
On the Bright Side of Darkness:
Side-Channel Based Authentication Protocol

Against Relay Attacks

Guillaume Dabosville1, Houssem Maghrebi2, Alexis Lhuillery3, Julien Bringer4,
and Thanh-Ha Le5

1 Groupement des Cartes Bancaires (GIE CB)
guillaume.dabosville@gmail.com
2 Underwriters Laboratories (UL)

houssem.mag@gmail.com
3 Sorbonne Université

alexis.lhuillery@orange.fr
4 Smart Valor

julien.bringer@gmail.com
5 Trusted Labs

lethanhha.work@gmail.com

Abstract. Relay attacks are nowadays well known and most designers
of secure authentication protocols are aware of them. At present, the
main methods to prevent these attacks are based on the so-called dis-
tance bounding technique which consists in measuring the round-trip
time of the exchanged authentication messages between the prover and
the verifier to estimate an upper bound on the distance between these
entities. Based on this bound, the verifier checks if the prover is suffi-
ciently close by to rule out an unauthorized entity. Recently, a new work
has proposed an authentication protocol that surprisingly uses the side-
channel leakage to prevent relay attacks. In this paper, we exhibit some
practical and security issues of this protocol and provide a new one that
fixes all of them. Then, we argue the resistance of our proposal against
both side-channel and relay attacks under some realistic assumptions.
Our experimental results show the efficiency of our protocol in terms of
false acceptance and false rejection rates.

Keywords: authentication protocol, relay attacks, side-channel attacks, physi-
cal leakage.

1 Introduction

Relay Attacks VS Authentication Protocols. A relay attack is a form of
man-in-the-middle attack where the attacker merely relays the verbatim mes-
sages between a verifier and a prover, to authenticate to the verifier as a legiti-
mate prover. In such a context, the attacker is usually close to the verifier and



claims being the legitimate prover while the latter is not in the neighborhood.
Such an attack is particularly well-suited to get around access controls, e.g. to
get inside a secure location or to unlock the doors of a vehicle. Without loss of
generality, we shall consider in the sequel that the prover is a contactless Secure
Element (SE) and the verifier is a contactless reader.

The current trend to include Near Field Communication (NFC) (ISO/IEC
14443) technology into mobile phones significantly simplifies skimming and relay
attacks. Although the NFC protocol requires that the prover and the verifier are
in close proximity, this constraint does not help to counteract relay attacks.
Indeed, in [?] it is shown how to set up a relay attack by placing a proxy-token
in the range of a contactless reader to relay queries from the verifier to a mole
which forwards to the genuine prover the requests from the genuine verifier.
The mole also sends back the responses from the genuine prover to the proxy-
token which delivers them to the genuine verifier. Most recently the authors in
[?,?] have shown how smartphones equipped with an NFC antenna can be used
efficiently as a generic relay attack platform.

To thwart relay attacks, Brands and Chaum introduced in 1993 the so-called
distance bounding protocols [?].

The core idea of these protocols is to measure the round-trip time of the
authentication messages exchanged between the prover and the verifier. Then,
based on this propagation time, the verifier decides whether the prover is within
the distance and hence discriminates a legitimate prover from an attacker. Al-
though the idea has been introduced many years ago, it is only quite recently
that distance bounding protocols have been investigated and several designs have
been proposed in the literature [?,?].

On the Bright Side of Side-Channel Leakage. Before detailing our pro-
posal, we provide in this section a survey of some recent research lines suggesting
the use of side-channel information constructively to enhance, or as an alterna-
tive to, existing cryptographic protocols.

To avoid counterfeiting of Integrated Circuits (ICs), authors in [?] have pro-
posed a watermarking based technique. It consists in inserting a software ma-
nipulating a sensitive variable which simply computes the Exclusive-OR (XOR)
operation between an internal 8-bit counter and an 8-bit secret key and then
applies the Sbox of the AES to the result of the XOR. The internal counter
increases its value on each run of the software. To check whether a device is
genuine or not, the issuer of the device provides a reference device containing
the same software as in the device under test (if the latter is not a counterfeit).
By measuring several power traces from both devices and then by computing
the degree of correlation between their respective leakages, the issuer can con-
clude that the audited device is a legal copy if the correlation is sufficiently high
(i.e. greater than a fixed threshold). Unfortunately, the authors only use an 8-
bit length key. Moreover, each time it is required to check the authenticity of a
device, the internal 8-bit counter is reset on both devices (the device under test

2



as well as the reference device), making the sequence predictable and subject to
side-channel attacks6.

