlg(sk, s)

e← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
)

return eP

As in [GPV08], putting this together with a domain sampling condition –which we prove in §6
from a variation of the left-over hash lemma– allows us to define a family of trapdoor preimage
sampleable functions, later referred to as the Wave-PSF family.

4 Inverting the Syndrome Function

This section is devoted to the inversion of fw,H. It amounts to solve the following problem.

Problem 1 (Syndrome Decoding with fixed weight). Given H ∈ F(n−k)×n
q , s ∈ Fn−kq , and an integer

w, find e ∈ Fnq such that eHᵀ = s and |e| = w.

We consider three nested intervals Jw−easy, w
+
easyK ⊂ Jw−UV, w

+
UVK ⊂ Jw−, w+K for w such that for s

randomly chosen in Fn−kq :

– f−1
w,H(s) is likely/very likely to exist if w ∈ Jw−, w+K (Gilbert-Varshamov bound)

– e ∈ f−1
w,H(s) is easy to find if w ∈ Jw−easy, w

+
easyK for all H (Prange algorithm)

– e ∈ f−1
w,H(s) is easy to find if w ∈ Jw−UV, w

+
UVK and H is the parity check matrix of a generalized

(U,U+V )-code. This is the key for exploiting the underlying (U,U+V ) structure as a trapdoor
for inverting fw,H.
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4.1 Surjective Domain of the Syndrome Function

The issue is here for which value of w we may expect that fw,H is surjective. This clearly implies
that |Sw| ≥ qn−k. In other words we have:

Fact 1 If fw,H is surjective, then w ∈ Jw−, w+K where w− < w+ are the extremum of the set{
w ∈ J0, nK |

(
n
w

)
(q − 1)w ≥ qn−k

}
.

For a fixed rate R = k/n, let us define ω−
4
= lim
n→+∞

w−/n and ω+ 4= lim
n→+∞

w−/n. Note that ω−

is known as the asymptotic Gilbert-Varshamov distance. A straightforward computation of the
expected number of errors e of weight w such that eHᵀ = s when H is random shows that we
expect an exponential number of solutions when w/n lies in (ω−, ω+). However, coding theory has
never come up with an efficient algorithm for finding a solution to this problem in the whole range
(ω−, ω+).

4.2 Easy Domain of the Syndrome Function

The subrange of (ω−, ω+) for which we know how to solve efficiently Problem 1 is given by the
condition w/n ∈ [ω−easy, ω

+
easy] where

ω−easy
4
=
q − 1

q
(1−R) and ω+

easy
4
=
q − 1

q
+
R

q
, (6)

where R
4
= k

n . This is achieved by a slightly generalized version of the Prange decoder [Pra62].
We want to find for a given s an error e of weight w such that eHᵀ = s. The matrix H is a
full-rank matrix and it therefore contains an invertible submatrix A of size (n− k)× (n− k). We
choose a set of positions I of size n − k for which H restricted to these positions is a full rank
matrix. For simplicity assume that this matrix is in the first n − k positions: H =

(
A|B

)
. We

look for an e of the form e = (e′′, e′) where e′ ∈ Fkq and e′′ ∈ Fn−kq . We should therefore have

e′′ = (s− e′Bᵀ)(A−1)
ᵀ
. In this way we can arbitrarily choose the error e′ of length k but in any

case we expect for the remaining part a vector e′′ with about q−1
q (n−k) positions that are non zero.

Therefore, the weights that are easily attainable by this strategy are between q−1
q (n−k) = nω−easy

and k + q−1
q (n − k) = nω+

easy by choosing appropriately the weight of e′ between 0 and k. This

procedure, that we call PrangeOne(·), is formalized in Algorithm 1.

Algorithm 1 PrangeOne(H, s) — One iteration of the Prange decoder

Parameters: q, n, k, D a distribution over J0, kK
Require: H ∈ F(n−k)×n

q , s ∈ Fn−kq

Ensure: eH
ᵀ

= s
1: t←↩ D
2: I ← InfoSet(H) . InfoSet(H) returns an information set of 〈H〉⊥
3: x←↩ {x ∈ Fnq | |xI | = t}
4: e← PrangeStep(H, s, I,x)
5: return e

function PrangeStep(H, s, I,x) — Prange vector completion

Require: H ∈ F(n−k)×n
q , s ∈ Fn−kq , I an information set of 〈H〉⊥, x ∈ Fnq

Ensure: eH
ᵀ

= s and eI = xI
P← any n× n permutation matrix sending I on the last k coordinates
(A | B)← HP . A ∈ F(n−k)×(n−k)

q

(0 | e′)← x . e′ ∈ Fkq
e←

((
s− e′B

ᵀ) (
A−1

)ᵀ
, e′
)
P

ᵀ

return e
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Proposition 2. When H is chosen uniformly at random in F(n−k)×n
q and s uniformly at random

in Fn−kq , for the output e of PrangeOne(H, s) we have

|e| = S + T

where S ∈ J0, n− kK and T ∈ J0, kK are independent random variables, S is the Hamming weight
of a vector that is uniformly distributed over Fn−kq and P(T = t) = D(t). The distribution of |e| is
given by

P (|e| = w) =

w∑
t=0

(
n−k
w−t
)
(q − 1)w−t

qn−k
D(t), E(|e|) = D + q−1

q (n− k) = D + nω−easy

where D =
∑k
t=0 tD(t).

From this proposition, we deduce immediately that any weight w in Jω−easyn, ω
+
easynK can be reached

by this Prange decoder with a probabilistic polynomial time algorithm that uses a distribution D
such that D = w − ω−easyn and which is sufficiently concentrated around its expectation. It will
be helpful in what follows to be able to choose a probability distribution D as this gives a rather
large degree of freedom in the distribution of |e| that will come very handy to simulate an output
distribution that is uniform over the words of weight w in the generalized (U,U +V )-decoder that
we will consider in what follows.

To summarize this discussion we have shown that when we want to ensure that fH is surjective,
w has to verify w− ≤ w ≤ w+. However, in a cryptographic setting w/n cannot lie in [ω−easy, ω

+
easy] ⊆

[ω−, ω+] otherwise anybody that uses the generalized Prange algorithm would be able to invert
fH. All of this is summarized in Figure 1 where we draw the above different areas asymptotically
in n of w/n when k/n is fixed.

Fig. 1. Areas of relative signature distances.
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Enlarging the Easy Domain Jw−
easy, w

+
easyK. Inverting the syndrome function fw,H is the

basic problem upon which all code-based cryptography relies. This problem has been studied for

a long time for relative weights ω
4
= w

n in (0, ω−easy) and despite many efforts the best algorithms
[Ste88, Dum91, Bar97, MMT11, BJMM12, MO15, DT17, BM18] for solving this problem are all
exponential in n for such fixed relative weights. In other words, after more than fifty years of
research, none of those algorithms came up with a polynomial complexity for relative weights ω
in (0, ω−easy). Furthermore, by adapting all the previous algorithms beyond this point we observe
for them the same behaviour: they are all polynomial in the range of relative weights [ω−easy, ω

+
easy]

and become exponential once again when ω is in (ω+
easy, 1). All these results point towards the fact

that inverting fw,H in polynomial time on a larger range is fundamentally a hard problem. In the
following subsection we present a trapdoor on the matrices H that enables to invert in polynomial
time fw,H on a larger range by tweaking the Prange decoder.

4.3 Solution with Trapdoor

Let us recall that our trapdoor to invert fw,H is given by the family of normalized generalized
(U,U + V )-codes (see Proposition 1 in §3.2). As we will see in what follows, this family comes
with a simple procedure which enables to invert fw,H with errors of weight which belongs to
Jw−UV, w

+
UVK ⊂ Jw−, w+K but with Jw−easy, w

+
easyK ( Jw−UV, w

+
UVK. We summarize this situation in

Figure 2.
We wish to point out here, to avoid any misunderstanding that led the authors of [BP18a] to

make a wrong claim that they had an attack on Wave, that the procedure we give here is not the
one we use at the end to instantiate Wave, but is merely here to give the underlying idea of the
trapdoor. Rejection sampling will be needed as explained in the following section to avoid any
information leakage on the trapdoor coming from the outputs of the algorithm given here.

hard hardhardeasy
w

0 w−easy w+
easy nw−UV w+

UV

easy with (U,U+V) trapdoor

Fig. 2. Hardness of (U,U + V ) Decoding

It turns out that in the case of a normalized generalized (U,U +V )-code, a simple tweak of the
Prange decoder will be able to reach relative weights w/n outside the “easy” region [ω−easy, ω

+
easy].

It exploits the fundamental leverage of the Prange decoder : it consists in choosing the error e
satisfying eHᵀ = s as we want in k positions when the code that we decode is random and of
dimension k. When we want an error of low weight, we put zeroes on those positions, whereas if
we want an error of large weight, we put non-zero values. This idea leads to even smaller or larger
weights in the case of a normalized generalized (U,U + V )-code. To explain this point, recall that
we want to solve the following decoding problem in this case.

Problem 2 (decoding problem for normalized generalized (U,U + V )-codes). Given a normalized
generalized (U,U+V ) code (ϕ,HU ,HV ) (see Proposition 1) of parity-check matrix H = H(ϕ,HU ,HV ) ∈
F(n−k)×n
q , and a syndrome s ∈ Fn−kq , find e ∈ Fnq of weight w such that eHᵀ = s.

The following notation will be very useful to explain how we solve this problem.

Notation 1 For a vector e in Fnq , we denote by eU and eV the vectors in Fn/2q such that

(eU , eV ) = ϕ−1(e).
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The decoding algorithm we will consider recovers eV and then eU . From eU and eV we recover e
since e = ϕ(eU , eV ). The point of introducing such an eU and a eV is that

Proposition 3. Solving the decoding problem 2 is equivalent to find an e ∈ Fnq of weight w
satisfying

eUH
ᵀ
U = sU (7)

eV H
ᵀ
V = sV (8)

where s = (sU , sV ) with sU ∈ Fn/2−kUq and sV ∈ Fn/2−kVq .

Remark 2. We have put U and V as superscripts in sU and sV to avoid any confusion with the
notation we have just introduced for eU and eV .

Proof. Let us observe that e = ϕ(eU , eV ) = (a � eU + b � eV , c � eU + d � eV ) = (eUA +
eV B, eUC + eV D) with A = Diag(a),B = Diag(b),C = Diag(c),D = Diag(d). By using this,
eHᵀ = s translates into{

eUADᵀHᵀ
U + eV BDᵀHᵀ

U − eUCBᵀHᵀ
U − eV DBᵀHᵀ

U = sU

−eUACᵀHᵀ
V − eV BCᵀHᵀ

V + eUCAᵀHᵀ
V + eV DAᵀHᵀ

V = sV

which amounts to eU (AD − BC)Hᵀ
U = sU and eV (AD − BC)Hᵀ

V = sV , since A, B, C, D are
diagonal matrices, they are therefore symmetric and commute with each other. We finish the proof
by observing that AD−BC = In/2, the identity matrix of size n/2. ut

Performing the two decoding (7) and (8) independently with the Prange algorithm gains nothing.
However if we first solve (8) with the Prange algorithm, and then seek a solution of (7) which
properly depends on eV we increase the range of weights accessible in polynomial time for e.
It then turns out that the range [ω−UV, ω

+
UV] of relative weights w/n for which the (U,U + V )-

decoder works in polynomial time is larger than [ω−easy, ω
+
easy]. This will provide an advantage to

the trapdoor owner.

Tweaking the Prange Decoder for Reaching Large Weights. When q = 2, small and large weights
play a symmetrical role. This is not the case anymore for q ≥ 3. In what follows we will suppose
that q ≥ 3. In order to find a solution e of large weight to the decoding problem eHᵀ = s, we use
Proposition 3 and first find an arbitrary solution eV to eV Hᵀ

V = sV . The idea, now for performing
the second decoding eUHᵀ

U = sU , is to take advantage of eV to find a solution eU that maximizes
the weight of e = ϕ(eU , eV ). On any information set of the U code, we can fix arbitrarily eU .
Such a set is of size kU and on those positions i we can always choose eU (i) such that this induces
simultaneously two positions in e that are non-zero. These are ei and ei+n/2. We just have to
choose eU (i) so that we have simultaneously{

aieU (i) + bieV (i) 6= 0
cieU (i) + dieV (i) 6= 0.

This is always possible since q ≥ 3 and it gives an expected weight of e:

E(|e|) = 2

(
kU +

q − 1

q
(n/2− kU )

)
=
q − 1

q
n+

2kU
q

(9)

The best choice for kU is to take kU = k up to the point where q−1
q n + 2k

q = n, that is k = n/2

and for larger values of k we choose kU = n/2 and kV = k − kU .
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Why Is the Trapdoor More Powerful for Large Weights than for Small Weights? This strategy can
be clearly adapted for small weights. However, it is less powerful in this case. Indeed, to minimize
the weight of the final error we would like to choose eU (i) in kU positions such that{

aieU (i) + bieV (i) = 0
cieU (i) + dieV (i) = 0

Here as aidi − bici = 1 and aici 6= 0 in the family of codes we consider, this is possible if
and only if eV (i) = 0. Therefore, contrarily to the case where we want to reach errors of large
weight, the area of positions where we can gain twice is constrained to be of size n/2 − |eV |.
The minimal weight for eV we can reach in polynomial time with the Prange decoder is given by
q−1
q (n/2−kV ). In this way the set of positions where we can double the number of 0 will be of size

n/2− q−1
q (n/2− kV ) = n

2q + q−1
q kV . It can be verified that this strategy would give the following

expected weight for the final error we get:

E(|e|) =

{
q−1
q n− 2 q−1

q kU if kU ≤ n
2q + q−1

q kV
2(q−1)2

(2q−1)q (n− k) else.

This discussion is summarized in Figure 3 where we draw ω−UV and ω+
UV which are the highest

and the smallest relative distances that our decoder can reach asymptotically in n when k/n is
fixed and q = 3.

Fig. 3. Areas of relative signature distances with our trapdoor when q = 3

5 Preimage Sampling with Trapdoor: Achieving a Uniformly
Distributed Output

We restrict here our study to the case q = 3 but it can be generalized to larger values of q. To
be a trapdoor one-way preimage sampleable function, we have to enforce that the outputs of our
algorithm, which inverts our trapdoor function, are very close to be uniformly distributed over Sw.
The procedure described in the previous section using directly the Prange decoder, does not meet
this property. As we will prove, by changing it slightly, we will achieve this task by still keeping



14 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

the property to output errors of weight w for which it is hard to solve the decoding problem for
this weight. However, the parameters will have to be chosen carefully and the area of weights w
for which we can output errors in polynomial time decreases. Figure 4 gives a rough picture of
what will happen.

hard hardhardeasy
w

0

w−easy w+
easy

nw−UV w+
UV

easy with (U,U+V) trapdoor

no leakage with (U,U + V ) trapdoor

Fig. 4. Hardness of (U,U + V ) Decoding with no leakage of signature

5.1 Rejection Sampling to reach Uniformly Distributed Output

We will tweak slightly the generalized (U,U +V )-decoder from the previous section by performing
in particular rejection sampling on eU and eV in order to obtain an error e satisfying eHᵀ = s that
is uniformly distributed over the words of weight w when the syndrome s is randomly chosen in
Fn−k3 . Solving the decoding problem 2 of the generalized (U,U + V )-code will be done by solving
(7) and (8) through an algorithm whose skeleton is given in Algorithm 2. DecodeV(HV , s

V )
returns a vector satisfying eV Hᵀ

V = sV , whereas DecodeU(HU , ϕ, s
U , eV ) is assumed to return a

vector satisfying eUHᵀ
U = sU and such that |ϕ(eU , eV )| = w. Here s = (sU , sV ) with sU ∈ Fn/2−kU3

and sV ∈ Fn/2−kV3 .

Algorithm 2 DecodeUV(HV ,HU , ϕ, s)

1: repeat
2: eV ← DecodeV(HV , s

V )
3: until Condition 1 is met
4: repeat
5: eU ← DecodeU(HU , ϕ, s

U , eV ) . We assume that |ϕ(eU , eV )| = w here.
6: e← ϕ(eU , eV )
7: until Condition 2 is met
8: return e

What we want to achieve by rejection sampling is that the distribution of e output by this
algorithm is the same as the distribution of eunif that denotes a vector that is chosen uniformly
at random among the words of weight w in Fn3 . This will be achieved by ensuring that

1. the eV fed into DecodeU(·) at Step 5 has the same distribution as eunif
V ,

2. the distribution of eU surviving to Condition 2 at Step 7 conditioned on the value of eV is the
same as the distribution of eunif

U conditioned on eunif
V .

There is a property of the decoders DecodeV(·) and DecodeU(·) derived from Prange de-
coders that we will consider that will be very helpful here. They will namely be very close to meet
the following conditions.

