
CHURP:
Dynamic-Committee Proactive Secret Sharing

Sai Krishna Deepak Maram†∗, Fan Zhang†∗, Lun Wang‡∗, Andrew Low‡∗, Yupeng Zhang‡∗, Ari Juels†∗ and Dawn Song‡∗
†Cornell Tech, ‡UC Berkeley

∗Initiative for CryptoCurrencies & Contracts

Abstract—We introduce CHURP (CHUrn-Robust Proactive se-
cret sharing). CHURP enables secure secret-sharing in dynamic
settings, where the committee of nodes storing a secret changes
over time. Designed for blockchains, CHURP has lower commu-
nication complexity than previous schemes: O(n) on-chain and
O(n2) off-chain in the optimistic case of no node failures.

CHURP includes several technical innovations: An efficient new
proactivization scheme of independent interest, a technique (using
asymmetric bivariate polynomials) for efficiently changing secret-
sharing thresholds, and a hedge against setup failures in an
efficient polynomial commitment scheme. We also introduce a
general new technique for inexpensive off-chain communication
across the peer-to-peer networks of permissionless blockchains.

We formally prove the security of CHURP, report on an
implementation, and present performance measurements.

I. INTRODUCTION

Secure storage of private keys is a pervasive challenge in
cryptographic systems. It is especially acute for blockchains
and other decentralized systems. In these systems, private keys
control the most important resources—money, identities [1],
etc. Their loss has serious and often irreversible consequences.

An estimated four million Bitcoin (today worth $14+ Bil-
lion) have vanished forever due to lost keys [2]. Many users
thus store their cryptocurrency with exchanges such as Coin-
base, which holds at least 10% of all circulating Bitcoin [3].
Such centralized key storage is also undesirable: It erodes the
very decentralization that defines blockchain systems.

An attractive alternative is secret sharing. In (t, n)-secret
sharing, a committee of n nodes holds shares of a secret
s—usually encoded as P (0) of a polynomial P (x) [4]. An
adversary must compromise at least t + 1 players to steal s,
and at least n−t shares must be lost to render s unrecoverable.

Proactive secret sharing (PSS), introduced in the seminal
work of Herzberg et al. [5], provides even stronger security.
PSS periodically proactivizes the shares held by players, while
keeping s constant. Players obtain new shares of the secret
s that are independent of their old shares, which are then
discarded. Provided an adversary never obtains more than
t shares between proactivizations, PSS protects the secret s
against ongoing compromise of players.

Secret sharing—particularly PSS—would seem to enable
users to delegate private keys safely to committees and avoid
reliance on a single entity or centralized system. Indeed,
a number of commercial and research blockchain systems,

e.g., [6], [7], [8], [9], [10], rely on secret sharing to protect
users’ keys and other sensitive data.

These systems, though, largely overlook a secret-sharing
problem that is critical in blockchain systems: node churn.

In permissionless (open) blockchains, such as Bitcoin or
Ethereum, nodes may freely join and leave the system at any
time. In permissioned (closed) blockchains, only authorized
nodes can join, but nodes can fail and membership change.
Thus blockchain protocols for secret sharing must support
committee membership changes, i.e., dynamic committees.

Today there are no adequate PSS schemes for dynamic
committees. Existing protocols support static, but not dynamic
committees [5], [11], assume weak, passive adversaries [12],
[13], are efficient only for batched secrets [14], or incur
prohibitive communication costs [15], [16], [17], [18], [19].

In this paper, we address this critical gap by introducing
a new dynamic-committee proactive secret-sharing protocol
called CHURP (CHUrn-Robust Proactivization).

A. CHURP functionality

CHURP allows a dynamic committee, i.e., one undergoing
churn, to maintain a shared secret s securely.

Like a standard PSS scheme, CHURP proactivizes shares in
every fixed interval of time known as an epoch. It supports
dynamic committees as follows. An old committee of size
n with a (t, n)-sharing of a secret s can transition during a
handoff to a possibly disjoint new committee of size n with a
new (t, n)-sharing of s. CHURP achieves security against an
adaptive, active adversary that compromises t < n/2 nodes
in each of the old and new committees. CHURP also allows
changes to t and n between epochs. (Periodic changes to s are
specifically not a goal of PSS schemes, but are easy to add.)

Our main achievement in CHURP is its very low com-
munication complexity: optimistic per-epoch communication
complexity in a blockchain setting of O(n) on-chain—which
is optimal—and O(n2) off-chain, i.e., over point-to-point
channels. While the on-chain complexity is lower than off-
chain, it comes with the additional cost of placing transactions
on the blockchain. Cheating nodes cause pessimistic on-chain
/ off-chain communication complexity O(n2) / O(n3). Both
off-chain costs are substantially lower than in other schemes.

Despite somewhat complicated mechanics, CHURP realizes
a very simple abstraction: It simulates a trusted third party

1

that stores s for secure use in a wide range of applications—
threshold cryptography, secure multi-party computation, etc.

B. Technical challenges and solutions
To achieve its low communication complexity, CHURP

must overcome several major technical challenges. The first
challenge is that previous PSS schemes, relying on techniques
from Herzberg et al. [5], incur high communication complexity
for proactivization (O(n3) off-chain per epoch). CHURP uses a
bivariate polynomial B(x, y) to share secret s, and introduces
a new proactivization protocol with cost O(n2). This protocol
is based on efficient bivariate 0-sharing, i.e., generation of a
randomized, shared polynomial B(x, y) with B(0, 0) = 0 to
refresh shares. CHURP’s 0-sharing technique is of independent
interest: It can also lower the communication complexity of
Herzberg et al. [5] and related schemes.

The second challenge is that during a handoff, an adversary
may control t nodes in each of the old and new committees,
and thus 2t nodes in total. Compromise of 2t shares in
a (t, n)-sharing would leak the secret s. Previous schemes,
e.g., [17], address this problem using “blinding” approaches
with costly communication. CHURP introduces a novel,
low communication-complexity technique called dimension-
switching. It uses an asymmetric bivariate polynomial B(x, y),
with degree t in one dimension and degree 2t in the other.
During a handoff, it switches temporarily to a (2t, n)-sharing
of s to tolerate up to 2t compromised shares; afterward, it
switches back to a (t, n)-sharing.

Finally, most PSS schemes commit to secret degree-t poly-
nomials using classical schemes (e.g., [20], [21]) with per-
commitment size O(t). CHURP uses an alternative due to
Kate, Zaverucha, and Goldberg (KZG) [22] with size O(1).
Use of KZG for secret sharing isn’t new [23], but CHURP
introduces a novel KZG hedge. KZG assumes trusted setup and
a non-standard hardness assumption. If these fail, CHURP still
remains secure—but degrades to slightly weaker adversarial
threshold t < n/3.

We compose these techniques to realize CHURP with prov-
able security. We give a simulation-based security proof.