In another work, Kerckhof et al. in [?] have used some techniques from side-
channel analysis still in the context of IP protection. The typical use case on
which they have focused on is the implementation of some customized ciphering
algorithms. An estimation of the coefficient of correlation is again used but now
(despite of the context of symmetric ciphers), no sensitive variable is involved in
the computation of the correlation. The authors have rather used the correlation
as a tool to correlate features extracted from an acquired signal (which repre-
sents the execution of a specific implementation without paying attention to the
manipulated data) with features extracted from a reference device embedding
the same IP as in the device under test. Several other works have suggested to
use side channel for IC fingerprinting or Trojan detection [?,?].

To avoid relay attacks, authors in [?] and [?] have proposed authentication
protocols based on the use of physical leakage. In [?], the authors simply sug-
gested the use of a dedicated binary xor instruction which, depending on the
resulting bit, leaks exaggeratedly (e.g. if the resulting bit is 1) or not (e.g. if the
resulting bit is 0). Such a technique allows the authors to only use a so-called
simple side-channel analysis. In [?], the prover performs on his side some cryp-
tographic computations while the verifier acquires the corresponding physical
leakage (e.g. the electromagnetic radiation). Assuming that the verifier and the
prover share a symmetric key K, the verifier analyses the leakage generated by
a nearby SE and authenticates it “physically” if the correlation between the ac-
quired leakage and the associated predictions made by the verifier is sufficiently
high. Such an authentication associating classical authentication techniques with
statistical side-channel analysis is called side-channel authentication. According
to us, this new paradigm is really interesting since it may indeed allow to detect
relay attacks in the field. The fact that it is required to acquire the electro-
magnetic signal of the prover (which is is typically a smartcard) may not be
unrealistic depending on the considered use case. We acknowledge that adding
the means for signal acquisition in a so-called payment terminal is probably not
an option. This situation is not so clear when talking about relay attacks on
car immobilizers (where the key is more or less a smartcard) or when talking
about control access to a public transport network. In both cases it would surely
be possible to embed an equipment to acquire the leakage of the prover: inside
the driver’s door of the car and inside the entrance gate to the public transport
network. Of course this countermeasure comes at a price and its implementation
will depend on how relay attacks impact the overall fraud.

Our Contribution. In this work, we propose a new authentication protocol
that (1) follows the side-channel based approach suggested in [?] and [?] and
(2) fixes its practical and security issues that we detail hereafter. According
to our understanding, in [?] the authors propose four schemes in which both

6 If the reset value of the internal counter is unknown to the attacker, she must recover
it, which is far from being an issue since it is only an 8-bit value.

3



parties, the prover and the verifier, share a symmetric key K that is used to
perform AES computations (on both sides) using this secret key. The inputs of
the AES computations are specified differently depending on the design that is
considered. The main drawback of their proposal is that a customized N -round
AES is required (N = 1.000 rounds in their experiments).

From a design point of view, this design constraint raises an issue because in
the context of secure element only standardized cryptographic primitives should
be considered (i.e. AES-128, AES-192 and AES-256). From a security perspec-
tive, the protocol proposed in [?] has some flaws that could be exploited by
performing some side-channel attacks. The proposed N -round AES implemen-
tations are not protected against side-channel attacks. So, an adversary who can
recover the physical leakage, is able to perform a statistical attack to recover the
shared master key K. The reason behind not using the well-known side-channel
countermeasures (e.g. masking, secret sharing) is that the leaked information is
no longer exploitable and so the physical authentication cannot succeed.