Definition 3. DecodeV(·) is said to be weightwise uniform if the output eV of DecodeV(HV , s
V )

is such that P(eV ) is just a function of |x| when sV is chosen uniformly at random in Fn/2−kV3 .
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DecodeU(·) is m1-uniform if the outputput eU of DecodeU(HU , ϕ, s
U , eV ) satisfies that the

conditional probability P(eU |eV ) is just a function of the pair (|eV |,m1(ϕ(eU , eV )) where

m1(x)
4
=
∣∣{1 ≤ i ≤ n/2 : |(xi, xi+n/2)| = 1

}∣∣ .
It is readily observed that P(eunif

V ) and P(eunif
U |eunif

V ) are also only functions of |eunif
V | and (|eunif

V |,m1(eunif))
respectively. From this it is readily seen that we obtain the right distributions for eV and eU con-
ditioned on eV by just ensuring that the distribution of |eV | follows the same distribution as |eunif

V |
and that the distribution of m1(e) conditioned on |eV | is the same as the distribution of m1(eunif)
conditioned on |eunif

V |. This is shown by the following lemma.

Lemma 1. Let e be the output of Algorithm 2 when sV and sU are chosen uniformly at random in

Fn/2−kV3 and Fn/2−kU3 respectively. Assume that DecodeU(·) is m1-uniform whereas DecodeV(·)
is weightwise uniform. If for any possible y and z,

|eV | ∼ |eunif
V | and P(m1(e) = z | |eV | = y) = P(m1(eunif) = z | |eunif

V | = y) (10)

then e ∼ eunif. The probabilities are taken here over the choice of sU and sV and over the internal
coins of DecodeU(·) and DecodeV(·).

Proof. We have for any x in Sw

P(e = x) = P(eU = xU | eV = xV )P(eV = xV )

= P(DecodeU(HU , ϕ, s
U , eV ) = xU | eV = xV )P(DecodeV(HV , s

V ) = xV )

=
P(m1(e) = z | |eV | = y)

n(y, z)

P(|eV | = y)

n(y)

4
=P (11)

where n(y) is the number of vectors of Fn3 of weight y and n(y, z) is the number of vectors e in
Fn3 such that eV = xV and such that m1(e) = z (this last number only depends on xV through
its weight y). Equation (11) is here a consequence of the weightwise uniformity of DecodeV(·)
on one hand and the m1-uniformity of DecodeU(·) on the other hand. We conclude by noticing
that

P =
P(m1(eunif) = z | |eunif

V | = y)

n(y, z)

P(|eunif
V | = y)

n(y)
(12)

= P(eunif
U = xU | eunif

V = xV )P(eunif
V = xV )

= P(eunif = x). (13)

Equation (12) follows from the assumptions on the distribution of |eV | and of the conditional
distribution of m1(e) for a given weight |eV |. ut

This shows that in order to obtain that e is uniformly distributed over Sw it is enough to
perform rejection sampling based on the weight |eV | for DecodeV(·) and based on the pair
(|eV |,m1(e)) for DecodeU(·). In other words, our decoding algorithm with rejection sampling
will use a rejection vector rV on the weights of eV for DecodeV(·) and a two-dimensional rejection
vector rU for the values of (|eV |,m1(e)) for DecodeU(·). The corresponding algorithm is specified
in Algorithm 3.

Standard results on rejection sampling yield the following proposition:

Proposition 4. Let

q1(i)
4
=P (|eV | = i) ; qunif

1 (i)
4
=P

(
|eunif
V | = i

)
(14)

q2(s, t)
4
=P (m1(e) = s | |eV | = t) ; qunif

2 (s, t)
4
=P

(
m1(eunif) = s | |eunif

V | = t
)

(15)

for any i, t ∈ J0, n/2K and s ∈ J0, tK. Let rV and rU be defined as

rV (i)
4
=

1

M rs
V

qunif
1 (i)

q1(i)
and rU (s, t)

4
=

1

M rs
U (t)

qunif
2 (s, t)

q2(s, t)
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Algorithm 3 DecodeUV(HV ,HU , ϕ, s)

1: repeat
2: eV ← DecodeV(HV , s

V )
3: until rand([0, 1]) ≤ rV (|eV |)
4: repeat
5: eU ← DecodeU(HU , ϕ, s

U , eV )
6: e← ϕ(eU , eV )
7: until rand([0, 1]) ≤ rU (|eV |,m1(e))
8: return e

with

M rs
V
4
= max

0≤i≤n/2

qunif
1 (i)

q1(i)
and M rs

U (t)
4
= max

0≤s≤t

qunif
2 (s, t)

q2(s, t)

Then if DecodeV(·) is weightwise uniform and DecodeU(·) is m1-uniform, the output e of
Algorithm 3 satisfies e ∼ eunif.

5.2 Application to the Prange Decoder

To instantiate rejection sampling, we have to provide here (i) how DecodeV(·) and DecodeU(·)
are instantiated and (ii) how qunif

1 , qunif
2 , q1 and q2 are computed. Let us begin by the following

proposition which gives qunif
1 and qunif

2 .

Proposition 5. Let n be an even integer, w ≤ n, i, t ≤ n/2 and s ≤ t be integers. We have,

qunif
1 (i) =

(
n/2
i

)(
n
w

)
2w/2

i∑
p=0

w+p≡0 mod 2

(
i

p

)(
n/2− i

(w + p)/2− i

)
23p/2 (16)

qunif
2 (s, t) =


(ts)(

n/2−t
w+s

2
−t)2

3s
2∑

p
(tp)(

n/2−t
w+p

2
−t)2

3p
2

if w + s ≡ 0 mod 2.

0 else

(17)

The proof of this proposition is given in Appendix A. Algorithms DecodeV(·),DecodeU(·)
are described in Algorithms 4 and 5. They use the rejection vectors given in Proposition 4 which
is based on the expressions given in Proposition 5.

These two algorithms both use the Prange decoder in the same way as we did with the procedure
described in §4.3 to reach large weights, except that here we introduced some internal distributions
DV and the DtU ’s. These distributions are here to tweak the weight distributions of DecodeV(·)
and DecodeU(·) in order to reduce the rejection rate. We have:

Proposition 6. Let n be an even integer, w ≤ n, i, t, kU ≤ n/2 and s ≤ t be integers. Let d be

an integer, k′V
4
= kV − d and k′U

4
= kU − d. Let XV (resp. Xt

U ) be a random variable distributed
according to DV (resp. DtU ). We have,

q1(i) =

i∑
t=0

(
n/2−k′V
i−t

)
2i−t

3n/2−k
′
V

P(XV = t) (18)

q2(s, t) =


∑

t+k′U−n/2≤k6=0≤t

k0
4
= k′U−k6=0

(t−k 6=0
s )(

n/2−t−k0
w+s

2
−t−k0

)2
3s
2∑

p
(t−k6=0

p )(
n/2−t−k0
w+p

2
−t−k0

)2
3p
2

P(Xt
U = k 6=0) if w ≡ s mod 2.

0 else

(19)
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Algorithm 4 DecodeV(HV , s
V ) the Decoder outputting an eV such that eV Hᵀ

V = sV .

1: J , I ← FreeSet(HV )
2: `←↩ DV
3: xV ←↩

{
x ∈ Fn/23 | |xJ | = `,Supp(x) ⊆ I

}
. (xV )I\J is random

4: eV ← PrangeStep(HV , s
V , I,xV )

5: return eV

function FreeSet(H)

Require: H ∈ F(n−k)×n
3

Ensure: I an information set of 〈H〉⊥ and J ⊂ I of size k − d
1: repeat
2: J ←↩ J1, nK of size k − d
3: until the rank of the columns of H indexed by J1, nK\J is n− k
4: repeat
5: J ′ ←↩ J1, nK\J of size d
6: I ← J t J ′
7: until I is an information set of 〈H〉⊥
8: return J , I

Algorithm 5 DecodeU(HU , ϕ, s
U , eV ) the U-Decoder outputting an eU such that eUHᵀ

U = sU

and |ϕ(eU , eV )| = w.

1: t← |eV |
2: k 6=0 ←↩ DtU
3: k0 ← k′U − k 6=0 . k′U

4
= kU − d

4: repeat
5: J , I ← FreeSetW(HU , eV , k 6=0)

6: xU ←↩ {x ∈ Fn/23 | ∀j ∈ J , x(j) /∈ {− bi
ai
eV (i),− di

ci
eV (i)} and Supp(x) ⊆ I}

7: eU ← PrangeStep(HU , s
U , I,xU )

8: until |ϕ(eU , eV )| = w
9: return eU

function FreeSetW(H,x, k 6=0)

Require: H ∈ F(n−k)×n
q ,x ∈ Fnq and k 6=0 ∈ J0, kK.

Ensure: J and I an information set of 〈H〉⊥ such that |{i ∈ J : xi 6= 0}| = k 6=0 and J ⊂ I of size k− d.
1: repeat
2: J1 ←↩ Supp(x) of size k 6=0

3: J2 ←↩ J1, nK\ Supp(x) of size k − d− k 6=0.
4: J ← J1 t J2

5: until the rank of the columns of H indexed by J1, nK\J is n− k
6: repeat
7: J ′ ←↩ J1, nK\J of size d
8: I ← J t J ′
9: until I is an information set of 〈H〉⊥

10: return J , I
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A parameter d is introduced in Proposition 6 and in Algorithms 4 and 5. When 3d ≈ 2λ the
probability for not being able to complete a set of k − d positions into an information set of an
[n, k] code is of order 1

2λ
. In Algorithm 4 (resp. 5) we pick a set of kV − d (resp. kU − d) random

positions. Those positions will be filled with the ad-hoc rule using DV (resp. DtU ). With probability
at least 1 − 1

2λ
those sets can be completed with d extra positions to reach an information set.

Those d positions are filled randomly. We perform the Prange decoder and also fill the remaining
n/2 − kV (resp. n/2 − kU ) positions with random values. Doing things this way will allow us to
prove that we are close enough to the two uniformity conditions of Definition 3. This is stated as
follows (proof is in Appendix B).

Theorem 1. Let e be the output of Algorithm 3 based on Algorithms 4,5 and eunif be a uniformly

distributed error of weight w. Let f(t, `) be any real such that > 1
2D

t
U (`)qunif

1 (t) and C
4
= 1 +∑

t,` f(t, `). We have

P
(
ρ(e, eunif) >

C

3d

)
≤ 2(

n/2
k−d
) (3d + 2 · 32d+γn/2

)

+
2 · 3d(

n/2
t

)(
t
`

)(
n/2−t
k−d−`

)
(αt,` − 1)2

1 +
∑
t,`

n · 2 · 3d+nγ0/2


where the probability is taken over the choice of matrices HV and HU with,

γ
4
= min
x>0

(
(1−RV + δ) log3

(
1 + 3x

x

)
+ (RV − δ) log3(1 + x)

)
− 1 +RV

and,

αt,`
4
=

2f(t, `)

DtU (`)qunif
1 (t)

γ1(π)
4
= inf
x>0

π log3(1 + 3x) + (τ − π) log3(1 + x)− (τ − λ) log3(x)

γ2(π)
4
= inf
x>0

(1−RU + δ − π) log3(1 + 3x) + (RU − δ + π − τ) log3(1 + x)− (1−RU + δ − τ + λ) log3(x)

γ0
4
= RU − 1 + sup

π

{
γ1(π) + γ2(π) + (1−RU + δ)h3

(
π

1−RU + δ

)
+ (RU − δ)h3

(
τ − π
RU − δ

)}
.

where h3(x)
4
=−x log3(x)− (1− x) log3(1− x) defined on [0, 1] and,

δ =
d

n/2
; RV

4
=
kV
n/2

; RU
4
=
kU
n/2

; τ
4
=

t

n/2
; λ

4
=

`

n/2
.

Remark 3. By applying this theorem to the set of parameters described in §8.3 with d = 81 and

f(t, `) = 1
2

√
DtU (`)qunif

1 (t) we have:

P
(
ρ(e, eunif) >

1

2123

)
< 2−580

The bound obtained here on the statistical distance is by no means sharp. It is highly likely
that even in the case where d = 0 the statistical distance stays negligible for almost choices of
codes. It is an open question to prove such a result.

5.3 Instantiating the Distributions

Any choice for the distributions DV and DtU in Algorithms 4 and 5 will enable uniform sampling by
a proper choice of the rejection vectors rV and rU in Algorithm 3. We argue here, through a case
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study, that an appropriate choice of the distributions may considerably reduce the rejection rate.
In fact, what matters is to have the smallest possible values for M rs

V and M rs
U (t) in Proposition 4.

The first step to achieve this is to correctly align the distributions to their targets, we do that
by a proper choice for the mean value or of the mode (i.e. maximum value) of the distributions.
Next we choose a “shape” for the distributions. Here we will take (truncated) Laplace distributions
with a prescribed mean and choose a variance which minimizes rejection.

For typical parameters with 128 bits of classical security, we will give a case study with the
above strategy, in which the total rejection rate is about 8%.

Let k′V
4
= kV − d and k′U

4
= kU − d be parameters of Algorithm 4 and Algorithm 5.

Aligning the Distributions:

1. For the distribution DV . The output of Algorithm 4 has an average weight ¯̀+ 2/3(n/2− k′V ),
where ¯̀ denotes the mean of DV . It must be close to E(|eunif

V |). We will admit E(|eunif
V |) =∑n/2

i=0 iq
unif
V (i) = n

2

(
1−

(
1− w

n

)2 − 1
2

(
w
n

)2)
. The mean value ¯̀ of DV is chosen (close to)

(1− α)k′V where α ∈ [0, 1] is defined as follows

(1− α)k′V =
n

2

(
1−

(
1− w

n

)2

− 1

2

(w
n

)2
)
− 2

3

(n
2
− k′V

)
. (20)

2. For the distribution DtU , 0 ≤ t ≤ n/2. Here, for every t, we want to align the functions
s 7→ q2(s, t) and s 7→ qunif

2 (s, t) (see Proposition 4). We get a very good estimate of the s which
maximizes qunif

2 (s, t) by solving numerically the equation qunif
2 (s− 1, t) = qunif

2 (s+ 1, t), that is

8 (t− s) (t− s+ 1) (n− w − s+ 1)

(s+ 1) s (w + s+ 1− 2 t)
= 1

We will denote mmax
target(t) the unique real positive root of the above polynomial equation.

We use the notations of Algorithm 5, with in addition e = ϕ(eU , eV ). We now have to de-
termine which value of k 6=0 (line 2) will be such that q2(s, t) also reaches its maximum for
s = mmax

target(t). For a given t, q2(s, t) is the probability to have m1(e) = s. This number counts
the pairs (i, i+n/2) with i ∈ J0, n/2K such that exactly one of e(i) and e(i+n/2) is non-zero.
This may only happen when i ∈ Supp(eV ) \ J , in which case e(i) and e(i + n/2) are two
random distinct elements of F3 and this particular i is counted in m1(e) with probability 2/3.
Since |Supp(eV ) \J | = t− k6=0, we typically have m1(e) = 2

3 (t− k 6=0) and the best alignment
is reached when the most probable output of distribution DtU is k6=0 = t− 3

2m
max
target(t).

Matching the “Shapes”: to avoid a high rejection rate we need to choose distributions so that
the tails of the emulated q1 and q2 are not lower than their respective targets. A bad choice in
this respect could lead to values of M rs

V and M rs
U (t) growing exponentially with the block size. We

choose truncated Laplace distributions to avoid this.

Definition 4 (Truncated Discrete Laplace Distribution (TDLD)). Let µ, σ be positive real
numbers, let a and b be two integers. We say that a random variable X is distributed according
to the Truncated Discrete Laplace Distribution (TDLD) of parameters µ, σ, a, b, which is denoted
X ∼ Lap(µ, σ, a, b), if for all i ∈ Ja, bK,

P (X = i) =
e−
|i−µ|
σ

N

where N is a normalization factor.

We choose{
DV = Lap(µV , σV , 0, k

′
V )

DtU = Lap(µU (t), σU (t), t+ k′U − n/2, t)
with

{
µV = (1− α)k′V
µU (t) = t− 3

2m
max
target(t) + ε

and σV and σU (t) to minimize M rs
V and M rs

U (t). We also observed heuristically that the alignment
is improved by choosing a small ε > 0, typically ε = 2.
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Case Study: n = 8312, (kU , kV ) = (3316, 1746), w = 7698, α = 0.5854 and d = 81. With
σV = 16.7, we obtain M rs

V ≈ 1.0407. With σU = 6.7 and ε = 1.0 for all t, we obtain M rs
U ≈ 1.0385

on average. The result could be marginally better by selecting the best σU (t) (and ε) for each t.

5.4 Choosing the parameters

Using the parameter α introduced in (20) in the previous subsection as

(1− α)k′V =
n

2

(
1−

(
1− w

n

)2

− 1

2

(w
n

)2
)
− 2

3

(n
2
− k′V

)
.

we may define all the system parameters depending only on α, the code rate k/n, d and the block
size n

w =

⌊
n

(
1− α+

1

3

√
(3α− 1)

(
3α+ 4

k′

n
− 1

))⌋
(21)

k′V =

⌊
n

2

3

3α− 1

((
1− w

n

)2

+
1

2

(w
n

)2

− 1

3

)⌋
; k′U =

⌊n
2

(
−2 + 3

w

n

)⌋
(22)

where k′
4
= kU + kV − 2d.

6 Achieving Uniform Domain Sampling

The following definition will be useful to understand the structure of normalized generalized (U,U+
V )-codes.

Definition 5. (number of V blocks of type I). In a normalized generalized (U,U + V )-code
of length n associated to (a,b, c,d), the number of V blocks of type I, which we denote by nI , is
defined by:

nI
4
= |{1 ≤ i ≤ n/2 : bidi = 0}| .