C. Implementation and Experiments
We present an implementation of CHURP. Our experiments

show very practical communication and computation costs—
2300x improvement over the existing state-of-the-art dynamic-
committee PSS scheme [17] in the off-chain communication
complexity for a committee of size 100 (See Section VI).

Additionally, to achieve inexpensive off-chain communica-
tion among nodes in CHURP, we introduce a new technique
for permissionless blockchains that is of independent interest.
It leverages the peer-to-peer gossip network as a low-cost
anonymous point-to-point channel. We experimentally demon-
strate off-chain communication in Ethereum with monetary
cost orders of magnitude less than on-chain communication.

D. Outline and Contributions
After introducing the functional, adversarial, and communi-

cation models in Section II, we present our main contributions:

• CHUrn-Robust Proactive secret sharing (CHURP):
In Section III, we introduce CHURP, a practical dynamic-
committee PSS scheme with lower communication com-
plexity than previous schemes.

• Novel secret-sharing techniques: We introduce a new
0-sharing protocol for efficient proactivization in Sec-
tion IV, a new dimension-switching technique to
safeguard the secret in committee handoffs in Sec-
tion V-C, and hedging techniques for failures in the KZG
polynomial-commitment scheme in Appendix D-B.

• New point-to-point blockchain communication technique:
We introduce a novel point-to-point communication tech-
nique for permissionless blockchains in Section VII—
usable in CHURP and elsewhere—with orders of magni-
tude less cost than on-chain communication.

• Implementation and experiments: We report on an imple-
mentation of CHURP in Section VI and present perfor-
mance measurements demonstrating its practicality.

• Provable security: We give a simulation-based security
proof for CHURP in Appendix A.

We discuss related work in Section VIII and CHURP’s many
potential applications—threshold signatures and decryption,
smart contracts with private keys, consensus simplification for
light clients, etc.—in Appendix B. We will release CHURP
system as an open-source tool.

II. MODEL AND ASSUMPTIONS

We now describe the functional, adversarial, and communi-
cation models used for CHURP.

A1

A2

A3

A4

s

B1

B2

B3

B4

B5

s

Old committee New committee

Fig. 1: Handoff between two committees a dynamic proactive
secret-sharing epoch. The secret s remains fixed. Committees
may intersect, e.g., in this example, B2 = A2 and B3 = A3.

In a secret-sharing scheme, a committee of nodes shares a
fixed secret s. We let C denote a committee and denote the
n nodes in the committee by {Ci}ni=1. Each node Ci holds
a distinct share si. CHURP proactivizes shares, i.e., changes
them periodically to prevent leakage of s to an adversary
that gradually compromises nodes. Again, we emphasize that
CHURP does so for a dynamic committee [14], [17], i.e., nodes
may periodically leave / join the committee.

Shares change in a proactive secret-sharing protocol such
as CHURP during what is called a handoff protocol. Handoff

2

proactivizes s, i.e., changes its associated shares, while trans-
ferring s from an old committee to a new, possibly intersecting
one. Fig. 1 depicts the handoff process. The adversarial model
for proactive secret sharing in general limits adversarial control
to a threshold t of nodes per committee. During a handoff,
CHURP allows nodes to agree out of band on a change to t,
as explained below.

A. Functional model

Epoch: Time in CHURP, as in any proactive secret-sharing
scheme [5], is divided into fixed intervals of predetermined
length called epochs. In each epoch, a specific committee of
nodes assumes control of and then holds s. Concretely, in
an epoch e, a committee C(e) of size N (e) shares s using a
(t,N (e))-threshold scheme.

Handoff Committee C(e)Committee C(e−1)Handoff

Epoch eEpoch e− 1

Fig. 2: Each epoch begins with a handoff phase during which
the old committee hands off the secret s to the new committee.
It is followed by a period of committee operation.

Handoff: As shown in Fig. 2, handoff takes place at the
beginning of an epoch. It involves a transfer of s from an
old committee, which we denote C(e−1), to a new committee,
denoted C(e). Prior to completion of the handoff, C(e−1) is
able to perform operations using s.

Churn: In the dynamic-committee setting of CHURP, nodes
can leave a committee at any time, but can only be added
during a handoff. Let C(e−1)left denote the set of nodes that have
left the committee before the handoff protocol in epoch e.
Let C(e−1)alive = C(e−1) \ C(e−1)left denote the set of nodes that
participate in the handoff protocol. We let churn rate α denote
a bound such that |C(e−1)alive | ≥ |C(e−1)|(1−α). Later, we provide
a lower bound on the committee size using the churn rate α.

Keys: We assume that every node in CHURP has private /
public key pair and that public keys are known to all nodes
in the system. Such a setup is common in secret-sharing
systems [5], [17].

B. Adversarial model

We consider an adversary A that is active and adaptive.
It may decide to corrupt nodes at any time. Once a node
is corrupted by the adversary, it is assumed to be corrupted
until the end of the current epoch. (A node may thus be
“released” by an adversary in a new epoch so that it is no
longer corrupted.) Corrupted nodes are allowed to deviate from
the protocol arbitrarily. The proofs of correctness used by
nodes in CHURP requires that we assume a computationally
bounded (polynomial-time) adversary.

As noted above, we limit the adversary A to corruption of
no more than a threshold of nodes in a given committee. This

threshold, as noted above, may change in CHURP through out-
of-band agreement by committees. In this case, letting t and
t′ denote corruption thresholds for old and new committees
respectively, A may control at most t nodes in C(e−1) and t′

nodes in C(e). We present the protocol in CHURP for threshold
changes in Appendix E. For simplicity of exposition, however,
we assume in what follows that t = t′, i.e., the corruption
threshold t remains fixed.

Observe that during the handoff between epochs e− 1 and
e, members of both committees, C(e−1) and C(e), are active.
Thus A may control up to 2t nodes at this time. As committees
may intersect, i.e., an adversary may control a given node i
in both the old and new committees. Alternatively, A may
control node i in one committee, but not the other, reflecting
either a fresh corruption or node recovery.

We provide a security proof using the framework of Univer-
sal Composition (UC) [24]. We say that a protocol π securely
realizes an ideal functionality F if for every adversary A
attacking the real interaction with the protocol, there is a
simulator S interacting with the ideal functionality, such that
for all environments Z , the following is negligible:

|Pr[REAL(Z,A, π) = 1]− Pr[IDEAL(Z,S,F) = 1]| .

C. Communication model

We aim to minimize communication complexity in CHURP.
Specifically, we optimize for on-chain complexity and off-
chain complexity in that order. We also consider the round
complexity of our protocol designs, but prioritize communi-
cation complexity because blockchains—particularly permis-
sionless ones—incur high costs for on-chain operations. We
measure the communication complexity of our protocol (and
related ones) in terms of on-chain and off-chain communica-
tion cost, as follows:

a) On-chain: Existing approaches such as MPSS [17]
use PBFT [25] for consensus. Instead, we assume the avail-
ability of a blockchain (or other bulletin-board abstraction) to
all nodes in the committee. We do this for two reasons. First,
abstracting away the consensus layer results in simpler, more
modular, and easier-to-understand secret-sharing protocols.
Second, it makes sense to capitalize on the availability of
blockchains today, rather than re-engineer their functionality.