Finally, from a practical perspective, assuming that the leakage model is
uniform over the whole intermediate values of the N -round customized AES [?]
is unsound in real hardware due to small load imbalances, process variations,
routing, etc. For instance, authors in [?] have characterized using a stochastic
approach the leakage of four successive AES Sbox outputs. The obtained results
prove that the leakage is very unbalanced for each Sbox. Hence, in practice the
authentication may fail since the correlation between the acquired leakage and
the associated predictions may be too low when following such assumption on
the leakage model.

To overcome these issues and to resist relay attacks, we propose a new au-
thentication protocol that first ensures that only a genuine verifier can exploit
the leakage from a prover, i.e. no attacker should be able to mount an attack
based on side-channel analysis to recover the secret key K. Second, this pro-
tocol only uses standard cryptographic primitives (i.e. AES-128, AES-192 or
AES-256).

Throughout several practical experiments (see Sec. 4), we argue that our
proposal is secure against both side-channel attacks and relay attacks under
some realistic assumptions.

Paper Outline. The paper is organized as follows. In Sec. 2, we briefly describe
the AES block cipher and provide some useful notations. Then, in Sec. 3 we
describe our new authentication protocol. To assess the efficiency of our proposal,
a practical security evaluation is conducted in Sec. 4. Finally, Sec. 5 draws general
conclusions and opens some perspectives for future work.

2 Background

2.1 AES

The Advanced Encryption Standard (AES) [?] is a block cipher that processes
data blocks of 128 bits length and a variable secret key length (128, 192 or 256

4



bits). Hence, as specified by the standard [?], three different block-ciphers can
be used: AES-128, AES-192, AES-256. Depending on the length of the key, the
AES performs Nr rounds, with Nr ∈ [10, 12, 14]. The AES manipulates, all along
its execution, an internal state which is a (4× 4) matrix of bytes.

Algorithm 1 The Advanced Encryption Standard (AES)

Require: In: the 128-bit input, Nr: the number of rounds, (ki)0≤i≤Nr : the round keys
Ensure: Out: the 128-bit output
1: M−1 = In
2: for i = 0 to Nr − 2 do
3: Xi = AddRoundKey(Mi−1, ki)
4: Yi = SubBytes(Xi)
5: Si = ShiftRows(Yi)
6: Mi = MixColumns(Si)
7: end for
8: XNr−1 = AddRoundKey(MNr−2, kNr−1)
9: YNr−1 = SubBytes(XNr−1)

10: SNr−1 = ShiftRows(YNr−1)
11: Out = XNr = AddRoundKey(SNr−1, kNr )
12: return Out

The AES involves four main operations: AddRoundKey, SubBytes, ShiftRows
and MixColumns. As shown in Algorithm 1, at the ith round these operations
yield the so-called intermediate states of the AES and are denoted resp. by Xi,
Yi, Si and Mi. A byte from an intermediate state, say Xi, is denoted by Xi[l, c]

with (l, c) ∈ [0, 3]
2

in the sequel.

2.2 Leakage Model

Let V be a sensitive byte (e.g. the variable Yi[l, c] of the ith AES round), then
it is often assumed that the leakage function L(V ) is well modeled by:

L(V ) = αt ·HW(V ) + βt +W ,where: (1)

1. HW(.) is the Hamming Weight function.
2. W is a Gaussian noise N (0, σ) with null mean and standard deviation σ.
3. (αt, βt) are some weighting values specific to each targeted sensitive byte of

index (l, c) of the ith AES round (i.e. t = (l, c, i)).

It is worthy to note that, in some specific cases, the real leakage function can
be slightly different from the model we considered in (1). In such a case, one
have to characterize the real leakage function by applying a stochastic approach
as suggested in [?]. For the sake of simplicity, we assume that leakage function
follows the model described in (1). In the meantime, we stress the fact that our
proposal works well with any leakage function.

5



3 Protocol Proposal

As mentioned in the introduction, the protocol must ensure that only a gen-
uine verifier can exploit the leakage from a prover, while avoiding any attacker
attempting to mount a side-channel analysis. It must also consider some prac-
tical constraints such as the use of standard cryptographic APIs (i.e. avoiding
customized AES implementations as required in [?] for instance).

3.1 Adversarial Model

In the sequel, we shall consider the following assumptions.