Remark 4. nI can be viewed as the number of positions in which a codeword of the form (b �
v,d� v) is necessarily equal to 0: this comes from the fact that on a position where either bi = 0
or di = 0, the other one is necessarily different from 0 as aidi − bici = 1. In other words we also
have

nI = |{1 ≤ i ≤ n/2 : bi = 0}|+ |{1 ≤ i ≤ n/2 : di = 0}| .

We denote by Hpk the public parity-check matrix of a normalized generalized (U,U + V )-code as
described in §3.2. It turns out that Hpk has enough randomness in it for making the syndromes
associated to it indistinguishable in the strongest possible sense, i.e. statistically, from random
syndromes as the following proposition shows. In other words, our scheme achieves the Domain
Sampling property of Definition 1. Note that the upper-bound we give here depends on the number
nI we have just introduced.

Proposition 7. Let DH
w be the distribution of eHᵀ when e is drawn uniformly at random among

Sw and let U be the uniform distribution over Fn−k3 . We have

EHpk

(
ρ(DHpk

w ,U)
)
≤ 1

2

√
ε with,

ε =
3n−k

2w
(
n
w

) + 3n/2−kV
n/2∑
j=0

qunif
1 (j)2

2j
(
n/2
j

) + 3n/2−kU
nI∑
j=0

(
nI
j

)(
n−nI
w−j

)2(
n
w

)2
2j

where qunif
1 is given in Proposition 5 in §5.
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The proof of this proposition relies among other things on the following variation of the left-over
hash lemma (see [BDK+11]) that is adapted to our case: here the hash function to which we apply
the left-over hash lemma is defined as h(e) = eHᵀ

pk. Functions h do not form a universal family
of hash functions (essentially because the distribution of the Hpk’s is not the uniform distribution

over F(n−k)×n
3 ). However in our case we can still bound ε by a direct computation.

Lemma 2. Consider a finite family H = (hi)i∈I of functions from a finite set E to a finite set
F . Denote by ε the bias of the collision probability, i.e. the quantity such that

Ph,e,e′(h(e) = h(e′)) =
1

|F |
(1 + ε)

where h is drawn uniformly at random in H, e and e′ are drawn uniformly at random in E. Let
U be the uniform distribution over F and D(h) be the distribution of the outputs h(e) when e is
chosen uniformly at random in E. We have

Eh (ρ(D(h),U)) ≤ 1

2

√
ε.

This lemma is proved in Appendix §C.1. In order to use this lemma to bound the statistical
distance we are interested in, we have proved in Appendix §3 the following lemma:

Lemma 3. Assume that x and y are random vectors of Sw that are drawn uniformly at random
in this set. We have

PHpk,x,y

(
xH

ᵀ
pk = yH

ᵀ
pk

)
≤ 1

3n−k
(1 + ε) with ε given in Proposition 7.

7 Security Proof

7.1 Basic Tools

Basic Definitions. A distinguisher between two distributions D0 and D1 over the same space E is
a randomized algorithm which takes as input an element of E that follows the distribution D0 or D1

and outputs b ∈ {0, 1}. It is characterized by its advantage:AdvD
0,D1

(A)
4
=Pξ∼D0 (A(ξ) outputs 1)−

Pξ∼D1 (A(ξ) outputs 1) .

Definition 6 (Computational Distance and Indistinguishability). The computational dis-
tance between two distributions D0 and D1 in time t is:

ρc
(
D0,D1

)
(t)
4
= max
|A|≤t

{
AdvD

0,D1

(A)
}

where |A| denotes the running time of A on its inputs.

For signature schemes, one of the strongest security notion is existential unforgeability under an
adaptive chosen message attack (EUF-CMA). In this model the adversary has access to all signa-
tures of its choice and its goal is to produce a valid forgery. A valid forgery is a message/signature
pair (m, σ) such that Vrfypk(m, σ) = 1 whereas the signature of m has never been requested.

Definition 7 (EUF-CMA Security). A forger A is a (t, qhash, qsign, ε)-adversary in EUF-CMA
against a signature scheme S if after at most qhash queries to the hash oracle, qsign signatures
queries and t working time, it outputs a valid forgery with probability at least ε. The EUF-CMA
success probability against S is:

SuccEUF-CMA
S (t, qhash, qsign)

4
= max (ε|it exists a (t, qhash, qsign, ε)-adversary) .
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7.2 Code-Based Problems

We introduce the code-based problems that will be used in the security reduction.

Problem 3. [DOOM – Decoding One Out of Many] For H ∈ F(n−k)×n
3 , s1, · · · , sN ∈ Fn−k3 , integer

w, find e ∈ Fn3 and i ∈ J1, NK such that eHᵀ = si and |e| = w.

We will come back to the best known algorithms to solve this problem as a function of the
distance w in §8.1.

Definition 8 (One-Wayness of DOOM). We define the success of an algorithm A against
DOOM with the parameters n, k,N,w as:

Succn,k,N,wDOOM (A) = P
(
A (H, s1, · · · , sN ) solution of DOOM

)
where H ←↩ F(n−k)×n

3 , si ←↩ Fn−k3 and the probability is taken over H, the si’s and the internal
coins of A. The computational success in time t of breaking DOOM with the parameters n, k,N,w
is then defined as:

Succn,k,N,wDOOM (t) = max
|A|≤t

{
Succn,k,N,wDOOM (A)

}
.

Another problem appears in the security proof: distinguish random codes from a code drawn
uniformly at random in the family used for public keys in the signature scheme. In what follows
Dpub denotes the distribution of public keys Hpk whereas Drand denotes the uniform distribution

over F(n−kU−kV )×n
3 .

7.3 EUF-CMA Security Proof

Theorem 2. (Security Reduction). Let qhash (resp. qsign) be the number of queries to the hash
(resp. signing) oracle. We assume that λ0 = λ+ 2 log2(qsign) where λ is the security parameter of
the signature scheme. We have in the random oracle model for all time t, tc = t + O

(
qhash · n2

)
and ε given in Proposition 7:

SuccEUF-CMA
SWave

(t, qhash, qsign) ≤ 2Succn,k,qhash,wDOOM (tc) + ρc (Drand,Dpub) (tc)

+ qsignρ (Dw,Uw) +
1

2
qhash

√
ε+

1

2λ

where Dw is the output distribution of Algorithm 3 using Algorithms 4 and 5 and Uw is the uniform
distribution over Sw.

8 Security Assumptions and Parameter Selection

Our scheme is secure under two security assumptions. One relates to the hardness decoding and
the other to the indistinguishability of generalized (U,U + V )-codes.

8.1 Message Attack – Hardness of Decoding

Here we are interested in the hardness of the DOOM problem as stated in Problem 3 for the case
q = 3 when the target weight w is large. This variant of the problem, including the multiple target
(DOOM) aspect, was recently investigated in [BCDL19]. This work adapted to this setting the best
generic decoding techniques [Dum91, Ste88, MMT11, BJMM12] which use the so-called PGE+SS
framework (“Partial Gaussian Elimination and Subset Sum”). It also uses Wagner’s generalized
birthday algorithm [Wag02] and the representation technique [HJ10].
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8.2 Key Attack – Indistinguishability of generalized (U,U + V )-Codes

Here we are interested in the hardness of the problem to distinguish random codes from permuted
generalized normalized (U,U + V )-code. All the proofs of this subsection are in Appendix D.

A normalized generalized (U,U + V )-code where U and V are random seems very close to a
random linear code. There is for instance only a very slight difference between the weight distri-
bution of a random linear code and the weight distribution of a random normalized generalized
(U,U + V )-code of the same length and dimension. This slight difference happens for small and
large weights and is due to codewords where v = 0 or u = 0 which are of the form (a� u, c� u)
where u belongs to U or codewords of the form (b� v,d� v) where v belongs to V as shown by
the following proposition:

Proposition 8. Assume that we choose a normalized generalized (U,U + V )-code over F3 with
a number nI of linear combinations of type I by picking the parity-check matrices of U and V
uniformly at random among the ternary matrices of size (n/2− kU )× n/2 and (n/2− kV )× n/2
respectively. Let a(u,v)(z), a(u,0)(z) and a(0,v)(z) be the expected number of codewords of weight
z that are respectively in the normalized generalized (U,U + V )-code, of the form (a � u, c � u)
where u belongs to U and of the form (b � v,d � v) where v belongs to V . These numbers are
given for even z in J0, nK by

a(u,0)(z) =

(
n/2
z/2

)
2z/2

3n/2−kU
; a(0,v)(z) =

1

3n/2−kV

z∑
j=0
j even

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2

a(u,v)(z) = a(u,0)(z)+a(0,v)(z)+
1

3n−kU−kV

(nz
)

2z −
(
n/2

z/2

)
2z/2 −

z∑
j=0
j even

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2


and for odd z ∈ J0, nK by

a(u,0)(z) = 0 ; a(0,v)(z) =
1

3n/2−kV

z∑
j=0
j odd

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2

a(u,v)(z) = a(0,v)(z) +
1

3n−kU−kV

(nz
)

2z −
z∑
j=0
j odd

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2


On the other hand, when we choose a linear code of length n over F3 with a random parity-check
matrix of size (n − kU − kV ) × n chosen uniformly at random, then the expected number a(z) of
codewords of weight z > 0 is given by

a(z) =

(
n
z

)
2z

3n−kU−kV
.

We have plotted in Figure 5 the normalized logarithm of the density of codewords of the form

(a � u, c � u) and (b � v,d � v) of relative even weight x
4
= z

n against x in the case where U is

of rate kU
n/2 = 0.7, V is of rate kV

n/2 = 0.3 and nI
n/2 = 1

2 . These two relative densities are defined

respectively by

αu(z/n)
4
=

log2(a(u,0)(z)/a(u,v)(z))

n
; αv(z/n)

4
=

log2(a(0,v)(z)/a(u,v)(z))

n

We see that for a relative weight z/n below approximately 0.26 almost all the codewords are of
the form (a� u, c� u).
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Fig. 5. αu(z/n) and αv(z/n) against x
4
= z

n
.

Since the weight distribution is invariant by permuting the positions, this slight difference also
survives in the permuted version of the normalized generalized (U,U + V )-code. These considera-
tions lead to the best attack we have found for recovering the structure of a permuted normalized
generalized (U,U + V )-code. It consists in applying known algorithms aiming at recovering low
weight codewords in a linear code. We run such an algorithm until getting at some point either a
permuted (a� u, c� u) codeword where u is in U or a permuted (b� v,d� v) codeword where
v belongs to V . The rationale behind this algorithm is that the density of codewords of the form
(a� u, c� u) or (b� v,d� v) is bigger when the weight of the codeword gets smaller.

Once we have such a codeword we can bootstrap from there very similarly to what has been
done in [OT11, Subs. 4.4]. Note that this attack is actually very close in spirit to the attack that
was devised on the KKS signature scheme [OT11]. In essence, the attack against the KKS scheme
really amounts to recover the support of the V code. The difference with the KKS scheme is that
the support of V is much bigger in our case. As explained in the conclusion of [OT11] the attack
against the KKS scheme has in essence an exponential complexity. This exponent becomes really
prohibitive in our case when the parameters of U and V are chosen appropriately as we will now
explain. Let us first introduce the following notation that will be useful in the following.

Punctured Code. For a subset I ⊂ J1, nK and a code C of length n, we denote by PuncI(C),
the code C punctured in I, namely {cĪ = (cj)j∈J1,nK\I : c ∈ C}. In other words, the set of vectors
obtained by deleting in the codewords of C the positions that belong to I.

Recovering the U Code up to Permutation. We consider here the permuted code

U ′
4
=(a� U, c� U)P = {(a� u, c� u)P : u ∈ U}.

The attack in this case consists in recovering a basis of U ′. Once this is done, it is easy to recover
the U code up to permutation by matching the pairs of coordinates which are either always equal
or always sum to 0 in U ′. The basic algorithm for recovering the code U ′ is given in Algorithm 6.

It uses other auxiliary functions

– Codewords(PuncI(Cpk), p) which computes all (or a big fraction of) codewords of weight p of
the punctured public code PuncI(Cpk). All modern [Dum91, FS09, MMT11, BJMM12, MO15]
algorithms for decoding linear codes perform such a task in their inner loop.

– Complete(x, I, Cpk) which computes the codeword c in Cpk such that its restriction outside
I is equal to x.

– CheckU(x) which checks whether x belongs to U ′.
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Algorithm 6 ComputeU: algorithm that computes a set of independent elements in U ′.

Parameters: (i) ` : small integer (typically ` 6 40),
(ii) p : very small integer (typically 1 6 p 6 10).
Input: (i) Cpk the public code used for verifying signatures.
(ii) N a certain number of iterations
Output: an independent set of elements in U ′

1: function ComputeU(Cpk,N)
2: for i = 1, . . . , N do
3: B ← ∅
4: Choose a set I ⊂ J1, nK of size n− k − ` uniformly at random
5: L ← Codewords(PuncI(Cpk), p)
6: for all x ∈ L do
7: x← Complete(x, I, Cpk)
8: if CheckU(x) then
9: add x to B if x /∈< B >

10: return B

Choosing N Appropriately. Let us first analyse how we have to choose N such that Compu-
teU returns Ω(1) elements. This is essentially the analysis which can be found in [OT11, §5.2].

Proposition 9. The probability Psucc that one iteration of the for loop (Instruction 2) in Com-
puteU adds elements to the list B is lower-bounded by

Psucc ≥
n/2∑
z=0

(
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) f

( (
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU )

)
(23)

where f is the function defined by f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. Algorithm 6 returns a non zero

list with probability Ω(1) when N is chosen as N = Ω
(

1
Psucc

)
.

Complexity of Recovering a Permuted Version of U . The complexity of a call to Compu-
teU can be estimated as follows. We denote the complexity of computing the list of codewords
of weight p in a code of length k + ` and dimension k by C1(p, k, `). It depends on the particu-
lar algorithm used here. For more details see [Dum91, FS09, MMT11, BJMM12, MO15]. This is
the complexity of the call Codewords(PuncI(Cpk), p) in Step 5 in Algorithm 6. The complexity
of ComputeU and hence the complexity of recovering a permuted version of U is clearly lower

bounded by Ω
(
C1(p,k,`)
Psucc

)
. It turns out that the whole complexity of recovering a permuted version

of U is actually of this order, namely Θ
(
C1(p,k,`)
Psucc

)
. This can be done by a combination of two

techniques

– Once a non-zero element of U ′ has been identified, it is much easier to find other ones. This
uses one of the tricks for breaking the KKS scheme (see [OT11, Subs. 4.4]). The point is
the following: if we start again the procedure ComputeU, but this time by choosing a set I
on which we puncture the code which contains the support of the codeword that we already
found, then the number N of iterations that we have to perform until finding a new element
is negligible when compared to the original value of N .

– The call to CheckU can be implemented in such a way that the additional complexity coming
from all the calls to this function is of the same order as the N calls to Codewords. The
strategy to adopt depends on the values of the dimensions k and kU . In certain cases, it is
easy to detect such codewords since they have a typical weight that is significantly smaller
than the other codewords. In more complicated cases, we might have to combine a technique
checking first the weight of x, if it is above some prescribed threshold, we decide that it is not
in U ′, if it is below the threshold, we decide that it is a suspicious candidate and use then the
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previous trick. We namely check whether the support of the codeword x can be used to find
other suspicious candidates much more quickly than performing N calls to CheckU.

To keep the length of this paper within some reasonable limit we avoid here giving the analysis of
those steps and we will just use the aforementioned lower bound on the complexity of recovering
a permuted version of U .

Recovering the V Code up to a Permutation We consider here the permuted code

V ′
4
=(b� V,d� V )P = {(b� v,d� v)P where v ∈ V }.

The attack in this case consists in recovering a basis of V ′. Once this is achieved, the support
Supp(V ′) of V ′ can easily be obtained. Recall that this is the set of positions for which there exists
at least one codeword of V ′ that is non-zero in this position. This allows to easily recover the
code V up to some permutation. The algorithm for recovering V ′ is the same as the algorithm for
recovering U ′. We call the associated function ComputeV though since they differ in the choice
for N . The analysis is slightly different indeed.

Choosing N Appropriately. As in the previous subsection let us analyse how we have to choose
N in order that ComputeV returns Ω(1) elements of V ′. We have in this case the following result.

Proposition 10. The probability Psucc that one iteration of the for loop (Instruction 2) in Com-
puteV adds elements to the list B is lower-bounded by

Psucc ≥
min(n−k−`,n−nI)∑

z=0

n/2−nI∑
m=0

(n
2−nI
m

)(
nI

n−k−`−z
)(

n
n−k−`

) bp/2c
max
i=0

f

((
n−nI−z−2m

p−2i

)(
m
i

)
2p−i

3max(0,n−nI−z−m−kV )

)
n/2−nI−m∑

j=0

(
n/2− nI −m

j

)
2j
(

nI
z − n+ 2nI + 2m+ j

)

where f is the function defined by f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. ComputeV returns a non-zero

list with probability Ω(1) when N is chosen as N = Ω
(

1
Psucc

)
.

Complexity of Recovering a Permuted Version of V . As for recovering the permuted U

code, the complexity for recovering the permuted V is of order Ω
(
C1(p,k,`)
Psucc

)
.

