
Turning HATE Into LOVE:
Homomorphic Ad Hoc Threshold Encryption

for Scalable MPC

Leonid Reyzin?, Adam Smith??, and Sophia Yakoubov?

Boston University

Abstract. We explore large-scale fault-tolerant multiparty computation
on a minimal communication graph. Our goal is to be able to privately
aggregate data from thousands of users — for example, in order to ob-
tain usage statistics from users’ phones. To reflect typical phone deploy-
ments, we limit communication to the star graph (so that all users only
talk to a single central server). To provide fault-tolerance, we require the
computation to complete even if some users drop out mid-computation,
which is inevitable if the computing devices are personally owned smart-
phones. Variants of this setting have been considered for the problem of
secure aggregation by Chan et al. (Financial Cryptography 2012) and
Bonawitz et al. (CCS 2017). We call this setting Large-scale One-server
Vanishing-participants Efficient MPC (LOVE MPC).

We show that LOVE MPC requires at least three message flows, and that
a three-message protocol requires some setup (such as a PKI). We then
build LOVE MPC with optimal round- and communication- complexity
(assuming semi-honest participants and a deployed PKI), using homo-
morphic ad hoc threshold encryption (HATE). We build the first HATE
scheme with constant-size ciphertexts (although the public key length is
linear in the number of users). Unfortunately, this construction is merely
a feasibility result, because it relies on differing-inputs obfuscation.

We also construct more practical three- and five- message LOVE MPC in
the PKI model for addition or multiplication. Unlike in the obfuscation-
based construction, the per user message length in these protocols is
linear in the number of users. However, the five-message protocol still
has constant amortized message length, because only the first two mes-
sages are long, but they need to be exchanged only once (i.e., are input-
independent and reusable) and thus can be viewed as setup.

? Leonid Reyzin and Sophia Yakoubov were supported in part by NSF grant 1422965.
?? Adam Smith was supported in part by NSF awards IIS-1447700 and AF-1763786

and a Sloan Foundation Research Award.

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Related Work . 5

2 Threshold Encryption (TE) Definitions . 6
2.1 Threshold Encryption Algorithms . 6
2.2 Homomorphic Threshold Encryption . 8
2.3 Threshold Encryption Security . 9

3 Homomorphic Ad Hoc Threshold Encryption (HATE) Constructions . 11
3.1 HATE from Homomorphic Encryption and Secret Sharing 11
3.2 HATE from Differing Inputs Obfuscation . 13

4 Large-scale One-server Vanishing-participants Efficient MPC
(LOVE MPC) . 19
4.1 Lower Bounds . 19
4.2 Definitions . 20
4.3 Three-Message LOVE MPC from HATE . 21
4.4 Three-Message LOVE MPC from Keyed-Sender Server-Aided

Homomorphic ATE . 23
4.5 Five-Message LOVE MPC from Homomorphic Threshold

Encryption . 24
A Threshold Encryption Scheme: Threshold ElGamal 28
B Lower Bounds on Ciphertext Size for R-Oblivious Ad Hoc

Threshold Encryption Schemes . 30
C Background: Secret Sharing . 31
D Proofs of Properties of the Share-and-Encrypt Ad Hoc Threshold

Encryption Construction . 32
D.1 Proof that Share-and-Encrypt is Statically Semantically Secure . 32
D.2 Proof that Share-and-Encrypt is Partial Decryption Simulatable . 34

E Share-and-Encrypt HATE Instantiations . 34
E.1 Shamir-and-ElGamal . 34
E.2 CRT-and-Paillier . 36

F Security of the Obfuscation-Based Ad Hoc Threshold Encryption
Construction . 38
F.1 Proof that Obfuscation-Based Homomorphic Ad Hoc

Threshold Encryption Share-and-Encrypt is Super-Statically
Semantically Secure . 40

F.2 Proof that Obfuscation-Based Homomorphic Ad Hoc
Threshold Encryption Share-and-Encrypt is Super-Partial
Decryption Simulatable . 42

G Additively Server-Aided Homomorphic Obfuscation-Based HATE 42

HATE for LOVE MPC 3

1 Introduction

Consider a service that has an app with a large smartphone user base. Suppose
the service wants to collect aggregate usage statistics, but (for regulatory com-
pliance, or for good publicity, or for fear of becoming a target for attackers and
investigators) does not wish to learn the data of any individual user.

Let f be the function whose inputs are individual user data from up to n
users and whose output is the aggregated information that the service wants to
compute. Naturally, a secure multiparty computation protocol (MPC) for f can
be used to provide the desired aggregate output to the service without revealing
the inputs of any individual user.1 However, in this setting, we cannot expect
every phone to remain engaged for the duration of the protocol, as phones may go
out of signal range or run out of charge. Thus, the protocol must be fault-tolerant:
it must go on to completion even if some participants drop out. Moreover, given
the large number of parties and the limitations on their computational power,
the protocol needs to be efficient for every participating user. The users are
assumed to be able to communicate directly only with the service provider.

On the other hand, this setting has its own advantages. The service collecting
the data is already powerful enough to connect to and perform work for every
user, and thus can be assumed to be have a server (or server farm) that will per-
form a considerable amount of work in the protocol. Moreover, the users already
trust the service to provide the code of the app and thus the implementation of
the MPC code. Thus, an assumption that the server is semi-honest (aka honest-
but-curious) is reasonable: the service itself does not want to have individual user
data, for reasons outlined above, and the service itself is interested in arriving
at the correct output. In other words, the service is honest, but does not want
to know sensitive data, and thus we need to design protection against honest-
but-curious servers. We will also assume that the users are honest-but-curious,
as they run the app provided by the service. We call this setting Large-scale
One-server Vanishing-participants Efficient MPC (LOVE MPC for short).

Of particular interest in this setting is the problem of computing the sum of
the users’ inputs for so-called secure aggregation. The problem of secure aggre-
gation was first studied by Rastogi and Nath [RN10] and Shi et al. [SCR+11].
Chan et al. [CSS12] added fault-tolerance to the setting. Elahi et al. [EDG14]
considered the problem of secure aggregation in the context of anonymous rout-
ing. Bonawitz et al. [BIK+17] considered the same model as we do here (without
formalizing it) with the goal of achieving privacy-preserving federated learning.
In this context, it is often the case that the users’ inputs come from a constant-
size space (e.g., binary), and thus the total sum is at most linear in the number
of users.

1 The question of what can be inferred about the individual users from the output
of f is important, but orthogonal to our problem; this question is addressed at the
point of choosing which f to compute—for example, by ensuring it is differentially
private.

4 Leonid Reyzin, Adam Smith, Sophia Yakoubov

1.1 Our Contributions

In this paper, we formalize LOVE MPC and explore its limitations and possibil-
ities. In Section 4.1, we show that three message flows are necessary, and that if
LOVE MPC uses only three message flows, some setup (e.g. a PKI) is necessary.

We demonstrate two types of three-message (and therefore round-optimal)
semi-honest LOVE MPC protocols for addition in the PKI model. The first type
is simple and efficient, but requires messages whose size is linear in the number of
users. The second type has constant-size messages but is not useable in practice
because of heavy-weight tools (namely, differing-inputs obfuscation).

We also demonstrate a simple and efficient five-message semi-honest LOVE
MPC protocol for addition over small message spaces (or multiplication) in the
PKI model. This protocol consists of two phases: a two-message setup phase, and
a three-message computation phase. The setup phase need only be performed
once, after which the computation can be repeated many times. It requires linear-
size messages only during the setup phase; after that, each computation uses only
constant-size messages.

Our PKI model assumes each user has a public-private key pair, and users
know the public keys of all the participants in the protocol. Note that we do
not assume any correlated randomness: all the keys are generated separately
and independently. How public keys are distributed is not important for our
purposes; they can be assumed to be available from the semi-honest server, for
example. This setup requires no additional trust assumptions and can be viewed
simply as one initial communication round-trip that is reusable.

We now describe our technical approach in a bit more detail.

Three-Message LOVE MPC from HATE. To construct our three-message pro-
tocols for LOVE MPC, we rely on the following approach. Each user encrypts
her input using the public keys of other users, in such a way that any subset of
size t + 1 users can decrypt it, but any smaller subset cannot. The users send
their ciphertexts to the server, who homomorphically combines them, in order
to get a ciphertext corresponding to the output of f applied to the plaintexts.
The server then sends the combined ciphertext to the users, who each decrypt
to obtain shares of the output and send them back to the server; the server
combines any t+ 1 of these shares to obtain the output.

Thus, the primitive we require is homomorphic ad hoc threshold encryption
(HATE for short): homomorphic so the server can compute f without decrypt-
ing), ad hoc so the users can have uncorrelated keys, and threshold so t+1 users
are necessary and sufficient to decrypt. In Section 3.2, we use differing-inputs
obfuscation to construct the very first HATE with constant-size ciphertexts.
However, since differing-inputs obfuscation is not useable in practice, in Sec-
tion 3.1 we also build HATE schemes with ciphertexts linear in the number of
users, from practical primitives like secret sharing and public key encryption.

Five-Message LOVE MPC from HTE. If we are willing to stray from round opti-
mality, then we can use a threshold encryption scheme that is homomorphic but

HATE for LOVE MPC 5

not ad hoc by using an additional round-trip to set up correlated randomness.
In particular, we use the ElGamal threshold encryption scheme described in Ap-
pendix A. Correlated randomness for this scheme can be set up using Shamir
secret sharing in two message flows and Θ(n) communication per user. After
these two rounds, the parties can use threshold ElGamal to compute as many
multiplications (or additions over small message spaces) as they choose, at the
cost of just three rounds and Θ(1) communication per user. So, the first compu-
tation requires five rounds and Θ(n) communication, but the amortized cost of
a computation is just three rounds and Θ(1) communication per user.

1.2 Related Work

Work Related to LOVE MPC. Bonawitz et al. [BIK+17] present a LOVE MPC
protocol for vector addition. Their honest-but-curious protocol can be viewed
in the PKI model, similar to ours; it requires five messages and linear per-user
communication complexity in the PKI model. In contrast, we present simpler
protocols that require only three messages (Construction 3), and, at the cost
of an additional two-message setup, can have constant per-user communication
(Construction 4). Our computational requirements on the users are also lighter
in Construction 4, as we require amortized constant computation, while the
protocol of Bonawitz et al. requires quadratic computation [BIK+17, Figure 3].

Many works have considered variants of our problem. For example, Shi et
al. [SCR+11] present protocols in a similar client-server model that that are
not fault-tolerant. Chan et al. [CSS12] present protocols in the same model
that are fault-tolerant, but satisfy a different notion of privacy than MPC and
require correlated setup. Tolerating vanishing participants in general MPC is
considered by Badrinarayanan et al. [BJMS18] (who use the term “lazy” instead
of “vanishing”).

A number of papers propose the use of techniques similar to ours. In particu-
lar, the use of multi-key fully homomorphic encryption (FHE) for round-efficient
multi-party computation has been explored by Mukherjee and Wichs [MW16];
the use of threshold FHE was considered by Boneh et al. [BGG+18]; and the
combination of threshold and multi-key properties for FHE was considered in
Badrinarayanan et al. [BJMS18]. None of these works consider the client-server
communication model we consider. We use threshold homomorphic (but not fully
homomorphic) encryption in all of our LOVE MPC constructions.

Work Related to HATE. Fully homomorphic ATE was demonstrated by Badri-
narayanan et al. [BJMS18], but with polynomial-size ciphertexts. The share-
and-encrypt approach that we use in Construction 1 has also appeared in the
past (but without homomorphism)—e.g., in the work of Daza et al. [DHMR07].

A number of papers [BZ14,ABG+13,Zha14] use obfuscation to achieve constant-
size ciphertexts in broadcast encryption; we use it in Constructions 2 and 5 to
achieve constant-size ciphertexts in HATE.

6 Leonid Reyzin, Adam Smith, Sophia Yakoubov

2 Threshold Encryption (TE) Definitions

A threshold encryption scheme [DHMR07] is an encryption scheme where a
message is encrypted to a group R of recipients, and decryption must be done
collaboratively by at least t + 1 members of that group. (This can be defined
more broadly for general access structures, but we limit ourselves to the thresh-
old access structure.) We show one example of a threshold encryption scheme
(a threshold variant of ElGamal, due to Desmedt and Frankel [DF90]) in Ap-
pendix A.

2.1 Threshold Encryption Algorithms

A threshold encryption scheme consists of five algorithms, described below. This
description is loosely based on the work of Daza et al. [DHMR07], but we modify
the input and output parameters to focus on those we require in our primary
constructions (Section 3.1), with some additional parameters discussed in the
text.

Setup(1k, t)→ (params,msk) is a randomized algorithm that takes in a security
parameter k and sets up the global public parameters params for the system,
as well as the master secret key msk for key generation.
If msk = ⊥, the scheme is ad hoc, meaning that there is no master secret
key and that each party can set up their own public-private key pair.
For simplicity, we provide Setup with t, and assume that t is encoded in
params from hereon out. However, in t-flexible schemes, t may be decided
by each sender at encryption time, and should then be an input to Enc
(and encoded in the resulting ciphertext). In keyed-sender schemes (where
the sender must use their secret key to encrypt and recipients must use the
sender’s public key to decrypt), t may also be specified in the sender’s public
key.

