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Abstract. For years, researchers have been engaged in finding new
cryptography schemes with high security and efficiency that can resist
against the attacking from quantum computers. Lattice-based cryptog-
raphy scheme is believed as a promising candidate. But to achieve both
high efficiency and high security is not easy. Until recently, some Lattice-
based schemes with enough efficiency have been proposed and submitted
to the post-quantum cryptography standardization project that initi-
ated by NIST. Streamlined NTRU Prime is one of them. Basing on a
new“strong” ring and applying the “modern key encapsulation mecha-
nism” approach, Streamlined NTRU Prime aims to provide IND-CCA
security.
However, in this paper, we identify a simple property of the new “strong”
ring. Using this property and also taking advantage of the information
leakage from the decapsulation feedback, we provide an efficient key re-
covery attack on the Streamlined NTRU Prime. Our attack does not
only break most instances of Streamlined NTRU Prime, but also shows
an evidence that modifying a public key encryption scheme into a key
encapsulation mechanism scheme does not naturally provide higher se-
curity.

Keywords: NTRU Prime, key encapsulation mechanism, IND-CCA se-
curity, post-quantum cryptography.

1 Introduction

NIST has kept an eye on Post-Quantum Cryptography (PQC) for many years.
In 2016, the PQC standardization project was launched by NIST. The aim is
to find new cryptography schemes with high security to resist against quantum
computers and high efficiency for implementation in real world. By the end
of 2017, there were 59 Public Key Encryption (PKE) or Key Encapsulation
Mechanism (KEM) were submitted for the initial round submission and by April
2018, 45 schemes of them remained and were presented on the first NIST PQC
standardization conference. Streamlined NTRU Prime scheme is one of them.
Streamlined NTRU Prime – a KEM scheme – was firstly proposed in [1], then
published in [2]. Streamlined NTRU Prime scheme has two features: (1) using



a new ring structure; (2) using a modern “KEM+DEM” approach. The original
NTRU [3] is based on the ring (Z/q)[x]/(xp − 1), where p is a prime and q is a
power of 2. Some recently proposed Ring-LWE-based scheme such as [4] is based
on the ring (Z/q)[x]/(xp+1), where p is a power of 2 and q ∈ 2pZ+1 is a prime.
As pointed in [2], these rings have small Galois group, and potentially suffer
from attacks such as in[5] and [6]. Although these attacks may not straightly
work on these special ring structure, using a stronger ring structure to remove
the potential weakness is not a bad thing. The new ring used by Streamlined
NTRU Prime is (Z/q)[x]/(xp − x − 1), where p, q (q > p) are two primes. This
ring is of prime-degree, large-Galois-group and inert modulus, and is believed as
a building block for designing efficient-implementation and high-security ideal-
lattice-based cryptography.

It should be noted that Streamlined NTRU Prime is designed to achieve
IND-CCA security [7]. However, known as a standard security notion for PKE,
IND-CCA security is not easy to achieve efficiently. A general roadmap is to
firstly design a PKE scheme, which is relatively weaker in security but high
in efficiency, and then use a generic method to turn the weakly secure scheme
into one with higher security, say IND-CCA security. Several methods have been
proposed to turn a PKE scheme with weaker security into one with IND-CCA
security. Fujisaki and Okamoto [8, 9] proposed a generic transformation – FO
transformation – combining a One-Way secure asymmetric encryption scheme
with a one-time secure symmetric encryption scheme into a hybrid encryption
scheme which is proved with IND-CCA security under the random oracle model.
However, FO transformation has been pointed out not tight in the security re-
duction, and consequently is believed that cannot provide an efficient and secure
PKE scheme in practice. The KEM is another approach that may achieve IND-
CCA security. It was firstly introduced by Shoup [10], and was originally used for
padding RSA. Being generalized by Dent [11], KEM approach is generally regard
as a “ more modern” and “much nicer” approach to turn a weakly secure PKE
scheme into an IND-CPA secure one. Due to the using of cryptographic hash
function in KEM, any modification of the ciphertext will be caught by challenger
via verifying the hash value on the corresponding plaintext. So if an adversary
attempts to modify the ciphertext and query for its decryption, the challenger
will find its attempt and return “False”. Thus people believed that by modify-
ing a PKE scheme into KEM scheme and combining with a secure symmetric
encryption, an IND-CCA secure PKE could be achieved. It has also been proved
in [11] that any genetic-hash chosen-ciphertext attack on the modified KEM
scheme is as difficult as inverting the original encryption function. Streamlined
NTRU Prime scheme follows the genetic KEM construction introduced by Dent
[11], and attempt to achieve IND-CCA security.

Although Streamlined NTRU Prime is designed with these two features, and
its security receives evidences from both mathematical and cryptographic theory,
we still found an efficient key recovery attack on it. Our attack exactly takes
advantage of the two features of Streamlined NTRU Prime. Briefly, we use a
simple property associated to the new ring adopted by Streamlined NTRU Prime
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to construct the querying ciphertexts, then by analysis the information leakage
from the feedback of “False”, we recover the private key of Streamlined NTRU
Prime. Our attack is not like the attacks proposed in[5] and [6], because indeed
we haven’t found any special structure in the new ring that can be used to reduce
the dimension of the corresponding lattice attack. Our attack is more similar to
the attacks [12, 13] in principle, it exploits the dependence between the private
key and the failure in decryption.