Distinguishing a Generalized (U,U + V )-Code It is not clear in the second case that from
the single knowledge of V ′ and a permuted version of V we are able to find a permutation of the
positions which gives to the whole code the structure of a generalized (U,U + V )-code. However
in both cases as single successful call to ComputeV (resp. ComputeU) is really distinguishing
the code from a random code of the same length and dimension. In other words, we have a
distinguishing attack whose complexity is given by the following proposition

Proposition 11. Algorithm 6 lead to a distinguishing attack whose complexity is given by

min

(
O

(
min
p,`

CU (p, `)

)
, O

(
min
p,`

CV (p, `)

))

CU (p, `)
4
=

C1(p, k, `)
n/2∑
z=0

(n/2z )( n/2−zk+`−2z)2k+`−2z

( n
k+`)

bp/2c
max
i=0

f

(
(k+`−2z
p−2i )(zi)2p−i

3max(0,k+`−z−kU )

) (24)
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CV (p, `)
4
=

C1(p, k, `)∑
I

(
n
2
−nI
m )( nI

n−k−`−z)
( n
n−k−`)

bp/2c
max
i=0

f

(
(n−nI−z−2m

p−2i )(mi )2p−i
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)(
n/2−nI−m

j

)
2j
(

nI
z−n+2nI+2m+j

)
.

(25)

where C1(p, k, `) is the the complexity of a computing a constant fraction (say half of them)
of the codewords of weight p in a code of length k + ` and dimension k and f is the func-

tion f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. The sum in the denominator of (25) is over the domain

I = {(z,m, j) | 0 ≤ z ≤ min(n− k − `, n− nI), 0 ≤ m ≤ n/2− nI , 0 ≤ j ≤ n/2− nI −m}.

We explain in Appendices §D.3 and §D.4 how to estimate CU and CV .

8.3 Parameter Selection

With proper rejection sampling, the security of Wave provably reduces to the two previous hard
computational problems. The best known solvers, presented above, both have an exponential
complexity. For a given set of system parameters (n,w, kU , kV , k = kU + kV ), their asymptotic
complexities can be expressed as

– for the message attack, 2cMn(1+o(1)) where cM is a function of w/n and k/n
– for the key attack, 2cKn(1+o(1)) where cK is a function of kU/n and kV /n

Using the relations of §5.4, both cM and cK can be expressed as functions of the code rate R = k/n
and of the parameter α. Minimizing the public key size under the constraint cM (R,α) = cK(R,α),
we obtain

R = 0.6089, α = 0.5854, cM ≈ cK ≈ 0.0154.

For λ bits of (classical) security we get (K the key size in bits):

n =
λ

0.0154
, w = 0.9261n, kU = 0.7978

n

2
, kV = 0.4201

n

2
, K = 0.3774n2

To reach 128 bits of security we obtain n = 8312, w = 7698, kU = 3316, kV = 1746 for a public
key size of 3.2 megabytes. We also checked that the other terms in the security reduction do not
interfere here. For instance, we recommend to choose the vectors a,b, c,d uniformly at random
among the choices that give a ϕ that is UV -normalized, meaning that for all i in J1, n/2K we should
have aidi− bici = 1 and aici 6= 0. We reject choices that lead to a number nI of V blocks of type I
that are not close to their expected value E(nI) = n/6. By doing so we can control the parameter

ε giving an upper-bound on EHpk

(
ρ(DHpk

w ,U)
)

. In the case nI = n/6 this upper-bound is of order

≈ 2−177.

8.4 Implementation

The scheme was implemented in SageMath as a proof of concept. For the parameters (n,w) =
(9078, 8444) each signature is produced in a few seconds. This gives a compelling argument to
debunk the claim made in [BP18b] to break Wave. The algorithm of [BP18b] collects a set S of
signatures, measures for each pair of indices (i, j) the quantity |{ei = −ej | e ∈ S}| − |{ei = ej |
e ∈ S}| and selects for each i the pair (i, j) which maximizes this quantity. A tentative secret
key is then derived from the selected pairs. The first version of this paper [BP18a] proposed an
algorithm that recovers the secret key when rejection sampling was left out from the (U,U + V )-
decoder. It uses information leakage from a few hundred signatures to achieve its purpose. The
authors of [BP18a] were told that the rejection sampling step was critical to ensure uniformly
distributed signatures over Sw and thus resistance against leakage attack. Subsequent versions of
[BP18b] claimed that their algorithm also worked with the rejection sampling step. There was no
implementation of Wave at that time to give a practical refutation of this conjecture. We could
now test our implementation against the algorithm given in [BP18b]. With a set of 25 000 properly
generated signatures the algorithm failed as expected to recover the secret key.
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9 Concluding Remarks and Further Work

We have presented Wave the first code-based “hash-and-sign” signature scheme which strictly
follows the GPV strategy [GPV08]. This strategy provides a very high level of security, but because
of the multiple constraints it imposes, very few schemes managed to comply to it. For instance,
only one such scheme based on hard lattice problems [FHK+] was proposed to the recent NIST
standardization effort. Our scheme is secure under two assumptions from coding theory. Both of
those assumptions relate closely to hard decoding problems. Using rejection sampling, we have
shown how to efficiently avoid key leakage from any number of signatures. The main purpose of
our work was to propose this new scheme and assess its security. Still, it has a few issues and
extensions that are of interest.

The Far Away Decoding Problem. The message security of Wave relates to the hardness of finding
a codeword far from a given word. A recent work [BCDL19] adapts the best ISD techniques for
low weight [MMT11, BJMM12] and goes even further with a higher order generalized birthday
algorithm [Wag02]. Interestingly enough, in the non-binary case, this work gives a worst case
exponent for the far away codeword that is significantly larger than the close codeword worst case
exponent. This seems to point to the fact that the far away codeword problem may even be more
difficult to solve than the close codeword problem. This raises the issue of obtaining code-based
primitives with better parameters that build upon the far away codeword rather than on the usual
close codeword problem.

Distinguishability. Deciding whether a matrix is a parity check matrix of a generalized (U,U +V )-
code is also a new problem. As shown in [DST17b] it is hard in the worst case since the problem
is NP-complete. In the binary case, (U,U + V ) codes have a large hull dimension for some set
of parameters which are precisely those used in [DST17b]. In the ternary case the normalized
generalized (U,U+V )-codes do not suffer from this flaw. The freedom of the choice on vectors a,b, c
and d is very likely to make the distinguishing problem much harder for generalized (U,U + V )-
codes than for plain (U,U + V )-codes. Coming up with non-metric based distinguishers in the
generalized case seems a tantalizing problem here.

On the Tightness of the Security Reduction. It could be argued that one of the reasons of why we
have a tight security-reduction comes from the fact that we reduce to the multiple instances version
of the decoding problem, namely DOOM, instead of the decoding problem itself. This is true to
some extent, however this problem is as natural as the decoding problem itself. It has already
been studied in some depth [Sen11] and the decoding techniques for linear codes have a natural
extension to DOOM as noticed in [Sen11]. We also note that with our approach, where a message
has many possible signatures, we avoid the tightness impossibility results given in [BJLS16] for
instance.

Rejection Sampling. Rejection sampling in our algorithm is relatively unobtrusive: a rejection every
few signatures with a crude tuning of the decoder. We believe that it can be further improved.
Our decoding has two steps. Each step is parametrized by a weight distribution which conditions
the output weight distribution. We believe that we can tune those distributions to reduce the
probability of rejection to an arbitrarily small value. This task requires a better understanding of
the distributions involved. This could offer an interesting trade-off in which the designer/signer
would have to precompute and store a set of distributions but in exchange would produce a signing
algorithm that emulates a uniform distribution without rejection sampling.

Improving Parameters. In order to prove that the distribution of the output of the signing algorithm
is almost the uniform distribution over the words of the same length and weight in a very strong
sense (i.e. the statistical distance between both distributions should be negligible) we chose to
degrade a little bit the signing algorithm. This was achieved by excluding d positions from the
information sets. In this case, the distribution of sets that can be completed in d positions to give
an information set is almost the same as the uniform distribution over the sets of such size. We
use this phenomenon to upper-bound the aforementioned statistical distance (see Theorem 1 in
Section 5). However, this is a very crude approach and the upper-bound we obtain in this way is
extremely pessimistic. We conjecture that the statistical distance is still negligible even in the case
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d = 0. Choosing d = 0 allows to reduce the block size by more than 10%. For this reason, proving
such a conjecture would be an interesting task.
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A Some Useful Distributions

The purpose of this section is to prove Propositions 5 and 6 which give the distributions qunif
1 , qunif

2 , q1

and q2.

A.1 Proof of Proposition 5

Let us first recall the definitions of qunif
1 and qunif

2 . We have

qunif
1 (i) = P(|eunif

V | = i) ; qunif
2 (s, t) = P(m1(eunif) = s | |eV | = t)

where

– eunif is a random vector drawn uniformly at random among the vectors of weight w in Fn3
– eunif

V

4
=−c � e1 + a � e2 with e1 and e2 being vectors in Fn/23 such that eunif = (e1, e2) and

a,b, c and d are vectors of Fn/23 verifying the following equations

∀i ∈ J1, n/2K, aidi − bici = 1 ; aici 6= 0 (26)

– m1(x)
4
= |{1 ≤ i ≤ n/2 : |(xi, xi+n/2)| = 1}|.

Let us prove now Proposition 5:

Proposition 5. Let n be an even integer, w ≤ n, i, t ≤ n/2 and s ≤ t be integers. We have,

qunif
1 (i) =

(
n/2
i

)(
n
w

)
2w/2

i∑
p=0

w+p≡0 mod 2

(
i

p

)(
n/2− i

(w + p)/2− i

)
23p/2 (16)

qunif
2 (s, t) =


(ts)(

n/2−t
w+s

2
−t)2

3s
2∑

p
(tp)(

n/2−t
w+p

2
−t)2

3p
2

if w + s ≡ 0 mod 2.

0 else

(17)

Proof. Let us first compute the distribution qunif
1 . The following lemma will be useful:

Lemma 4. |e2 − e1| ∼ |eunif
V |.

Proof (Proof of Lemma 4). Let e′1
4
= c�e1, e′2

4
= a�e2, e′

4
=(e′1, e

′
2). e′ is clearly a random vector

that is uniformly distributed over the words of weight w in Fn3 because all the entries of a and c are
non-zero. Since eunif

V = −c� e1 + a� e2 = e′2 − e′1 we deduce that |e2 − e1| and |eunif
V | = |e′2 − e′1|

have the same distribution. ut

From this lemma, to compute the distribution q1 it is enough to determine for all i in J1, n/2K,
P(|e2 − e1| = i) where (e1, e2) is uniformly distributed over the words of weight w. Let us define
the following quantities:

p
4
= |{1 ≤ i ≤ n/2 : (e1(i), e2(i)) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}}| (27)

r
4
= |{1 ≤ i ≤ n/2 : (e1(i), e2(i)) ∈ {(1,−1), (−1, 1)}}| (28)

l
4
= |{1 ≤ i ≤ n/2 : (e1(i), e2(i)) ∈ {(1, 1), (−1,−1)}}| (29)

We have:

w = |e| = 2l + 2r + p ; j = |e1 − e2| = p+ r
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We have therefore that p ≡ w mod 2, r = j − p and l = (w + p)/2 − j. By summing over
all possibilities for p, it follows that the number of errors e = (e1, e2) of weight w such that
|e1 − e2| = j is given by

j∑
p=0

p≡w mod 2

(
n/2

j

)(
j

p

)
4p2j−p

(
n/2− j
w+p

2 − j

)
2
w+p

2 −j =

j∑
p=0

p≡w mod 2

(
n/2

j

)(
j

p

)(
n/2− j
w+p

2 − j

)
2
w+3p

2

which concludes the computation of qunif
1 . Let us now compute the distribution qunif

2 .

Lemma 5. Let n′(s, t) be the number of words eunif = (e1, e2) of weight w that verify |e2−e1| = t
and m1(eunif) = s. We have,

n′(s, t) =

{(
n/2
t

)
2w/2

(
t
s

)
23s/2

( n/2−t
w+s

2 −t

)
if s ≡ w mod 2

0 else.

Proof. We use the quantities defined in Equations (27),(28) and (29). Note that m1(eunif) = p.
For words which define n′(s, t) we have p = s, r = t − p = t − s and l = w+p

2 − t = w+s
2 − t.

Moreover the constraint p ≡ w mod 2 translates into s ≡ w mod 2. ut

This concludes the proof by noticing that

P(m1(eunif) = s | |eV | = t) =
n′(s, t)∑
p n
′(p, t)

.

A.2 Proof of Proposition 6

Our aim here is to prove Proposition 6. It gives the weight distribution of DecodeV(·) as q1

and m1(·)-distribution of DecodeU(·) as q2. Let us recall that algorithms DecodeV(·) and
DecodeU(·) are given in Subsection 5.2. We are now ready to prove:

Proposition 6. Let n be an even integer, w ≤ n, i, t, kU ≤ n/2 and s ≤ t be integers. Let d be

an integer, k′V
4
= kV − d and k′U

4
= kU − d. Let XV (resp. Xt

U ) be a random variable distributed
according to DV (resp. DtU ). We have,

q1(i) =

i∑
t=0

(
n/2−k′V
i−t

)
2i−t

3n/2−k
′
V

P(XV = t) (18)

q2(s, t) =


∑

t+k′U−n/2≤k6=0≤t

k0
4
= k′U−k6=0

(t−k 6=0
s )(

n/2−t−k0
w+s

2
−t−k0

)2
3s
2∑

p
(t−k6=0

p )(
n/2−t−k0
w+p

2
−t−k0

)2
3p
2

P(Xt
U = k 6=0) if w ≡ s mod 2.

0 else

(19)

Proof. The computation of q1 easily follows from the fact that |eV | (the output of Prange Algo-
rithm, Line 4 in Algorithm 4) can be written (Proposition 2 in Subsection 4.2) as S + T where S
and T are independent random variables such that S denotes the weight of a vector that is uni-

formly distributed over Fn/2−k
′
V

3 and T is distributed according to DV (in the Prange algorithm
used in DecodeV(·) we uniformly picked d symbols in the information set). To compute q2 let
us count the number n(s, t, k 6=0) of different eU that can be output by DecodeU(·) for a given
value of eV (which is supposed to be of weight t) and J (included in an information set I) that is
assumed to intersect the support of eV in exactly k6=0 positions and that are such that m1(e) = s.
We can partition J1, n/2K as

J1, n/2K = J ∪ I1 ∪ I2
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where I1 is the set of positions that are not in J but in the support of eV , whereas I2 is the set
of positions that are neither in J nor in the support of eV . By assumption on eV we know that
|I1| = t− k 6=0. Furthermore |J | = kU − d and I2 = n/2− |J | − |I1| = n/2− kU + d− (t− k6=0) =

n/2− t− k0 where k0
4
= kU − d− k 6=0. For i ∈ {0, 1, 2} we let

Ji
4
={i ∈ J1, n/2K : |(ei, ei+n/2)| = i} ; ji

4
= |Ji|.

We necessarily have
j1 = s ; n− w = j1 + 2j0.

We derive from these equalities that

j0 =
n− w − s

2

Now we also have
J1 ⊆ I1 ; J0 ⊆ I2.

We can choose the j1 = s positions of J1 as we wish among the t− k 6=0 positions of I1. Similarly
we may choose the j0 = n−w−s

2 positions of J0 as we wish among the n/2− t− k0 positions of I2.
Vector eU is necessarily fixed over all positions in J by choice of the Prange algorithm, it is also
necessarily fixed in the positions I1 \ J1 and J0. For positions i in J1 ∪ (I2 \ J0) there are two
possibilities for the value eU (i). This implies that

n(s, t, k 6=0) =

(
t− k6=0

s

)(
n/2− t− k0

n−w−s
2

)
2s2n/2−t−k0−

n−w−s
2

=

(
t− k6=0

s

)(
n/2− t− k0

n−w−s
2

)
2

3s
2 +w

2 −t−k0 .

We therefore have

P(m1(e) = s | |eV | = t,J ∩ Supp(eV ) = k 6=0) =
n(s, t, k 6=0)∑
p n(s, t, p)

=

(
t−k 6=0

s

)(n/2−t−k0
n−w−s

2

)
2

3s
2 +w

2 −t−k0∑
p

(
t−k6=0

p

)(n/2−t−k0
n−w−p

2

)
2

3p
2 +w

2 −t−k0

=

(
t−k 6=0

s

)(n/2−t−k0
n−w−s

2

)
2

3s
2∑

p

(
t−k6=0

p

)(n/2−t−k0
n−w−p

2

)
2

3p
2

.

This concludes the proof by summing over all possibilities for k 6=0.

B Proof of Theorem 1

Let us introduce a definition that will be useful.

Definition 9 (Bad and Good Subsets). Let d ≤ k ≤ n be integers and H ∈ F(n−k)×n
3 . A

subset E ⊆ J1, nK of size k− d is defined as a good set for H if HE is of full rank where E denotes
the complementary of E. Otherwise, E is defined as a bad set for H.

We summarize in Figures 6 and 7 how DecodeV(·) and DecodeU(·) work where the J ’s are
random good sets for HV and HU .