Assumption 1 (Attacker’s profile) We consider an attacker who can per-
form (1) side-channel attacks by capturing the side-channel leakage of the prover
to try retrieving the secret key and (2) relay attacks to try authenticating to a
verifier as a genuine prover.

Assumption 2 (Impracticability of reproducing the physical leakage)
We assume that it is significantly difficult in practice for an attacker perform-
ing a relay attack to generate a copy of the side-channel information leaked by
the genuine prover. This assumption is quite realistic and is merely justified in
Sec. 3.3.

Assumption 2 relies on the fact that even if an attacker succeeds in capturing,
copying and replaying the side-channel leakage, then this procedure will take
some time denoted ∆. Thus, replaying the side-channel information is equivalent
to add some desynchronization in the trace which is well known to reduce the
degree of correlation [?].

3.2 Protocol Specification

Overall Description. We provide in Fig. 1 an overview of our protocol. First,
we assume that the master key K has already been shared between the veri-
fier and the prover (e.g. either loaded during the personalization phase of the
prover or by using the classical Diffie-Hellman key exchange protocol with certi-
fied public keys on both sides). The verifier initiates the protocol by sending RV

(a 64-bit random value) to the prover who replies by sending RP (a 64-bit ran-
dom value). Both then use the concatenation of RV and RP (denoted RV ||RP )
as an input to a secure Key Derivation Function, denoted KDF in Fig. 1, to

generate 2N session keys (K
(0)
0 ,K

(0)
1 , · · · ,K(0)

2N−1) = (K0,K1, · · · ,K2N−1) us-
ing the shared master key K. This secure KDF (i.e. orange box in Fig. 1) must
be protected against classical side-channel attacks by implementing for instance
some well-known masking countermeasures (see e.g. [?,?,?]). In addition, the

verifier generates q×2N extra random keys denoted (K
(i)
0 ,K

(i)
1 , . . . ,K

(i)
2N−1) for

i ∈ [1, q]. Now, to fix the practical issues of the protocol proposed in [?], we use
a set of N AES encryption (i.e. the blue boxes in Fig. 1) instead of a customized

6



N -round AES. These AES executions, denoted leaky AES in the sequel, do not
implement any countermeasure against side-channel analysis and are used to
encipher the last N session keys

(KN , · · · ,K2N−1) using the first N ones (K0,K1, · · · ,KN−1) as encryption
keys.
On the prover side, the ith AES encryption provides Ci = AESKi(Ki+N ) and
leaks all intermediate sensitive variables which are measured by the verifier.

The verifier on its side, computes q + 1 such sequences of N AES and stores
all relevant intermediate sensitive variables. The jth output of the ith sequence

of N AES is denoted C
(i)
j = AES

K
(i)
j

(K
(i)
j+N ) for j in [0, N − 1] and i in [0, q].

Then, for each ith executed sequence of N AES, the verifier computes a likelihood
value Li between the corresponding stored intermediate values and the acquired
measurement while the prover was executing its N leaky AES.

At the end of this step, the verifier holds q + 1 likelihood values Li with i
in [0, q]. If the prover is genuine, then the maximum value of likelihood should
be L0 (since obtained using the session keys derived from the shared master key
K) and a gap should exist between L0 and {Li}i∈[1,q] (denoted {Li 6=0} in the
sequel). If the greatest likelihood value is not L0 or if L0 does not stand out from
{Li6=0}, then the authentication is rejected and the protocol ends. Otherwise, the

verifier continues the protocol by sending the ciphertext C
(0)
k where k is chosen

randomly in [0, N − 1].

Upon receiving C
(0)
k , the prover checks whether it belongs to the set of ci-

phertexts it has computed (i.e. whether it exists l in [0, N−1] s.t. Cl = C
(0)
k ) and

if so, sends back a different ciphertext Cm (i.e. m 6= l). Otherwise, the prover

rejects the authentication. The verifier finally checks whether it holds C
(0)
l such

that C
(0)
l = Cm. If it is the case the verifier and the prover are mutually and

physically authenticated.
The most critical step for the success of our protocol is the acquisition of the

physical leakage since it requires a perfect synchronization between the prover
and the verifier. To ensure this, a trick would consist in triggering a timer, at the
verifier side, upon sending the random value RV . This timer considers the round-
trip time between the prover and the verifier and the averaged time of executing
the secure AES at the prover side. When the timer expires, the acquisition
starts. Then, from the collected measurement the verifier needs to select the so-
called Points Of Interest (POI) by applying some well-known selection algorithms
(e.g. [?,?,?]). Following notations from Sec. 2.1, the verifier can target all the
following bytes of AES states7:

AddRoundKey: Xr[l, c]
SubBytes: Yr[l, c]
MixColumns: Mr[l, c]

 for 0 ≤ r ≤ Nr − 1 and (l, c) ∈ {0, · · · , 3}2 (2)

7 ShiftRows is not considered since it is simply a rearrangement of the AES state thus
providing no additional information.

7



Verifier Prover

Compute 2N session keys

KDF

K

Generate RV randomly
RV

RP
Generate RP randomly

Compute (1 + q) · 2N session keys

RV ||RP (K
(0)
0 ,K

(0)
1 , . . . ,K

(0)
2N−1)KDF

K

Execute N leaky AES computations

KN

K0

C0 C1

. . .

K1 KN−1

CN−1

If ∃ l ∈ [0, N − 1] : l 6= k andC
(0)
l = Cm

Then authenticate the Prover
Else reject the authentication

Let j = argmax {Li}
If (j 6= 0 or Lj does not stand out from {Li6=j})
Then reject the authentication
Else choose k randomly in [0, N − 1]

- Compute the “likelihood” Li between each
series of N AES and the leakage acquired dur-
ing the Prover computation.

C
(0)
k

Cm

If ∃ l ∈ [0, N − 1] : Cl = C
(0)
k

Then accept it and send back Cm with m 6= l
Else reject the authentication

(Reader) (Card)K K

K
(i)
N

K
(i)
0

C
(i)
0 C

(i)
1

. . .K
(i)
N+1 K

(i)
2N−1

K
(i)
1 K

(i)
N−1

C
(i)
N−1

AES AESAES

AES AES AES

For i ∈ [0, q]:
- Execute N AES and store intermediate re-
sults

RV ||RP (K0,K1, . . . ,K2N−1)

KN+1 K2N−1

∀i ∈ [1, q] : (K
(i)
0 ,K

(i)
1 , . . . ,K

(i)
2N−1)← random keys

Fig. 1. Description of the physical authentication protocol.

Thus, each AES execution gives rise to (3× 16×Nr) different sensitive byte
variables along its execution. Each byte variable leaks following the same generic
model (see Equation (1)) but instantiated with different model parameters (i.e.
different pairs of (αt, βt)). Fortunately, it has been proven and confirmed exper-
imentally that each sensitive byte variable leaks following the same model with
the same parameters across the N AES executions.

Likelihood Computation. Following the notations from Algorithm 1, let

{(X(j)
r , Y

(j)
r ,M

(j)
r )0≤r≤Nr−1} be the set of internal states that the verifier pre-

dicts, round by round, when executing the jth AES of the ith set of N AES

execution, i.e. C
(i)
j = AES

K
(i)
j

(K
(i)
N+j). After computing the whole ith set of N

AES, the verifier holds {(X(j)
r , Y

(j)
r ,M

(j)
r )(0≤r≤Nr−1)×(0≤j≤N−1)}. The compu-

tation of the ith likelihood Li can be executed following the paradigm illustrated
in Algorithm 2.

8



Algorithm 2 Computation of the ith likelihood Li

Require: {(X(j)
r , Y

(j)
r ,M

(j)
r )(0≤r≤Nr−1)×(0≤j≤N−1)}: the intermediate values, T : the

acquired trace
Ensure: Li: the ith likelihood value
1: Li = 0
2: for each t = (l, c, r) do

3: Let PX,t = (X
(j)
r [l, c])0≤j≤N−1

4: Let LX,t = POIX,t(T )
5: I Li += ρ(PX,t, LX,t) . ρ(., .) denotes the Pearson correlation coefficient

6: Let PY,t = (Y
(j)
r [l, c])0≤j≤N−1

7: Let LY,t = POIY,t(T )
8: I Li += ρ(PY,t, LY,t)