KeyGen(params,msk)→ (pk, sk) is a randomized key generation algorithm that
takes in the global public parameters params and the master secret key msk
and returns a public-private key pair.
If the scheme is ad hoc, KeyGen does not require the master secret key msk.
Omitting msk from ad hoc schemes enables individual parties to run KeyGen
themselves.
Some schemes require the sender’s public key for decryption; we call such
schemes keyed-sender. If the scheme is keyed-sender, the public and secret
keys may each have two parts. Informally, those are the parts of the public
key necessary for encryption to that party (and the parts of the secret key
necessary for decryption by that party), and the parts of the public key
necessary for the decryption of a message from that party (and the parts
of the secret key necessary for encryption by that party). We discuss keyed-
sender schemes further in Section 3.2.

Enc(params, {pki}i∈R,|R|>t,m)→ c is a randomized encryption algorithm that
encrypts a message m to a set of public keys belonging to the parties in

HATE for LOVE MPC 7

the intended recipient set R in such a way that any size-(t + 1) subset of
the recipient set should jointly be able to decrypt. We assume t is specified
within params, but it may also be specified within the sender’s public key,
or (if the scheme is t-flexible) on the fly as an input to Enc itself.

In keyed-sender schemes, Enc may also require the sender’s private key skSndr.

PartDec(params, {pki}i∈R, skj , c)→ dj is an algorithm that uses a secret key skj
belonging to one of the intended recipients to get a partial decryption dj of
the ciphertext c. This partial decryption can then be combined with t other
partial decryptions to recover the message.

In keyed-sender schemes, PartDec may also require the sender’s public key
pkSndr.

FinalDec(params, {pki}i∈R, c, {di}i∈R′⊆R,|R′|>t)→ m is an algorithm that com-
bines t+ 1 or more partial decryptions to recover the message m.

Not all threshold encryption schemes allow/require all of the algorithm in-
puts. Sometimes disallowing an input can make the scheme less flexible, but, on
the other hand, sometimes schemes that do not rely on certain inputs have an
advantage.

More Flexibility: Unneeded Inputs. Most threshold encryption schemes in the
literature require a trusted central authority who holds the master secret key
msk to be the one to run the key generation algorithm for every party. This
is often not ideal; in many scenarios, such a trusted central authority does not
exist. We call a threshold encryption scheme ad hoc if a public-private key pair
can be generated without knowledge of a master secret key; that is, if each party
is able to generate their keys independently. We use the acronym ATE to refer
to an ad hoc threshold encryption scheme.

Secondly, requiring both decryption algorithms (PartDec and FinalDec) to be
aware of the set of public keys belonging to individuals in the set R of recipients
can be limiting. We call a threshold encryption scheme R-oblivious if neither
partial decryption nor final decryption uses this information. On the surface,
it looks like an R-oblivious scheme should require less communication, since
the sender would never need to communicate R to the recipients. However, in
Appendix B we show a lower bound on the ciphertext size in an R-oblivious
scheme that is linear in the size of the recipient set.

Less Flexibility: Disallowed Inputs. In the algorithms described above, encryp-
tion takes in a set of public keys, giving the sender control over the recipient
set R. We call a scheme in which the sender can choose the recipient set R as
a subset of the universe of individuals at encryption time (but after key gener-
ation) an R-flexible scheme. A scheme that is not R-flexible would simply have
each sender encrypt to the entire universe of individuals every time. Addition-
ally, we call a threshold encryption scheme in which the sender can choose t at
encryption time a t-flexible scheme. A scheme that is not t-flexible would have
a fixed t, encoded either in the public parameters or in senders’ public keys.

8 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Note that any secure ad hoc threshold encryption scheme is R-flexible, since
otherwise, an adversary would be able to decrypt any ciphertext simply by gener-
ating enough key pairs. However, not all R-flexible schemes are ad hoc; in fact,
most broadcast encryption schemes (which are threshold encryption schemes
with t = 0) are R-flexible but not ad hoc. In this paper, we focus on threshold
encryption schemes that are ad hoc (and thus R-flexible), but not R-oblivious.

2.2 Homomorphic Threshold Encryption

In order to use ad hoc threshold encryption for multi-party computation, we
need it to be homomorphic. There are three natural notions of homomorphism:

1. Homomorphism over ciphertexts, which is the notion typically considered;
2. Partial decryption homomorphism, which we introduce in this paper; and
3. Server-aided homomorphism, which we also introduce in this paper.

We use the acronym HATE to refer to an ad hoc threshold encryption scheme
that has any of these notions of homomorphism. We informally describe all three
notions below.

Definition 1. An F-homomorphic threshold encryption scheme additionally has
the following algorithm:

Eval(params, {pki}i∈R, [c1, . . . , cl], f)→ c∗ is an algorithm that, given l cipher-
texts and a function f ∈ F , computes a new ciphertext c∗ which decrypts to
f(m1, . . . ,ml) where each cq, q ∈ [1, . . . , l] decrypts to mq.

Definition 2. A F-partial decryption homomorphic threshold encryption scheme
additionally has the following algorithm:

PdecEval(params, {pki}i∈R, ski, [di,1, . . . , di,l], f)→ d∗i is an algorithm that, given
l partial decryptions and a function f ∈ F , computes a new partial decryp-
tion d∗i which can be used together with other partial decryptions to recover
f(m1, . . . ,ml), where each di,q, q ∈ [1, . . . , l] is party Pi’s partial decryption
of an encryption of mq.

Both the ciphertext c∗ produced by Eval and the partial decryption d∗i pro-
duced by PdecEval should be small — that is, they should have size polynomial
in |R| and k but independent of f and l. Notice that this does not preclude
ciphertext growth; for instance, in a homomorphic scheme, a fresh ciphertext
might have size independent of |R|, and the output of Eval might have size lin-
ear in |R|. We draw a line by calling objects that have size polynomial in k but
independent of all other parameters compact, and objects that have size poly-
nomial in both k and |R| semi-compact. The outputs of Eval and PdecEval need
only be semi-compact.

The third notion of homomorphism is server-aided homomorphism, which is
homomorphism with an additional efficiency requirement. If a threshold encryp-
tion scheme is F-server-aided homomorphic, then the output c∗ of Eval (which

HATE for LOVE MPC 9

itself may only be semi-compact) can be split into compact components {c∗i }i∈R
such that every recipient Pi, i ∈ R should then be able to run PartDec given just
one compact component c∗i . Any homomorphic scheme that operates on compact
ciphertexts and produces another compact ciphertext is also server-aided homo-
morphic; however, a homomorphic scheme that produces semi-compact cipher-
texts may also be server-aided homomorphic, as long as the output ciphertexts
can be split up into compact components.

The motivation for this notion of homomorphism is that typically, it is de-
sirable for any ciphertexts that are sent between parties to be as short as possi-
ble (preferably compact) in order to save on communication complexity. Semi-
compact ciphertexts that need to be sent to multiple recipients can be expensive;
however, even if the ciphertext is semi-compact, if each recipient only needs one
compact component then in terms of communication complexity this can be as
good as having compact ciphertexts. We describe a server-aided homomorphic
ad hoc threshold encryption scheme in Section 3.2.2.

2.3 Threshold Encryption Security

We use the semantic security definition of Boneh et al. [BGG+18] for threshold
encryption schemes.2

Definition 3 (Static Semantic Security). A threshold encryption scheme
(Setup,KeyGen,Enc,PartDec,FinalDec) is (n, t)-statically semantically secure if
for all sufficiently large security parameters k, no efficient adversary A can win
the static semantic security game described in Figure 1 (with polynomial-size U
and |R| = n) with probability non-negligibly greater than 1

2 .

Note that this definition of security implies that even when the scheme is ad
hoc (and therefore KeyGen can be run by participants independently instead of
by a trusted central party), KeyGen is assumed to be run honestly; in particular,
public keys cannot be generated based on the knowledge of other public keys.
We leave the design of definitions and protocols such that public keys can be
generated maliciously for future work.

In order to make Definition 3 more analogous to real world situations, it
would make sense to additionally allow the adversary to query the challenger
on messages of its choice, and receive encryptions of those messages along with
all corresponding partial decryptions. For the sake of simplicity, instead of mod-
ifying the static semantic security game in Figure 1, we add a second notion
that we call partial decryption simulatability which implies that having the abil-
ity to make such queries will give the adversary no additional information. If a
threshold encryption scheme is partial decryption simulatable, then it is possible

2 This is analogous to the static security definition of Gentry and Waters [GW09] for
broadcast encryption. In fact, we borrow the adjective “static” from their definition.
We can also define adaptive semantic security by allowing the adversary to provide
the set of corrupt parties C after seeing the set of all public keys; however, in this
paper we used static, not adaptive security.

10 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Chal(k,U, t) A(k,U, t)

(params,msk)← Setup(1k, t)
params−−−−−−−−−−−−−−−−−−→C ⊆ U←−−−−−−−−−−−−−−−−−−

(pki, ski)← KeyGen(params,msk) for i ∈ U {pki}i∈U−−−−−−−−−−−−−−−−−−→{ski}i∈C−−−−−−−−−−−−−−−−−−→R,mR,mL←−−−−−−−−−−−−−−−−−−
b←$ {R,L}

c∗ ← Enc(params, {pki}i∈R, t,mb)
c∗−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−

A wins if b′ = b and |R ∩ C| ≤ t

Fig. 1: Static Semantic Security Game for Threshold Encryption

Chal(k,U, t) A(k,U, t)

(params,msk)← Setup(1k, t)
params−−−−−−−−−−−−−−−−−−→C ⊆ U←−−−−−−−−−−−−−−−−−−

(pki, ski)← KeyGen(params,msk) for i ∈ U {pki}i∈U−−−−−−−−−−−−−−−−−−→{ski}i∈C−−−−−−−−−−−−−−−−−−→R,mR,mL←−−−−−−−−−−−−−−−−−−
b←$ {R,L}

cR ← Enc(params, {pki}i∈R, t,mR)
cL ← Enc(params, {pki}i∈R, t,mL)

If b = R:
for j ∈ R\C, dj ← PartDec(params, {pki}i∈R, t, skj , cR)

If b = L:
for j ∈ R ∩ C, dj ← PartDec(params, {pki}i∈R, t, skj , cL)
for j ∈ R\C, dj ← PartDecSim(params, {pki}i∈R, cR, {dk}k∈R∩C,mR)

cb, {dj}j∈R\C−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−

A wins if b′ = b and |R ∩ C| ≤ t

Fig. 2: Static Partial Decryption Simulatability Game for Threshold Encryption

to simulate remaining partial decryptions given t or fewer partial decryptions, a
ciphertext, and a desired plaintext output. Our partial decryption simulatability
is similar to, but stronger than, simulatability of partial decryption defined in
[MW16], where only a single partial decryption can be simulated.

Definition 4. A threshold encryption scheme (Setup,KeyGen,Enc,PartDec,FinalDec)
is (n, t)-statically partial decryption simulatable if there exists an efficient al-
gorithm PartDecSim such that for all sufficiently large security parameters k, no
efficient adversary A can win the game described in Figure 2 (with polynomial-
size U and |R| = n) with probability non-negligibly greater than 1

2 .

Putting it all together, we say that a threshold encryption scheme is has
static security if it meets both of the above definitions.

Definition 5. A threshold encryption scheme (Setup,KeyGen,Enc,PartDec,FinalDec)
is (n, t)-statically secure if it is both (n, t)-statically semantically secure (Defi-
nition 3) and (n, t)-partial decryption simulatable (Definition 4).

HATE for LOVE MPC 11

3 Homomorphic Ad Hoc Threshold Encryption (HATE)
Constructions

In this section, we describe some homomorphic ad hoc threshold encryption
(HATE) constructions. The table in Figure 3 summarizes their properties. The
first row of the table describes prior work, which focuses on fully homomorphic
ad hoc threshold encryption (FHATE).3

In this paper, we consider two categories of additively-homomorphic ATE
schemes: those with low concrete communication cost, and those with optimal
asymptotic communication cost. Rows two and three of the table in Figure 3
describe two HATE instantiations — both based on share-and-encrypt (Con-
struction 1) — which, despite their Θ(n)-size ciphertexts, are efficient enough to
be used in some scenarios.

The last row of the table (“obfuscation-based HATE”, Construction 5) de-
scribes the first HATE scheme which has constant-size ciphertexts and partial
decryptions. (It is also the first ATE scheme, homorphism or no, with these
properties.) Unfortunately, it is a feasibility result more than anything else. It
is not useable in practice, since it leverages differing-inputs obfuscation (diO)
which currently has no practical instantiations.

Name pk size sk
size

ctext
size

pdec size homomorphism message
space
size

assumption
family

t-
Flexible

?

R-
Oblivious

?

FHATE [BJMS18] Θ(1) Θ(1) poly(n) poly(n, l) any any lattices yes yes
Shamir-and-

ElGamal (Const. 1,
Appendix E.1)

Θ(1) Θ(1) Θ(n) Θ(1) additive small DDH yes yes

CRT-and-Paillier
(Const. 1,

Appendix E.2)

Θ(1) Θ(1) Θ(n) Θ(1) additive any factoring yes no

obfuscation-based
HATE (Const. 5,
Section 3.2 and
Appendix G)

poly(n) Θ(1) Θ(1) Θ(1) additive* small diO no no

Fig. 3: A Summary of Homomorphic Ad Hoc Threshold Encryption Construc-
tions. n refers to the number of parties, and l refers to the number of ciphertexts.
(*) For the obfuscation-based scheme, homomorphism can be applied to an ex-
panded (Θ(n)) form of the ciphertext (the scheme is server-aided homomorphic).