The rest of this paper is organized as follows. In Section 2, we give the
notations used in this paper and a brief review of Streamlined NTRU Prime,
we also introduce some tools used in our attack and describe the outline of our
attack. In Section 3, we use two algorithms to describe our attack, and use two
theorems to show its correctness, we also discuss the parameter setting and the
future work about our attack. In Section 4, we make a conclusion.

2 Notations, Brief Review and Preliminaries

2.1 Notations:

Let Z[x] be the polynomial ring over the integers ring Z. Let p, q be two primes,
we use R,R/3,R/q to respectively denote the ring Z[x]/(xp−x−1),Z[x]/(xp−
x−1, 3),Z[x]/(xp−x−1, q). We use lowercase letter, e.g. g, to denote a polynomial
in R (R/3,R/q). We use lowercase letter with an overline, e.g. g to denote string
of the corresponding polynomial e.g. g, which is used as the input of a hash
function. Given two polynomial f, g ∈ R, we use fg and f + g to respectively
denote the multiplication and addition in R, and we use fg mod q and f +
g mod q to denote the corresponding operations in R/q. We use lowercase letter
with a subscript i, e.g. gi, to denote the coefficient of the i-degree term of g,
i.e., g = g0 + g1x+ · · ·+ gp−1x

p−1. For the product and sum of two polynomial,
say f and g, we also use (fg)i and (f + g)i to denote the coefficient of the
i-degree term of fg and f + g. Given an integer a and a prime q, a mod q is
defined as the unique integer a′ ∈ [− q−12 , q−12 ], such that q|a − a′. Therefore,

the coefficients of a polynomial in R/q (R/3) are in {− q−12 , · · · , 0, · · · , q−12 }
{−1, 0, 1}). A polynomial g ∈ R is called small, if ∀ i ∈ {0, 1, · · · , p − 1}, gi ∈
{−1, 0, 1}. Given an integer t > 0, g is called t-small, if: (1) g is small; (2)∑p−1
i=0 |gi| = 2t, i.e., there are exactly 2t non-zero coefficients. We use φ to denote

the standard isomorphism from R to Zp, i.e., φ(g) = (g0, g1, · · · , gp−1), then we
refer to the norm of g as the norm of φ(g). We use notation ‖g‖l∞ to represent
the l∞-norm of the polynomial g.

2.2 Brief review of Streamlined NTRU Prime

As a KEM scheme Streamlined NTRU Prime includes three algorithms: key
generation, encapsulation, and decapsulation.
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Key Generation The receiver generates the public key and private key in the
following steps:

1) Choose uniformly at random a small polynomial g ∈ R with g being invertible
in R3.

2) Choose uniformly at random a t-small polynomial f ∈ R, such that t ≥ 1,
and f is invertible in Rq.

3) Compute h = g/(3f) mod q.

4) The public key is h. The private key is f in R and 1/g in R3.

Encapsulation The sender generates a ciphertext as follows:

1) Choose uniformly at random a t-small polynomial r ∈ R.

2) Compute v = hr mod q.

3) Round each coefficient of v to the nearest multiple of 3 to product c ∈ R.
This can be viewed as choosing the small polynomial m, such that c = v+m
and 3|c.

4) Compute Hash(r), obtaining a left half C (key confirmation) and a right half
K (session key). Where Hash(·) denote a cryptographic hash function.

5) Output the concatenation C||c, keep the session key K.

Decapsulation The receiver decapsulates a ciphertext C||c as follows:

1) Compute w = 3fc mod q.

2) Compute e = w mod 3.

3) Compute r′ = e(1/g) mod 3.

4) Compute Hash(r′), obtaining a left half C ′ and a right half K ′. In case of r′

is t-small and C ′ = C, output K ′. Otherwise output “False”.

The encapsulation can be viewed as two steps. The first step is encryption.
It chooses uniformly at random a t-small polynomial r as plaintext, and encrypts
it to obtain the ciphertext c = hr+m mod q. The second step is hashing. It takes
as input the string of randomly chosen plaintext r, and generates the session
key and key confirmation, which are respectively the right half and left half of
Hash(r). Finally, it outputs the ciphertext with the key confirmation, and keeps
the session key.

Correspondingly, the decapsultion can also be viewed as two steps. The first
step is decryption. It decrypts the received ciphertext c to recover a plaintext
r′. The second step is hashing and checking. It computes Hash(r′) to obtain the
right half K ′ and left half C ′, and verifies the legality of the session key K ′ by
checking whether C ′ = C.
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2.3 Computations in R

We use φ to denote the standard isomorphism from R to Zp, i.e., φ(g) =
(g0, g1, · · · , gp−1). Given a polynomial g, there is a corresponding matrix

G =


g0 g1 g2 · · · gp−2 gp−1
gp−1 gp−1 + g0 g1 · · · fp−3 gp−2
gp−2 gp−2 + gp−1 gp−1 + g0 · · · gp−3 gp−2
...

...
... · · ·

...
...

g1 g1 + g2 g2 + g3 · · · gp−2 + gp−1 gp−1 + g0


such that the i-th (i from 0 to p− 1) row is exactly φ(gxi). Then we have

φ(gr) = φ(r) ·G

We consider the relation between g and gx. We have (gx)j = g(j−1 mod p) for
j = 0, 2, · · · , p− 1, and (gx)1 = g0 + gp−1. Suppose g is small, it is obvious that
|(gx)j | ≤ 1 for j = 0, 2, · · · , p−1, and |(gx)1| ≤ 2. The following property is also
easy to obtain.