In our model, nodes can either post a message (or) retrieve
any number of messages from the blockchain. After a node
posts a message to the blockchain, within a finite time period
T , it gets published, i.e., blockchain access is synchronous and
the message is now retrievable by any node. This channel is
assumed to be reliable: messages posted are not lost.

Permissionless blockchains: While our techniques apply also
to permissioned blockchains, we focus on permissionless
blockchains—e.g., Ethereum. On such chains, users pay (heav-
ily) for writes, but reads are free. Thus we measure on-chain
communication complexity only in terms of writes, e.g., O(n)
on-chain cost means O(n) bits written to the blockchain.

3

b) Off-chain: Nodes may alternatively communicate
point-to-point (P2P) without direct use of the blockchain. We
assume that every node has such a channel with every other
node. P2P channels are also assumed to be reliable: all mes-
sages arrive without getting lost. We work in a synchronous
model, i.e., any message sent via this channel will be received
within a known bounded period of time, T ′.

Off-chain P2P channels can be implemented in different
ways depending on the deployment environment. In a decen-
tralized setting, though, nodes are often assumed not to have
P2P communication, to protect them from targeted attacks and
anonymity compromise. In such cases, one can use anonymous
channels, such as Tor [26], to preserve anonymity with addi-
tional setup cost and engineering complexity. Alternatively,
off-chain channels can be implemented by an overlay on top
of the existing blockchain infrastructure. We show how to
leverage the gossip network of a blockchain system [27] for
inexpensive off-chain communication in Section VII.

We measure off-chain communication complexity as the
total number of bits transmitted in point-to-point channels.
In general, where we refer informally to proactivization pro-
tocols’ cost in this work, we mean their communication
complexity, on-chain or off-chain, as the case may be.

III. OVERVIEW OF CHURP

Now we provide an overview of CHURP, with intuition
behind our core techniques. First, we briefly review two
key new techniques used in CHURP: bivariate 0-sharing and
dimension-switching. (We defer details until later in the paper.)
Then we give an overview and example of optimistic execution
of CHURP. Finally, we briefly discuss pessimistic execution
paths in CHURP, i.e., what happens when nodes are faulty, and
our third key technique of hedging against failures in KZG.

A. Key secret-sharing techniques

Recall that in an ordinary (t, n)-threshold Shamir secret
sharing (see [4]), shares of secret s are points on a univariate
polynomial P (x) such that P (0) = s. Instead, to enable its
two key techniques, CHURP employs a bivariate polynomial
B(x, y) such that B(0, 0) = s. A share of B(x, y) is itself a
univariate polynomial: Either B(x, i) or B(i, y) where i is the
node index.

Bivariate 0-sharing: Proactivization in nearly all secret-
sharing schemes involves generating a fresh, random poly-
nomial that shares a 0-valued secret, e.g., Q(x, y) such that
Q(0, 0) = 0. This is added to the current polynomial that
encodes the secret s. We call such a polynomial Q(x, y) a 0-
hole polynomial and generation of this polynomial 0-sharing.
Previous approaches’ main communication bottleneck is naı̈ve
0-sharing that incurs high (O(n3) off-chain) communication
complexity. Our 0-sharing protocol achieves lower (O(n2) off-
chain) complexity. We give details in Section IV.

Dimension-switching: CHURP uses a bivariate polynomial
B(x, y) asymmetric and of non-uniform degree. Specifically,
it uses a polynomial B(x, y) of degree 〈t, 2t〉. By this, we

mean that it is degree-t in x (highest term xt) and degree-2t
in y (highest term y2t).

This structure enables our novel dimension-switching tech-
nique in CHURP. Nodes can switch between a sharing in the
degree-t dimension of B(x, y) and the degree-2t dimension.
The result is a change from a (t, n)-sharing of s to a (2t, n)-
sharing—or vice versa. As we show, dimension switching
provides an efficient way to address a key challenge mentioned
above. During a handover, the adversary can control up to
2t nodes, but between handovers, we instead want a (t, n)-
threshold sharing of s. See Section V-C for details.

B. CHURP: Overview

We now give an overview of the execution of CHURP. We
first consider the optimistic case, and discuss pessimistic cases
below in Section III-E.

At the end of a given epoch e− 1, before a handoff occurs,
the current committee C(e−1) is in what we call a steady state.

Specifically, the committee C(e−1) holds a (t, n)-sharing
of s = B(0, 0). This sharing uses the degree-t dimension
of B(x, y), as noted above. Node C(e−1)i holds share si =
B(i, y), and can compute B(x, 0) for x = i. So it is easy
to see that shares si is actually a share in a (t, n)-sharing of
B(0, 0). We refer to the shares in steady state as full shares.

During the handoff in epoch e, nodes in the old and new
committees C(e−1) and C(e) switch their sharing of s to the
degree-2t dimension of B(x, y), resulting in what we call
reduced shares.

Specifically, node C(e)j holds share sj = B(x, j). Node C(e)j

can compute B(0, y) for y = j, and consequently sj is a
share in a (2t, n)-sharing of B(0, 0). The share sj here has
“reduced” power in the sense that 2t + 1 of these shares (as
opposed to t + 1 full shares in steady state) are needed to
reconstruct s. Thus the adversary cannot recover s despite
potentially compromising 2t nodes across the old and new
committees C(e−1) and C(e).

After share reduction, the polynomial B(x, y) is proac-
tivized. A 0-hole bivariate polynomial Q(x, y), i.e., such that
Q(0, 0) = 0, is generated (using the new protocol given
in Section IV). Q(x, y) is then added to B(x, y), yielding a
fresh polynomial B′(x, y) = B(x, y)+Q(x, y). Nodes update
their reduced shares accordingly. Because Q(x, y) is 0-hole,
the secret s remains unchanged, i.e., s = B′(0, 0).

Shares in B′(x, y), i.e., for the new committee, are now
independent of those for B(x, y), i.e., for the old committee.
So it is now safe to perform full-share distribution, i.e., to
switch to the degree-t dimension of B′(x, y). This involves
distributing full shares to the new committee C(e). At this
point, the steady state is achieved for epoch e. Committee
C(e) holds a (t, n)-threshold sharing of s using B′(x, y).

To summarize, the three phases in the CHURP handoff are:
• Share reduction: A switch is made from the degree-t

dimension of B(x, y) to the degree-2t dimension. As a
result, each node C(e)j in the new committee obtains a
reduced share B(x, j).

4

• Proactivization: The new committee generates Q(x, y)

such that Q(0, 0) = 0, and each node C(e)j obtains a
reduced share: B′(x, j) = B(x, j) + Q(x, j). Proac-
tivization ensures that shares in the new committee are
independent of those in the old.