3.1 HATE from Homomorphic Encryption and Secret Sharing

One natural way to build ATE is to use a threshold secret sharing scheme SS
together with a public-key encryption scheme PKE, as in the work of Daza et

3 There is another paper, due to Boneh et al. [BGG+18], that discusses fully homo-
morphic ad hoc threshold encryption, but because the homomorphism can only be
applied to one ciphertext at a time in their scheme, it is not useable to instantiate
LOVE MPC and we thus omit it from the table.

12 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Setup(1k):
– paramsPKE ← PKE.Setup(1k)
– paramsSS ← SS.Setup(1k)
– Return params = (paramsPKE, paramsSS)

KeyGen(params):
– Return (pk, sk)← PKE.KeyGen(paramsPKE)

Enc(params, {pki}i∈R, t,m):
– {[m]i}i∈R ← SS.Share(|R|, t,m)
– Return c← {PKE.Enc(pki, [m]i)}i∈R

PartDec(params, ski, ci):
– Return di ← PKE.Dec(ski, ci)

FinalDec(params = 1k, {di}i∈R′⊆R,|R′|>t):
– Return m← SS.Reconstruct({di}i∈R′⊆R,|R′|>t)

Construction 1: Share-and-Encrypt Ad Hoc Threshold Encryption

al. [DHMR07]. The idea is to secret share the message, and to encrypt each
share to a different recipient using their public key; therefore, we call this the
share-and-encrypt construction. If the secret sharing and encryption schemes
are homomorphic in compatible ways, the share-and-encrypt construction is a
Homomorphic ATE (HATE).

We assume familiarity with public key encryption and secret sharing. We use
one non-standard property of secret sharing, which is share simulatability. Infor-
mally, a share simulatable t-out-of-n threshold secret sharing scheme (SS.Share,
SS.Reconstruct) has a third algorithm SS.SimShares which takes in a message
m and t or fewer honestly generated shares for a different message m′, and
generates the remaining shares such that all of the shares together are indistin-
guishable from an honestly generated sharing of m. SS.SimShares is only used
in the proofs, not in the construction. We describe share simulatability in more
detail in Appendix C.

Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be our public-key encryption scheme,
and let (SS.Share,SS.Reconstruct) be our share simulatable threshold secret shar-
ing scheme. We also allow algorithms PKE.Setup and SS.Setup, which handle
global setup for the encryption and secret sharing scheme, respectively. The
share-and-encrypt ad hoc threshold encryption scheme is formally defined in
Construction 1.

Theorem 1. Share-and-encrypt (Construction 1) is a (n, t)-statically secure
(Definition 5) ATE, as long as SS is a secure share simulatable t-out-of-n secret
sharing scheme, and PKE is a CPA-secure public key encryption scheme.

We prove Theorem 1 in Appendix D. In Appendix E, we describe two homo-
morphic instantiations of the share-and-encrypt ATE:

1. Shamir-and-ElGamal uses exponential Shamir secret sharing and the ElGa-
mal public key encryption scheme, and

HATE for LOVE MPC 13

2. CRT-and-Paillier uses Chinese Remainder Theorem secret sharing and a
variant of Paillier encryption.

Theorem 2. Shamir-and-ElGamal (Appendix E.1) is an additively homomor-
phic ad hoc threshold encryption scheme for a polynomial-size message space.

In Shamir-and-ElGamal we are limited to polynomial-size message spaces
since final decryption uses brute-force search to find a discrete log. Jumping
ahead to LOVE MPC, polynomial-size message spaces are still useful in many
applications, as explained in the introduction. Moreover, the server already does
work that is polynomial in the number of users, so asking it to perform another
polynomial computation is not unreasonable.

Theorem 3. CRT-and-Paillier (Appendix E.2) is an additively homomorphic
ad hoc threshold encryption scheme.

Both Shamir-and-ElGamal and CRT-and-Paillier are ad hoc threshold en-
cryption schemes by Theorem 1; the homomorphisms in Theorems 2 and 3 fol-
low from the homomorphisms of the underlying encryption and secret sharing
schemes.

Communication Complexity. The share-and-encrypt ad hoc threshold encryp-
tion scheme has ciphertext size Θ(n) (asymptotics ignore the security parame-
ter). On the other hand, all private and public keys remain constant-size.

Flexibility. If the secret sharing scheme SS does not require any setup (or requires
setup independent of t), the share-and-encrypt scheme is t-flexible, since the
sender can decide which threshold t to use at encryption time. Shamir-and-
ElGamal is also R-oblivious, since we are able to omit {pki}i∈R as an input both
to PartDec and to FinalDec. However, CRT-and-Paillier is not R-oblivious, since
parties’ moduli, which are part of their public keys, are necessary for FinalDec.

Homomorphism. Depending on the homomorphisms of the underlying secret
sharing and encryption schemes, the share-and-encrypt construction can have
various homomorphisms. (We discuss specific instantiations in Appendix E.)

Notice that we are able to omit all but the relevant part of the ciphertext as
input to PartDec for each party (where the relevant part is the one encrypted
under their key), making the scheme server-aided homomorphic. This further
saves on communication in some contexts (Section 4.3).

Finally, since each partial decryption is simply a secret share, the scheme is
partial decryption homomorphic in any way that the secret sharing scheme is
homomorphic.

3.2 HATE from Differing Inputs Obfuscation

In this section, we introduce the first ad hoc threshold encryption construction
with ciphertext size that is independent of the number of parties (at the expense
of linear-size public keys). Because our construction is based on differing-inputs
obfuscation (diO), its main purpose is to demonstrate that linear-size ciphertexts
are not inherent, and a general lower bound is unlikely.

14 Leonid Reyzin, Adam Smith, Sophia Yakoubov

3.2.1 Background Informally, differing-inputs obfuscation [BGI+01,ABG+13]
is a way to obfuscate a program in such a way that no adversary can tell the
difference between the obfuscations of two programs of the same size as long as
it is hard to find inputs on which the two programs differ. In other words, if
an adversary can distinguish between the obfuscations of programs PR and PL
(|PR| = |PL|), then we can use that adversary to recover an input x such that
PR(x) 6= PL(x).

We also make use of puncturable pseudorandom functions (PPRFs). A PPRF
[KPTZ13,BW13,BGI14b,SW14] is a pseudorandom function (PRF) whose keys
can be punctured. Let k{x} denote the PRF key k punctured at point x. Then
PPRFk(x′) = PPRFk{x}(x

′) for all x′ 6= x, but given k{x}, PPRFk(x) is indistin-
guishable from random.

Finally, we also use accumulators, which provide a compact representation
of an arbitrarily large set which allows proofs of membership in the set. One
example of an accumulator is a Merkle hash tree [Mer88].4 The root of the
Merkle tree is a short value a which represents the set of leaf elements, and a
membership witness for a leaf element is its authenticating path w in the tree.5

Let verify(a,w, x) be the algorithm that verifies the membership of element x in
the accumulator a using witness w. Reyzin and Yakoubov [RY16] provide more
detailed background on accumulators.

We will also use standard semantically-secure public-key encryption [GM84],
existentially unforgeable signatures [GMR88], and Shamir secret sharing [Sha79].
We do not provide formal definitions for the primitives we use, as these are
standard and available in the referenced literature.

3.2.2 Building ATE from Obfuscation The only asymptotic communi-
cation inefficiency in the share-and-encrypt HATE constructions of Section 3.1
comes from the Θ(n)-size ciphertext. We can try to compress the ciphertext us-
ing obfuscation; instead of using the encrypted shares as the ciphertext, we can
try to use an obfuscated program that outputs one encrypted share at a time
given an appropriate input (such as receiver secret and public keys, and proof
of the receiver’s membership in the recipient set R).

However, because it is difficult to obfuscate a secret sharing scheme without
having the obfuscated program be of size linear in the threshold (because of the
amount of randomness required for sharing), and we want our ciphertexts to be
compact, we instead obfuscate a message- and recipient-set- agnostic program.

This obfuscation will be of size linear in the threshold, but it doesn’t need
to be part of the ciphertext; instead, each party can include such an obfuscated
program just once in its public key. One can think of the obfuscated program in

4 We can also use RSA accumulators [Bd94], putting the modulus in the relevant
public key.

5 For our purposes, is important that this accumulator be deterministic. So, if we use
Merkle trees as our accumulator, we always order the leaves of our Merkle tree in
increasing lexicographic order.

HATE for LOVE MPC 15

the sender’s public key as a “horcrux”.6 The sender stores some of its secrets in
this obfuscated program, and when it encrypts a message, the sender includes
just enough information in the ciphertext that the obfuscated program can do
the rest of the work.

Of course, the obfuscated program should make sure to only produce outputs
(a) for intended recipients i ∈ R, and (b) for ciphertexts actually encrypted by
the sender.

To achieve (a) — that is, to make sure that the obfuscated program only pro-
duces outputs for intended recipients — the sender will an use accumulator. The
obfuscated program requires three input values to ensure that it only produces
outputs for the intended recipients:

1. A pair of recipient keys (pki, ski). The program checks that the public and
secret keys match. We assume the existence of an algorithm matches that
performs this check.

2. An accumulator a of recipient public keys pkj for j ∈ R.

3. A membership witness w for pki in the accumulator a. The program checks
that verfiy(a,w, pki) = 1.

To achieve (b) — that is, to make sure that the obfuscated program only pro-
duces outputs for ciphertexts actually sent by the sender — the sender generates
a signing key SIG.skSndr and a signature verification key SIG.pkSndr. It hardcodes
SIG.pkSndr in the obfuscated program, and includes a signature as part of the
ciphertext. Each ciphertext comprises a sub-ciphertext (encryption of the actual
message), an accumulator a, and a signature on both.

Notice that having this obfuscated program as the sender’s public key makes
the obfuscation-based ATE scheme different from a typical public-key encryption
scheme: the ATE scheme is keyed-sender, meaning that in order to encrypt a
message the sender must use its secret key, and in order to decrypt a message,
recipients need to use the sender’s public key.

The program each sender must obfuscate and include in their public key
is described in Algorithm 1. The obfuscation-based ATE itself is described in
Construction 2.

6 A “horcrux” is a piece of one’s soul stored in an external object, according to the
fantasy series Harry Potter [Row05].

16 Leonid Reyzin, Adam Smith, Sophia Yakoubov

KeyGen(t):

{The following generates the “receiver” portion of the keys. PKE.pk is used
by others when sending messages to this party, and PKE.sk is used by this
party to decrypt messages from others.}
(PKE.pk,PKE.sk)←$ PKE.KeyGen(1k).
{The following generates the “sender” portion of the keys. SIG.sk and k′ are
used by this party when sending messages to others, and ObfFunc is used
by others to decrypt messages from this party.}
(SIG.pk, SIG.sk)←$ SIG.KeyGen(1k).
k′ ←$ PPRF.KeyGen(1k).
for j ∈ [1, . . . , t] do
kj ←$ PPRF.KeyGen(1k).

ObfFunc← diO(fk=(k1,...,kt),k′,SIG.pk).
return pk = (PKE.pk,ObfFunc), sk = (PKE.sk, SIG.sk, k′).

Enc((SIG.skSndr, k
′
Sndr), {pki}i∈R,|R|≥t,m):

Compute a deterministic accumulator a (e.g. a Merkle hash tree) of
{(pki, i)}i∈R (where the indices i are, for instance, the indices of the public
keys in a lexicographic ordering of all the public keys belonging to recipients
in R).
c1 ←$ {0, 1}k.
c2 = PPRFk′

Sndr
(c2)⊕m.

c′ = (c1, c2).
r ←$ {0, 1}k.
σ ←$ SIG.Sign(SIG.skSndr, (a, c

′, r)).
return c = (a, c′, r, σ).

PartDec(ObfFuncSndr, {PKE.pkj}j∈R,PKE.ski, c):
Parse (a, c′, r, σ) = c.
Recompute a deterministic accumulator a (e.g. a Merkle hash tree) of
{(PKE.pkj , j)}j∈R (where the indices j are, for instance, the indices of the
public keys in a lexicographic ordering of all the public keys belonging to
recipients in R). Let w be the witness of (PKE.pki, i) in that accumulator.
[m]i ← ObfFuncSndr(a, c

′, r, σ,PKE.pki,PKE.ski, i, w).
di = (i, [m]i).
return di.

FinalDec({di}i∈R′⊂R):

Perform Shamir reconstruction to recover the message m.

Construction 2: Obfuscation-Based ATE

HATE for LOVE MPC 17

Algorithm 1 fk,k′,SIG.pk(a, c′, r, σ,PKE.pk,PKE.sk, i, w)

The following values are hardcoded in the program:

– puncturable PPRF keys k = (k1, . . . , kt) {These are used for Shamir sharing (for
generating polynomial coefficients).}

– puncturable PPRF key k′ {This is used for decrypting the message.}
– signature verification key SIG.pk

The following values are expected as input:

– accumulator a
– ciphertext c′ = (c1, c2)
– random value r
– signature σ
– public encryption key PKE.pk
– secret decryption key PKE.sk
– index i
– witness w

if (matches(PKE.sk,PKE.pk)) and (verify(a,w, (PKE.pk, i))) and
(SIG.Verify(SIG.pk, (a, c′, r), σ)) then

(c1, c2) = c′

w = PPRFk′(c1)
m = w ⊕ c2
for j ∈ [1, . . . , t] do

coefj = PPRFkj (r)
coef = (coef1, . . . , coeft)
return m+

∑
j∈[1,...,t] coefji

j

{This returns the ith Shamir share of m, [m]i. Arithmetic is done in a large enough
prime-order finite field.}

Notice that Algorithm 1 expects and makes use of an index i for each re-
cipient. This index can be any non-zero element that is deterministically and
uniquely (within the recipient set R) associated with the recipient. For instance,
it can be the index of PKE.pki in a lexicographic ordering of {PKE.pkj}j∈R.
Once we add server-aided homomorphism and start using Algorithm 4, it be-
comes important that i come from a small space so as to minimize the size of
the ciphertext. So, the above idea of using the index of the recipient’s public key
in a lexicographic ordering becomes particularly appealing.