Property 1. Let g ∈ R be a small polynomial, suppose L is the smallest integer
such that ‖gxL‖l∞ ≥ 2, then let u = gxL, it must hold ‖gxL‖l∞ = 2 and{

|u1| = 2,

|ui| ≤ 1, for i = 0, 2, · · · , p− 1.
(1)

2.4 Hoeffding’s inequality

Lemma 1 (Hoeffding’s inequality[14]). Let x1, x2, · · · , xn be n independent
variables, satisfying Pr[xi ∈ [αi, βi]] = 1, for 1 ≤ i ≤ n. Let X = x1+x2+· · ·+xn
and E(X) be the expected value of X. Then for any λ > 0, we have

Pr[X − E(X) ≥ λ] ≤ e
− 2λ2∑n

i=1
(βi−αi)2

and

Pr[X − E(X) ≤ −λ] ≤ e
− 2λ2∑n

i=1
(βi−αi)2

and therefore

Pr[|X − E(X)| < λ] > 1− 2e
− 2λ2∑n

i=1
(βi−αi)2

Given a small polynomial g ∈ R and a t-small polynomial r ∈ R. As we
shown before, each coefficient of gr can be viewed as the sum of at most 4t
variables in [−1, 1], and obviously its expected value is 0. So, by Hoeffiding’s
inequality, we can bound the l∞ norm of gr ∈ R as:

Pr[‖gr‖l∞ < s] > 1− 2e−
s2

8t
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Similarly, given a t-small polynomial f ∈ R an a small polynomial m ∈ R, we
can bound ‖gr + 3fm‖l∞ by:

Pr[‖gr + 3fm‖l∞ < s] > 1− 2e−
s2

80t

2.5 Attack Model, Decapsulation Oracle and Outline

Attack Model Our attack is under the chosen-ciphertext attack model. The
adversary plays the role of a sender and the receiver plays as the challenger. Re-
ceived a cihphertext, the challenger should honestly decapsulate it and feed back
to the adversary. By analyzing the feedback the adversary aims to recover the
challenger’s private key. Notice that Streamlined NTRU Prime scheme is a KEM
scheme and is believed to achieve IND-CCA security. This is because: (1) the
using of hash function remove the malleability of the ciphertext; (2) by checking
the hash value on the corresponding plaintext the challenger could find out any
modification of the queried ciphertext, and will return to the querying nothing
but a “False”. We need to emphasize that even a feedback of “False” will reveal
information which at least shows that the queried ciphertext lead to an illegal
plaintext after decryption. As we will show in this paper, the feedback of False is
equivalent to the “Failure” of decryption on the querying ciphertext. By clev-
erly designing, we embed the relation between the private key and the “Failure”
of decryption into the querying ciphertext. After received enough feedbacks of
“False”, an adversary can learn the private key form these information leakages.

Decapsulation Oracle A basic query-response procedure used in our attack
is described as follows. The adversary chooses a t-small polynomial r ∈ R, and
computes v = hr mod q. Then the adversary chooses the small polynomial m ∈
R, such that c = v+m mod q and 3|c, and chooses another polynomial m′, such
c′ = c+m′ mod q and 3|c′. The adversary computes Hash(r) to obtain the left
half C and the right half K. Finally the adversary sends C||c′ to the challenger
and waits for the feedback. We denote the above procedure as “D(c′)”. This
procedure is almost the same as an ordinary encapsulation. The only difference
is that a true sender will choose m′ = 0, while the adversary chooses m′ more
freely.

To decapsulate C||c′, the challenger needs firstly to decrypt c′. Note that
the first step of decryption on c′ is computing w′ = 3fc′ mod q. If m′ is chosen
such that ‖gr + 3fm + 3fm′‖l∞ ≤

q−1
2 , then w′ = gr + 3fm + 3fm′, and the

decrypted plaintext r′ is equal to r. After computing Hash(r′) to obtain the left
half C ′ and the right half K ′, challenger will find that r′ is t-small, and C ′ = C.
Finally, the session key is accepted by the challenger. We denote this procedure
by D(c′)⇒ “Pass”. If the m′ is chosen such that ‖gr+ 3fm+ 3fm′‖l∞‖ >

q−1
2 ,

the following lemma guarantees that the decrypted plaintext r′ is no long equal
to r.
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Lemma 2. Let gr ∈ R and ‖gr‖l∞ ≤
q−1
4 , let α ∈ R and ‖gr+ 3α‖l∞ ≤ q− 1,

then there does not exist β ∈ R such that ‖gr + 3β‖l∞ < q−1
2 and gr + 3α ≡

gr + 3β mod q.