• Full-share distribution: New shares B′(i, y) are generated
from reduced shares {B′(x, j)}j , by switching back to
the degree-t dimension of B′(x, y). The protocol thus
returns to its steady state.

Note that during the handoff, the old committee C(e−1) can
still perform operations using s, even if some nodes have left.
So there is no operational discontinuity in CHURP.

C. An example

In Fig. 3, we show a simple example of the handoff protocol
in CHURP assuming all nodes are honest. The old committee
consists of three nodes C(e−1) = {A1, A2, A3}. A3 leaves
at the end of the epoch, and a new node A′3 joins. The
new committee is thus C(e) = {A1, A2, A

′
3}. The underlying

polynomial B(x, y) is thus of degree 〈1, 2〉. Node Ai’s share
is B(i, y) or 3 points: B(i, 1), B(i, 2) and B(i, 3). The figure
depicts the three phases of the handoff protocol, as follows.

a) Share reduction: To start the handoff, each node j
in the new committee constructs its reduced share B(x, j)
from points received from C(e−1). As shown in the figure,
node A′3 receives points B(1, 3) and B(2, 3) from A1 and A2

respectively, from which B(x, 3) can be constructed. Similarly,
A1 and A2 construct B(x, 1) and B(x, 2) respectively.

b) Proactivization: Having reconstructed reduced shares
{B(x, j)}j , nodes in the new committee collectively generate
a 0-hole bivariate polynomial Q(x, y) of degree 〈t, 2t〉, with
the constraint that each j only learns Q(x, j). Reduced shares
are updated as B′(x, j) = B(x, j) + Q(x, j). In the example
above, node j ends up with Q(x, j) of a random 0-hole
polynomial Q(x, y).

c) Full-share distribution: Nodes in the new committee
get their full shares from the updated reduced shares. Take
A1 as an example. By this point, A1 has B′(x, 1) and sends
B′(i, 1) to Ai for i ∈ {2, 3}. Other nodes do the same. Hence,
A1 receives B′(1, 2) and B′(1, 3) from A2 and A′3 respec-
tively. It now has the necessary three points {B′(1, j)}j∈[3] in
order to interpolate its full share B′(1, y).

D. Adaptive security

As noted before, the above example assumes an honest-but-
curious adversary. Additional machinery in the form of cryp-
tographic proofs of correctness for node communications—
detailed in Section V-C—are required to provide security
against an active and adaptive adversary. These proofs do not
alter the overall structure of the protocol.

E. Pessimistic CHURP execution paths

What we have described thus far is an optimistic execution
of CHURP. This corresponds to a subprotocol Opt-CHURP that
is highly efficient and optimistic: it only completes when all
nodes are honest and the assumptions of the KZG scheme hold.

When things go wrong, CHURP can detect the violation
and resort to pessimistic paths. Specifically, Exp-CHURP-A can
hold malicious nodes accountable. Moreover, CHURP can also
efficiently detect any soundness failure of the KZG scheme, due
to either a compromised trusted setup or a falsified hardness
assumption (t-SDH). When detected, CHURP switches to Exp-
CHURP-B that only relies on DL and no trusted setup.

As noted above, the on-chain / off-chain communication
complexity of CHURP is O(n) / O(n2) in the optimistic case,
and O(n2) / O(n3) for the two pessimistic paths. Opt-CHURP
and Exp-CHURP-A requires t < n/2, while Exp-CHURP-B
requires t < n/3. We give details on the optimistic and
pessimistic paths in CHURP in Section V.

IV. EFFICIENT BIVARIATE 0-SHARING

In this section, we introduce our technique for efficient 0-
sharing of bivariate polynomials. It is a key new building block
in CHURP, used in the proactivization phase of the handoff.

Recall that in the context of bivariate polynomials, 0-sharing
means having a committee C generate a 〈t, 2t〉-bivariate poly-
nomial Q(x, y) such that Q(0, 0) = 0. Each node Ci holds a
share Q(i, y).

Previous works have naı̈vely extended 0-sharing tech-
niques for univariate polynomials to the bivariate case: Each
node generates its own 0-hole bivariate polynomial Qi i.e.,
Qi(0, 0) = 0, and distributes points on it. Thus each node
transmits O(n) univariate polynomials, resulting in O(n2) off-
chain communication complexity per node, and O(n3) in total.

Our new technique, specified as protocol BivariateZe-
roShare, brings the total off-chain communication complexity
down to just O(tn) in the optimistic case. In the pessimistic
case, i.e., if a node is caught cheating, different protocols
(see Section V) must then be invoked. Even in the pessimistic
case, though, our techniques incur no more communication
complexity than in previous schemes: O(n3) in the dynamic
setting and O(n2) in the static Herzberg et al. setting.

BivariateZeroShare comprises two steps. In the first step, a
0-sharing subprotocol UnivariateZeroShare is executed among
a subset U of 2t+ 1 nodes. At the end of this step, each node
Uj holds a share sj of a univariate polynomial P (x). In the
second step, each node in U reshares its share sj among all
nodes, i.e., the full committee. Each node Ci thereby obtains
share Q(i, y) of bivariate polynomial Q(x, y), as desired.

BivariateZeroShare is formally specified in Fig. 15. (For
the interest of space, we present all protocols formally in the
appendix. Nonetheless, the text description here is sufficient
to understand the paper.) For ease of presentation, we describe
an honest-but-curious protocol version in this section. Our full
protocol, which is secure against active, adaptive adversaries,
is detailed in Section V-C.

a) First step—Sharing P (x): As noted, BivariateZe-
roShare first chooses a subset U ⊆ C of 2t + 1 nodes, i.e.,
|U| = 2t + 1. This can be done as follows: Order nodes
lexicographically by their public keys and choose the first
2t+ 1. Without loss of generality, U = {Cj}2t+1

j=1 .

5

𝐴1

𝐴2

𝐴3
′

𝐴1

𝐴2

𝐴1

𝐴2

𝐴3

Handoff

s s

𝐴3

Share
Reduction

Full Share
Distribution

Randomize

ProactivizationEpoch e-1 Epoch e

X
Fig. 3: An example of the handoff protocol: Curves denote univariate polynomials (reduced shares) while squares denote points
on these polynomials. See Section III-C for a description.

The nodes of U then execute the univariate 0-sharing
subprotocol UnivariateZeroShare presented in Fig. 14. This
subprotocol is not new—it was previously used for proac-
tivization in [5]. Each node Uj generates a degree-2t univariate
0-hole polynomial Pj(x). The sum P (x) =

∑2t+1
j=1 Pj(x) is

itself a degree-2t univariate 0-hole polynomial P (x). Then,
Uj redistributes points on its local polynomial Pj(x), enabling
every Ui at the end of the step to compute its share si = P (i).1

b) Second step—Resharing P (x): Nodes in U now re-
share P (x) among all of C, resulting in a sharing of the desired
bivariate polynomial Q(x, y).