Security. We alter the static semantic security game (and partial decryption
simulatability game) slightly to accommodate the obfuscation-based ATE con-
struction. Informally, we require the adversary to commit to the recipient set
R earlier (this is necessary for some of the proof hybrids), and we provide the
appropriate keys now that the scheme is keyed-sender. We describe the updated
games in Appendix F. We call the new notion of security super-static security.

18 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Theorem 4. The obfuscation-based ATE (Construction 2) is (n, t)-super-statically
secure (Definition 9) for any polynomial n, t, as long as diO is a secure differing-
inputs obfuscation, PPRF is a secure puncturable PRF, SIG is an existentially un-
forgeable signature scheme, PKE is a CPA-secure public key encryption scheme,
and the accumulator scheme is secure.

We prove Theorem 4 in Appendix F.

Communication Complexity. The public keys in the obfuscation-based ATE
(Construction 2) are large; because of the obfuscated program, which contains
t + 1 PPRF keys, the public keys are of size polynomial in t. However, the ci-
phertexts are constant-size. This is the first ATE with constant-size ciphertexts.

Flexibility. The obfuscation-based ATE is not t-flexible, since the threshold t
is fixed within the sender’s public key. It is not R-oblivious either, since each
receiver has to recompute an accumulator of all receivers’ public keys.

Adding Server-Aided Homomorphism. Since partial decryptions are simply Shamir
shares of the message, the obfuscation-based ATE is additively partial decryp-
tion homomorphic. However, in its current form, it is not homomorphic or server-
aided homomorphic. Informally, in order to make it additively homomorphic, we
can modify the obfuscated algorithm to:

1. Not require a secret key as input,
2. Return encryptions of the secret shares instead of plaintext secret shares,

and
3. Use a homomorphic encryption scheme PKE.

This modification would make the construction additively server-aided ho-
momorphic; a server can save the recipients work by evaluating the obfuscated
program to extract encryptions of all recipients’ partial decryptions, do homo-
morphic computation on those partial decryptions (since our PKE scheme is ho-
momorphic, and we already have partial decryption homomorphism), and send
all parties their final encrypted partial decryption.

More concretely, we can try using ElGamal encryption [ElG84]. Since El-
Gamal is multiplicatively homomorphic (not additively homomorphic), we use
exponential Shamir sharing to make the homomorphisms play nicely together.
Once the obfuscated program is evaluated, we are essentially using the Shamir-
and-ElGamal HATE (described in detail in Appendix E.1). In particular, this
implies that we are limited to polynomial-size message spaces, since final decryp-
tion uses brute-force search to find a discrete log (see discussion after Theorem 2).

In Appendix G we give more details about this modification. Construction 5
describes the new additively server-aided homomorphic HATE; Algorithm 4
describes the new program that needs to be obfuscated and included in each
sender’s public key. Note that this program is now of size linear in n, not t; this
means that public keys now have size poly(n).

HATE for LOVE MPC 19

4 Large-scale One-server Vanishing-participants Efficient
MPC (LOVE MPC)

Large-scale One-server Vanishing-participants Efficient MPC (LOVE MPC) is
different from more traditional MPC in two ways: (1) in addition to tolerating
corruptions, it tolerates some number of parties who vanish (i.e., drop out mid-
computation), and (2) only the server learns the output. Our model is influenced
by the work of Badrinarayanan et al. [BJMS18], which introduces the notion of
“lazy parties” who may drop out during the protocol execution.

4.1 Lower Bounds

We show lower bounds both for the number of message flows in a LOVE MPC
construction, and for the setup requirements.

Theorem 5. For many functions (including addition), a LOVE MPC cannot
be instantiated in fewer than three message flows, and if only three flows are
used, then setup (e.g. correlated randomness or PKI) is unavoidable.

Proof. We prove this theorem in two parts.

Lower Bounds on Number of Message Flows. A one-message protocol (where
each user sends the server a single message, as in non-interactive MPC (NIMPC)
[BGI+14a]) is impossible in our setting for many functions f , for the following
reason. In a one-message protocol, the users would all send a single message to
the server, who would compute the desired output. However, if the protocol is
fault-tolerant, the set of participating users cannot be known in advance. Thus,
an honest-but-curious server would be able to compute f on many different
subsets of participating users, simply by ignoring some of the received messages.
For example, if f is simply the sum of the users’ individual values, the server
could compute f both with and without a particular user present, thus learning
every user’s input.

A two-message protocol does not make sense, since a second message flow
would involve the server sending the users messages. A server-to-user message
before the user-to-server message does not solve the above problem, and a server-
to-user message after the user-to-server message cannot affect the output, since
the server should be the one to arrive at the output. We conclude that a LOVE
MPC construction requires at least three message flows.

Lower Bounds on Setup Assumptions. A three-message protocol without any
joint setup (e.g. correlated randomness or PKI) allows the server to perform
what is essentially a Sybil attack. By fault-tolerance, the output should still be
computable if a few participants drop out after sending the first message. More-
over, the output should not change depending on which participants drop out
in the third message flow; otherwise, the honest-but-curious server can pretend
some users dropped out and see how the output changes (just like in the argu-
ment against one-message protocols). Therefore, the output should be fixed as

20 Leonid Reyzin, Adam Smith, Sophia Yakoubov

soon as the second flow messages are sent by the server. (Generalizing to more
than three message flows, the output should be fixed as soon as the server sends
its last message.) This feature enables an honest-but-curious server to compute
f on any single real user’s input combined with inputs of the server’s choice, as
follows. After receiving the first message from a real user, the server will simu-
late the first message of n− 1 users with inputs of the server’s choice, and then
simulate the rest of the messages of the protocol as if the real user dropped out
before sending its third message. As long as the protocol can tolerate a single
user dropping out, the server will be able to compute the desired output. We
conclude that a three-message LOVE MPC construction requires some setup.

4.2 Definitions

Our ideal functionality, described in Figure 4, is a variant of the trusted party
functionality of Badrinarayanan et al. [BJMS18], modified to support only a
single output party (the server Srvr) and to allow functions with more than a
single bit of output.

Let U be the set of all parties, P be the set of parties who do not drop
out by the end of the protocol execution, and C be the set of corrupt parties.
For correctness, we require that |P| > t for a dropout threshold t. For security,
we require that |C| ≤ tc for a corruption threshold tc. Note that in all of our
constructions, we have t = tc.

A static semi-honest adversaryA specifies the following sets: C ⊆ U of corrupt
parties such that |C| ≤ tc, DInput ⊆ U of parties who drop out before the end of
the input phase, and DOutput ⊆ U of parties who drop out after the input phase
(where P = U\(DInput∪DOutput)). Only parties who do not drop out before the
end of the input phase (that is, i ∈ U\DInput) have their inputs included in the
computation. The adversary receives the view of all the parties in C.

Informally, a LOVE MPC protocol has static semi-honest security if for all
input vectors {xi}i∈U and all efficient adversaries A, there exists a simulator S
who interacts with the ideal functionality in Figure 4 and can simulate the view
of A. Badrinarayanan et al. [BJMS18] also discuss security against malicious
parties, which we do not address here.

We present our protocols in the PKI model. Because we consider only honest-
but-curious attackers, the PKI model does not require any additional trust: the
clients could simply exchange public keys via the server in two additional message
flows before the start of the protocol. The importance of the PKI model for our
protocols is that this exchange is independent of the inputs and needs to happen
only once; after that, the protocols can be run repeatedly with the same public
keys.

There are multiple ways to model PKI formally: “global” setup (e.g., Canetti
and Rabin [CR03], Canetti et al. [CDPW07] and Dodis et al. [DKSW09]), which
uses key registration that is shared by multiple, possibly different, protocols; or
“local” setup (e.g., Barak et al. [BCNP04]), in which key registration is per pro-
tocol instance. In any of these, since our adversary is semi-honest, the simulator
is allowed to know the secret keys of the corrupted parties; in addition, local

HATE for LOVE MPC 21

Functionality Ff , interacting with server Srvr and parties Pi, i ∈ U .

Init: On input (Init) from the simulator S:
1. Initialize an empty map INPUTS from parties to their inputs.

InputAbort: On input (InputAbort,DInput) from the simulator S, store DInput.
Input: On input (Input, xi) from party Pi: Store INPUTS[i] = xi.
OutputAbort: On input (OutputAbort,DOutput) from the simulator S, store DOutput.
Output: On input (Output) from the simulator S:

1. Remove i from INPUTS for i ∈ DInput.
2. If |U\(DInput ∪ DOutput)| > t: compute y = f(INPUTS).
3. Else: set y = ⊥.
4. Output y to the server Srvr.

Fig. 4: Ideal Functionality Ff for LOVE MPC Secure Against Semi-Honest Ad-
versaries.

setup means that the security definition is weaker and the simulator is more
powerful, because the simulator can simulate the setup and thus is able to know
(or even decide) secret keys for the honest parties. The LOVE MPC protocol
that we describe in Section 4.3 can be proven secure with global setup, unless it
is instantiated with the keyed-sender obfuscation-based HATE (Section 3.2), in
which case it requires local setup (but still can be run multiple times with the
same PKI).

4.3 Three-Message LOVE MPC from HATE

Let (HATE.Setup,HATE.KeyGen,HATE.Enc,HATE.PartDec,HATE.FinalDec,HATE.Eval)
be a homomorphic ad hoc threshold encryption scheme. Assume the HATE
has been set up (and so params is publicly available, and contains t), and that
each party has already run KeyGen and that everyone’s public keys have been
distributed through a public key infrastructure. We describe a three-message
HATE-based LOVE MPC in Construction 3. When instantiated with Shamir-
and-ElGamal or CRT-and-Paillier, we call it Shamir-and-ElGamal LOVE MPC
or CRT-and-Paillier LOVE MPC, respectively. As written, Construction 3 does
not use keyed-sender HATE, and so cannot be instantiated with obfuscation-
based HATE. However, in Section 4.4 we alter Construction 3 to use obfuscation-
based HATE and call the result obfuscation-based LOVE MPC.

Theorem 6. HATE-based LOVE MPC (Construction 3) in the global-setup
PKI model returns the correct output of f if fewer than t parties drop out. It is se-
cure against t static semi-honest corruptions as long as HATE is a (n, t)-statically
secure (Definition 5) F-homomorphic ATE construction such that f ∈ F .

Proof. Correctness is true by the correctness of the underlying HATE.
To prove security, we describe a simulator S in Figure 5. Since we require

global setup, S does not have access to honest parties’ secret keys. However,
because of the honest-but-curious assumption, S does see corrupt parties’ secret
keys and randomness. S can simulate by encrypting 0 for each honest party in
Flow 1 (without knowing their secret keys), and simulating the partial decryp-
tions for each honest party in Flow 3 (again without knowing their secret keys),

22 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Flow 1: Each party Pi sends a message to the server Srvr
Each party Pi, i ∈ U does the following:
1. Computes

ci ← HATE.Enc(params, {pki}i∈U , xi).
2. Sends ci to Srvr.

Flow 2: Server Srvr sends a message to each party Pi
Let DInput ⊆ U be the set of parties from whom the server Srvr did not receive
a ciphertext. Srvr computes the sum ciphertext

c← HATE.Eval(params, {pki}i∈U , {ci}i∈U\DInput
, f)

and sends c to all parties i ∈ U\DInput.
Flow 3: Each party Pi sends a message to the server Srvr

Each party Pi, i ∈ U\DInput does the following:
1. Computes

di ← HATE.PartDec(params, {pkj}j∈U , ski, c).

2. Sends di to Srvr.
The server Srvr computes the output

Let DOutput ⊆ U\DInput be the set of parties from whom the server Srvr got
a ciphertext ci, but not a partial decryption di. As long as |P = U\(DInput ∪
DOutput)| > t, Srvr computes

y ← HATE.FinalDec(params, {pki}i∈U , c, {di}i∈P).

Construction 3: LOVE MPC for Function f From HATE in Three Rounds

HATE for LOVE MPC 23

1. The simulator S sends (Init) to the ideal functionality.
2. S runs the adversary A to determine C, DInput, DOutput, and sends those to the ideal

functionality.
3. [Flow 1] For each honest party Pi, i ∈ U\C, S encrypts 0 in place of the actual input:

ci ← HATE.Enc(params, {pkj}j∈U , 0).

4. [Flow 2] Whether the server Srvr is honest or semi-honest (that is, whether or not its role
is played by the simulator), it will correctly compute the sum ciphertext c and send it to
all parties.