Proof. Suppose there exists β ∈ R such that gr + 3α ≡ gr + 3β mod q, we have
q|3(α− β). Since gcd(q, 3) = 1, it implies that q|α− β. Note that ‖gr‖l∞ ≤

q−1
4

and ‖gr + 3α‖l∞ < q − 1, we have ‖α‖l∞ ≤
5(q−1)

12 . Suppose it also holds that

‖gr + 3β‖l∞ < q−1
2 , similarly, we have ‖β‖l∞ ≤

3(q−1)
12 . It is easy to check that

‖α − β‖l∞ ≤ 8
12 (q − 1) < (q − 1), then q|(α − β) implies that α = β, which is

contradictory to ‖gr + 3β‖l∞ ≤
q−1
2 . Therefore there does not exist such β. ut

Lemma 3. Let c′ = hr+m+m′ mod q, and ‖gr‖l∞ ≤
q−1
4 , suppose that |(gr+

3fm + 3fm′)j | ≤ q−1
2 for all j = 0, 2, · · · , p − 1, then D(c′) ⇒ “False” if and

only if |(gr + 3fm+ 3fm′)1| > q−1
2 .

Proof. The sufficiency is obvious, since if |(gr + 3fm + 3fm′)1| ≤ q−1
2 , then

‖gr+ 3fm+ 3fm′‖l∞ ≤ q−1
2 . The decryption on c′ will obtain r, which implies

D(c′)⇒ “Pass”.
Suppose for j = 0, 2, · · · , p − 1, |(gr + 3fm + 3fm′)j | ≤ q−1

2 , and |(gr +

3fm+3fm′)1| > q−1
2 , then we have w′ = gr+3fm+3fm′ mod q = gr+3fm+

3fm′+ξ ·qx. By lemma 2, we also have 3 - ξ ·qx. The decryption on c′ will obtain
r′ = w′g−1 mod 3 = r±xg−1. Note that x is invertible in R/3, so xg−1 6= 0 and
r′ 6= r. This implies D(c′)⇒ “False”. ut

In the rest of this paper, every polynomial m′ ∈ R chosen by the adversary to
construct the querying cipheretxt will satisfy the conditions required by lemma 1
and lemma 2. Noted that g is small polynomial and r is t-small polynomial, and
considered that the parameters satisfy q − 1 ≥ 32t, so we have ‖gr‖l∞ ≤

q−1
4 .

Therefore, it holds that D(c′)⇒ “False” if and only if |(gr + 3fm+ 3fm′)1| >
q−1
2 .

Attack Outline The core of our attack is the construction of the querying
ciphertext c′ = hr + m + m′ ∈ R/q. Since there is no much freedom for the
adversary on the choice of basic ciphertext hr +m, so the most important is
the choice ofm′. In our attackm′ consists of two part, saym′(1) andm′(2). We call
m′(1) the impulse ciphertext, and call m′(2) the key sensitive ciphertext.
Based on the constitution of m′, our attack includes three main steps:

i) Find an impulse ciphertext m′(1), such that the value |(gr+3fm+3fm′(1))1|
reaches to a peak, while for the rest position j ∈ {0, 2, · · · , p − 1}, |(gr +
3fm+ 3fm′(1))j | remains low and keeps a big enough gap to |(gr+ 3fm+
3fm′(1))1|.

ii) Design a key sensitive ciphertext, such that the value |(3fm′(2))1| determines
a linear relation about the private key, and when |(3fm′(2))k| takes different
value, it satisfies that either |(gr + 3fm + 3fm′(1) + 3fm′(2))1| ≤ q−1

2 or

|(gr + 3fm+ 3fm′(1) + 3fm′(2))1| > q−1
2 .
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iii) Query the challenger with C||c′ and receive the feedback. The feedback
D(c′) determines the value of |(3fm′(2))1|, and consequently determines a
linear relation about the private key. With enough such linear relations, the
adversary will finally recover the private key.

Fig. 1. Basic, impulse and key sensitive plaintexts

More specifically, the impulse ciphertext is of the form θ(1) · xL, where θ(1) is
an integer, L is the smallest integer such that ‖fxL‖l∞ = 2. According to the
decryption step in decapsulation, |(gr + 3fm+ 3fm′(1))1| = |(gr + 3fm+ θ(1) ·
fxL)1|. By property 1, we know that |(fxL)1| = 2 and for j = 0, 2, · · · , p − 1,
|(fxL)j | ≤ 1. Thus, as shown in Fig. 1, by properly selecting θ(1), |(gr + 3fm+
3fm′(1))1| will reaches to a peak, and keeps a big gap to |(gr+3fm+3fm′(1))j |,
for j = 0, 2, · · · , p− 1.

The key sensitive ciphertext is of the form θ(2) ·xL+i, where θ(2) is an integer,
i ∈ {0, 1, · · · , p − 1}. Noted that x is invertible in R, so if we get fxL, we can
obtain f by multiplying x−L to fxL. Let u = fxL ∈ R, it is easy to check that for
i = 1, · · · , p − 1, (fxL+i)1 = up−i + up−i+1 (define up = u0), and (fxL)1 = u1.
As shown in Fig.1, when (fxL+i)1 takes some specific value, it will result in
|(gr + 3fm+ 3fm′(1) + 3fm′(2))1| > q−1

2 , and therefore D(c′)⇒ “False”.

3 Attack on Streamlined NTRU Prime

3.1 Attack

Our attack includes two algorithms. The first one is to determine the smallest
integer L such that ‖fxL‖l∞ = 2, the second one is to query to the challenger
with the elaborately fabricated ciphertexts, and to obtain the linear equations
about the coefficients of fxL. Theorem 1 and theorem 2 respectively show that
the algorithm 1 and algorithm 2 will correctly output what we need with a proper
probability. The details are as follows.
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Algorithm 1:

Input: An intance of the Streamlined NTRU Prime with paramerter
(p, q, t), and a parameter s such that s ≤ q−1

6 − 4.
Output: (L, r,m).