Each node Uj generates a degree-t univariate polynomial
Rj(x) uniformly at random under the constraint Rj(0) = sj ,
i.e., Rj(x) encodes the node’s share sj . Together, the 2t + 1
degree-t polynomials {Rj(x)} uniquely define a degree-〈t, 2t〉
bivariate polynomial Q(x, y) such that Q(x, j) = Rj(x) for
j = 1, 2, . . . , 2t+ 1 and Q(0, 0) = 0.

Node Uj sends Rj(i) = Q(i, j) to every other node Ci in
the full committee. Using the received points, each committee
member Ci interpolates to compute its share—a 2t-degree
polynomial Q(i, y). The constraint Q(0, 0) = 0 is satisfied
because the zero coefficients of Rj(x) are composed of shares
generated from the 0-sharing step before, i.e., UnivariateZe-
roShare. Since each node in U transmits n points, the overall
cost incurred is just O(tn) off-chain.

We use (t, n)-BivariateZeroShare as a subroutine in CHURP
with some modifications. As explained before, it can also
reduce the off-chain communication complexity of Herzberg
et al.’s PSS scheme [5], i.e., the static-committee setting,
by a factor of O(n). Due to lack of space, we present this
application in the technical report, the formal protocol can be
found in the Appendix (See Appendix C).

V. CHURP PROTOCOL DETAILS

CHURP consists of a suite of tiered protocols with dif-
ferent trust assumptions and communication complexity. The
execution starts at the top tier—a highly efficient optimistic

1An attack is outlined in [28] that breaks the original variant of Univari-
ateZeroShare in [5]. It does so by considering an adversarial model similar
to ours, where the adversary controls t nodes in old and new committees and
thus 2t in total, rather than t in total as in [5]. CHURP defeats this attack via
dimension-switching, using reduced shares during the handoff.

protocol. Only upon detection of adversarial misbehavior, does
the execution fall back to lower tiers. The three tiers of CHURP
and their relationship are shown in Fig. 4, detailed as below.

The top tier, Opt-CHURP, is the default protocol of CHURP.
It is optimistic and highly efficient: if no node misbehaves,
the execution completes incurring only O(n) on-chain and
O(n2) off-chain cost. As a design choice, Opt-CHURP does
not identify faulty nodes but rather just detects faulty behavior,
upon which the execution switches to a lower tier protocol,
also referred to as a pessimistic path.

The second tier is Exp-CHURP-A, the main pessimistic
path of CHURP. Unlike Opt-CHURP, Exp-CHURP-A is able
to identify and hence expel faulty nodes using proofs of cor-
rectness. Exp-CHURP-A trades performance for robustness: the
execution is guaranteed to complete as long as the adversarial
threshold t < n/2, but incurs O(n2) on-chain and O(n3) off-
chain worst-case cost.

Both Opt-CHURP and Exp-CHURP-A use KZG commitments
to achieve t < n/2. As noted before, this commitment scheme
requires a trusted setup phase to generate public keys with a
trapdoor. The trapdoor must be “destroyed” after the setup;
otherwise soundness is lost. KZG introduces the only trusted
setup in CHURP, and thus represents its main protocol-level
vulnerability. KZG also relies on a non-standard hardness
assumption, the t-Strong Diffie-Hellman assumption (t-SDH).

To hedge against soundness failure in KZG (either due to
a falsified trust assumption or a compromised trusted setup),
we introduce an additional verification step (StateVerif), which
can be executed at the end of Opt-CHURP or Exp-CHURP-A.
StateVerif is highly efficient—incurs only O(n) on-chain com-
plexity. Any fault detected by StateVerif indicates that KZG is
unusable, and triggers a KZG-free pessimistic path named Exp-
CHURP-B. Exp-CHURP-B has the same cost as Exp-CHURP-A,
but one drawback: It tolerates a lower adversarial threshold,
t < n/3. We defer the details of StateVerif to Appendix D-B.

In summary, the three tiers (subprotocols) of CHURP are:

1) Opt-CHURP: The default protocol of CHURP. It incurs
O(n) on-chain and O(n2) off-chain communication com-
plexity under the optimal resilience bound t < n/2.

2) Exp-CHURP-A: Invoked if Opt-CHURP fails. It incurs
O(n2) on-chain and O(n3) off-chain communication

6

complexity under the optimal bound t < n/2.
3) Exp-CHURP-B: Invoked if a soundness breach of KZG is

detected by StateVerif. It incurs the same cost as Exp-
CHURP-A, but requires t < n/3.

Table II summarizes the three tiers. Due to space constraints,
we present only Opt-CHURP in the body of the paper and
present Exp-CHURP-A and Exp-CHURP-B in Appendix D.

Start
Opt-CHURP
(t < n/2)

Exp-CHURP-A
(t < n/2)

Exp-CHURP-B
(t < n/3)

End

Trusted-setup failure Fault detected

Fig. 4: CHURP protocol tiers. Opt-CHURP is the default
protocol of CHURP. Exp-CHURP-A and Exp-CHURP-B are run
only if a fault occurs in Opt-CHURP.

A. Notation and Invariants

We now introduce the notation and invariants that will be
used to explain the protocols of CHURP. Notation introduced
in this section is summarized in Table I.

a) KZG polynomial commitments: KZG commitment al-
lows a prover to commit to a polynomial P (x) and later prove
the correct evaluation P (i) to a verifier. Further details can be
found in Appendix A and [22].

b) CHURP invariants: We say the system arrives at
a steady state after it completes a successful handoff. The
following invariants stipulate the desired properties of a steady
state. We use invariants to explain the protocol and reason
about its security.

Let C be a committee of n nodes {Ci}ni=1. Let B(x, y)
denote the asymmetric bivariate polynomial of degree 〈t, 2t〉
used to share the secret s, i.e., s = B(0, 0). In a steady state,
the following three invariants must hold:
• Inv-Secret: The secret s is the same across handoffs.
• Inv-State: Each node Ci holds a full share B(i, y) and

a proof to the correctness thereof. Specifically, the full
share B(i, y) is a degree-2t polynomial, and hence can
be uniquely represented by 2t + 1 points {B(i, j)}2t+1

j=1 .
The proof is a set of witnesses

{
WB(i,j)

}2t+1

j=1
.