9: Let PM,t = (M
(j)
r [l, c])0≤j≤N−1

10: Let LM,t = POIM,t(T )
11: I Li += ρ(PM,t, LM,t)
12: end for
13: return Li

48·Nr
. Normalize the outputted likelihood value

In Algorithm 2, for each sensitive byte variable uniquely determined by the
triple t = (l, c, r), the verifier constructs three vectors of predictions, namely
PX,t, PY,t and PM,t and extracts three vectors of leakages, namely LX,t, LY,t

and LM,t from the trace T acquired during the execution of the N leaky AES on
the prover side. The extraction is done thanks to three POI selection functions
POIX,t(T ), POIY,t(T ) and POIM,t(T ) which extract from the trace T the manip-

ulation of resp. (X
(j)
r [l, c])0≤j≤N−1, (Y

(j)
r [l, c])0≤j≤N−1 and (M

(j)
r [l, c])0≤j≤N−1.

Test of Proximity. This section explains how the likelihood L0 compares to
the set of likelihoods {Li6=0} in order to detect malicious provers.

Let Λ6=0 be the random variable which events are the likelihood values {Li 6=0},
from which the verifier computes the estimated mean µ6=0 and mean deviation
w6=0 = (max({Li 6=0}) − µ6=0) of Λ 6=0. Consequently, to authenticate the prover,
the verifier performs a test of proximity which consists in checking whether
L0 ≥ µ6=0 + 3 ·w6=0. This test allows the verifier to decide whether the likelihood
value L0:

– is probably not an event from the random variable Λ6=0, meaning that the
prover probably owns the correct secret master key K or,

– is probably an event from the random variable Λ6=0, revealing that the prover
is a malicious one and thus leading the verifier to reject the physical authen-
tication.

The choice of this test of proximity is inherited from the well-known 99% level of
confidence of an event drawn from a Gaussian distribution. To obtain sufficiently
good statistics, the number q of likelihoods computed using random keys should
be at least 100.

9



The efficiency of this test is acknowledged by the experiments reported in
Sec. 4.

3.3 Self-Assessment Evidence

From side-channel analysis perspective. The security of our protocol relies on
the countermeasures that should be implemented to protect the secure KDF,
which is can be based on the AES primitive for instance. To achieve this, one
can take advantage of the several provably secure higher-order masking schemes
that have been proposed in the literature [?,?,?]. So, the idea is to counteract
an attacker trying to recover the shared master key by side-channel analysis.

From relay attack perspective. An attacker performing a relay attack must deal
with the so-called round time trip which is the sum of two components of time:
the processing time of the devices involved in the relay attack (genuine and ma-
licious ones) and the communication times between all the involved devices. In
the context of contactless cards, it is quite challenging to keep a low latency
communication between contactless devices. Because of this non-negligible la-
tency, the authors in [?] show that an attacker can connect a proxy-token to a
mole with a high-speed link so that the communication time, denoted ε is close
to 0 and thus defeating all classical distance-bounding protocols, i.e. protocols
based on round time trip computations. The reason is that the processing times
of malicious devices can be hidden in the error-time margins of the round time
trip. Hopefully, still in [?], the authors show that using side-channel analysis
allows to dramatically reduce this latency since the verifier can watch the prover
in real time. So, the verifier is somehow plugged to the prover’s brain while this
latter is ’thinking’, i.e. computing. In the protocol we proposed in Fig. 1, the
verifier sends data blocks to the prover though the contactless interface. Once
he has received the last expected acknowledgment from the prover, it can im-
mediately plug to the prover’s brain, i.e. start to acquire the prover’s leakage
induced by the cryptographic computations on the prover side. If the prover is
a genuine one, the protocol will work properly while if it is a proxy-token one,
the situation is clearly different. Indeed, denote by ∆ the communication time
required to exchange data between the verifier and a prover (genuine or not). If
the prover is a fake one (i.e. a proxy-token), it is unavoidable for the attacker
to spend a second communication time of ∆ to exchange data between the mole
and the genuine prover. Thus, even if the communication time ε between the
proxy-token and the mole is negligible, the attacker relays the leakage from the
genuine prover to the genuine verifier in time 2×∆ instead of ∆ when the gen-
uine prover is in the proximity of the verifier. By doing so, the attacker relays a
leakage which is desynchronized from the point of view of the genuine verifier.
Therefore, the correlation coefficient computed on the verifier side will be too
low to allow the authentication to succeed. Thus, as stated in Assumption 2, we
considered as impractical for an attacker to relay physical leakage.