We consider variations VarDecodeV(·) and VarDecodeU(·) of algorithms DecodeV(·) and
DecodeU(·) respectively that work as DecodeV(·) and DecodeU(·) when J is a good set and
depart from it when J is a bad set. In the later case, the Prange decoder is not used anymore and
an error is output that simulates what the Prange decoder would do with the exception that there
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xV

J I\J J1, n/2K\I

Uniformly distributed by property of the Prange algorithm

Uniformly distributed by specification of the algorithm

Fig. 6. Decoding of the code V

Uniformly distributed by property of the Prange algorithm

Uniformly distributed by specification of the algorithm

Supp(eV )

(xU )J2

I1\J1I2\J2

(xU )J1

k 6=0

J1
4
=J ∩ Supp(eV ) ; J2

4
=J ∩ Supp(eV ) ; I1

4
= I ∩ Supp(eV ) ; I2

4
= I ∩ Supp(eV )

Fig. 7. Decoding of the code U

is no guarantee that the error eV that is output by VarDecodeV(·) satisfies eV Hᵀ
V = sV or that

the eU that is output by VarDecodeU(·) satisfies eUHᵀ
U = sU . The eV and eU that are output

are chosen on the positions of J as DecodeV() and DecodeU() as would have done it, but the
rest of the positions are chosen uniformly at random in F3. The output of both decoders consists
of three parts, each of them has a distribution which is weightwise uniform for VarDecodeV(·)
and m1-uniform for VarDecodeU(·) by construction. This implies that

Fact 2 VarDecodeV(·) is weightwise uniform and VarDecodeU(·) is m1-uniform.

The point of considering VarDecodeV(·) and VarDecodeU(·) is that they are very good ap-
proximations of DecodeV(·) and DecodeU(·) that meet the uniformity conditions that ensure
by using Lemma 1 that the output of Algorithm 3 using VarDecodeV(·) and VarDecodeU(·)
instead of DecodeV(·) and DecodeU(·) produces an error e that is uniformly distributed over
the words of weight w. The outputs of VarDecodeV(·) and VarDecodeU(·) only differ from the
output of DecodeV(·) and DecodeU(·) when a bad set J is encountered. These considerations
can be used to prove the following proposition.

Proposition 12. Algorithm 3 based on VarDecodeV(·) and VarDecodeU(·) produces uni-
formly distributed errors eunif of weight w. Let e be the output of Algorithm 3 with the use of
DecodeV(·) and DecodeU(·). Let Junif be uniformly distributed over the subsets of J1, n/2K of
size kV − d whereas JHV is uniformly distributed over the same subsets that are good for HV . Let
Iunif
xV ,`

be uniformly distributed over the subsets of J1, n/2K of size kU−d such that their intersection

with xV is of size ` whereas IHU

xV ,`
is the uniform distribution over the same subsets that are good

for HU . We have:

ρ
(
e; eunif

)
≤ ρ

(
JHV ; Junif

)
+
∑
xV ,`

ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
P (k6=0 = ` | eV = xV )P

(
eunif
V = xV

)
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Proof. The first statement about the output of Algorithm 3 is a direct consequence of Fact 2
and Lemma 1. The proof of the rest of the proposition relies on the following proposition [GM02,
Proposition 8.10]:

Proposition 13. Let X,Y be two random variables over a common set A. For any randomized
function f with domain A using internal coins independent from X and Y , we have:

ρ (f(X); f(Y )) ≤ ρ (X;Y ) .

Let us define for xV ∈ Fn/23 and xU ∈ Fn/23 ,

p(xV )
4
=P (eV = xV ) ; q(xV )

4
=P

(
eunif
V = xV

)
(30)

p(xU |xV )
4
=P (eU = xU | eV = xV ) ; q(xU |xV )

4
=P

(
eunif
U = xU | eunif

V = xV
)

(31)

We have,

ρ
(
e; eunif

)
= ρ

(
eU , eV ; eunif

U , eunif
V

)
=
∑

xV ,xU

|p(xV )p(xU |xV )− q(xV )q(xU |xV )|

=
∑

xV ,xU

|(p(xV )− q(xV ))p(xU |xV ) + (p(xU |xV )− q(xU |xV ))q(xV )|

≤
∑

xV ,xU

|(p(xV )− q(xV ))p(xU |xV )|+ |(p(xU |xV )− q(xU |xV )q(xV )|

=
∑
xV

|(p(xV )− q(xV ))|+
∑

xV ,xU

|p(xU |xV )− q(xU |xV )| q(xV ) (32)

where in the last line we used that
∑

xU
|p(xU |xV )| = 1 for any xV . Thanks to Proposition 13:∑

xV

|p(xV )− q(xV )| ≤ ρ
(
JHV ; Junif

)
(33)

as the internal distribution DV of DecodeV(·) is independent of JHV and Junif. Let us upper-
bound the second term of the inequality. The distribution of k 6=0 is only function of the weight of
the vector given as input to DecodeU(·) or VarDecodeU(·). Therefore,

P (k 6=0 = ` | eV = xV ) = P
(
k 6=0 = ` | eunif

V = xV
)

(34)

Let us define,

p(xU |xV , `)
4
=P(eU = xU | k 6=0 = `, eV = xV ) ; q(xU |xV , `)

4
=P(eunif

U = xU | k 6=0 = `, eunif
V = xV )

With this notation we obtain from (34)

p(xU |xV )− q(xU |xV ) =
∑
`

(p(xU |xV , `)− q(xU |xV , `))P (k 6=0 = ` | eV = xV ) (35)

The internal coins of DecodeU(·) and VarDecodeU(·) are independent of IHU

xV ,`
and Iunif

xV ,`
and

by using Proposition 13 we have for any xV and `:∑
xU

|p(xU |xV , `)− q(xU |xV , `)| ≤ ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
(36)

Combining Equations (32), (33), (35) and (36) concludes the proof. ut
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The quantities

ρ
(
JHV ; Junif

)
;
∑
xV ,`

ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
P (k6=0 = ` | eV = xV )P

(
eunif
V = xV

)
are functions of HV and HU . We are going to show that their probabilities over HV and HU to
be greater than 1/3d is negligible. We will first need the following lemma .

Lemma 6. Let d and m be two positive integers with d < m and let M be a matrix chosen

uniformly at random in F(m−d)×m
3 . The probability that M is of rank < m − d is upper-bounded

by 1
2·3d .

Proof. Let M1, . . . ,Mm−d be the rows of M. Let Vi be the vector space spanned by M1, . . . ,Mi. If
M is not of full rank then necessarily for at least one i ∈ J1,m−dK we have dimVi = dimVi−1 = i−1

where V−1
4
={0}.The probability P that M is not of full rank is therefore upper-bounded by

P ≤
m−d∑
i=1

P(dimVi = dimVi−1 = i− 1)

≤
m−d∑
i=1

P(dimVi = i− 1|dimVi−1 = i− 1)

=

m−d∑
i=1

1

3m+1−i

≤ 1

2 · 3d
.

ut

By combining this lemma and the Markov’s inequality we can easily show that

P
(
ρ
(
JHV ; Junif

)
>

1

3d/2

)
<

1

3d/2

and,

P

∑
xV ,`

ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
P (k 6=0 = ` | eV = xV )P

(
eunif
V = xV

)
>

1

3d/2

 <
1

3d/2
.

Nevertheless here we would like to upper-bound the probability of the statistical distances to be
greater than 1/3d. This will enable to choose a smaller parameter d (and thus better parameters)
to achieve 128 bits of security. It is why we are going to use the second moment method with the
Bienaymé-Tchebychev’s inequality.

The following lemmas will be useful too.

Lemma 7. Let X and Y be two Bernoulli variables that are independent conditioned on an event

E. Let ε
4
=P(E). Then

E(XY )− E(X)E(Y ) ≤ 2ε.

Proof. We have

E(XY ) = P(X = 1, Y = 1|E)P(E) + P(X = 1, Y = 1|E)P(E)

≤ P(X = 1|E)P(Y = 1|E)(1− ε) + ε.

On the other hand

E(X)E(Y ) ≥ P(X = 1|E)P(Y = 1|E)(1− ε)2.
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Using both bounds yields

E(XY )− E(X)E(Y ) ≤ P (X = 1|E)P(Y = 1|E)(1− ε− (1− ε)2) + ε

≤ 2ε.

ut

Lemma 8. Let s = σn, t = τn and w = ωn be three positive integers such that w ≤ min(s, t).
We have

w∑
i=0

(
s

i

)(
t

w − i

)
3i ≤ 3γn

where

γ
4
= inf
x>0
{σ log3(1 + 3x) + τ log3(1 + x)− ω log3(x)} .

Proof. Let

a(x)
4
=

s∑
j=0

(
s

j

)
(3x)j = (1 + 3x)s

b(x)
4
=

t∑
j=0

(
t

j

)
xj = (1 + x)t

c(x)
4
= a(x)b(x)

We also define the coeffients ck by c(x) =
∑
k ckt

k. Notice that

w∑
i=0

(
s

i

)(
t

w − i

)
3i = cw

≤ inf
x>0

c(x)

xw

= inf
x>0

a(x)b(x)

xw

= inf
x>0

(1 + 3x)s(1 + x)t

xw

= inf
x>0

3(σ log3(1+3x)+τ log3(1+x)−ω log3(x))n

= 3γn.

ut

Lemma 9. Let H be a matrix chosen uniformly at random in F(n/2−k)×n/2
3 and let d be an integer

in the range J1, kK. We define R
4
= k/(n/2) and δ = d/(n/2). Let Junif be uniformly distributed over

the subsets of J1, n/2K of size kV − d whereas JH is uniformly distributed over the same subsets
that are good for H. We have

P
(
ρ(Junif; JH) >

1

3d

)
≤ 2(

n/2
k−d
) (3d + 2 · 32d+γn/2

)
where

γ
4
= min
x>0

(
(1−R+ δ) log3

(
1 + 3x

x

)
+ (R− δ) log3(1 + x)

)
− 1 +R
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Proof. Recall that the statistical distance between the uniform distribution over J1, sK and the
uniform distribution over J1, tK (with t ≥ s) is equal to t−s

t . Let N be the number of subsets of
J1, n/2K of size k − d that are bad for H. By using the previous remark, we obtain

ρ(Junif; JH) =
N(
n/2
k−d
) . (37)

Let us index from 1 to
(
n/2
k−d
)

the subsets of size k − d of J1, n/2K and let Xi be the indicator of
the event “the subset of index i is bad”. We have

N =

(n/2k−d)∑
i=1

Xi. (38)

We have by using Bienaymé-Tchebychev’s inequality, that for any positive integer t:

P(N > E(N) + t) ≤Var(N)

t2

=

∑
i Var(Xi) +

∑
i 6=j E(XiXj)− E(Xi)E(Xj)

t2

≤E(N)

t2
+

1

t2

∑
i6=j

E(XiXj)− E(Xi)E(Xj)

 (39)

where we use in the last line that Var(Xi) ≤ E(X2
i ) and E(X2

i ) = E(Xi). Let us now upper-
bound the second term of the inequality. We first define for any i 6= j the intersection of the
complementary of the sets indexed by i and j as Ei,j .

By definition of a bad set, if Ei,j = ∅ then Xi = 1 and Xj = 1 are independent events and

E(XiXj) = E(Xi)E(Xj). Otherwise, let ei,j
4
= |Ei,j | > 0. Observe that Xi and Xj are independent

conditioned on the event that HEi,j is of full rank. We can apply Lemma 7 and obtain for ei,j ≥ 1

E(XiXj)− E(Xi)E(Xj) ≤
1

3n/2−k−ei,j
(40)

Let us make the following computations by using (40):

∑
i 6=j

E(XiXj)− E(Xi)E(Xj) =
∑
i

n/2−k+d∑
e=1

∑
j:ei,j=e

E(XiXj)− E(Xi)E(Xj)

≤
∑
i

n/2−k+d∑
e=1

∑
j:ei,j=e

1

3n/2−k−ei,j

≤ 1

3n/2−k

(
n/2

k − d

) n/2−k+d∑
e=0

3e
(
n/2− k + d

e

)(
k − d

n/2− k + d− e

)
(41)

We finish the proof by using Lemma 8 with the sum that appears in the the last term and obtain

P(N > E(N) + t) ≤ E(N)

t2
+

1

t2

(
n/2

k − d

)
3γn/2

≤
(
n/2
k−d
)

2 · 3dt2
+

1

t2

(
n/2

k − d

)
3γn/2
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where in the last inequality we used that E(N) ≤ (n/2k−d)
2·3d which is obtained thanks to Lemma 6.

Therefore, by choosing t =
(n/2k−d)
2·3d ,

P

(
N > E(N) +

(
n/2
k−d
)

2 · 3d

)
≤ 1(

n/2
k−d
) (2 · 3d + 4 · 32d+γn/2

)

But now as E(N) ≤ (n/2k−d)
2·3d ,

P

(
N >

(
n/2
k−d
)

3d

)
≤ 2(

n/2
k−d
) (3d + 2 · 32d+γn/2

)
from which we easily conclude the proof by using Equation (37). ut

Lemma 10. Let H be a matrix chosen uniformly at random in F(n/2−k)×n/2
3 . Let t ∈ J0, n/2K,

` ∈ J0, n/2K. Let R
4
= 2k

n , λ
4
= 2`

n , t
4
= 2t

n and

γ1(π)
4
= inf
x>0
{π log3(1 + 3x) + (τ − π) log3(1 + x)− (τ − λ) log3(x)}

γ2(π)
4
= inf
x>0
{(1−R+ δ − π) log3(1 + 3x) + (R− δ + π − τ) log3(1 + x)− (1−R+ δ − τ + λ) log3(x)}

γ0
4
= R− 1 + sup

π

{
γ1(π) + γ2(π) + (1−R+ δ)h3

(
π

1−R+ δ

)
+ (R− δ)h3

(
τ − π
R− δ

)}
.

∆
4
=

(
n/2
t

)(
t
`

)(
n/2−t
k−d−`

)
2 · 3d

(α− 1).

where α is an arbitrary constant satisfying α > 1. Then,

P

 1(
n/2
t

) ∑
x∈{0,1}n/2:|x|=t

ρ(Iunif
x,` ; IHx,`) >

α

2 · 3d

 ≤ 1

(α− 1)∆
+

1

∆2
n

(
n/2

t

)(
t

`

)(
n/2− t
k − d− `

)
3nγ0/2.

where we used the same notation as in Proposition 12.

Remark 5. We stress here that the sum is over binary words.

Proof. Let Nx,` be the number of subsets of J1, n/2K of size k− d such that their intersection with
Supp(x) is of size ` and that are bad for H. We have

ρ(Iunif
x,` ; IHx,`) =

Nx,`(|x|
`

)(
n/2−|x|
k−d−`

) . (42)

Let us index these subsets by 1, . . . ,
(|x|
`

)(
n/2−|x|
k−d−`

)
and let Xx,`(i) be the indicator of the event “the

subset of index i is bad”. We have

Nx,` =

(|x|` )(n/2−|x|k−d−` )∑
i=1

Xx,`(i). (43)

Let

N
4
=

∑
x∈{0,1}n/2:|x|=t

Nx,` (44)

We have, ∑
x,∈{0,1}n/2:|x|=t

ρ(Iunif
x,` ; IHx,`) = N. (45)
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We have by using Bienaymé-Tchebychev’s inequality, that for any positive integer ∆:

P(N > E(N) +∆) ≤ Var(N)

∆2

=

∑
x,i Var(Xx,`(i)) +

∑
(x,i) 6=(y,j) (E (Xx,`(i)Xy,`(j))− E(Xx,`(i))E(Xy,`(j)))

∆2

≤ E(N)

∆2
+

1

∆2

 ∑
(x,i)6=(y,j)

(E (Xx,`(i)Xy,m(j))− E(Xx,`(i))E(Xy,m(j)))


(46)

where we use in the last line that Var(Xx,`(i)) ≤ E(Xx,`(i)
2), E(Xx,`(i)

2) = E(Xx,`(i)).

Let us now upper-bound the second term of the inequality. We first define for any (x, i) and
(y, j) the intersection of the complementary of the sets indexed by i and j for (x, i) and (y, j) as

E(x, i; y, j). Let e(x, i; y,m)
4
= |E(x, i; y, j)| and we suppose that e(x, i; y, j) > 0. By using Lemma

7 we obtain:

E(Xx,`(i)Xy,m(j))− E(Xx,`(i))E(Xy,m(j)) ≤ 1

3|n/2−k−e(x,i;y,j)|
. (47)

When e(x, i; y, j) = 0,Xx,`(i) andXy,m(j) are independent and we have in this case E(Xx,`(i)Xy,m(j))−
E(Xx,`(i))E(Xy,m(j)) = 0. This implies

∑
(x,i)6=(y,j)

(E(Xx,`(i)Xy,`(j))− E(Xx,`(i))E(Xy,`(j)))

≤
∑
(x,i)

n/2−k+d∑
e=1

∑
(y,j):e(x,i;y,j)=e

(E(Xx,`(i)Xy,m(j))− E(Xx,`(i))E(Xy,m(j)))

≤
∑
(x,i)

n/2−k+d∑
e=1

∑
(y,j):e(x,i;y,j)=e

1

3|n/2−k−e|
(By using Eq.(47))

Our aim now is to compute the following quantity:

S(x, i,y)
4
=

n/2−k+d∑
e=1

∑
j:e(x,i;y,j)=e

1

3|n/2−k−e|
(48)

Let us denote by Ei (resp. Fj) the complementary of the set indexed by i (resp. j). Let,

p
4
= |Supp(y) ∩ Ei| .