• Inv-Comm: KZG commitments to reduced shares
({B(x, j)}2t+1

j=1) are available to all nodes.
The first invariant Inv-Secret ensures the secret remains

unchanged, a core functionality of CHURP.
Inv-State and Inv-Comm ensures the correctness of the

protocol. For example, recall from Section III that during
the handoff (the Share Reduction phase), nodes in the old

Opt-ShareReduce
1 : Public Input:

{
CB(x,j)

}
j∈[2t+1]

2 :
Input: Set of nodes {Ci}i∈[n] where each node Ci is given{
B(i, j),WB(i,j)

}
j∈[2t+1]

. Set of nodes {C′j}j∈[n′] s.t. n′ ≥ 2t+ 1

3 : Output: ∀j ∈ [2t+ 1], node C′j output B(x, j)

4 : Order {C′j} based on lexicographic order of their public keys

5 : Choose the first 2t+ 1 nodes, denoted as U ′, w.l.o.g., U ′ = {C′j}j∈[2t+1]

6 : node Ci:

7 : ∀j ∈ [2t+1], send a point and witness
{
B(i, j),WB(i,j)

}
to U ′j off-chain

8 : node U ′j :

9 : Wait and receive n points and witnesses,
{
B(i, j),WB(i,j)

}
i∈[n]

10 : ∀i ∈ [n], invoke VerifyEval(CB(x,j), i, B(i, j),WB(i,j))

11 : Interpolate any t+ 1 verified points to construct B(x, j)

Fig. 5: Opt-ShareReduce between the committees C and C′.

and the new committee switch their dimension of sharing,
from full shares to reduced shares. Using the commitments
(specified by Inv-Comm) and the witnesses (specified by Inv-
State), new committee members can verify the correctness of
reduced shares, thus the correctness of dimension-switching.

Note that to realize Inv-Comm, hashes of KZG commitments
are put on-chain for consensus while the commitments are
transmitted off-chain between nodes.

Notation Description

C(e−1), C(e) Old, New committee
B(x, y) Bivariate polynomial used to share the secret
〈t, k〉 Degree of 〈x, y〉 terms in B

RSi(x) = B(x, i) Reduced share held by Ci
FSi(y) = B(i, y) Full share held by Ci’s

CB(x,j) KZG commitment to B(x, j)
WB(i,j) Witness to evaluation of B(x, j) at i
Q(x, y) Bivariate proactivization polynomial
U ′ Subset of nodes chosen to participate in handoff
λi Lagrange coefficients

TABLE I: Notation

B. CHURP Setup

The setup phase of CHURP sets the system to a proper initial
steady state. To start, an initial committee C(0) is selected. The
setup of KZG is performed and the secret is shared among C(0).
Using their shares, members of C(0) can generate commitments
to install the three invariants.

The setup of KZG can be performed by a trusted party or a
committee assuming at least one of them is honest. The secret
to be managed by CHURP can be generated by a trusted party
or in a distributed fashion using, e.g., [29].

We leave committee selection out-of-scope for this paper.
Readers can refer to, e.g., [30], for a discussion.

C. CHURP Optimistic Path (Opt-CHURP)

Recall that Opt-CHURP transfers shares of some secret
s from an old committee, denoted C = C(e−1), to a new
committee C′ = C(e). CHURP can support both committee-size
and threshold changes, i.e., a transition from (n, t) to some

7

Opt-Proactivize
1 : Public Input:

{
CB(x,j)

}
j∈[2t+1]

2 :
Input: Set of nodes {C′i}i∈[n′]. Let U ′ = {C′j}j∈[2t+1], each node U ′j is
given B(x, j)

3 :
Output: U ′j outputs success and B′(x, j) for a degree-〈t, k〉 bivariate poly-
nomial B′(x, y) with B′(0, 0) = B(0, 0) (or) fail

4 : Public Output:
{
CB′(x,j)

}
j∈[2t+1]

5 :
Invoke (2t, 2t+ 1)-UnivariateZeroShare among the nodes {U ′j}j∈[2t+1] to
generate shares {sj }j∈[2t+1]

6 : node U ′j :

7 : Generate random t-degree polynomial Rj(x) such that Rj(0) = sj

8 : Denote the bivariate polynomial Q(x, y) where {Q(x, j) = Rj(x)}j∈[2t+1]

9 : Denote the bivariate polynomial B′(x, y) = B(x, y) +Q(x, y)

10 : node U ′j :

11 : Compute B′(x, j) = B(x, j) +Q(x, j) and Zj(x) = Rj(x)− sj

12 :
Send

{
gsj , CZj ,WZj(0)

, CB′(x,j)

}
off-chain to all nodes in C′, where

CZj = Commit(Zj); WZj(0)
= CreateWitness(Zj , 0); CB′(x,j) =

Commit(B′(x, j))

13 :
Publish hash of the commitments on-chain Hj =

H(gsj ||CZj ||WZj(0)
||CB′(x,j))

14 : node C′i:

15 :
∀j ∈ [2t+ 1], retrieve on-chain hash Hj , also receive{
gsj , CZj ,WZj(0)

, CB′(x,j)

}
off-chain

16 :

∀j ∈ [2t + 1], if Hj 6= H(gsj ||CZj ||WZj(0)
||CB′(x,j)) or

VerifyEval(CZj , 0, 0,WZj(0)
) 6= True or CB′(x,j) 6= CB(x,j) × CZj ×

gsj , output fail

17 : Using Lagrange coefficients in Eq. (1), if
∏2t+1
j=1 (gsj)

λ2tj 6= 1 output fail

18 : node U ′j :

19 : Output success and B′(x, j)

Fig. 6: Opt-Proactivize updates the reduced shares.

Opt-ShareDist

1 : Public Input:
{
CB′(x,j)

}
j∈[2t+1]

2 :
Input: Set of nodes {C′i}i∈[n′]. Let U ′ = {C′j}j∈[2t+1], each node U ′j is
given B′(x, j)

3 : Output: ∀i ∈ [n′], C′i outputs success and B′(i, y) (or) fail

4 : node U ′j :

5 :
∀i ∈ [n′], send a point and witness off-chain

{
B′(i, j),W ′B(i,j)

}
to C′i

where W ′B(i,j) = CreateWitness(B′(x, j), i)

6 : node C′i:

7 : Wait and receive points and witnesses
{
B′(i, j),W ′B(i,j)

}
j∈[2t+1]

8 : ∀j ∈ [2t+ 1], invoke VerifyEval(CB′(x,j), i, B
′(i, j),W ′B(i,j))

9 : If all 2t+ 1 points are correct, interpolate to construct B′(i, y)

10 : Output success and the full share B′(i, y)

11 : In all other cases, output fail

Fig. 7: Opt-ShareDist uses the updated reduced shares to
distribute full shares in C′.

(n′, t′) in any epoch. For ease of exposition here, though, we
allow n to change across epochs assuming a constant threshold
t. Changing the threshold is discussed in Appendix E.

Opt-CHURP proceeds in three phases. The first phase, Opt-
ShareReduce, performs dimension-switching to tolerate an
adversary capable of compromising 2t nodes across the old

and new committees. By the end of this phase, reduced shares
are constructed by members of the new committee. The second
phase, Opt-Proactivize, proactivizes these reduced shares so
that new shares are independent of the old ones. The third
and the final phase, Opt-ShareDist, restores full shares from
reduced shares, and thus completes a return to the steady state.

At the beginning of Opt-CHURP, each node in C′ requests
the set of KZG commitments from any node in C, say
C1. Recall that by the invariant Inv-Comm, each node in C
holds the KZG commitments to the current reduced shares,{
CB(x,j)

}2t+1

j=1
, while the corresponding hashes are on-chain.