1 Choose an integer γ ∈ [ q−112 + s
6 + 1, q−16 −

s
3 − 2];

2 Choose uniformly at random a t-small polynomial r ∈ R. Compute
v = hr mod q. Choose a small polynomial m ∈ R, such that
c = v +m ∈ R/q and 3|c.

3 Loop (1): for (i = 1; i+ +) do
4 Compute c(i) = c+ ρ(i) · xi + γ · xi mod q, where ρ(i) ∈ {−1, 0, 1} such

that 3|c(i);
5 if D(c(i)) returns “False” then
6 L← i, break Loop (1);

7 return (L, r,m);

Theorem 1. Let (L, r,m) be the output of algorithm 1, let u = fxL ∈ R, then,

(I) Pr[‖gr + 3fm‖l∞ < s] > 1− 2e−
s2

80t ;

(II) when Pr[‖gr+3fm‖l∞ < s], L is the smallest integer such that ‖u‖l∞ = 2.

Proof. Pr[‖gr + 3fm‖l∞ < s] > 1 − 2e−
s2

80t follows directly by Hoeffding’s in-
equality.

Note ρ(i) ∈ {−1, 0, 1}, ‖3ρ(i) · fxi‖l∞ ≤ 6. Let m(i) = c+ ρ(i) · xi, by triangle
inequality, we have

‖gr + 3fm(i)‖l∞ ≤ ‖gr + 3fm‖l∞ + ‖3ρ(i) · fxi‖l∞ < s+ 6.

Let w′(i) = gr + 3fm(i), and w(i) = w′(i) + 3γ · fxi. Consider the l∞ norm,
we have

−‖w′(i)‖l∞ + 3γ‖fxi‖l∞ ≤ ‖w(i)‖l∞ ≤ +‖w′(i)‖l∞ + 3γ‖fxi‖l∞

Since ‖w′(i)‖l∞ < s+ 6 holds for any i = 1, 2, · · · , L, so we have

−s− 6 + 3γ‖fxi‖l∞ < ‖w(i)‖l∞ < s+ 6 + 3γ‖fxi‖l∞ .

Let u = fxL, then w(L) = w′(L) + 3γ · u. Since D(c(L)) returns “False”, it
must hold that ‖u‖l∞ ≥ 2. Otherwise, suppose ‖u‖l∞ ≤ 1, it implies

‖w(L)‖l∞ < s+ 6 + 3(
q − 1

6
− s

3
− 2) =

q − 1

2

which is contradictory to D(c(L)) returns “False”.
It also needs to show that when ‖u‖l∞ = 2, it must hold D(c(L)) returns

“False”. Given ‖u‖l∞ = 2,

‖w(L)‖l∞ > −s− 6 + 6(
q − 1

12
+
s

6
+ 1) =

q − 1

2
.
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Suppose there exists L′ < L such that L′ is the smallest integer that satisfies
‖fxL′‖l∞ = 2. By property 1, let u′ = fxL

′
, we have{

|u′1| = 2,

|u′k| ≤ 1, for k = 0, 2, · · · , p− 1.

Therefore

|(w(L′))1| > −s− 6 + 6( q−112 + s
6 + 1) = q−1

2 ,

|(w(L′))j | < s+ 6 + 3( q−16 −
s
3 − 2) = q−1

2 , for i = 0, 2, · · · , p− 1.

By lemma 3, it follows that D(c(L
′)) ⇒ “False”, which is contradictory to

L′ < L. Therefore, L is the smallest integer such that ‖u‖l∞ = 2. ut
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Algorithm 2:

Input: An intance of Streamlined NTRU Prime with paramerter (p, q, t).
Output: {(σ1, · · · , σp−1), s}.

1 Choose a parameter δ, such that δ = b q−127 e. Let s = 3δ
2 − 21;

2 {L, r,m} ← algorithm 1(p, q, t, s);
3 Compute v = hr mod q, c = v +m mod q (note that 3|c);
4 Loop (1): for i = 1; i ≤ p− 2 do
5 Initiate σi = 0;
6 Loop (2): for j = 1,−1, 2,−2 (by order) do
7 case j = 1 do

8 Choose η(i,j) = b q−1−9δ12 e, Set

c(i,j) = c+ρ(i,j,1) ·xL+ρ(i,j,2) ·xL+i+η(i,j) ·xL+δ ·xL+i mod q,
where ρ(i,j,1), ρ(i,j,2) ∈ {−1, 0, 1} such that 3|c(i,j);

9 case j = −1 do

10 Choose η(i,j) = b q−1−9δ12 e, Set

c(i,j) = c+ρ(i,j,1) ·xL+ρ(i,j,2) ·xL+i+η(i,j) ·xL−δ ·xL+i mod q,
where ρ(i,j,1), ρ(i,j,2) ∈ {−1, 0, 1} such that 3|c(i,j);

11 case j = 2 do

12 Choose η(i,j) = b q−1−3δ12 e, Set

c(i,j) = c+ρ(i,j,1) ·xL+ρ(i,j,2) ·xL+i+η(i,j) ·xL+δ ·xL+i mod q,
where ρ(i,j,1), ρ(i,j,2) ∈ {−1, 0, 1} such that 3|c(i,j);