10



4 Experimental Validation

Experimental Setup. In our experiments, we considered a verifier that exe-
cutes an AES-128 (i.e. Nr = 10) and targets only two internal states per AES
round, namely the states after applying the AddRoundKey and SubBytes (these
states are denoted by X and Y in Algorithm 1). Moreover, two different scenarios
are studied. In the first one, the verifier focuses on the first round of each AES
execution yielding 32 sensitive variables. In the second scenario, the verifier con-
siders three rounds per AES execution yielding 32 × 3 = 96 targeted variables.
The corresponding physical leakage was acquired using the ChipWhisperer-Lite
board [?]. Furthermore, for robust statistics we instantiated q = 1000. The choice
of the ChipWhisperer acquisition board is motivated by its simplicity and that
the corresponding leakage model fits well our assumption in (1). Indeed, our
protocol is intended for contactless device which implies that the corresponding
leakage should be more noisy compared to the ChipWhisperer one. In the se-
quel, we consider this scenario by performing our experiments in a very noisy
environment.

Assessment of our Proposal in a (almost) Noise-Free Environment.
In the following, we considered a genuine prover (i.e. the acquired leakage cor-
responds to N AES executions using the correct session keys derived from the
master key K). Then, for each scenario, we plotted the correct likelihood value
L0 (the red curve) and the estimated mean µ6=0 and mean deviation w6=0 of the
random variable Λ 6=0 (the blue dotted curve and bars) according to an increas-
ing number N of AES executions. The obtained results in both scenarios are
illustrated in Fig. 2.

From Fig. 2, it is obvious that increasing the number N of executed AES en-
larges the gap between L0 and {Li 6=0} when the prover is genuine. Moreover, one
can conclude that the verifier is able to identify a genuine prover within merely
N = 10 AES executions. Furthermore, considering more sensitive variables as
shown in Fig. 2b, the gap between L0 and {Li 6=0} increases while the deviation
margin decreases.

Assessment of our Proposal in a Noisy Environment. It is well-known
that the ChipWhisperer-Lite is mostly noise-free8. To demonstrate the efficiency
of our proposal in a noisy environment, the same acquired trace was reused to
artificially increase the noise level (i.e. by adding a white Gaussian noise). We
plotted in Fig. 3 the evolution of the acceptance rate according to an increasing
noise standard deviation and a fixed number of executed AES (N = 20).

As expected, the acceptance rate decreases when the noise standard devia-
tion increases. Moreover, for a fixed noise standard deviation, the more internal
states, the higher the acceptance rate. Finally, we repeated the same experiments

8 According to our measurements, it follows a Gaussian distribution with a standard
deviation of ≈ 0.004.

11



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100

Li
ke

lih
oo

d

Number of AES

Correct key
Wrong keys

(a) One round

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100

Li
ke

lih
oo

d

Number of AES

Correct key
Wrong keys

(b) Three rounds

Fig. 2. Evolution of the likelihood according to an increasing number of AES execu-
tions.

when increasing the number of executed AES and used the Signal-to-Noise Ratio
(SNR) rather than the noise standard deviation to better quantify the amount
of white noise which is added. The obtained results are depicted in Fig. 4.

0

20

40

60

80

100

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
cc

ep
ta

nc
e 

R
at

e 
(%

)

White noise standard deviation

1 round
3 rounds

Fig. 3. Evolution of the acceptance rate according to an increasing noise standard
deviation and a fixed number of executed AES.