5. [Flow 3] For each corrupt party Pi, i ∈ C, since the simulator S knows ski and
the randomness used by the adversary, S can compute the partial decryption di ←
HATE.PartDec(params, {pkj}j∈U , ski, c), which is guaranteed to equal the one the corrupt
party will send the server Srvr in the final flow. (S can do this even if the adversary is
rushing.) However, since S does not know the honest parties’ keys, S must simulate their
partial decryptions. S sends (Output) to the ideal functionality (note that the output is
fixed at this point, since it is fixed as soon as the server sent the ciphertext), learns the
actual output y, and computes the simulated partial decryptions for the honest parties
by using the partial decryption simulatability (Definition 4) of the HATE. That is, the
simulator runs

{di}i∈U\C ← HATE.PartDecSim(params, {pki}i∈U , c, {di}i∈C, y).

By partial decryption simulatability, these will be indistinguishable from genuine partial
decryptions.

6. [Output Computation] Whether the server Srvr is honest or semi-honest, it will correctly
compute the output from the partial decryptions it receives.

Fig. 5: Simulator S for LOVE MPC from HATE

by first performing partial decryption on behalf of the corrupt parties using their
secret keys and randomness.

Notice that the only points in which the simulation differs from a real execu-
tion view is Flow 1, when the simulator encrypts 0s instead of the actual inputs,
and Flow 3, when the simulator simulates partial decryptions instead of using
genuine ones. The simulated corrupt parties’ view is indistinguishable from a
real view by CPA security and partial decryption simulatability, respectively.

Efficiency. Shamir-and-ElGamal LOVE MPC and CRT-and-Paillier LOVE MPC
requireΘ(n) communication per party, where n = |U|. Since ciphertexts areΘ(n)
in size, each party sends a Θ(n)-size message in Flow 1, and receives a Θ(n)-size
message in Flow 2. However, we can leverage the server-aided homomorphism of
share-and-encrypt and save some concrete cost by having the server only send
each party the relevant part of the ciphertext in Flow 2; that is, the encryption
of their secret share.

4.4 Three-Message LOVE MPC from Keyed-Sender Server-Aided
Homomorphic ATE

The LOVE MPC protocol above (Construction 3) uses HATE that is not keyed-
sender (that is, the sender does not need to use their own secret key to encrypt);
so, it fits perfectly with our share-and-encrypt HATE (Construction 1), but not
with our obfuscation-based HATE (Construction 5). We can modify it to use

24 Leonid Reyzin, Adam Smith, Sophia Yakoubov

a HATE that is keyed-sender by adding ski as an input to HATE.Enc. When
instantiated with obfuscation-based HATE, we call it obfuscation-based LOVE
MPC. Obfuscation-based LOVE MPC will still be secure, with the caveat that
now, the simulator will need access to all secret keys, because otherwise it will
not be able to simulate honest parties’ encryptions. This means that obfuscation-
based LOVE MPC requires local setup.

Note that obfuscation-based HATE has super-static security (Definition 9)
instead of static security; this means that the adversary must commit to the
recipient set before seeing public keys. In particular, when we build LOVE MPC
out of this HATE construction, a given setup instance can only be used for
LOVE MPC among a fixed set of recipients.

Efficiency. Obfuscation-based LOVE MPC requires only constant communica-
tion per party.

4.5 Five-Message LOVE MPC from Homomorphic Threshold
Encryption

Given a threshold encryption scheme that is homomorphic but lacks the ad
hoc property, we can achieve a LOVE MPC five-message protocol for multipli-
cation in two phases. In the first phase, the parties establish some correlated
randomness (which can be reused). In the second phase, the parties leverage
the correlated randomness and use (non ad hoc) multiplicatively-homomorphic
threshold encryption to compute on their inputs in three message flows. Note
that the first phase is reusable; the second phase can be re-executed multiple
times.

We can use the multiplicatively-homomorphic ElGamal-based threshold en-
cryption construction TEG due to Desmedt and Frankel [DF90], described in
Appendix A. The scheme operates over a G of prime order p with generator g in
which the decisional Diffie-Hellman problem is assumed to be hard. We assume
that G, p, and g are known to everyone; we also assume that each party Pi al-
ready has a key pair (pki, ski) for some semantically secure encryption scheme,
and that pki is known to everyone.

We show this protocol, which we call Reusable Threshold ElGamal LOVE
MPC, in Construction 4. In the first phase the parties run TEG.Setup as well
as TEG.KeyGen in two message flows. In the second phase, all parties use the
resulting instance of threshold ElGamal to encrypt their values to the joint public
key pk, the server homomorphically multiplies them, broadcasts the resulting
short ciphertext, and decrypts using the short partial decryptions it gets back.

In Construction 4 we show how the parties can compute multiplication. If the
parties want to compute addition over small message spaces instead of multipli-
cation, each party should encrypt gxi instead of xi, and after TEG decryption the
server can recover the output through brute-force search (same as in Theorem 2).

Theorem 7. Reusable Threshold ElGamal LOVE MPC (Construction 4) in the
global-setup PKI model returns the product of the parties’ inputs in G if fewer

HATE for LOVE MPC 25

Flow 1.1 Each party Pi, i ∈ U does the following:
1. Picks a random ri ←$ [p].
2. Shamir-shares ri by picking a random polynomial fi of degree t over the

field Zp with ri as its y-intercept, and computing [ri]j = fi(j) for j ∈ U .
3. Computes ci,j = PKE.Enc(PKE.pkj , [ri]j) for j ∈ U .
4. Sends (gri , {ci,j}j∈U) to the server Srvr.

Flow 1.2 The server Srvr does the following:
1. Computes the shared public key pk =

∏
i∈U g

ri

2. For each i ∈ U , forwards the ciphertexts {cj,i}i∈U (as well as the shared
public key pk) to Pi

Phase 1 Post-Processing Each party Pi, i ∈ U stores the shared public key pk,
decrypts cj,i to obtain [rj]i for all j ∈ U , and computes its secret key share as
[sk]i =

∑
j∈U [rj]i.

Flow 2.1 Each party Pi, i ∈ U sends ci = TEG.Enc(pk, xi) to Srvr.
Flow 2.2 The server Srvr computes the product ciphertext c =

TEG.Eval(pk, {ci}i∈U ,×), and sends c to all parties.
Flow 2.3 The parties compute their partial decryptions as di =

TEG.PartDec([sk]i, c) and send di to the server Srvr.
Phase 2 Post-Processing Srvr combines the partial decryptions as y =

TEG.FinalDec({pk′i}i∈R, {di}i∈R′⊆R, c) to obtain the output y.

Construction 4: Reusable Threshold ElGamal LOVE MPC

than t parties drop out. It is secure against t static semi-honest corruptions under
the decisional Diffie-Hellman assumption, as long as PKE is CPA-secure.

Proof. Correctness is true by the correctness of the underlying primitives.

We informally prove security by describing a simulator S. S has access to all
parties’ threshold ElGamal keys [sk]i: because we have a semi-honest adversary,
the simulator S can see all of the corrupt parties’ randomness and computation,
and because the simulator plays the honest parties’ roles in the first phase,
S learns the honest parties’ keys as well. S behaves honestly in Phase 1. S can
encrypt 0 for each honest party in Flow 2.1, and simulate the partial decryptions
for each honest party in Flow 2.3 using the partial decryption simulatability of
threshold ElGamal.

Efficiency. Notice that a single execution of phase 1 suffices for multiple execu-
tions of phase 2, and that while in phase 1 the communication is Θ(n) per party,
in phase 2 it is constant. So, the amortized communication complexity per party
over multiple executions of phase 2 is constant.

Acknowledgements

We would like to thank Ran Canetti for helpful discussions.

26 Leonid Reyzin, Adam Smith, Sophia Yakoubov

References

AB06. C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE
Trans. Inf. Theor., 29(2):208–210, September 2006.

ABG+13. Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark
Zhandry. Differing-inputs obfuscation and applications. Cryptology ePrint
Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689.

BCNP04. Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Univer-
sally composable protocols with relaxed set-up assumptions. In 45th FOCS,
pages 186–195. IEEE Computer Society Press, October 2004.

Bd94. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A
decentralized alternative to digital sinatures (extended abstract). In Tor
Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 274–285.
Springer, Heidelberg, May 1994.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages
565–596. Springer, Heidelberg, August 2018.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001.

BGI+14a. Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd
Meldgaard, and Anat Paskin-Cherniavsky. Non-interactive secure mul-
tiparty computation. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 387–404. Springer,
Heidelberg, August 2014.

BGI14b. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

BIK+17. Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 17, pages 1175–1191. ACM Press, Octo-
ber / November 2017.

BJMS18. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sa-
hai. Secure MPC: Laziness leads to GOD. Cryptology ePrint Archive,
Report 2018/580, 2018. https://eprint.iacr.org/2018/580.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013.

BZ14. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 480–499. Springer, Heidelberg, August 2014.

CDPW07. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Univer-
sally composable security with global setup. In Salil P. Vadhan, editor,

http://eprint.iacr.org/2013/689
https://eprint.iacr.org/2018/580

HATE for LOVE MPC 27

TCC 2007, volume 4392 of LNCS, pages 61–85. Springer, Heidelberg, Febru-
ary 2007.

CFY17. Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov. Catch-
ing MPC cheaters: Identification and openability. In Junji Shikata, editor,
ICITS 17, volume 10681 of LNCS, pages 110–134. Springer, Heidelberg,
November / December 2017.

CR03. Ran Canetti and Tal Rabin. Universal composition with joint state. In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281.
Springer, Heidelberg, August 2003.

CS03. Jan Camenisch and Victor Shoup. Practical verifiable encryption and de-
cryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer, Heidelberg, August 2003.

CSS12. T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving stream
aggregation with fault tolerance. In Angelos D. Keromytis, editor, FC
2012, volume 7397 of LNCS, pages 200–214. Springer, Heidelberg, Febru-
ary / March 2012.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer,
Heidelberg, August 1990.

DHMR07. Vanesa Daza, Javier Herranz, Paz Morillo, and Carla Ràfols. CCA2-secure
threshold broadcast encryption with shorter ciphertexts. In Willy Susilo,
Joseph K. Liu, and Yi Mu, editors, ProvSec 2007, volume 4784 of LNCS,
pages 35–50. Springer, Heidelberg, November 2007.

DKSW09. Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. Com-
posability and on-line deniability of authentication. In Omer Reingold,
editor, TCC 2009, volume 5444 of LNCS, pages 146–162. Springer, Heidel-
berg, March 2009.

EDG14. Tariq Elahi, George Danezis, and Ian Goldberg. PrivEx: Private collection
of traffic statistics for anonymous communication networks. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 1068–1079.
ACM Press, November 2014.

ElG84. Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Heidelberg, Au-
gust 1984.

GM84. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

GW09. Craig Gentry and Brent Waters. Adaptive security in broadcast encryp-
tion systems (with short ciphertexts). In Antoine Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 171–188. Springer, Heidelberg,
April 2009.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
13, pages 669–684. ACM Press, November 2013.

Mer88. Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS,
pages 369–378. Springer, Heidelberg, August 1988.

28 Leonid Reyzin, Adam Smith, Sophia Yakoubov

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computa-
tion via multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, edi-
tors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 735–763.
Springer, Heidelberg, May 2016.

RN10. Vibhor Rastogi and Suman Nath. Differentially private aggregation of dis-
tributed time-series with transformation and encryption. In Ahmed K.
Elmagarmid and Divyakant Agrawal, editors, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2010,
Indianapolis, Indiana, USA, June 6-10, 2010, pages 735–746. ACM, 2010.

Row05. J.K. Rowling. Harry Potter and the Half-Blood Prince. Bloomsbury, 2005.

RY16. Leonid Reyzin and Sophia Yakoubov. Efficient asynchronous accumula-
tors for distributed PKI. In Vassilis Zikas and Roberto De Prisco, editors,
SCN 16, volume 9841 of LNCS, pages 292–309. Springer, Heidelberg, Au-
gust / September 2016.

SCR+11. Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and
Dawn Song. Privacy-preserving aggregation of time-series data. In
NDSS 2011. The Internet Society, February 2011.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484. ACM Press, May / June 2014.

Zha14. Mark Zhandry. Adaptively secure broadcast encryption with small system
parameters. Cryptology ePrint Archive, Report 2014/757, 2014. http:

//eprint.iacr.org/2014/757.

A Threshold Encryption Scheme: Threshold ElGamal

One simple example of a (non ad hoc) threshold encryption scheme is the thresh-
old ElGamal scheme TEG due to Desmedt and Frankel [DF90], described in Fig-
ure 6. TEG is defined over a group G of prime order p with generator g in which
the decisional Diffie-Hellman problem is assumed to be hard.

Lemma 1. Threshold ElGamal is (n, t)-statically secure (Definition 5, modified
to use pk instead of {pki}i∈U) for any polynomial n, t as long as the Decisional
Diffie-Hellman (DDH) assumption holds in G.

Informally, this lemma follows by a standard reduction from the DDH as-
sumption.

Lemma 2. Threshold ElGamal is (n, t)-partial decryption simulatable (Defini-
tion 4, modified to use pk instead of {pki}i∈U) as long as the Decisional Diffie-
Hellman assumption holds in G.

Informally, this lemma follows since partial decryptions can easily be simu-
lated by interpolation in the exponent.

http://eprint.iacr.org/2014/757
http://eprint.iacr.org/2014/757

HATE for LOVE MPC 29

Setup(1k, t):
– Pick a secret key sk ←$ [p], and a random polynomial f of degree t with
sk as its y-intercept.