13 case j = −2 do

14 Choose η(i,j) = b q−1−3δ12 e, Set

c(i,j) = c+ρ(i,j,1) ·xL+ρ(i,j,2) ·xL+i+η(i,j) ·xL−δ ·xL+i mod q,
where ρ(i,j,1), ρ(i,j,2) ∈ {−1, 0, 1} such that 3|c(i,j);

15 if D(c(i,j)) returns “False” then
16 σi ← 2

j , break Loop (2);

17 for i = p− 1 do
18 Initiate σi = 0;
19 Loop (3): for j = 1, 2 (by order) do
20 case j = 1 do

21 Choose η(i,j) = b q−1−15δ12 e, Set

c(i,j) = c+ρ(i,j,1) ·xL+ρ(i,j,2) ·xL+i+η(i,j) ·xL+δ ·xL+i mod q,
where ρ(i,j,1), ρ(i,j,2) ∈ {−1, 0, 1} such that 3|c(i,j);

22 case j = 2 do

23 Choose η(i,j) = b q−1−9δ12 e, Set

c(i,j) = c+ρ(i,j,1) ·xL+ρ(i,j,2) ·xL+i+η(i,j) ·xL+δ ·xL+i mod q,
where ρ(i,j,1), ρ(i,j,2) ∈ {−1, 0, 1} such that 3|c(i,j);

24 if D(c(i,j)) returns “False” then
25 σi ← b 3j e, break Loop (3);

26 return {(σ1, · · · , σp−1), s};
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Theorem 2. Let {(σ1, · · · , σp−1), s} be the output of algorithm 2,
let u′0, u

′
1, · · · , u′p−1 be the unique solution of the equations

u′p−i + u′p−i+1 = σi ( i = 1, · · · , p− 1.)
u′1 = 2
u′0 = u′p

(2)

over Z/3. Let u′ = φ−1(u′0, u
′
1, · · · , u′p−1) ∈ R and f ′ = u′x−L ∈ R (x is

invertible in R), then

(I) Pr[‖gr + 3fm‖l∞ < s] > 1− 2e−
s2

80t ;

(II) when ‖gr + 3fm‖l∞ < s, we have either f = g′ or f = −f ′, where f is
the corresponding private of the Streamlined NTRU Prime instance input
to algorithm 2.

Proof. Pr[‖gr + 3fm‖l∞ < s] > 1 − 2e−
s2

80t follows directly by Hoeffding’s in-
equality.

For any i ∈ {1, · · · , p−1} and j ∈ {1,−1, 2,−2} (when i 6= q−1) or j ∈ {1, 2}
(when i = q − 1), let

w′(i,j) = gr + 3f(m+ ρ(i,j,1) · xL + ρ(i,j,2) · xL+i).

It is easy to check that ‖ρ(i,j,1) · xL + ρ(i,j,2) · xL+i‖l∞ ≤ 3. So ‖f(ρ(i,j,1) · xL +
ρ(i,j,2) · xL+i)‖l∞ ≤ 6, and ‖w′(i,j)‖l∞ ≤ ‖gr + 3fm‖l∞ + 18.

Let
w(i,j) = w′(i,j) + 3η(i,j) · fxL + 3δ · fxL+i

we have w(i,j) ≡ 3fc(i,j) mod q. Let u = fxL, by theorem 1 and property 1, we
have ‖u‖l∞ = 2 and {

|u1| = 2,

|uk| ≤ 1, for k = 0, 2, · · · , p− 1.

Suppose ‖w′(i,j)‖l∞ = s′, then for k = 0, 2, · · · , p− 1, we have

|w(i,j)
k | ≤ s′ + 3η(i,j) + 6δ.

Note s′ ≤ s+ 18 < 3δ
2 − 3, and for any choice of η(i,j), it is easy to check that

|w(i,j)
k | ≤ q − 1

2
for k = 0, 2, · · · , p− 1.

According to lemma 3, D(c′(i,j))→ “False” if and only if

|w(i,j)
1 | > q − 1

2
.

Suppose u1 = 2, it is easy to check that w
(i,j)
1 −w′(i,j)1 > 0. Then we discuss

as follows;
For each i ∈ {1, · · · , p− 2}, noted (uxi)1 = up−i + up−i+1 ∈ {−2,−1, 0, 1, 2}

(here up = u0), we discuss in the following cases:

12



(i). Assume that loop (2) ends when j = 1, then

w(i,j) = w′(i,j) + 3η(i,j) · u+ 3δ · uxi,

where u = fxL. Note u1 = 2, we have w
(i,j)
1 = w

′(i,j)
1 + 6η(i,j) + 3δ(uxi)1.

According to lemma 3, D(c(i,j)) → “False” if an only if w
(i,j)
1 > q−1

2 . If
(uxi)1 ≤ 1, it implies that

w
(i,j)
1 ≤ |w′(i,j)1 |+ 6( 1

2 + q−1−9δ
12 ) + 3δ

< 3δ
2 − 3 + 3 + q−1

2 −
9δ
2 + 3δ

= q−1
2

This is contradictory to the assumption, so (uxi)1 ≥ 2. Since ‖uxi‖l∞ ≤ 2
for i = 1, · · · , p− 2, so (uxi)1 = 2.
It also needs to show that when (uxi)1 = 2, it must hold that D(c(i,j))→
“False”. Given (uxi)1 = 2, then

w
(i,j)
1 ≥ −|w′(i,j)1 |+ 6(− 1

2 + q−1−9δ
12 ) + 6δ

> − 3δ
2 + 3− 3 + q−1

2 −
9δ
2 + 6δ

= q−1
2

Note that in this case we set σi = 2/j = 2, it follows that

up−i + up−i+1 = σi.