The received commitments are verified using the on-chain
hashes. Optimistically, each node in C′ receives the correct set
of commitments. If a node receives corrupt ones, we switch to
a pessimistic path where the KZG commitments are published
on-chain. The phases of Opt-CHURP in detail are as follows:

1) Share Reduction (Opt-ShareReduce): The protocol starts
by choosing a subset U ′ ⊆ C′ of 2t + 1 members (possible
because |C′| > 2t). The nodes in U ′ are denoted

{
U ′j
}2t+1

j=1
.

Some members in the old committee C may have left the
protocol by this point. Let Calive ⊆ C denote the subset of
nodes that are present, w.l.o.g., let this subset be {Ci}|Calive|i=1 .

Recall that by the invariant Inv-State, each node Ci holds
a full share B(i, y). Now, Ci distributes points on its full
share allowing computation of reduced shares B(x, j) by all
members of U ′—making a dimension-switch from the degree-t
dimension of B(x, y) to the degree-2t dimension. Specifically,
Ci sends B(i, j) to U ′j , which interpolates the received points
to get its reduced share B(x, j). Note that in the optimistic
path we require all 2t + 1 nodes in U ′ to participate. If any
adversarial nodes fail to do so, we switch to a pessimistic path
as detailed above.

The received points are accompanied by witnesses allowing
for verification using the KZG commitments received previ-
ously. Since t + 1 correct points are sufficient to reconstruct
the reduced share, we need at least 2t+1 points (|Calive| > 2t)
to guarantee liveness.

The size of Calive is governed by the bounded churn rate
α, i.e., |Calive| ≥ |C|(1−α). Thus, the condition for liveness,
|Calive| > 2t, places a lower bound on the committee size,
|C|(1− α) > 2t or |C| > b2t/1−αc.

The protocol Opt-ShareReduce is formally specified in
Fig. 5. At the end of Opt-ShareReduce, dimension-switching
is complete and each node U ′j has a reduced share B(x, j).

Communication complexity: Each node in U ′ receives O(n)
points, so Opt-ShareReduce incurs O(nt) off-chain cost.

2) Proactivization (Opt-Proactivize): In this phase, U ′
proactivizes the bivariate polynomial B(x, y)—a key step in
generating new shares independent of the old ones held by
members of C. The polynomial B(x, y) is updated using
a random bivariate polynomial Q(x, y) generated such that
Q(0, 0) = 0. The result is a new polynomial B′(x, y) =
B(x, y) + Q(x, y). The fact that Q(0, 0) = 0 ensures preser-
vation of our first invariant Inv-Secret.

8

We achieve this by adapting the bivariate 0-sharing tech-
nique (BivariateZeroShare) presented in Section IV to handle
active adversaries. Recall that BivariateZeroShare comprises
two steps. First, a univariate 0-sharing subroutine generates
shares of the number 0. These shares are then re-shared in a
second step resulting in a sharing of Q(x, y) among C′.

By the end of the previous, i.e., Share Reduction phase, ev-
ery node U ′j in the set of 2t+1 nodes U ′ holds a reduced share
B(x, j). Now, by the end of the current, i.e., Proactivization
phase, we update these reduced shares by adding Q(x, j) from
the generated bivariate polynomial Q(x, y).

The protocol starts by invoking the 0-sharing subrou-
tine UnivariateZeroShare introduced previously, which is the
first step of BivariateZeroShare. Specifically, (2t, 2t + 1)-
UnivariateZeroShare is run among U ′ to generate shares sj at
each U ′j . To handle active adversaries, U ′j sends a commitment
to the share, gsj , to all other nodes in U ′ (where g is a
publicly known generator). Lagrange coefficients {λ2tj }j can
be precomputed to interpolate and verify if the shares form a 0-
sharing,

∑2t+1
j=1 λ2tj sj = 0. Translating it to the commitments,

all nodes check the following:

2t+1∏
j=1

(gsj)λ
2t
j = 1 . (1)

Then, U ′j generates a random degree-t univariate polynomial
Rj(x) that encodes the node’s share sj , i.e., Rj(0) = sj .
Together, the 2t+ 1 polynomials uniquely define a 0-hole bi-
variate polynomial Q(x, y) such that {Q(x, j) = Rj(x)}2t+1

j=1 .
U ′j also updates the reduced share, B′(x, j) = B(x, j)+Rj(x).
Points on B′(x, j) will be distributed to the entire committee
C′ in the next phase of Opt-CHURP. (We make a modification
to BivariateZeroShare: In the re-sharing step of BivariateZe-
roShare, points on Q(x, j) were distributed directly.)

Each U ′j sends constant-size information to other nodes off-
chain enabling verification of the above step. Let Zj(x) =
Rj(x) − sj denote a 0-hole polynomial, the commitment
to Zj(x), CZj , and a witness to the evaluation at zero are
distributed enabling verification of the statement: Zj(0) = 0;
equivalent to Rj(0) = sj . The commitment to the updated
reduced share B′(x, j) is also distributed. Since B′(x, j) =
B(x, j) + Zj + sj , the homomorphic property of the com-
mitment scheme allows other nodes to verify if CB′(x,j) =
CB(x,j) × CZj × Csj where Csj = gsj and the other two
commitments were received previously.

In total, each U ′j generates the following set of com-
mitment and witness information during Opt-Proactivize,{
gsj , CZj ,WZj(0), CB′(x,j)

}
. While this set is transmitted off-

chain to all nodes in the full committee C′, a hash of it
is published on-chain. The received commitments can then
be verified using the published hash, thereby ensuring that
everyone receives the same commitments. Note that the set
of commitments is sent to C′ instead of just the subset U ′
to preserve the invariant Inv-Comm, i.e., ensure that all nodes
hold KZG commitments to the updated reduced shares.

The verification mechanisms used in this protocol are suf-
ficient to detect any faulty behavior, although they do not
identify which nodes are faulty. Thus, the adversary can disrupt
the protocol without revealing his / her nodes. For example,
it could send corrupt commitments to nodes selectively. Al-
though the published hash reveals this, a verifiable accusation
cannot be made since the commitments were sent off-chain.
Another example would be a corrupt node sending points from
a non-0-hole polynomial in the UnivariateZeroShare protocol.
Again, we detect such a fault but cannot identify which nodes
are faulty. So detection of a fault simply leads to a switch
to the pessimistic path, Exp-CHURP-A. While Exp-CHURP-A
is capable of identifying misbehaving nodes, note that we do
not retroactively identify the faulty nodes from Opt-CHURP.

The protocol Opt-Proactivize is formally specified in Fig. 6.
By the end of this, if no faults are detected, each U ′j holds
B′(x, j). The invariants Inv-Secret and Inv-Comm hold as s =
B′(0, 0) and all of C′ hold the KZG commitments respectively.
In the next phase, we preserve the other invariant Inv-State.
Communication complexity: Each node in U ′ publishes a
hash on-chain and transmits O(t) data off-chain. Hence, Opt-
Proactivize incurs O(t) on-chain and O(t2) off-chain cost.