– Return pk = gsk,msk = f .
KeyGen(msk):

– Pick a random i←$ [1, . . . , p− 1].
– Return ski = f(i).

Enc(pk,m ∈ G):
– Pick a random y ∈ [p].
– u = gy.
– v = (pk)ym.
– Return c = (u, v).

PartDec(skj , c = (u, v)):
– Return dj = uskj .

FinalDec({di}i∈R′⊆R, c = (u, v)):
– Interpolate the partial decryptions in the exponent to get usk: y =∏

i∈R′⊆R d
λi
j , where λi is the appropriate Lagrange coefficient. (The La-

grange coefficients used depend on the identities i of the parties who partic-
ipate. However, given that a certain threshold of parties do, the Lagrange
coefficients do not affect the output.)

– Return m = v
y

.
Eval(pk, c1 = (u1, v1), c2 = (u2, c2),×):

– u = u1u2

– v = v1v2
– Return c = (u, v).

Fig. 6: Threshold ElGamal Multiplicatively Homomorphic Encryption Scheme
(TEG)

30 Leonid Reyzin, Adam Smith, Sophia Yakoubov

B Lower Bounds on Ciphertext Size for R-Oblivious Ad
Hoc Threshold Encryption Schemes

Theorem 8. In any R-flexible R-oblivious ad hoc threshold encryption scheme
(Setup,KeyGen,Enc,PartDec,FinalDec), the average size of a ciphertext c pro-
duced as

(params)← Setup(1k, t = 1)

{(pki, ski)← KeyGen(params)}i∈[u]

R ← a random size-n subset of [u]

c← Enc(params, {pki}i∈R,m)

for any k-bit message m is O(log2

(
u
n

)
).

Proof. To see this, imagine that a challenger runs all four lines described above
(that is, generates u key pairs, a random R and a ciphertext). The challenger
then sends the key pairs to the adversary, whose task is to identify the keys
belonging to R. The challenger sends c to the adversary; the adversary attempts
decryption with each key pair, and identifies those for which decryption yields
m as belonging to R. Note that the probability of correct decryption with a
key that does not belong to R should be negligible, or the threshold encryption
scheme is not secure. This allows the adversary to learn R. Since there are

(
u
n

)
possibilities for R, it should require at least log2

(
u
n

)
bits to communicate. Since

the key pairs are generated independently of R, they don’t count towards those
bits; thus, the ciphertext should be at least log2

(
u
n

)
bits long. In the case when

u = 2n, this is lower-bounded by 2n.

Theorem 9. For any t < u, any R-flexible R-oblivious ad hoc threshold en-
cryption scheme (Setup,KeyGen,Enc,PartDec,FinalDec), the average size of a
ciphertext c produced as

(params)← Setup(1k, t)

{(pki, ski)← KeyGen(params)}i∈[u]

R ← a random size-n subset of [u]

c← Enc(params, {pki}i∈R,m)

for any k-bit message m is O(log2

(
u−t+1
n

)
).

Proof. The proof goes exactly as it does for Theorem 8, but the challenger
withholds a random t − 1 key pairs in R, so that the adversary only needs to
identify the remaining n − t + 1 key pairs in R. In order to help the adversary
with this, the challenger additionally sends the adversary the partial decryptions
generated by the withheld keys.

HATE for LOVE MPC 31

Challenger Chal Adversary A

mR,mL, s.t. |mR| = |mL|←−−−−−−−−−−−−−−−−−−R, C ⊆ R←−−−−−−−−−−−−−−−−−−
b←$ {0, 1}

{[mR]i}i∈R ← SS.Share(mR)
{[mL]i}i∈R ← SS.Share(mL)

{[m′L]i}i∈R\C ← SS.SimShares({[mR]i}i∈C,mL)
If b = 0: set x = {[mL]i}i∈R

If b = 1: set x = {[mR]i}i∈C ∪ {[m′L]i}i∈R\C
x−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−

A wins if b′ = b and |C| ≤ t

Fig. 7: Share Simulatability Game for Secret Sharing

C Background: Secret Sharing

Secret sharing was introduced by Shamir [Sha79]. A t-out-of-n sharing of a secret
m is an encoding of the secret into n pieces, or shares, such that any t+1 shares
together can be used to reconstruct the secret m, but t or fewer shares give no
information at all about m. A secret sharing scheme SS, implicitly parametrized
by the total number of shares n and the threshold t, consists of two algorithms:
SS.Share and SS.Reconstruct.

– SS.Share(m) → ([m]1, . . . , [m]n) takes in a secret m and produces the n
secret shares.

– SS.Reconstruct([m]i1 , . . . , [m]it+1) → m̃ takes in t + 1 secret shares and re-
turns the reconstructed secret m̃.

If the scheme does not require any setup that fixes n and t, we can include
these parameters as inputs to SS.Share.

Informally, correctness requires that m̃ = m, and privacy requires that given
t or fewer shares of either mR or mL, no efficient adversary can guess which
message was shared.

Share Simulatability. We additionally use a property which we call share simu-
latability, which requires that given t or fewer honestly generated shares of mR

and given mL, there exists an efficient algorithm SS.SimShares which generates
the rest of the shares in such a way that the resulding sharing is indistinguishable
from a fresh sharing of mL.

Definition 6 (Share Simulatability). A secret sharing scheme scheme (SS.Share,
SS.Reconstruct) is share simulatable if there exists an there exists an efficient
algorithm SS.SimShares such that no efficient adversary A can win the share
simulatability game described in Figure 7 with probability non-negligibly greater
than 1

2 .

32 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Shamir Secret Sharing [Sha79]. Shamir t-out-of-n secret sharing (Shamir) uses
degree-(t) polynomials over some field. Shamir.Share(m) generates a random
degree-(t) polynomial f with m as its y-intercept; each share [m]i is a point
(xi, f(xi)) on the polynomial (with xi 6= 0). Any t + 1 shares can be used to
interpolate the polynomial, reconstructing m. Any t or fewer shares give no
information about m.

Shamir secret sharing is share simulatable; any t or fewer points can be
interpolated with (0,mL) (and optionally with some additional random points)
to obtain a degree-t polynomial.

Additionally, Shamir secret sharing is linearly homomorphic: a shared value
m can be multiplied by a constant, or added to another shared value m′, by
separately operating on the individual shares.

D Proofs of Properties of the Share-and-Encrypt Ad Hoc
Threshold Encryption Construction

In this appendix, we prove Theorem 1.

Theorem 10 (Restated from Theorem 1). The share-and-encrypt ATE
(Construction 1) is (n, t)-statically secure (Definition 5), as long as SS is a
secure share simulatable t-out-of-n secret sharing scheme, and PKE is a CPA-
secure public key encryption scheme.

Theorem 1 claims that the share-and-encrypt ATE protocol is (n, t)-statically
secure; in order to prove this, we must show that it is (n, t)-statically semantically
secure and (n, t)-partial decryption simulatable.

D.1 Proof that Share-and-Encrypt is Statically Semantically Secure

In the proof below, we use a slightly non-standard version of the CPA security
game (which we call the parallel CPA security game, described in Figure 8),
where the challenger Chal operates multiple instances of the public key encryp-
tion scheme, and uses the same bit b for them all. Parallel CPA security is
equivalent to CPA security, up to a polynomial difference in adversary advan-
tage.

Proof. We show a sequence of indistinguishable games between a static security
challenger Chal and an adversary A. It starts with a challenger who always flips
b = R, and ends with a challenger who always flips b = L. If the adversary cannot
distinguish between games with those two challengers, then if we instead have
a challenger who chooses b←$ {R,L} uniformly at random (as in Figure 1), no
adversary should be able to guess b with non-negligible advantage.

Game 0 This is the real game as described in Figure 1, but Chal always picks
b = R (and thus encrypts mR).

HATE for LOVE MPC 33

Challenger Chal Adversary A

n←−−
for i ∈ [1, . . . , n] :

(pki, ski)← PKE.KeyGen(1k)
pk1, . . . , pkn−−→

(m1,R,m1,L), . . . , (mn,R,mn,L) s.t. ∀i ∈ [1, . . . , n], |mi,R| = |mi,L|←−−
b←$ {R,L}

for i ∈ [1, . . . , n] :
for c∗i ← PKE.Enc(pk,mb)

c∗1 , . . . , c
∗
n−−→

b′←−−
A wins if b′ = b

Fig. 8: Public Key Encryption Parallel CPA Security Game

Game 1 This game is the same as the previous game, but when computing the
challenge ciphertext c∗, Chal does the following:
– {[mL]i}i∈R ← SS.Share(t, |R|,mL)
– {[mR]i}i∈R\C ← SS.SimShares({[mL]i}i∈R∩C ,mL)
– c∗ ← {PKE.Enc(pki, [mL]i)}i∈R∩C ∪ {[mR]i}i∈R\C

If A can tell the difference between this game and the previous game, then we
can design another adversary B that uses A to break the share simulatability
property of the secret sharing scheme SS (Definition 6). B accepts A’s choice
of C, honestly generates all of the key pairs (like the challenger in Figure 1),
and sends the appropriate keys to A, who responds with R, mR and mL.
B aborts if |C ∩ R| > t. (B continues with non-negligible probability, since
when an abort happens A would have lost the game in Figure 1 anyway, and
we’re assuming that A wins it with non-negligible probability.) B forwards
(mR,mL,R,R ∩ C) to the share simulatability challenger (Figure 7). Upon
receiving shares from the share simulatability challenger, B encrypts them
and sends them to A. If the share simulatability challenger flips b = 0, A’s
view will be as in the previous game; if the share simulatability challenger
flips b = 1, A’s view will be as in this game. B sends the share simulatability
challenger b′′ = 0 if A submits b′ = R, and b′′ = 1 if B submits b′ = L.

Game 2 This game is the same as the previous game, but when computing the
challenge ciphertext c∗, Chal encrypts mL.
If A can tell the difference between this game and the previous game, then
we can design another adversary B that uses A to break the CPA security of
the public key encryption scheme PKE. In particular, B will break parallel
CPA security.
B does the following: after A specifies the corrupt set C ⊆ U , B honestly
generates (pki, ski) for i ∈ C, and talks to a parallel privacy PKE challenger
(which runs |U| − |C| instances of a PKE, as described in Figure 8) to get
pki for i 6∈ C. B sends A all of the public keys {pki}i∈U , and the corrupt
secret keys {ski}i∈C . When A sends B the tuple (R,mR,mL), B aborts if
|C ∩ R| > t. (B continues with non-negligible probability, since when an
abort happens A would have lost the game in Figure 1 anyway, and we’re
assuming that A wins it with non-negligible probability.) B then computes
the following:

34 Leonid Reyzin, Adam Smith, Sophia Yakoubov

– {[mL]i}i∈R ← SS.Share(t, |R|,mL)
– {[mR]i}i∈R\C ← SS.SimShares({[mL]i}i∈R∩C ,mL)
B computes {c∗i ← PKE.Enc(pki, [mL]i)}i∈R∩C . It then asks the PKE parallel
CPA security challenger for encryptions of either {[mR]i}i∈R\C or {[mL]i}i∈R\C
(depending on the parallel CPA security challenger’s choice of bit b); let
{c∗i }i∈R\C be the ciphertexts the parallel CPA security challenger returns. B
sends A the challenge ciphertext c∗ = {c∗i }i∈R. If the parallel CPA security
challenger chose b = R, A’s view will be as in the previous game; if the paral-
lel CPA security challenger chose b = L, A’s view will be as in this game. A
then sends B a guess b′, which B passes on to the PKE parallel CPA security
challenger. B wins the PKE parallel CPA security game exactly when A wins
the static security game.

D.2 Proof that Share-and-Encrypt is Partial Decryption
Simulatable

Proof. PartDecSim can simulate partial decryptions in the share-and-encrypt ad
hoc threshold encryption scheme in Construction 1 simply by running {di}i∈R\C ←
SS.SimShares({di}i∈R∩C ,mR), and returning {di}i∈R\C .

Any adversary A who can win the static partial decryption simulatability
game described in Figure 2 when played with PartDecSim with non-negligible
probability can be used to break the share simulatability of SS and win the
share simulatability game described in Figure 7.

E Share-and-Encrypt HATE Instantiations

In this appendix, we instantiate the share-and-encrypt HATE (Construction 1)
in two ways.

E.1 Shamir-and-ElGamal

We build share-and-encrypt HATE out of ElGamal encryption [ElG84] and a
variant of Shamir secret sharing. We need to use a variant of Shamir secret
sharing (which we call exponential Shamir secret sharing), and not Shamir se-
cret sharing itself, because Shamir secret sharing is additively homomorphic
(and the homomorphism is applied via addition of individual shares), but El-
Gamal is multiplicatively homomorphic (and the homomorphism is applied via
multiplication of ciphertexts), so if we attempt to apply a homomorphism on
encrypted shares, it will not work. What we need in order to get an additively
homomorphic ATE scheme is to use ElGamal encryption with a secret sharing
scheme which is additively homomorphic, but whose homomorphism is applied
via multiplication. Therefore, we need to alter our Shamir secret sharing scheme
by moving the shares to the exponent; then, taking a product of two shares will
result in a share of the sum of the two shared values. Below we describe the
ElGamal encryption scheme and the exponential Shamir secret sharing scheme
which we use.