(ii). Assume that loop (2) ends when j = −1, then

w(i,j) = w′(i,j) + 3η(i,j) · fxL − 3δ · fxL+i,

where u = fxL. Note u1 = 2, we have w
(i,j)
1 = w

′(i,j)
1 + 6η(i,j)− 3δ(uxi)1.

According to lemma 3, D(c(i,j)) → “False” if an only if w
(i,j)
1 > q−1

2 . If
(uxi)1 ≥ −1, it implies that

w
(i,j)
1 ≤ |w′(i,j)1 |+ 6( 1

2 + q−1−9δ
12 ) + 3δ

< 3δ
2 − 3 + 3 + q−1

2 −
9δ
2 + 3δ

= q−1
2

This is contradictory to the assumption, so (uxi)1 ≤ −2. Since ‖uxi‖l∞ ≥
−2 for i = 1, · · · , p− 2, so (uxi)1 = −2.
It also needs to show that when (uxi)1 = −2, it must hold that D(c(i,j))→
“False”. Given (uxi)1 = −2, then

w
(i,j)
1 ≥ −|w′(i,j)1 |+ 6(− 1

2 + q−1−9δ
12 ) + 6δ

> − 3δ
2 + 3− 3 + q−1

2 −
9δ
2 + 6δ

= q−1
2

13



Note that in this case we set σi = 2/j = −2, it follows that

up−i + up−i+1 = σi.

(iii). Assume that loop (2) ends when j = 2, then

w(i,j) = w′(i,j) + 3η(i,j) · u+ 3δ · uxi,

where u = fxL. Note u1 = 2, we have w
(i,j)
1 = w

′(i,j)
1 + 6η(i,j) + 3δ(uxi)1.

According to lemma 3, D(c(i,j)) → “False” if an only if w
(i,j)
1 > q−1

2 . If
(uxi)1 < 1, it implies that

w
(i,j)
1 ≤ |w′(i,j)1 |+ 6( 1

2 + q−1−3δ
12 )

< 3δ
2 − 3 + 3 + q−1

2 −
3δ
2

= q−1
2

This is contradictory to the assumption, so (uxi)1 ≥ 1. Since (uxi)1 < 2,
otherwise loop (2) end when j = 1, so we have (uxi)1 = 1.

It also needs to show that when (uxi)1 = 1, it must hold that D(c(i,j))→
“False”. Given (uxi)1 = −2, then

w
(i,j)
1 ≥ −|w′(i,j)1 |+ 6(− 1

2 + q−1−3δ
12 ) + 3δ

> − 3δ
2 + 3− 3 + q−1

2 −
3δ
2 + 3δ

= q−1
2

Note that in this case we set σi = 2/j = 1, it follows that

up−i + up−i+1 = σi.

(iv). Assume that loop (2) ends when j = −2, then

w(i,j) = w′(i,j) + 3η(i,j) · u− 3δ · uxi,

where u = fxL. Note u1 = 2, we have w
(i,j)
1 = w

′(i,j)
1 + 6η(i,j)− 3δ(uxi)1.

According to lemma 3, D(c(i,j)) → “False” if an only if w
(i,j)
1 > q−1

2 . If
(uxi)1 > −1, it implies that

w
(i,j)
1 ≤ |w′(i,j)1 |+ 6( 1

2 + q−1−3δ
12 )

< 3δ
2 − 3 + 3 + q−1

2 −
3δ
2

= q−1
2

This contradicts to the assumption, so (uxi)1 ≤ −1. Since (uxi)1 > −2,
otherwise loop (2) end when j = −1, so we have (uxi)1 = −1.
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It also needs to show that when (uxi)1 = −1, it must hold that D(c(i,j))→
“False”. Given (uxi)1 = −1, then

w
(i,j)
1 ≥ −|w′(i,j)1 |+ 6(− 1

2 + q−1−3δ
12 ) + 3δ

> − 3δ
2 + 3− 3 + q−1

2 −
3δ
2 + 3δ

= q−1
2

Note that in this case we set σi = 2/j = −1, it follows that

up−i + up−i+1 = σi.

(v). Else if loop (2) ends but no D(c′(i,j)) returns “False”, then (uxi)1 /∈
{−2,−1, 1,−2}. However (uxi)1 ∈ {−2,−1, 0, 1,−2}, so it must be (uxi)1 =
0. Noted it initiates σi = 0, it follows that

up−i + up−i+1 = σi.

For i = p− 1, noted that (uxi)1 = (uxp−1)1 = u1 + u2 ∈ {1, 2, 3}, we discuss
in the following cases:

(vi). Assume that loop (3) ends when j = 1, then

w(i,j) = w′(i,j) + 3η(i,j) · u+ 3δ · uxui,

where u = fxL. Noted u1 = 2, we have w
(i,j)
1 = w

′(i,j)
1 +6η(i,j)+3δ(uxi)1.