It will be helpful to partition the support J1, n/2K as

J1, n/2K = (Supp(y) ∩ Ei) ∪ (Supp(y) ∩ Ei) ∪ (Supp(y) ∩ Ei) ∪ (Supp(y) ∩ Ei)

Here,

|Fj | = |Ei| = n/2− k + d ; |E i| = k − d
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By definition we have |Supp(y)| = t. We also have∣∣∣Supp(y) ∩ Ei
∣∣∣ = |Ei| − |Supp(y) ∩ Ei|

= n/2− k + d− p (49)∣∣Supp(y) ∩ Ei
∣∣ = |Supp(y)| − |Supp(y) ∩ Ei|

= t− p (50)∣∣∣Supp(y) ∩ Ei
∣∣∣ =

∣∣∣Supp(y)
∣∣∣− ∣∣∣Supp(y) ∩ Ei

∣∣∣
= n/2− t− (n/2− k + d− p)
= k − d+ p− t. (51)

We bring in now

f
4
= |Supp(y) ∩ Ei ∩ Fj | (52)

g
4
=
∣∣∣Supp(y) ∩ Ei ∩ Fj

∣∣∣ . (53)

Observe that we have

e = |Ei ∩ Fj | = |Supp(y) ∩ Ei ∩ Fj |+
∣∣∣Supp(y) ∩ Ei ∩ Fj

∣∣∣ = f + g. (54)

and that
|Supp(y) ∩ Fj | = |Supp(y)| −

∣∣Supp(y) ∩ Fj
∣∣ = t− `. (55)

Let us compute the cardinalities of Fj intersected with the sets of the partition. We already know
two of them, let us compute the two remaining ones∣∣Supp(y) ∩ E i ∩ Fj

∣∣ = |Supp(y) ∩ Fj | − |Supp(y) ∩ Ei ∩ Fj |
= t− `− f (56)∣∣∣Supp(y) ∩ Fj ∩ E i
∣∣∣ =

∣∣∣Supp(y) ∩ Fj
∣∣∣− ∣∣∣Supp(y) ∩ Fj ∩ Ei

∣∣∣
= |Fj | − |Supp(y) ∩ Fj | −

∣∣∣Supp(y) ∩ Fj ∩ Ei
∣∣∣

= n/2− k + d− (t− `)− g
= n/2− k + d− t+ `− g. (57)

Therefore, S(x, i,y) of Equation (48) is given by summing over all possible f and g as:

S(x, i,y) =
∑
f,g

(
p

f

)(
n/2− k + d− p

g

)(
t− p

t− `− f

)(
k − d+ p− t)

n/2− k + d− t+ `− g

)
1

3|n/2−k−f−g|

≤
∑
f,g

(
p

f

)(
n/2− k + d− p

g

)(
t− p

t− `− f

)(
k − d+ p− t)

n/2− k + d− t+ `− g

)
1

3n/2−k−f−g

=
1

3n/2−k

∑
f

(
p

f

)(
t− p

t− `− f

)
3f
∑
g

(
n/2− k + d− p

g

)(
k − d+ p− t)

n/2− k + d− t+ `− g

)
3g

(58)

We now use Lemma 8 to bound (58) as

S(x, i,y) ≤ 3(R−1)n/23γ1(π)n/23γ2(π)n/2

where π
4
= 2p

n . Now, the number of binary vectors y of weight t such that |Supp(y) ∩ Ei| = p is
given by: (

n/2− k + d

p

)(
k − d
t− p

)
≤ 3[(1−R+δ)h3( π

1−R+δ )+(R−δ)h3( τ−πR−δ )]n/2 (59)
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We deduce from this that∑
(x,i)6=(y,j)

E(Xx,`(i)Xy,`(j))− E(Xx,`(i))E(Xy,`(j))

≤ n
(
n/2

t

)(
t

`

)(
n/2− t
k − d− `

)
3nγ0/2. (60)

Plugging this upper-bound into (46) yields

P(N > E(N) +∆) ≤ E(N)

∆2
+

1

∆2
n

(
n/2

t

)(
t

`

)(
n/2− t
k − d− `

)
3nγ0/2

We readily observe that E(N) ≤ ∆
α−1 and that

P

 1(
n/2
t

) ∑
x∈{0,1}n/2:|x|=t

ρ(Iunif
x,` ; IHx,`) >

1

3d

 ≤ P(N > E(N) +∆)

≤ 1

(α− 1)∆
+

1

∆2
n

(
n/2

t

)(
t

`

)(
n/2− t
k − d− `

)
3nγ0/2.

ut

We are now ready to prove Theorem 1.

Proof (Theorem 1). By Proposition 12,

ρ
(
e; eunif

)
≤ ρ

(
JHV ; Junif

)
+

∑
xV ∈Fn/23 ,`

ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
P (k 6=0 = ` | eV = xV )P

(
eunif
V = x

)
= ρ

(
JHV ; Junif

)
+
∑
t,`

1(
n/2
t

) ∑
x∈{0,1}n/2:|x|=t

ρ
(
IHU

x,` ; Iunif
x,`

)
P (k 6=0 = ` | |eV | = t)P

(
|eunif
V | = t

)
,

where we used the fact that

– ρ
(
IHU

x,` ; Iunif
x,`

)
is constant on all x that have the same support and thus enables to reduce the

sum of the possible x from Fn/23 to {0, 1}n/2;
– P

(
eunif
V = xV

)
= 1

2t(n/2t )
P
(
|eunif
V | = t

)
and P (k6=0 = ` | eV = xV ) = P (k6=0 = ` | |eV | = t) for

xV of weight t.

Recall here that C = 1 +
∑
t,` f(t, `). We have,

P
(
ρ
(
e; eunif

)
>
C

3d

)
≤ P

(
ρ
(
JHV ; Junif

)
>

1

3d

)

+
∑
t,`

P

 1(
n/2
t

) ∑
x{0,1}n/2:|x|=t

ρ
(
IHU

x,` ; Iunif
x,`

)
P (k6=0 = ` | |eV | = t)P

(
|eunif
V | = t

)
>
f(t, `)

3d


We used the union-bound here and the fact that t ranges over J0, n/2K whereas ` ranges over
Jt+ kU − d− n/2, tK. We observe now that

P

 1(
n/2
t

) ∑
x{0,1}n/2:|x|=t

ρ
(
IHU

x,` ; Iunif
x,`

)
P (k6=0 = ` | |eV | = t)P

(
|eunif
V | = t

)
>
f(t, `)

3d


≤ P

 1(
n/2
t

) ∑
x{0,1}n/2:|x|=t

ρ
(
IHU

x,` ; Iunif
x,`

)
>

f(t, `)

3dP (k6=0 = ` | |eV | = t)P
(
|eunif
V | = t

)
 (61)
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Let us define,

α
4
=

2f(t, `)

P (k 6=0 = ` | |eV | = t)P (|eV | = t)
(62)

where by definition f(t, `) > 1
2P (k 6=0 = ` | |eV | = t)P (|eV | = t) and thus α > 1. To conclude the

proof it is enough to apply Lemma 10 with α defined in (62) with each term of (61) as long as
α 1

2·3d ≤ 1 otherwise we can directly upper-bound the probability by 0. ut

C Proof of Proposition 7

C.1 Proof of the variation of the left-over hash lemma

Lemma 2. Consider a finite family H = (hi)i∈I of functions from a finite set E to a finite set
F . Denote by ε the bias of the collision probability, i.e. the quantity such that

Ph,e,e′(h(e) = h(e′)) =
1

|F |
(1 + ε)

where h is drawn uniformly at random in H, e and e′ are drawn uniformly at random in E. Let
U be the uniform distribution over F and D(h) be the distribution of the outputs h(e) when e is
chosen uniformly at random in E. We have

Eh (ρ(D(h),U)) ≤ 1

2

√
ε.

Proof. Let qh,f be the probability distribution of the discrete random variable (h0, h0(e)) where h0

is drawn uniformly at random in H and e drawn uniformly at random in E (i.e. qh,f = Ph0,e(h0 =
h, h0(e) = f)). By definition of the statistical distance we have

Eh {ρ(D(h),U)} =
∑
h∈H

1

|H|
ρ(D(h),U)

=
∑
h∈H

1

2|H|
∑
f∈F

∣∣∣∣Pe(h(e) = f)− 1

|F |

∣∣∣∣
=

1

2

∑
(h,f)∈H×F

∣∣∣∣Ph0,e(h0 = h, h0(e) = f)− 1

|H| · |F |

∣∣∣∣
=

1

2

∑
(h,f)∈H×F

∣∣∣∣qh,f − 1

|H| · |F |

∣∣∣∣ . (63)

Using the Cauchy-Schwarz inequality, we obtain

∑
(h,f)∈H×F

∣∣∣∣qh,f − 1

|H| · |F |

∣∣∣∣ ≤
√√√√ ∑

(h,f)∈H×F

(
qh,f −

1

|H| · |F |

)2

·
√
|H| · |F |. (64)

Let us observe now that∑
(h,f)∈H×F

(
qh,f −

1

|H| · |F |

)2

=
∑
h,f

(
q2
h,f − 2

qh,f
|H| · |F |

+
1

|H|2 · |F |2

)

=
∑
h,f

q2
h,f − 2

∑
h,f qh,f

|H| · |F |
+

1

|H| · |F |

=
∑
h,f

q2
h,f −

1

|H| · |F |
. (65)
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Consider for i ∈ {0, 1} independent random variables hi and ei that are drawn uniformly at
random in H and E respectively. We continue this computation by noticing now that∑

h,f

q2
h,f =

∑
h,f

Ph0,e0(h0 = h, h0(e0) = f)Ph1,e1(h1 = h, h1(e1) = f)

= Ph0,h1,e0,e1 (h0 = h1, h0(e0) = h1(e1))

=
Ph0,e0,e1 (h0(e0) = h0(e1))

|H|

=
1 + ε

|H| · |F |
. (66)

By substituting for
∑
h,f q

2
h,f the expression obtained in (66) into (65) and then back into (64) we

finally obtain

∑
(h,f)∈H×F

∣∣∣∣qh,f − 1

|H| · |F |

∣∣∣∣ ≤
√

1 + ε

|H| · |F |
− 1

|H| · |F |
√
|H| · |F | =

√
ε

|H| · |F |
√
|H| · |F | =

√
ε.

This finishes the proof of our lemma.

C.2 Proof of Lemma 3

We will use the following well known result.

Lemma 11.

PH

(
eH

ᵀ
= 0

)
=

1

3n−k
if e 6= 0 and 1 otherwise (67)

when H is chosen uniformly at random in F(n−k)×n
3 .

By using this lemma we will prove that

Lemma 3. Assume that x and y are random vectors of Sw that are drawn uniformly at random
in this set. We have

PHpk,x,y

(
xH

ᵀ
pk = yH

ᵀ
pk

)
≤ 1

3n−k
(1 + ε) with ε given in Proposition 7.

Proof. By using Notation 1 and Proposition 3, the probability we are looking for is:

P
(
(xU − yU )H

ᵀ
U = 0 and (xV − yV )H

ᵀ
V = 0

)
where the probability is taken over HU ,HV ,x,y.

Lemma 11 motivates to distinguish between four disjoint events:

Event 1: E1
4
={xU = yU and xV 6= yV } ; Event 2: E2

4
={xU 6= yU and xV = yV }

Event 3: E3
4
={xU 6= yU and xV 6= yV } ; Event 4: E4

4
={xU = yU and xV = yV }

Under these events we get thanks to Lemma 11 and k = kU + kV :

PHsk,x,y

(
xH

ᵀ
sk = yH

ᵀ
sk

)
=

4∑
i=1

PHsk

(
xH

ᵀ
sk = yH

ᵀ
sk|Ei

)
Px,y (Ei)

=
Px,y (E1)

3n/2−kV
+

Px,y (E2)

3n/2−kU
+

Px,y (E3)

3n−k
+ Px,y (E4)

≤ 1

3n−k

(
1 + 3n/2−kUP (E1) + 3n/2−kV P (E2) + 3n−kP(E4)

)
, (68)
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where we used for the last inequality the trivial upper-bound P (E3) ≤ 1. Let us now upper-bound
(or compute) the probabilities of the events E1, E2 and E4. For E4, recall that from the definition
of normalized generalized (U,U + V )-codes, we clearly have

Px,y (E4) = P(x = y) =
1

2w
(
n
w

) . (69)

Let us now estimate the probability of E2 for which we first derive the following upper-bound:

P (E2) ≤ P (xV = yV )

To upper-bound this probability, we first observe that for any error e ∈ Fn/23 of weight j:

P(xV = e) = P (xV = e | |xV | = j)P(|xV | = j)

=
1

2j
(
n/2
j

)q1(j)

where qunif
1 (j) denotes P(|eunif

V | = j) and is computed in Proposition 5. From this we deduce that

P(xV = yV ) =

n/2∑
j=0

∑
e∈Fn/23 :|e|=j

Px(xV = e)2

=

n/2∑
j=0

1

2j
(
n/2
j

)qunif
1 (j)2

which gives:

P (E2) ≤
n/2∑
j=0

qunif
1 (j)2

2j
(
n/2
j

) . (70)

Let us now estimate the probability of E1 for which we derive the following upper-bound:

Px,y(E1) ≤ P(xU = yU )

By definition of xU and yU , the event we are looking for is {d� (x1 − y1) = b� (x2 − y2)}
which is the same (up to a permutation of indices of x and y and by multiplying some of their
component by −1) as the case where we consider:

b1 = · · · = bnI = 0 ; bnI+1 = · · · = bn/2 = d1 = · · · = dn/2 = 1

where nI is the number of blocks of type I. This gives the following probability to upper-bound

P (∀i ∈ J1, nIK, (x1 − y1)(i) = 0,∀i ∈ JnI + 1, n/2K, (x1 − y1)(i) = (x2 − y2)(i))

We clearly have:

P(∀i ∈ J1, nIK, (x1 − y1)(i) = 0,∀i ∈ JnI + 1, n/2K, (x1 − y1)(i) = (x2 − y2)(i))

≤
∑

e∈FnI3

P (∀i ∈ J1, nIK,x1(i) = e(i))
2

≤
nI∑
j=0

∑
e′∈FnI3 :|e′|=j

P (∀i ∈ J1, nIK,x1(i) = e′(i))
2

=

nI∑
j=0

∑
e′∈FnI3 :|e′|=j

((
n−nI
w−j

)
2w−j(

n
w

)
2w

)2

=

nI∑
j=0

(
nI
j

)
2j

((
n−nI
w−j

)(
n
w

)
2j

)2
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which gives:

P(E1) ≤
nI∑
j=0

(
nI
j

)
2−j

((
n−nI
w−j

)(
n
w

) )2

(71)

Therefore, with Equations (68),(69), (70) and (71) we finally conclude the proof. ut

Lemmas 3 and 2 imply directly Proposition 7 as shown in the following proof.

Proof (Proposition 7). Indeed we let in Lemma 2, E
4
=Fn3 , F

4
=Fn−k3 and H be the set of functions

associated to the 4-tuples (HU ,HV ,S,P) used to generate a public parity-check matrix Hpk. These
functions h are given by h(e) = eHᵀ

pk. Lemma 3 gives an upper-bound for the ε term in Lemma
2 and this finishes the proof of Proposition 7.

D Distinguishing a Permuted Normalized Generalized (U,U+V )-Code

D.1 Proof of Proposition 8

Our aim here is to prove,

Proposition 8. Assume that we choose a normalized generalized (U,U + V )-code over F3 with
a number nI of linear combinations of type I by picking the parity-check matrices of U and V
uniformly at random among the ternary matrices of size (n/2− kU )× n/2 and (n/2− kV )× n/2
respectively. Let a(u,v)(z), a(u,0)(z) and a(0,v)(z) be the expected number of codewords of weight
z that are respectively in the normalized generalized (U,U + V )-code, of the form (a � u, c � u)
where u belongs to U and of the form (b � v,d � v) where v belongs to V . These numbers are
given for even z in J0, nK by

a(u,0)(z) =

(
n/2
z/2

)
2z/2

3n/2−kU
; a(0,v)(z) =

1

3n/2−kV

z∑
j=0
j even

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2

a(u,v)(z) = a(u,0)(z)+a(0,v)(z)+
1

3n−kU−kV

(nz
)

2z −
(
n/2

z/2

)
2z/2 −

z∑
j=0
j even

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2


and for odd z ∈ J0, nK by

a(u,0)(z) = 0 ; a(0,v)(z) =
1

3n/2−kV

z∑
j=0
j odd

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2

a(u,v)(z) = a(0,v)(z) +
1

3n−kU−kV

(nz
)

2z −
z∑
j=0
j odd

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2


On the other hand, when we choose a linear code of length n over F3 with a random parity-check
matrix of size (n − kU − kV ) × n chosen uniformly at random, then the expected number a(z) of
codewords of weight z > 0 is given by

a(z) =

(
n
z

)
2z

3n−kU−kV
.

Proof. Lemma 11 in §C will be useful four the proof. The last part of Proposition 8 is a direct
application of this lemma. We namely have
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Proposition 14. Let a(z) be the expected number of codewords of weight z in a ternary linear
code C of length n whose parity-check matrix is chosen H uniformly at random among all binary
matrices of size r × n. We have

a(z) =

(
n
z

)
3r
.