HATE for LOVE MPC 35

ElGamal Multiplicatively Homomorphic Encryption. Figure 9 describes the El-
Gamal multiplicatively homomorphic encryption scheme (EG). Note that we split
the key generation algorithm into two algorithms: Setup and KeyGen. This is be-
cause when we use ElGamal as part of our HATE scheme, it is important that all
parties share the same modulus and generator, so we factor out part of KeyGen
into Setup, which will only be run once globally.

Setup(1k):
– Pick a prime-order group G with generator g in which the decisional Diffie-

Hellman problem is assumed to be hard. Let p be the order of that group.
– Publish params = (G, p, g).

KeyGen(params):
– Pick a random sk ∈ [p].
– Publish pk = gsk.

Enc(params, pk,m ∈ G):
– Pick a random y ∈ [p].
– u = gy.
– v = (pk)ym.
– Return c = (u, v).

Dec(params, sk, c = (u, v)):
– Return m = v

usk .
Eval(params, c1 = (u1, v1), c2 = (u2, c2),×):

– u = u1u2.
– v = v1v2.
– Return c = (u, v).

Fig. 9: ElGamal Multiplicatively Homomorphic Public Key Encryption Scheme
(EG) [ElG84]

Exponential Shamir Secret Sharing. Figure 10 describes the exponential Shamir
secret sharing scheme (EShamir).

Notice that the reconstruction uses brute force search; this means that this
secret sharing scheme can only be used for very small (polynomial-size in k)
message spaces. However, HATE is interesting even in this setting. For instance,
if all we want to do is take a poll by summing encryptions of 0s and 1s, this
HATE scheme enables us to do it. It is reasonable to assume that the server
can manage to do brute force search over a polynomial space, since it is already
doing quadratic work in this computation.

Lemma 3. The exponential Shamir secret sharing scheme (EShamir) described
in Figure 10 is share simulatable.

Proof. Informally, given a message m and t or fewer shares, we obtain correctly
distributed remaining shares by interpolating the given with (0, gm) (and pos-
sibly with random values, if fewer than t shares are provided) in the exponent.
This is done in a manner similar to the first step of reconstruction.

36 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Setup(1k): same as EG.Setup.
Share(n, t ≤ n,m ∈ Zp):

– Pick a random degree-t polynomial f in Zp which has m as its y-intercept.
This can be done by picking t random coefficients coef1, . . . , coeft−1 ∈ G,
and setting f(x) = m+

∑t−1
j=1 coefjx

j .

– Return {Sharei}i∈[1,...n] where Sharei = (i, gf(i)).
Reconstruct({Sharei = (i, yi)}i∈R′⊆[n]):

– Perform polynomial interpolation over the shares in the exponent to re-
cover gm̃. As long as |R′| > t, this can be done by throwing out values in
R′ until |R′| = t+ 1, and doing the following:

gm̃ =
∏
i∈R′

y
∏

j∈R′,j 6=i
j

j−i

i

– Recover m̃ by brute force search.
Eval(Sharei = (i, yi), Share

′
i = (i, y′i),+): Share+i = (i, yiy

′
i)

Fig. 10: Exponential Shamir Secret Sharing Scheme (EShamir)

E.2 CRT-and-Paillier

We also build share-and-encrypt HATE out of Camenisch-Shoup encryption and
Chinese Remainder Theorem based secret sharing. Unlike Shamir-and-ElGamal
(Section E.1), this HATE allows us to use large message spaces.

CS Additively Homomorphic Encryption. We use a slightly modified version
of the Paillier-style verifiable encryption scheme described by Camenisch and
Shoup [CS03].7 Figure 11 describes the this scheme. Our modifications consist
solely of removing elements from the ciphertext, so the modified scheme naturally
inherits the CPA security of the original (but not its CCA security).8.

CRT Secret Sharing. We use a classic secret sharing scheme based on the Chinese
Remainder Theorem, which allows each party to operate homorphically on shares
in a different group. This version is due to Asmuth and Bloom [AB06]. We
describe it in Figure 12.

The scheme is perfectly correct. Furthermore, it supports a limited number
(currently set to n) of homomorphic additions. The setting of parameters in the
setup phase in Figure 12 ensures that n ·A ≤ N+, where each individual sharing
corresponds to a vector of modular reductions of an integer less than A. This
means that n sharings, added coordinate-wise, will lead to the reconstruction
of an integer less than n · A. Every set of more than t shares contains enough
information for that reconstruction.

7 Their scheme is designed it to be secure against chosen ciphertext attacks, which is
unnecessary for our purposes.

8 A similarly modified version of this scheme was used by Cunningham et al. [CFY17]

HATE for LOVE MPC 37

KeyGen(1k):
– Let N = pq where p = 2p′ + 1 and q = 2q′ + 1, and p′ and q′ are k-bit

primes.
– Let h = 1 +N .
– Choose a random g′ ∈ Z∗N2 , and set g = (g′)2N mod N2. (g is a generator

of a size-p′q′ subgroup with high probability.)
– Choose a random secret key sk ∈ {1, . . . , b(N2)/4c}.
– Return pk = gsk mod N2.

Enc(pk,m):
– Choose a random r ∈ [N/4].
– Return c = (gr mod N2, pkrhm mod N2).

Dec(sk, c = (u, v)):
– z = v

usk mod N2. (Note that z = hm if c is an encryption of m.)

– Return m′ = z−1
N

with division over integers. (Note that m′ is the discrete
log of z w.r.t. h.)

Fig. 11: Camenisch-Shoup Additively Homomorphic Encryption Scheme (CS).
We omit Setup, since this scheme does not require setup.

The scheme’s statistical security relies on the requirement that each unau-
thorized set of shares can reconstruct the secret integer â only modulo some
integer that is (a) relatively prime to N0 and (b) at most N−, which itself is
at most A

N02k . By the following lemma, those conditions ensure that the view of

any unauthorized set is within statistical difference 2−k of uniform.

Lemma 4. Let a, n, t be positive integers, and let A be uniformly random in
{a′ ∈ [a] : a′ mod n = t}. Then for all positive integers m < a that are relatively
prime to n, the distribution of the random variable B = A mod m is within
statistical difference nm

a of uniform.

Proof. Consider the number of a′ ∈ [a] that solve both the equations a′ mod n =
t and a′ mod m = u (for some u). Since m and n are relatively prime, this system
is equivalent to a′ mod mn = v for some particular v. The number of solutions
to this is b a

mnc or d a
mne. Thus, the probability that B = u is always with 1± mn

a
of a uniform element of Zm. The total variation distance from uniform is thus
at most mn

a .

Lemma 5. The CRT secret sharing scheme (CRTss) described in Figure 12 is
share simulatable.

Proof. Recall the share simulatability game from Figure 7. On input a set of
unauthorized shares {Sharei}i∈C which were created as a sharing of mL, and a
target message mR, first find a nonegative integer a < N0

∏
i∈C Ni such that

a mod N0 = mR and a mod Ni = Sharei for i ∈ C. Such an integer exists
since the moduli are all relatively prime. Next, select a random âR ∈ [A] such
that âR mod (N0

∏
i∈C Ni) = a. The correctness condition of the secret sharing

38 Leonid Reyzin, Adam Smith, Sophia Yakoubov

scheme implies that A > N0

∏
i∈C Ni, so this step is always possible. Finally, we

produce the new shares as Share′i = â mod Ni for i ∈ R \ C.
By Lemma 4 above, the distribution of t or fewer shares of mL are statis-

tically indistinguishable from the corresponding distibution for mR. The share
simulation algorithm above selects a uniformly random sharing of mR that is
consistent with the unauthorized shares of mL. The joint distribution is therefore
statistically close to that of a fresh sharing of mL.

Share(n,N1, ..., Nn, N0, t ≤ n,m ∈ ZN0 , 1
k):

– Let

N+

def
= minJ⊆[n]:|J|=t+1

∏
i∈J Ni

A
def
= bN+/nc

N−
def
= maxJ⊆[n]:|J|=t

∏
i∈J Ni

.

– If N0 · 2k ·N− > A then stop and return “Error: message space too large
for k bits of security.”

– Select a ∈R {a′ ∈ [A] : a′ mod N0 = m}
– Return (Share1, . . . , Sharen) where Sharei = (i, a mod Ni).

Reconstruct(Sharei1 = (i1, yi1), . . . , Shareit = (it, yit)):
– Find the unique â ∈ Z∏

j Nj
such that â ≡ yi mod Ni for all i ∈ {i1, ..., it}.

– Return m̂ = â mod N0.
Eval(+, Sharei = (i, y), Share′i = (i, y′)): Share+i = (i, y + y′ mod Ni)

Fig. 12: Chinese Remainder Secret Sharing Scheme (CRTss). We omit Setup,
since this scheme does not require setup.

F Security of the Obfuscation-Based Ad Hoc Threshold
Encryption Construction

In order to make the threshold encryption definitions play nice with the obfuscation-
based ATE (Construction 2), we need to alter the static semantic security game
(and partial decryption simulatability game) in two ways.

First, we need to make the game even more static (what we call super-static)
by forcing the adversary to commit not only to the set C of corrupt parties,
but also the set R ∩ C of corrupt recipients. This is necessary for the proof of
Theorem 4. Note that when U = R (that is, all parties are recipients), super-
static security is equivalent to static security.

Second, since Construction 2 is a keyed-sender scheme, we need to (a) use the
sender secret key to encrypt and provide the adversary with the sender public
key, and (b) we need to allow the adversary to make multiple encryption queries,
since encryption is no longer a public operation. In typical public key encryption
a game which allows multiple encryption queries is equivalent to one that does
not, but this is not true in a keyed-sender setting.

HATE for LOVE MPC 39

Chal(k,U, t) A(k,U, t)

params← Setup(1k, t)
params−−−−−−−−−−−−−−−−−−→C ⊆ U,R∩ C←−−−−−−−−−−−−−−−−−−

(pki, ski)← KeyGen(params) for i ∈ U
(pkSndr, skSndr)← KeyGen(params)

pkSndr, {pki}i∈U−−−−−−−−−−−−−−−−−−→{ski}i∈C−−−−−−−−−−−−−−−−−−→
b←$ {R,L}

repeat next two lines poly times:
mR,mL,R∩ (U\C)←−−−−−−−−−−−−−−−−−−

c∗ ← Enc(params, skSndr, {pki}i∈R,mb)
c∗−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−

A wins if b′ = b and |R ∩ C| ≤ t

Fig. 13: Super-Static Semantic Security Game for Keyed-Sender Ad Hoc Thresh-
old Encryption.

The new super-static semantic security game for keyed-sender ATE is de-
scribed in Figure 13. (and the correspondingly modified super-static partial de-
cryption simulatability game is described in Figure 14).

Definition 7 (super-static semantic security for keyed-sender ad hoc
threshold encryption). A keyed-sender ad hoc threshold encryption scheme
(Setup,KeyGen,Enc,PartDec,FinalDec) is (n, t)-super-statically semantically se-
cure if for all sufficiently large security parameters k, no efficient adversary A
can win the game described in Figure 13 (with polynomial-size U and |R| = n)
with probability non-negligibly greater than 1

2 .

Definition 8 (super-static partial decryption simulatability for keyed-
sender ad hoc threshold encryption). A keyed-sender ad hoc threshold en-
cryption scheme (Setup,KeyGen,Enc,PartDec,FinalDec) is (n, t)-super-statically
partial decryption simulatable if there exists an efficient algorithm PartDecSim
such that for all sufficiently large security parameters k, no efficient adversary
A can win the game described in Figure 14 (with polynomial-size U and |R| = n)
with probability non-negligibly greater than 1

2 .

Definition 9 (super-static security for keyed-sender ad hoc thresh-
old encryption). A keyed-sender ad hoc threshold encryption scheme (Setup,
KeyGen,Enc,PartDec,FinalDec) is (n, t)-super-statically secure if it is both (n, t)-
super-statically semantically secure (Definition 7) and (n, t)-super-statically par-
tial decryption simulatable (Definition 8).

Theorem 11 (Restated from Theorem 4). The obfuscation-based ATE (Con-
struction 2) is (n, t)-super-statically secure (Definition 9) for any polynomial
n, t, as long as diO is a secure differing-inputs obfuscation, PPRF is a secure
puncturable PRF, SIG is an existentially unforgeable signature scheme, PKE is a
CPA-secure public key encryption scheme, and the accumulator scheme is secure.

In order to prove Theorem 4, we must show the obfuscation-based Homomor-
phic Ad Hoc Threshold Encryption construction is super-statically semantically
secure and super-statically partial decryption simulatable.