From Fig. 4, one can conclude that in the presence of a significant amount of
noise, increasing the number N of AES executions allows the verifier to better

12



0

20

40

60

80

100

0 50 100 150 200 250

A
cc

ep
ta

nc
e 

R
at

e 
(%

)

Number of AES

SNR
8* 10−2 4 * 10−2 3 * 10−2 1 * 10−2 8 * 10−3 6 * 10−3

(a) One round

0

20

40

60

80

100

0 50 100 150 200 250

A
cc

ep
ta

nc
e 

R
at

e 
(%

)

Number of AES

SNR
8* 10−2 4 * 10−2 3 * 10−2 2 * 10−2 8 * 10−3 6 * 10−3

(b) Three rounds

Fig. 4. Evolution of the acceptance rate according to an increasing number of executed
AES and SNR.

distinguish the presence of a genuine prover. Moreover, the number of variables
used for the likelihood computation is also of great interest. Indeed, by consider-
ing more AES rounds and more internal states per round, the verifier increases
the acceptance rate while executing less AES computations.

Regarding the choice of the optimal parameters (i.e. number of AES, number
of rounds, . . . ), it is up to the designer to choose the suitable ones with respect
to the the noise level and the required acceptance rate.

FAR and FRR Assessment. In this section, we evaluated our proposed au-
thentication protocol with respect to two well-known security metrics: the False
Acceptance Rate (FAR) and the False Rejection Rate (FRR). The FAR is the
measure of probability that an authentication protocol accepts an unauthorized
prover while the FRR is the measure of probability that an authentication pro-
tocol rejects a genuine prover.

To do so, we considered in the following an authentication between a verifier
and a malicious prover. We acquired one trace on the ChipWhisperer board
corresponding to N executions of leaky AES using wrong session keys at the
prover side. We stress the fact that the noise level is similar to the experiments
reported in Fig.2b (i.e. σ ≈ 0.004). Then, we plotted in Fig. 5 the evolution of
the likelihood L0 (the red curve) and the estimated mean and mean deviation
(µ6=0, w6=0) of Λ 6=0 (the blue dotted curve and bars) according to an increasing
number of executed AES when considering three rounds per AES execution.

From Fig. 5, one can see that the curves overlap and hence the verifier con-
cludes that the prover is a malicious one and rejects the authentication. So, the
obtained results confirm that the FAR of our proposed authentication protocol
is almost zero independently of the number of executed AES. We recall that,
by design, the theoretical FAR is 2−128 which the probability that a malicious
prover guesses correctly the 128-bit shared master key K.

13



0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50 60 70 80 90 100

Li
ke

lih
oo

d

Number of AES

Correct key
Wrong keys

Fig. 5. Evolution of the likelihood according to an increasing number of AES executions
when considering a malicious prover.

Regarding the FRR, we demonstrated in Fig. 4 that in the presence of a
genuine prover the acceptance rate decreases (i.e. the FRR increases) when the
noise standard deviation increases. On the other hand, when the number of
executed AES increases and/or when considering several intermediate values
then the acceptance rate increases too. This implies that, depending on the
application, one can adjust the FRR by tuning the number of executed AES
and the number of targeted intermediate values with respect to the noise level.
This can be done as a beforehand agreement between the genuine prover and
the verifier.

5 Conclusion

This work highlights the bright side of side-channel leakage. The traditional
doctrine has always exhibited this leakage as a serious practical threat to cryp-
tographic embedded systems. In this paper, we have introduced a new authenti-
cation protocol that constructively exploits the side-channel leakage to prevent
relay attacks. To be authenticated, the prover performs some cryptographic op-
erations using a beforehand shared master key (either loaded during the person-
alization phase of the prover or more simply by using the classical Diffie-Hellman
key exchange protocol). The verifier eavesdrops the resulting physical leakage and
computes the likelihood using the corresponding theoretical predictions. When
the resulting likelihood is quite high (with respect to the considered proximity
criterion) then the prover could be accepted after a last step of validation by
exchanging some ciphertexts. We have argued and confirmed with experiments,
that our proposal is secure against both side-channel attacks and relay attacks.
Moreover, it solves some security and design issues pinpointed in a previous

14



study [?]. Besides, through our experimental validation, we have demonstrated
the efficiency of our proposal in terms of FAR and FRR.

In view of these promising results, a natural open problem is to validate
our proposal in an even more realistic scenario by exploiting for example the
electromagnetic leakage captured on a modern smart-card chip.

15