According to lemma 3, D(c(i,j))→ “False” if an only if w
(i,j)
1 > q−1

2 . If
(uxi)1 ≤ 2, it implies that

w
(i,j)
1 ≤ |w′(i,j)1 |+ 6( 1

2 + q−1−15δ
12 ) + 6δ

< 3δ
2 − 3 + 3 + q−1

2 −
15δ
2 + 66δ

= q−1
2

This is contradictory to the assumption, so (uxi)1 = 3.
It also needs to show that when (uxi)1 = 3, it must hold that D(c(i,j))→
“False”. Given (uxi)1 = 3, then

w
(i,j)
1 ≥ −|w′(i,j)1 |+ 6(− 1

2 + q−1−3δ
12 ) + 9δ

> − 3δ
2 + 3− 3 + q−1

2 −
15δ
2 + 9δ

= q−1
2

Note that in this case we set σi = d3/je = 3, it follows that

up−i + up−i+1 = σi.
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(vii). Assume that loop (3) ends when j = 2, then

w(i,j) = w′(i,j) + 3η(i,j) · u+ 3δ · uxi,

where u = fxL. Note that u1 = 2, we have w
(i,j)
1 = w

′(i,j)
1 + 6η(i,j) +

3δ(uxi)1.

According to lemma 3, D(c(i,j))→ “False” if an only if w
(i,j)
1 > q−1

2 . If
(uxi)1 ≤ 1, it implies that

w
(i,j)
1 ≤ |w′(i,j)1 |+ 6( 1

2 + q−1−9δ
12 ) + 3δ

< 3δ
2 − 3 + 3 + q−1

2 −
9δ
2 3δ

= q−1
2

This is contradictory to the assumption, so (uxi)1 = 2.
It also needs to show that when (uxi)1 = 2, it must hold that D(c(i,j))→
“False”. Given (uxi)1 = 2, then

w
(i,j)
1 ≥ −|w′(i,j)1 |+ 6(− 1

2 + q−1−3δ
12 ) + 6δ

> − 3δ
2 + 3− 3 + q−1

2 −
9δ
2 + 6δ

= q−1
2

Note that in this case we set σi = d3/je = 3, it follows that

up−i + up−i+1 = σi.

(viii). Else if loop (3) ends but no D(c′(i,j)) returns “False”, then (uxi)1 /∈
{2, 3}. However (uxi)1 ∈ {1, 2, 3}, so it must be (uxi)1 = 1. Noted that
it initiates σi = 1, it follows that

up−i + up−i+1 = σi.

Suppose u1 = −2, it is easy to check that the coefficients of −fxL satisfy the
equations 2.

Let u′ = φ−1(u′0, u
′
1, · · · , u′p−1), we have either u′ = fxL or u′ = −fxL. Since

x is invertible in R, we have either f = u′x−L or f = −u′x−L.
ut

It remains to show that there exists available integers δ, s, such that the prob-

ability (1− 2e−
s2

80t ) is big enough. First, we consider an instance – Streamlined
NTRU Prime 4591761, which appears in [2] as an example. Its parameter setting
is (p, q, t) = (761, 4591, 143). We choose (δ, s) = (170, 234), then the probability

is about (1 − 2e−
2342

80·143 ) ≈ 0.9833. In general, the parameter (p, q, t) of an in-
stance of Streamlined NTRU Prime should follows the restriction: t ≥ 1; p ≥ 3t;
q ≥ 32t+1, and p, q are two primes. If we take q = 32t, δ ≈ 32t

27 and s ≈ 32t
18 −21,
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then (1 − 2e−
s2

80t ) ≈ (1 − 2e−
16(t−12)2

405t ). It is easy to check that this probability
increase with increasing of t. In all the suggested parameter sets listed in [2],
the smallest three values for the t are 27, 39, 44. By simple calculation, we have

(1− 2e−
16(44−12)2

405·44 ) ≈ 0.2024.
In Algorithm 2, to guarantee each querying ciphertext c(i,j) satisfying 3|c(i,j),

we introduce ρ(i,j,1) ·xL and ρ(i,j,2) ·xL+i. In order to bound ‖w′(i,j)‖l∞ < 3δ
2 −3,

the parameter s must satisfy s < 3δ
2 − 21. This reduces the advantage of our

attack. Another impact to the advantage of our attack is the parameter δ. In

order to bound |w(i,j)
k | < q−1

2 , for k = 0, 2, · · · , p − 1, the parameter δ must

satisfy δ ≤ q−1
27 + 2. If the parameters can be improved, our attack will gain

more advantages. The following methods can be taken into consideration to
improve the attack:

1). Reduce the upper bound of ‖gr + 3fm‖l∞ . For example, use some lattice-
based or code-based algorithm to find some r such that the corresponding
m has small l1 norm.

2). Adaptively collect the equations. For example, only collect the equations
with the right side σi ≤ 2, this will allow a bigger δ.

4 Conclusion

In this paper, we proposed an attack on Streamlined NTRU Prime. This attack
is under the chosen-ciphertext attack model, and aims to recover the private key.
Our attack has the following meanings:

1). It recovers the private key for most parameter setting of Streamlined NTRU
Prime.

2). It discloses an interesting fact that the security of Streamlined NTRU Prime
decreases with the increasing of the parameter t.

3). It shows an evidence that the “KEM” approach does not always transform
a weakly secure PKE to an IND-CPA one.
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