40 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Chal(k,U, t) A(k,U, t)

(params)← Setup(1k, t)
params−−−−−−−−−−−−−−−−−−→C ⊆ U,R∩ C←−−−−−−−−−−−−−−−−−−

(pki, ski)← KeyGen(params) for i ∈ U
(pkSndr, skSndr)← KeyGen(params)

pkSndr, {pki}i∈U−−−−−−−−−−−−−−−−−−→{ski}i∈C−−−−−−−−−−−−−−−−−−→
mR,mL,R∩ (U\C)←−−−−−−−−−−−−−−−−−−

b←$ {R,L}
cR ← Enc(params, skSndr, {pki}i∈R, t,mR)
cL ← Enc(params, skSndr, {pki}i∈R, t,mL)

If b = R:
for j ∈ R\C, dj ← PartDec(params, {pki}i∈R, t, skj , cR)

If b = L:
for j ∈ R ∩ C, dj ← PartDec(params, {pki}i∈R, t, skj , cL)
for j ∈ R\C, dj ← PartDecSim(params, {pki}i∈R, cR, {dk}k∈R∩C,mR)

cb, {dj}j∈R\C−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−

A wins if b′ = b and |R ∩ C| ≤ t

Fig. 14: Super-Static Partial Decryption Simulatability Game for Keyed-Sender
Ad Hoc Threshold Encryption

F.1 Proof that Obfuscation-Based Homomorphic Ad Hoc Threshold
Encryption Share-and-Encrypt is Super-Statically Semantically
Secure

Proof. For simplicity, we first consider a single pair of messages mR, mL.
We show a sequence of indistinguishable games between a super-static se-

mantic security challenger Chal and an adversary A. It starts with a challenger
who always flips b = R, and ends with a challenger who always flips b = L. If the
adversary cannot distinguish between games with those two challengers, then
if we instead have a challenger who chooses b ←$ {R,L} uniformly at random
(as in Figure 13), no adversary should be able to guess b with non-negligible
advantage.

In the sequence of games below, let c∗ = (c∗1, c
∗
2) denote the “one time pad”

encryption of the message and r∗ denote the random value embedded in the
challenge ciphertext. Notice that even when the message changes, c∗1 and r∗ stay
constant (assuming the challenger uses the same randomness).

We abuse puncturable PRF notation slightly below; PPRFk(x) denotes the
puncturable PRF evaluated with key k on input x, while we use PPRFk,x∗,y∗(x)
to denote the same PPRF evaluated with the same key k, but if it is called on x∗,
it is programmed to return the hardcoded value y∗, as defined in Algorithm 2
below.

Algorithm 2 PPRFk,x∗,y∗(x)

if x = x∗ then
return y∗

else
return PPRFk(x)

HATE for LOVE MPC 41

We also let k{x∗} denote a PPRF key k punctured at x∗.

Game 0 This is the real game as described in Figure 13, but Chal always picks
b = R (and thus encrypts m∗ = mR).

Game 1 In this game, when creating the sender’s public key (specifically, the
obfuscation of Algorithm 1 it contains), the challenger Chal punctures the
PPRF keys k1, . . . , kt at r∗. To preserve the input-output behavior of the
program, Chal then modifies the program to check whether the input to
PPRFkj is r∗, and if it is, to set coefj = PRFkj (r∗) anyway for all j. (That
is, Chal sets coefj = PPRFkj{r∗},r∗,PPRFkj

(r∗)(r)).

This game is indistinguishable from Game 0 by the properties of indistin-
guishable obfuscation; the two programs have identical input-output behav-
ior.

Game 2 In this game, the challenger Chal modifies the obfuscated program to
set the coefficients truly at random. That is, Chal chooses t random val-
ues r1, . . . , rt, and sets the program to compute the coefficients as coefj =
PPRFkj{r∗},r∗,rj (r) for all j.
This game is indistinguishable from Game 1 by the security of puncturable
PRFs.

Game 3 In this game, the challenger Chal punctures the PPRF key k′ at c∗1. Chal
then modifies the program to check whether c1 = c∗1, and if it is, to set w =
PPRFPPRF.k′(c

∗
1) anyway (that is, Chal sets w = PPRFk′{c∗1},c∗1 ,PPRFk′ (c

∗
1)(c1)).

This game is indistinguishable from Game 2 by the properties of indistin-
guishable obfuscation; the two programs have identical input-output behav-
ior.

Game 4 Now, Chal modifies the program to set w to be uniformly random if
c1 = c∗1. That is, Chal chooses a random value r′, and sets w = PPRFk′{c∗1},c∗1 ,r′(c1))
in the obfuscated program.
However, this alters the observable program behavior, since the message
is now computed as m′ = c2 ⊕ PPRFk′{c∗1},c∗1 ,r′(c1), which, on the chal-
lenge ciphertext, is equal to mR ⊕ PPRFk′(c

∗
1) ⊕ r′; to prevent this, at the

same time, Chal programs the PPRF, when used with the punctured keys
k1{r∗}, . . . , kt{r∗}, to return the necessary coefficients so that the output
of the program on the challenge ciphertext (and corrupt i ∈ C ∩ R) does
not change. Chal uses Algorithm 3 by calling coef ′ = (coef ′1, . . . , coef ′t) =
ChooseCoeffs(coef = (coef1, . . . , coeft), C∩R,PPRFk′(c

∗
1)⊕r′) to do this. Chal

modifies the program to compute coefficients as coefj = PPRFkj ,r∗,coef′j (r).

Algorithm 3 ChooseCoeffs(coef = (coef1, . . . , coeft), x = (x1, . . . , xt), ∆m)

Informally, compute yj =
∑
j∈[1,...,t] coefjx

j
j for j ∈ [t], and interpolate

(0,∆m), (x1, y1), . . . , (xt, yt). Return the coefficients of this interpolated polynomial.

This game is indistinguishable from Game 3 by the properties of differing-
inputs obfuscation; the two programs have identical input-output behavior

42 Leonid Reyzin, Adam Smith, Sophia Yakoubov

on all points which the adversary can find. If the adversary finds an input
on which the two programs differ, then we can use that adversary to break
either the public key encryption scheme, the accumulator scheme, or the
signature scheme. The reasoning is as follows: if the adversary can find such
an input, then it is for i 6∈ C∩R or for a different pair (a, c, r) tuple. Consider
the following cases, which cover all possibilities:
– If a in the adversarial input is equal to the one in the challenge cipher-

text and i 6∈ R, then the adversary can break the accumulator security,
because the accumulator was built for R.

– If a in the adversarial input is equal to the one in the challenge ciphertext,
i 6∈ C but i ∈ R, then the adversary can break the one-wayness of key
generation for the public-key encryption scheme, because the adversary
has to find a secret key that matches an honest recipient’s public key.

– If a, c or r in the adversarial input is not equal to the one in the challenge
ciphertext, then the adversary can break the security of the signature
scheme.

Game 5 Now Chal chooses a second random value r′′, and sets c∗2 = r′′. This
game is indistinguishable from Game 1 by the security of puncturable PRFs.
At this point, nothing depends on mR.

The rest of the games are what we did before, but in reverse, with
mL instead of mR.

Of course, the above proof only considered a single message, for simplicity.
Informally, in order to move to multiple rounds of chosen plaintexts (as in the
game in Figure 13), we do a sequence of hybrids, dealing with one message (and
thus one pair of locations (c∗1, r) at which to puncture) at at a time.

F.2 Proof that Obfuscation-Based Homomorphic Ad Hoc Threshold
Encryption Share-and-Encrypt is Super-Partial Decryption
Simulatable

PartDecSim is simply the Shamir secret sharing SimShares algorithm. The proof
is very similar to the proof of super-static semantic security; we do not reproduce
the hybrids here.

G Additively Server-Aided Homomorphic
Obfuscation-Based HATE

In this appendix, we describe the additively server-aided homomorphic obfuscation-
based HATE scheme. The program each sender must obfuscate and include in
their public key is described in Algorithm 4. Notice that this program is now
O(n) instead of O(t) in size. The obfuscation-based HATE is described in Con-
struction 5.

We do not restate the proof of super-static semantic security; we only high-
light the major differences from the proof in Appendix F.

HATE for LOVE MPC 43

Informally, in Game 4, Chal also hard-codes the ciphertexts returned for
honest parties in order to preserve the program’s input-output behavior.

We then add Games 4a, 4b and 4c.
In Game 4a, the PPRF keys k′1, . . . , k

′
n (which provide randomness for the

encryption) are punctured at r. Since the ciphertexts are already hard-coded,
the input-output behavior of the program does not change, and Game 4a is
indistinguishable from Game 4 by the properties of indistinguishable obfuscation.

In Game 4b, Chal uses true randomness to compute the hard-coded cipher-
texts. Game 4b is indistinguishable from Game 4a by the security of PPRF.

In Game 4c, Chal encrypts random messages to get the hard-coded cipher-
texts. Game 4c is indistinguishable from Game 4b by the CPA security of the
encryption scheme.

Game 5 is unchanged, and at this point everything is message-independent;
we can reverse the games as before.

Algorithm 4 f ′k,k′,k′′,SIG.pk(a, c′, r, σ,EG.pk, i, w)

The following values are hardcoded in the program:

– puncturable PPRF keys k = (k1, . . . , kt) {These are for generating polynomial
coefficients.}

– puncturable PPRF key k′ {This is for decrypting the message.}
– puncturable PPRF keys k′′ = (k′′1 , . . . , k

′′
n) {These are for encrypting shares.}

– signature verification key SIG.pk

The following values are expected as input:

– accumulator a
– ciphertext c′ = (c1, c2)
– random value r
– signature σ
– public encryption key EG.pk
– index i
– witness w

if (verify(a,w, (EG.pk, i))) and (SIG.Verify(SIG.pk, (a, c′, r), σ)) then
(c1, c2) = c′

w = PPRFk′(c1)
m = w ⊕ c2
for j ∈ [1, . . . , t] do

coefj = PPRFkj (r)
for i ∈ [1, . . . , n] do
ri = PPRFk′′i (r)

return gEG.Enc(EG.pk,m+
∑

j∈[1,...,t] coefji
j ;ri)

{This returns an encryption of the ith exponential Shamir share of m, [m]i. En-
cryption uses randomness ri. }

44 Leonid Reyzin, Adam Smith, Sophia Yakoubov

Setup(1k): params← EG.Setup(1k)
KeyGen(params, t):

This is exactly as in Construction 2, except that the sender generates n addi-
tional PPRF keys k′′1 , . . . , k

′′
n, and instead of obfuscating f from Algorithm 1

to get ObfFunc, the sender obfuscates f ′ from Algorithm 4.
Enc(params, {EG.pki}i∈R,|R|≥t,m):

This is exactly as in Construction 2.
PartDec(params,ObfFuncSndr, {EG.pkj}j∈R,EG.ski, c):

if the ciphertext c is an output of a homomorphic evaluation then
e = c.

else
Parse (a, c′, r, σ) = c.
Recompute a deterministic accumulator a (e.g. a Merkle hash tree) of
{(PKE.pkj , j)}j∈R (where the indices j are the indices of the public keys
in a lexicographic ordering of all the public keys belonging to recipients
in R). Let w be the witness of (PKE.pki, i) in that accumulator.
e = ObfFuncSndr(a, c

′, r, σ,EG.pki, i, w).
[m]i ← EG.Dec(EG.ski, e)
di = (i, [m]i).
return di.

FinalDec(params, {di}i∈R′⊂R):
Perform exponential Shamir reconstruction EShamir.Reconstruct({di}i∈R′) as
described in Figure 10 to recover m.

Eval(params, {pkSndr}Sndr∈S , {pki}i∈R, [c1, . . . , cl],+):

{Note that this algorithm receives the public keys for all senders Sndr ∈ S
(and thus their obfuscated programs). Without loss of generality, let cq be
from Pq (and therefore requiring the use of ObfFuncq).}
for q ∈ [1, . . . , l] do

Parse (aq, c
′
q, rq, σq) = cq.

for i ∈ R do
Recompute a deterministic accumulator a (e.g. a Merkle hash tree) of
{(PKE.pkj , j)}j∈R (where the indices j are the indices of the public keys
in a lexicographic ordering of all the public keys belonging to recipients
in R). Let wi be the witness of (PKE.pki, i) in that accumulator.
for q ∈ [1, . . . , l] do

if aq 6= a then
Abort.

ci,q ← ObfFuncq(a, c
′
q, rq, σq,EG.pki, i, wi)).

c∗i = EG.Eval(params,EG.pki, [ci,1, . . . , ci,l],+)
return c∗ = {c∗i }i∈R

Construction 5: Obfuscation-Based HATE

	Introduction
	Our Contributions
	Related Work

	Threshold Encryption (TE) Definitions
	Threshold Encryption Algorithms
	Homomorphic Threshold Encryption
	Threshold Encryption Security

	Homomorphic Ad Hoc Threshold Encryption (HATE) Constructions
	HATE from Homomorphic Encryption and Secret Sharing
	HATE from Differing Inputs Obfuscation

	Large-scale One-server Vanishing-participants Efficient MPC (LOVE MPC)
	Lower Bounds
	Definitions
	Three-Message LOVE MPC from HATE
	Three-Message LOVE MPC from Keyed-Sender Server-Aided Homomorphic ATE
	Five-Message LOVE MPC from Homomorphic Threshold Encryption

	Threshold Encryption Scheme: Threshold ElGamal
	Lower Bounds on Ciphertext Size for R-Oblivious Ad Hoc Threshold Encryption Schemes
	Background: Secret Sharing
	Proofs of Properties of the Share-and-Encrypt Ad Hoc Threshold Encryption Construction
	Proof that Share-and-Encrypt is Statically Semantically Secure
	Proof that Share-and-Encrypt is Partial Decryption Simulatable

	Share-and-Encrypt HATE Instantiations
	Shamir-and-ElGamal
	CRT-and-Paillier

	Security of the Obfuscation-Based Ad Hoc Threshold Encryption Construction
	Proof that Obfuscation-Based Homomorphic Ad Hoc Threshold Encryption Share-and-Encrypt is Super-Statically Semantically Secure
	Proof that Obfuscation-Based Homomorphic Ad Hoc Threshold Encryption Share-and-Encrypt is Super-Partial Decryption Simulatable

	Additively Server-Aided Homomorphic Obfuscation-Based HATE