We are ready now to prove Proposition 8 concerning the expected weight distribution of a
random generalized normalized (U,U + V )-code, namely a code (a � U + b � V, c � U + d � V )
that we will denote by C.
Weight distributions of (a � U, c � U)

4
={(a � u, c � u) : u ∈ U} and (b � V,d � V )

4
={(b �

v,d� v) : v ∈ V }. Let us recall from the definition of normalized generalized codes that aici 6= 0
for all i ∈ J1, n/2K and therefore it follows directly from Proposition 14 since a(u,0)(z) = 0 for
odd and a(u,0)(z) is equal to the expected number of codewords of weight z/2 in a random lin-
ear code of length n/2 with a parity-check matrix of size (n/2 − kU ) × n/2 when z is even. On
the other hand, the weight distribution of (b � v,d � v) for v ∈ V is little more sophisticate.
It depends of the number nI (see Definition 5) when either bi = 0 or di = 0, the other one
is necessarily different from 0. In this way, a(0,v)(z) is equal to the expected number of weight

j + z−j
2 for all j in J1, nIK in a random linear code of length n/2 where j positions correspond to

the nI positions which gives the number of block of type I and z−j
2 for the others as there are

involved in components which count twice in the weight. Furthermore this code has a parity-check
matrix of size (n/2−kV )×n/2 which easily gives from Proposition 14 the expected result for a(0,v).

Weight distributions of C. The normalized generalized (U,U + V )-code is chosen randomly by
picking up a parity-check matrix HU of U (resp. HV of V ) uniformly at random among the set of

(n/2− kU )× n/2 (resp. (n/2− kV )× n/2) ternary matrices. Let Z
4
=
∑

x∈Fn3 :|x|=z Zx where Zx is

the indicator function of “x ∈ C”. Therefore,

a(u,v)(z) = E(Z)

=
∑

x∈Fn3 :|x|=z

P(x ∈ C) (72)

Therefore, by Proposition 3 we get: x ∈ C ⇐⇒ xUHᵀ
U = 0 and xV Hᵀ

V = 0 which lead to three
disjoint cases to (we use in each case Lemma 11):

Case 1: xU = 0 and xV 6= 0, P(x ∈ C) = P(xV Hᵀ
V = 0) = 1

3n/2−kV

Case 2: xU 6= 0 and xV = 0, P(x ∈ C) = P(xUHᵀ
U = 0) = 1

3n/2−kU

Case 3: xU 6= 0 and xV 6= 0, P(x ∈ C) = P(xV Hᵀ
V = 0,xUHᵀ

U = 0) = 1
3n/2−kU

1
3n/2−kV

By substituting P(x ∈ C) in (72) and using definition of number of blocks of type I we conclude
the proof. ut

D.2 Proof of Propositions 9 and 10

Our aim is to prove the following proposition. It give the expected number of iteration of Algorithm
6 to output a non zero list with probability Ω(1).

Proposition 9. The probability Psucc that one iteration of the for loop (Instruction 2) in Com-
puteU adds elements to the list B is lower-bounded by

Psucc ≥
n/2∑
z=0

(
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) f

( (
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU )

)
(23)



Wave: a New Family of Trapdoor One-Way PSF Based on Codes 49

where f is the function defined by f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. Algorithm 6 returns a non zero

list with probability Ω(1) when N is chosen as N = Ω
(

1
Psucc

)
.

Proof. It will be helpful to recall [OT11, Lemma 3]

Lemma 12. Choose a random code Crand of length n from a parity-check matrix of size r × n
chosen uniformly at random in Fr×n3 . Let X be some subset of Fn3 of size m. We have

P(X ∩ Crand 6= ∅) ≥ f
(m

3r

)
.

We say that two positions i and j are matched (for U ′) if and only if there exists λ ∈ {±1}
such that ci = λcj for every c ∈ U ′. From the fact that we only consider normalized generalized
(U,U + V )-codes, there are n/2 pairs of matched positions. Z will now be defined by the number
of matched pairs that are included in J1, nK \ I where I is the random set of size n− k − ` which
is drawn in Instruction 4 of Algorithm 6. We compute the probability of success by conditioning
on the values taken by Z:

Psucc =

n/2∑
z=0

P(Z = z)P (∃x ∈ U ′ : |xĪ | = p |Z = z) (73)

where Ī 4=J1, nK \ I. Notice that we can partition Ī as Ī = J1 ∪J2 where J2 consists in the union
of the matched pairs in Ī. Note that |J2| = 2z. We may further partition J2 as J2 = J21 ∪ J22

where the elements of a matched pair are divided into the two sets. In other words, neither J21

nor J22 contains a matched pair. We are going to consider the codes

U”
4
= Punc

I
(U ′) ; U ′′′

4
= Punc
I∪J22

(U ′)

The last code is of length n − (n − k − ` + z) = k + ` − z as |J22| = z and |I| = n − k − `. The
point of defining the first code is that

P (∃x ∈ U ′ : |xĪ | = p | Z = z)

is equal to the probability that U” contains a codeword of weight p. The problem is that we can
not apply Lemma 12 to it due to the matched positions it contains (the code is not random).
This is precisely the point of defining U ′′′. In this case, we can consider that it is a random
code whose parity-check matrix is chosen uniformly at random among the set of matrices of size
max(0, k + ` − z − kU ) × (k + ` − z). We can therefore apply Lemma 12 to it. We have to be
careful about the words of weight p in U” though, since they do not have the same probability
of occurring in U” due to the possible presence of matched pairs in the support. This is why we
introduce for i in J0, bp/2cK the sets Xi defined as follows

Xi
4
={x = (xi)i∈Ī\J22

∈ Fk+`−z
3 : |xJ1

| = p− 2i, |xJ21
| = i}

A codeword of weight p in U” corresponds to some word in one of the Xi’s by puncturing it in
J22. We obviously have the lower bound

P {∃x ∈ U ′ : |xĪ | = p | Z = z} ≥
bp/2c
max
i=0
{P(Xi ∩ U ′′′ 6= ∅)} (74)

By using Lemma 12 we have

P(Xi ∩ U ′′′ 6= ∅) ≥ f

( (
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU )

)
. (75)
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On the other hand, we may notice that

P(Z = z) =

(
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) .

Thanks to these considerations we conclude the proof. ut

Proposition 10. The probability Psucc that one iteration of the for loop (Instruction 2) in Com-
puteV adds elements to the list B is lower-bounded by

Psucc ≥
min(n−k−`,n−nI)∑

z=0

n/2−nI∑
m=0

(n
2−nI
m

)(
nI

n−k−`−z
)(

n
n−k−`

) bp/2c
max
i=0

f

((
n−nI−z−2m

p−2i

)(
m
i

)
2p−i

3max(0,n−nI−z−m−kV )

)
n/2−nI−m∑

j=0

(
n/2− nI −m

j

)
2j
(

nI
z − n+ 2nI + 2m+ j

)

where f is the function defined by f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. ComputeV returns a non-zero

list with probability Ω(1) when N is chosen as N = Ω
(

1
Psucc

)
.

Proof. We have n
2 − nI pairs of matched positions i and j (it exists λ ∈ {±1} such that ci = λcj

for every c ∈ V ′). Let us define the following set: J is the set of positions that are of the images
of the permutation P of the positions 1 ≤ i ≤ n/2 such that bi 6= 0 and the images of positions
n/2 + j with 0 ≤ j ≤ n/2 such that dj 6= 0.

Remark 6. From Definition 5 and Remark 4 in §6 it follows that |J | = n− nI .

Let us now bring in the following random variables I ′ 4= I ∩J , Z
4
= |I ′| and M be the number

of matched pairs which are included in J \ I ′. J \ I ′ represents the set of positions that are not
necessarily equal to 0 in the punctured code PuncI(V ′) (see Figure 8). ComputeV outputs at

Fig. 8. A figure representing J , I and I′ and the form of a codeword in V ′.

positions in J

00.........0 00............0 00......0

I

I’

least one element of V ′ if there is an element of weight p in PuncI′(V
′). Therefore the probability

of success Psucc is given by

Psucc =

min(n−k−`,n−nI)∑
z=0

n/2−nI∑
m=0

P (∃x ∈ V ′ : |xJ ′ | = p | Z = z,M = m)P(Z = z,M = m) (76)

where

J ′ 4=J \ I ′.

Notice that we can partition J ′ as J ′ = J1 ∪ J2 where J2 consists in the union of the matched
pairs in J ′. Note that |J2| = 2m. We may further partition J2 as J2 = J21 ∪ J22 where the
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elements of a matched pair are divided in two sets. In other words, neither J21 nor J22 contains
a matched pair. We are going to consider the following codes

V ”
4
= Punc
I∪J̄

(V ′) ; V ′′′
4
= Punc
I∪J̄∪J22

(V ′).

V ” is of length n−nI − z, whereas the last code is of length n−nI − z−m. The point of defining
the first code is that

P (∃x ∈ V ′ : |xJ ′ | = p | Z = z)

is equal to the probability that V ” contains a codeword of weight p. The problem is that we can not
apply Lemma 12 to it due to the matched positions it contains. This is precisely the point of defining
V ′′′. In this case, we can consider that it is a random code whose parity-check matrix is chosen
uniformly at random among the set of matrices of size max(0, n−nI−z−m−kV )× (nV −z−m).
We can therefore apply Lemma 12 to it. We have to be careful about the words of weight p in
V ” though, since they do not have the same probability of occurring in V ” due to the possible
presence of matched pairs in the support. This is why we introduce for i in J0, bp/2cK the sets Xi

defined as follows

Xi
4
={x = (xi)i∈J ′\J22

∈ Fn−nI−z−m3 : |xJ1
| = p− 2i, |xJ21

| = i}

A codeword of weight p in V ” corresponds to some word in one of the Xi’s by puncturing it in
J22. We obviously have the lower bound

P {∃x ∈ V ′ : |xĪ | = p | Z = z,M = m} ≥
bp/2c
max
i=0
{P(Xi ∩ V ′′′ 6= ∅)} (77)

By using Lemma 12 we have

P(Xi ∩ V ′′′ 6= ∅) ≥ f

((
n−nI−z−2m

p−2i

)(
m
i

)
2p−i

3max(0,n−nI−z−m−kV )

)
. (78)

On the other hand, we have

P(Z = z,M = m) =

(n
2−nI
m

)(
nI

n−k−`−z
)(

n
n−k−`

) n/2−nI−m∑
j=0

(
n/2− nI −m

j

)
2j
(

nI
z − n+ 2nI + 2m+ j

)

Thanks to these considerations we conclude the proof. ut

D.3 Effective Estimate of the Security Exponent for the Recovery of U

Non Asymptotic Setting. Given k, kU , we want to estimate minp,` WFp,` where

WFp,` = CU (p, `) = Cp,`/Pp,`

Cp,` = C1(p, k, `) = max
(
Lp,`, L

2
p,`3
−`
)

with Lp,` =
√(

k+`
p

)
2p

Pp,` = Psucc =

n/2∑
z=0

((
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) max
0≤i≤p/2

f

( (
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU )

))

with f(x) = max(1−1/x, x−x2/2). We may simplify the function f() which is equal up to a small
constant factor (smaller than 3) to min(1, x). We will now assume f(x) = min(1, x). We write

Pp,` =

n/2∑
z=0

G`(z)Fp,`(z),
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with

G`(z) =

(
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) ,

Fp,`(z) = max
0≤i≤p/2

f

( (
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU )

)
= min

1,

max
0≤i≤p/2

φp,`(z, i)

3k+`−z−kU

 ,

φp,`(z, i) =
(
k+`−2z
p−2i

)(
z
i

)
2p−i

(the max in the denominator of Fp,` can be removed because φp,` ≥ 1).

Asymptotic Setting. We are interested by the asymptotic behavior of the above quantities
when n goes to infinity. For the sake of simplicity, we will use the same notations, but all integers
parameters k, kU , p, `, z, i are replaced by their relative values, the letter x ∈ {k, kU , p, `, z, i} now
stands for x/n, and instead of an integer it is a real number.

The functions Cp,`, Lp,`, Pp,`, G`, Fp,`, φp,` now stand for for their relative asymptotic exponent,
that is any X above now stands for limn→∞

1
n log2X.

We rewrite

WFp,` = Cp,` − Pp,`

Cp,` = max (Lp,`, 2Lp,` − ` log2 3) with Lp,` =
k + `

2
h3

(
p

k + `

)
G`(z) =

1

2
h2(2z) +

(
1

2
− z
)
h3

(
k + `− 2z

1
2 − z

)
− h2(k + `)

Fp,`(z) = min
(

0, F̃p,`(z)
)

F̃p,`(z) = max
0≤i≤p/2

φp,`(z, i)− (k + `− z − kU ) log2 3

φp,`(z, i) = (k + `− 2z)h3

(
p− 2i

k + `− 2z

)
+ wh3

(
i

z

)
where hq(x) = −x log2(x/(q − 1))− (1− x) log2(1− x) is the q-ary entropy function. The sum in
the denominator of Pp,` will be replaced by a maximum over z

Pp,` = max
0≤z≤1/2

(G`(z) + Fp,`(z)) (79)

To determine which value of z dominates in the above maximum, we need to study the variations
of z 7→ G`(z) and z → Fp,`(z). But before that we need to study the variation of i 7→ φp,`(z, i) to
determine the dominant term in max0≤i≤p/2 φp,`(z, i).

– The partial derivative of φp,`(z, i) with respect to i is

∂φp,`
∂i

(z, i) = log2

(p− 2i)2(z − i)
2i(k + `− 2z − p+ 2i)2

It follows that the value of i which maximizes φp,`(z, i) is the solution of a polynomial equation
of degree 3.

Q(i) = 2i(k + `− 2z − p+ 2i)2 − (p− 2i)2(z − i) (80)

An easy analysis shows that Q admits a unique real root in the interval [0, p/2]. We denote it
i0(z). We have

F̃p,`(z) = φp,`(z, i0(z))− (k + `− z − kU ) log2 3
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– The variations of z 7→ F̃p,`(z) are dominated by the term z log2 3 and F̃p,`(z) is an increasing

function of z. We denote z1 the (unique) root of F̃p,`(z) in the range ]k + `− 1/2, (k + `)/2[.
The function Fp,`(z) is increasing (almost linearly) for z ∈]k + ` − 1/2, z1] and is null for
z ∈ [z1, (k + `)/2[.

– The derivative of z → F̃p,`(z) is equal to

dF̃p,`
dz

(z) =
di0
dz

(z)
∂φp,`
∂i

(z, i0(z)) +
∂φp,`
∂z

(z, i0(z)) + log2 3

=
∂φp,`
∂z

(z, i0(z)) + log2 3 = log2

3z(k + `− 2z − p+ 2i0(z))2

(z − i0(z))(k + `− 2z)2
.

– The derivative of z → G`(z) is equal to

dG`
dz

(z) = log2

(k + `− 2z)2

2z(1− 2k − 2`+ 2z)

and is null for z0 = (k + `)2/2. The function z 7→ G`(z) is increasing for z ∈ [k + `− 1/2, z0],
decreasing for z ∈ [z0, (k + `)/2], and G`(z0) = 0.

– The derivative of z → G`(z) + F̃p,`(z) is equal to

P ′p,`(z) =
dG`
dz

(z) +
dF̃p,`
dz

(z) = log2

3(k + `− 2z − p+ 2i0(z))2

2(z − i0(z))(1− 2k − 2`+ 2z)
. (81)

There exists a unique z ∈]k+ `− 1/2, (k+ `)/2[ which cancels the above derivative we denote
it z2.

For a given pair (p, `),

– Compute z0, if Fp,`(z0) = 0 then Pp,` = 0 and WFp,` = Cp,`.
– Compute z1, z2, and z = min(z1, z2)

WFp,` = Cp,` −G`(z)− Fp,`(z)

Proposition 15. For any (k, kU , p, `) let z0 = (k+ `)2/2 and let z1 and z2 denote respectively the
roots of z 7→ F̃p,`(z) and z 7→ P ′p,`(z) for z in ]k + `− 1/2, (k + `)/2[. We have

Wp,` = Cp,` −G`(z)− Fp,`(z), where z = max(z0,min(z1, z2)).

Further Simplifications.

– We have a very good approximation of i0(z) with

i0(z) ≈ p

2

pw

pw + (k + `− 2z)2
.

The above assumes that Q(i), given in (80), is close to affine when i ∈ [0, p/2]. It is true enough
in practice.

– Get rid of parameter p. We have

Cp,` = max (Lp,`, 2Lp,` − ` log2 3)

In the max above, and for the optimal values of the parameters p and `, the two terms are
always equal. This gives us and additional identity

h3

(
p

k + `

)
=

2` log2 3

k + `

which allows us to express the optimal value of p as function of `.
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Application to Wave. For Wave kU = 0.8451n/2 and k = 0.676n. In relative value kU = 0.42255
and k = 0.676. The minimal value for Wp,` is reached for (p, `) = (0.0008048, 0.003088) and the
dominant term in (79) corresponds to z = 0.25135. Finally

1

n
log2 min

p,`
CU (p, `) = 0.01768.

Application to Wave Dual Code. The above analysis must also be applied the dual code. In that
case, we replace k by n−k and kU by n/2−kV (in the dual U is replaced by V ⊥ and V by U⊥). We
repeat the analysis with kU = 0.246545 and k = 0.324. The minimal value for Wp,` is reached for
(p, `) = (0.0004627, 0.001737) and the dominant term in (79) corresponds to z = 0.07598. Finally

1

n
log2 min

p,`
CV ⊥(p, `) = 0.01811.

D.4 Security Exponent for the Recovery of V

For the Wave parameters the cost CV (p, `) for recovering V is much larger than the cost CU (p, `)
for recovering U . The same holds for U⊥ versus V ⊥. Finally, for Wave parameters, the smallest of
all is CU (p, `) and it will be used for selecting the parameters.

E Proofs for §7

E.1 Basic Tools

When we have probability distributions D1, D2, . . . , Dn over discrete sets E1, E2, . . . , En, we denote

byD1⊗D2⊗· · ·⊗Dn the product probability distribution, i.eD1⊗· · ·⊗Dn(x1, . . . , xn)
4
=D1(x1) . . .Dn(xn)

for (x1, . . . , xn) ∈ E1×· · ·×En. The n-th power product of a distribution D is denoted by D⊗n, i.e.

D⊗n 4=D ⊗ · · · ⊗ D︸ ︷︷ ︸
n times

. Recall that the statistical distance ρ is defined in Section §2. We will need the

following well known property for the statistical distance which can be easily proved by induction.

Proposition 16. Let (D0
1, . . . ,D0

n) and (D1
1, . . . ,D1

n) be two n-tuples of discrete probability dis-
tributions where D0

i and D1
i are distributed over a same space. For all positive integers n:

ρ
(
D0

1 ⊗ · · · ⊗ D0
n,D1

1 ⊗ · · · ⊗ D1
n

)
≤

n∑
i=1

ρ(D0
i ,D1

i ).

The Game Associated to Our Code-Based Signature Scheme. The modern approach to
prove the security of cryptographic schemes is to relate the security of its primitives to well-known
problems that are believed to be hard by proving that breaking the cryptographic primitives
provides a mean to break one of these hard problems. In our case, the security of the signature
scheme is defined as a game with an adversary that has access to hash and sign oracles. It will be
helpful here to be more formal and to define more precisely the games we will consider. They are
games between two players, an adversary and a challenger. In a game G, the challenger executes
three kind of procedures:

– an initialization procedure Initialize which is called once at the beginning of the game.
– oracle procedures which can be requested at the will of the adversary. In our case, there will

be two, Hash and Sign. The adversary A which is an algorithm may call Hash at most qhash

times and Sign at most qsign times.
– a final procedure Finalize which is executed once A has terminated. The output of A is given

as input to this procedure.
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The output of the game G, which is denoted G(A), is the output of the finalization procedure
(which is a bit b ∈ {0, 1}). The game G with A is said to be successful if G(A) = 1. The standard
approach for obtaining a security proof in a certain model is to construct a sequence of games such
that the success of the first game with an adversary A is exactly the success against the model of
security, the difference of the probability of success between two consecutive games is negligible
until the final game where the probability of success is the probability for A to break one of the
problems which is supposed to be hard. In this way, no adversary can break the claim of security
with non-negligible success unless it breaks one of the problems that are supposed to be hard.

In the following, SWave will denote the signature scheme defined with the Wave-PSF family.

Definition 10 (challenger procedures in the EUF-CMA Game). The challenger procedures
for the EUF-CMA Game corresponding to SWave are defined as:

proc Initialize(λ) proc Hash(m, r) proc Sign(m) proc Finalize(m, e, r)

(pk, sk)← Gen(1λ) return Hash(m, r) r←↩ {0, 1}λ0 s← Hash(m, r)
Hpk ← pk s← Hash(m, r) return

(ϕ,HU ,HV ,S,P)← sk e← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
) eHᵀ

pk = s ∧ |e| = w
return Hpk return (eP, r)

E.2 The Proof

We can now prove the following theorem

Theorem 2. (Security Reduction). Let qhash (resp. qsign) be the number of queries to the hash
(resp. signing) oracle. We assume that λ0 = λ+ 2 log2(qsign) where λ is the security parameter of
the signature scheme. We have in the random oracle model for all time t, tc = t + O

(
qhash · n2

)
and ε given in Proposition 7:

SuccEUF-CMA
SWave

(t, qhash, qsign) ≤ 2Succn,k,qhash,wDOOM (tc) + ρc (Drand,Dpub) (tc)

+ qsignρ (Dw,Uw) +
1

2
qhash

√
ε+

1

2λ

where Dw is the output distribution of Algorithm 3 using Algorithms 4 and 5 and Uw is the uniform
distribution over Sw.

Proof. Let A be a (t, qsign, qhash, ε)-adversary in the EUF-CMA model against SWave and let
(H0, s1, · · · , sqhash

) be drawn uniformly at random among all instances of DOOM for parame-
ters n, k, qhash, w. We stress here that syndromes sj are random and independent vectors of Fn−k3 .
We write P (Si) to denote the probability of success for A of game Gi. Let

Game 0 is the EUF-CMA game for SWave.

Game 1 is identical to Game 0 unless the following failure event F occurs: there is a collision
in a signature query (i.e. two signatures queries for a same message m lead to the same salt r).
By using the difference lemma (see for instance [Sho04, Lemma 1]) we get:

P (S0) ≤ P (S1) + P (F ) .

The following lemma (see E.3 for a proof) shows that in our case as λ0 = λ+ 2 log2(qsign), the
probability of the event F is negligible.

Lemma 13. For λ0 = λ+ 2 log2(qsign) we have: P (F ) ≤ 1
2λ
.

Game 2 is modified from Game 1 as follows:
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proc Hash(m, r) proc Sign(m)

if r ∈ Lm r← Lm.next()
em,r ←↩ Sw s← Hash(m, r)

return em,rH
ᵀ
pk e← Dϕ,HU ,HV

(s
(
S−1

)ᵀ
)

else return (eP, r)
j ← j + 1
return sj

To each message m we associate a list Lm con-
taining qsign random elements of Fλ0

2 . It is con-
structed the first time it is needed. The call
r ∈ Lm returns true if and only if r is in the
list. The call Lm.next() returns elements of Lm

sequentially. The list is large enough to satisfy
all queries.

The Hash procedure now creates the list Lm if needed, then, if r ∈ Lm it returns em,rH
ᵀ
pk with

em,r ←↩ Sw. Although we do not use it in this game, we remark that (em,r, r) is a valid signature
for m. The error value is stored. If r 6∈ Lm it outputs one of sj of the instance (H0, s1, . . . , sqhash)
of the DOOM problem. The Sign procedure is unchanged, except for r which is now taken in Lm.
The global index j is set to 0 in proc Initialize. This game can be related to the previous one
through the following lemma.

Lemma 14.
P(S1) ≤ P(S2) +

qhash

2

√
ε where ε is given in Proposition 7.

The proof of this lemma is given later in the appendix and relies among other things on the
following points:

– Proposition 16;
– Syndromes produced by matrices Hpk with errors of weight w have average statistical distance

from the uniform distribution over Fn−k3 at most 1
2

√
ε (see Proposition 7).

Game 3 differs from Game 2 by changing in proc Sign calls “e ← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
)” by

“e← em,r” and “return (eP, r)” by “return (e, r)”. Any signature (e, r) produced by proc Sign

is valid. The error e is drawn according to the uniform distribution Uw while previously it was
drawn according to Algorithm 3 distribution, that is Dw. By using Proposition 16 it follows that

P (S2) ≤ P (S3) + qsignρ (Uw,Dw) .

Game 4 is the game where we replace the public matrix Hpk by H0. In this way we will force
the adversary to build a solution of the DOOM problem. Here if a difference is detected between
games it gives a distinguisher between distributions Drand and Dpub:

P (S3) ≤ P (S4) + ρc (Dpub,Drand) (tc) .

We show in appendix how to emulate the lists Lm in such a way that list operations cost,
including its construction, is at most linear in the security parameter λ. Since λ ≤ n, it follows
that the cost to a call to proc Hash cannot exceed O(n2) and the running time of the challenger
is tc = t+O

(
qhash · n2

)
.

Game 5 differs in the finalize procedure.

proc Finalize(m, e, r)

s← Hash(m, r)
b← eHᵀ

pk = s ∧ |e| = w
return b ∧ r /∈ Lm

We assume the forger outputs a valid signature (e, r) for the message
m. The probability of success of Game 5 is the probability of the event
“S4 ∧ (r 6∈ Lm)”.

If the forgery is valid, the message m has never been queried by Sign, and the adversary never
had access to any element of the list Lm. This way, the two events are independent and we get:

P (S5) = (1− 2−λ0)qsignP (S4) .

As we assumed λ0 = λ+ 2 log2(qsign) ≥ log2(q2
sign), we have:

(
1− 2−λ0

)qsign ≥ (1− 1

q2
sign

)qsign
≥ 1

2
.
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Therefore

P (S5) ≥ 1

2
P (S4) . (82)

The probability P (S5) is then exactly the probability forA to output ej ∈ Sw such that ejH0
ᵀ

= sj
for some j which gives

P (S5) ≤ Succn,k,qhash,wDOOM (tc). (83)

This concludes the proof of Theorem 2 by combining this together with all the bounds obtained
for each of the previous games. ut

E.3 Proof of Lemma 13

The goal of this subsection is to estimate the probability of a collision in a signature query for a
message m when we allow at most qsign queries. Recall that in SWave for each signature query, we
pick r uniformly at random in {0, 1}λ0 . Then the probability we are looking for is bounded by the
probability to pick the same r at least twice after qsign draws. The following lemma will be useful.

Lemma 15. The probability to have at least one collision after drawing uniformly and indepen-
dently t elements in a set of size n is upper bounded by t2/n for sufficiently large n and t2 < n.

Proof. The probability of no collisions after drawing independently t elements among n is:

pn,t
4
=

t−1∏
i=0

(
1− i

n

)
≥ 1−

t−1∑
i=0

i

n
= 1− t(t− 1)

2n

from which we easily get 1− pn,t ≤ t2/n, concluding the proof. ut

In our case, the probability of the event F is bounded by the previous probability for t = qsign

and n = 2λ0 , so, with λ0 = λ+ 2 log2 qsign, we can conclude that

P (F ) ≤
q2
sign

2λ0
=

1

2λ0−2 log2(qsign)
=

1

2λ

which concludes the proof of Lemma 13.

E.4 List Emulation

In the security proof, we need to build lists of indices (salts) in Fλ0
3 . Those lists have size qsign, the

maximum number of signature queries allowed to the adversary, a number which is possibly very
large. For each message m which is either hashed or signed in the game we need to be able to

– create a list Lm of qsign random elements of Fλ0
3 , when calling the constructor new list();

– pick an element in Lm, using the method Lm.next(), this element can be picked only once;
– decide whether or not a given salt r is in Lm, when calling Lm.contains(r).

The straightforward manner to achieve this is to draw qsign random numbers when the list is
constructed, this has to be done once for each different message m used in the game. This may
result in a quadratic cost qhashqsign just to build the lists. Once the lists are constructed, and
assuming they are stored in a proper data structure (a heap for instance) picking an element or
testing membership has a cost at most O(log qsign), that is at most linear in the security parameter
λ.

Note that in our game we condition on the event that all elements of Lm are different. This
implies that now Lm is obtained by choosing among the subsets of size qsign of Fλ0

3 uniformly at
random. We wish to emulate the list operations and never construct them explicitly such that
the probabilistic model for Lm.next() and Lm.contains(r) stays the same as above (but again
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class list method list.contains(r)

elt, index return r ∈ {elt[i], 1 ≤ i ≤ qsign}
list()
index← 0 method list.next()

for i = 1, . . . , qsign index← index + 1

elt[i]← randint(2λ0) return elt[index]

Fig. 9. Standard implementation of the list operations.

conditioned on the event that all elements of Lm are different). For this purpose, we want to ensure
that at any time we call either Lm.contains(r) or Lm.next() we have

P(Lm.contains(r) = true) = P(r ∈ Lm|Q) (84)

P(r = Lm.next()) = p(r|Q) (85)

for every r ∈ Fλ0
3 . Here Q represents the queries to r made so far and whether or not these r’s

belong to Lm. Queries to r can be made through two different calls. The first one is a call of
the form Sign(m) when it chooses r during the random assignment r ←↩ {0, 1}λ0 . This results
in a call to Hash(m, r) which queries itself whether r belongs to Lm or not through the call
Lm.contains(r). The answer is necessarily positive in this case. The second way to query r is
by calling Hash(m, r) directly. In this case, both answers true and false are possible. p(r|Q)
represents the probability distribution of Lm.next() that we have in the above implementation of
the list operations given the previous queries Q.

A convenient way to represent Q is through three lists S, Htrue and Hfalse. S is the list of r’s
that have been queried through a call Sign(m). They belong necessarily to Lm. Htrue is the set
of r’s that have not been queried so far through a call to Sign(m) but have been queried through
a direct call Hash(m, r) and for which Lm.contains(r) returned true. Hfalse is the list of r’s that
have been queried by a call of the form Hash(m, r) and Lm.contains(r) returned false.

We clearly have

P(r ∈ Lm|Q) = 0 if r ∈ Hfalse (86)

P(r ∈ Lm|Q) = 1 if r ∈ S ∪Htrue (87)

P(r ∈ Lm|Q) =
qsign − |Htrue| − |S|

2λ0 − |Htrue| − |S| − |Hfalse|
else. (88)

To compute the probability distribution p(r|Q) it is helpful to notice that

P(Lm.next() outputs an element of Htrue ) =
|Htrue|

qsign − |S|
. (89)

This can be used to derive p(r|Q) as follows

p(r|Q) = 0 if r ∈ Hfalse ∪ S (90)

p(r|Q) =
1

qsign − S
if r ∈ Htrue (91)

p(r|Q) =
qsign − |S| − |Htrue|

(qsign − S)(2λ0 − |Htrue| − |S| − |Hfalse|)
else. (92)

(90) is obvious. (91) follows from that all elements of Htrue have the same probability to be
chosen as return value for Lm.next() and (89). (92) follows by a similar reasoning by arguing
(i) that all the elements of Fλ0

3 \ (S ∪Htrue ∪Hfalse) have the same probability to be chosen
as return value for Lm.next(), (ii) the probability that Lm.next() outputs an element of Fλ0

3 \
(S ∪Htrue ∪Hfalse) is the probability that it does not output an element of Htrue which is 1 −
|Htrue|
qsign−|S| =

qsign−|S|−|Htrue|
qsign−|S| .
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Figure 10 explains how we perform the emulation of the list operations so that they perform
similarly to genuine list operations as specified above. The idea is to create and to operate explicitly
on the lists S, Htrue and Hfalse described earlier. We have chosen there

β =
qsign − |Htrue| − |S|

2λ0 − |Htrue| − |S| − |Hfalse|
and γ =

|Htrue|
qsign − |S|

.

we also assume that when we call randomPop() on a list it outputs an element of the list uniformly
at random and removes this element from it. The method push adds an element in a list. The
procedure rand() picks a real number between 0 and 1 uniformly at random.

class list method list.contains(r) method list.next()

Htrue, Hfalse, S if r 6∈ Htrue ∪Hfalse ∪ S if rand() ≤ γ
list() if rand() ≤ β r← Htrue.randomPop()
Htrue ← ∅ Htrue.push(r) else

Hfalse ← ∅ else r←↩ Fλ0
3 \ (Htrue ∪ S ∪Hfalse)

S ← ∅ Hfalse.push(r) S.push(r)
return r ∈ Htrue ∪ S return r

Fig. 10. Emulation of the list operations.

The correctness of this emulation follows directly from the calculations given above. For in-

stance the correctness of the call Lm.next() follows from the fact that with probability |Htrue|
qsign−|S| = γ

it outputs an element of Htrue chosen uniformly at random (see (89)). In such a case the corre-
sponding element has to be moved from Htrue to S (since it has been queried now through a
call to Sign(m)). The correctness of Lm.contains(r) is a direct consequence of the formulas
for P(r ∈ Lm|Q) given in (86), (87) and (88). All push, pop, membership testing above can be
implemented in time proportional to λ0.

E.5 Proof of Lemma 14

Let us prove now Lemma 14 which is consequence of Propositions 7 and 16.

Lemma 14.
P(S1) ≤ P(S2) +

qhash

2

√
ε where ε is given in Proposition 7.

Proof. To simplify notation we let q
4
= qhash. Then we notice that

P(S1) ≤ P(S2) + ρ(Dpub
w,q ,Dpub ⊗ U⊗q), (93)

where

– U is the uniform distribution over Fn−k3 ;
– Dpub

w,q is the distribution of the (q + 1)-tuples (Hpk, e1H
ᵀ
pk, · · · , eqH

ᵀ
pk) where the ei’s are

independent and uniformly distributed in Sw;
– Dpub ⊗ U⊗q is the distribution of the (q + 1)-tuples (Hpk, s1, · · · , sq) where the si’s are inde-

pendent and uniformly distributed in Fn−k3 .

We now observe that

ρ(Dpub
w,q ,Dpub ⊗ U⊗q) =

∑
H∈F(n−k)×n

3

P(Hpk = H)ρ((DH
w )⊗q,U⊗q)

≤ q
∑

H∈F(n−k)×n
3

P(Hpk = H)ρ(DH
w ,U) (by Prop. 16)

= qEHpk

{
ρ(Dpub

w ,U)
}

≤ q
√
ε

2
(by Prop. 7).