3) Full Share Distribution (Opt-ShareDist): In the final
phase, full shares are distributed to all members of the new
committee, thus preserving the Inv-State invariant. A success-
ful completion of this phase marks the end of handoff.

By the end of the previous phase, each U ′j in the chosen
subset of nodes U ′ ⊆ C′ holds a new reduced share B′(x, j).

Now, U ′j distributes points on B′(x, j), allowing computa-
tion of full shares B′(i, y) by all members of C′—we make a
dimension-switch from the degree-2t dimension of B′(x, y) to
the degree-t dimension. Specifically, each C′i receives 2t + 1
points {B′(i, j)}2t+1

j=1 , which can be interpolated to compute
B′(i, y), its full share. This is made verifiable by sending
witness along with the points.

Since the point distribution is off-chain, a faulty node can
send corrupt points without getting identified similar to the
previous phase. In this event, we switch to the pessimistic path
Exp-CHURP-A without identifying which nodes are faulty.

The protocol Opt-ShareDist is formally specified in Fig. 7.
If all nodes receive correct points, this phase ends successfully
and the optimistic path ends. The remaining invariant Inv-
State is fulfilled as each node in C′ receives a full share, and
hence the system returns to the steady state. After a successful
completion of CHURP, we require that members of the old
committee C delete their old full shares and members of U ′
delete their new reduced shares.
Communication complexity: Each node in C′ receives 2t + 1
points, thus Opt-ShareDist incurs O(nt) off-chain cost (assum-
ing O(n′) = O(n)).

Each of the three phases in Opt-CHURP (and thus Opt-
CHURP itself) incur no more than O(n) on-chain and O(n2)
off-chain cost assuming O(t) = O(n). In terms of round com-
plexity, it completes in three rounds (one for each phase) that
does not depend on the committee size. Due to lack of space,

9

Protocol On-chain, Off-chain Threshold Optimistic

Opt-CHURP O(n), O(n2) t < n/2 Yes
Exp-CHURP-A O(n2), O(n3) t < n/2 No
Exp-CHURP-B O(n2), O(n3) t < n/3 No

Opt-Schultz-MPSS O(n), O(n4) t < n/3 Yes
Schultz-MPSS O(n2), O(n4) t < n/3 No

TABLE II: On-chain cost and Off-chain costs of all protocols
for the dynamic setting. An optimistic protocol ends success-
fully only if no faulty behavior is detected.

we reiterate that the pessimistic paths of CHURP are discussed
in Appendix D. Table II compares on-chain and off-chain costs
of the three paths of CHURP and Schultz-MPSS [17], the latter
will be explained in more detail in Section VI-C.
Note on security: Note that the adversary can learn at most
2t reduced shares and t full shares of B(e)(x, y) for a given
epoch e. Before Opt-CHURP ends, the adversary learns t full
shares and t reduced shares of epoch e from t corrupted nodes
in C(e). In the subsequent handoff between committees C(e)
and C(e+1), the adversary learns (at most) another t reduced
shares for epoch e, during the dimension-switch of the Opt-
ShareReduce phase, leading to a total worst-case leakage of 2t
reduced shares and t full shares of B(e)(x, y). It can be shown
that the above leakage is not enough to compute B(e)(x, y).
Since shares are proactivized in the handoff, subsequent cor-
ruptions do not leak any more information about B(e)(x, y).

Theorem 1. Protocol Opt-CHURP securely realizes the func-
tionality FOpt−CHURP, under the t-strong Diffie-Hellman as-
sumption (t-SDH) of the KZG scheme.

We give the ideal functionality FOpt−CHURP and the simu-
lator S in Appendix A, and show that it is indistinguishable
from the real world, which proves the security of our protocol
Opt-CHURP as per our security definition.

VI. CHURP IMPLEMENTATION & EVALUATION

We now report on implementation and experiments with
CHURP, including a comparison with the state-of-the-art al-
ternative, Schultz-MPSS [17].

A. Implementation

We implemented Opt-CHURP in about 2, 100 lines of Go
code. Our implementation uses the GNU Multiprecision Li-
brary [31] and the Pairing-Based Cryptography Library [32]
for cryptographic primitives, and gRPC [33] for network
infrastructure. We plan to open-source our code for CHURP
in the near future.

For polynomial arithmetic, we used the polynomial ring
Fp[x] for a 256-bit prime p. For the KZG commitment scheme,
we used a type A pairing on an elliptic curve y2 = x3 + x
over Fq for a 512-bit q. The order of the EC group is also p.
We use SHA256 for hashing.

Blockchain Simulation: CHURP can be deployed on both per-
missioned and permissionless blockchains. To abstract away

the specific choice, we simulate one using a trusted node.
Note that when deployed in the wild, writing to the blockchain
would incur an additional constant latency.

B. Evaluation

In our evaluation, experiments are run in a distributed
network of up to 1000 EC2 c5.large instances, each with
2 vCPU and 4GB of memory. Each instance acts as a node in
the committee and the handoff protocol is executed assuming
a static committee. All experiments are averaged over 1000
epochs, i.e., 1000 invocations of Opt-CHURP. We measure
three metrics for each epoch of the protocol: the latency (the
total execution time), the on-chain communication complexity
(the total bytes written to the blockchain (i.e. the trusted
node)), and the off-chain communication complexity (the total
bytes transmitted between all nodes). The evaluation results
are presented below.

1) Latency: In the first set of experiments, all EC2 instances
belong to the same region, also referred to as the LAN
setting. This setting is useful to understand the time spent
in computation. Fig. 8 shows the latency of Opt-CHURP.
The experimental results show a quadratic increase consistent
with the O(n2) asymptotic computational complexity of Opt-
CHURP and suggests a low constant, e.g., for a committee of
size 1001 the total protocol execution time is only about 3
minutes (Fig. 8b). As noted before, this does not include the
additional latency for on-chain writes. Note that Opt-CHURP
involves only 1 on-chain write per node which happens at the
end of Opt-Proactivize, and in Ethereum currently each write
takes about 15 seconds. Fig. 8b also shows that among the
three phases, Opt-ShareDist dominates the execution time due
to the relatively expensive O(n) calls to KZG’s CreateWitness
per node. (CreateWitness involves O(n) group element expo-
nentiation, thus a total of O(n2) computation.)

In the second set of experiments, we select EC2 instances
across multiple regions in US, Canada, Asia and Europe, also
referred to as the WAN setting. In this setting the network
latency is relatively unstable, although even in the worst-
case it is still sub-second. Hence, during a handoff of Opt-
CHURP in the WAN setting, we expect a constant increase in
the latency over the LAN setting. Moreover, we expect this
constant to be relatively small compared to the time spent
in computation. We validate our hypothesis—for a committee
size of 100, the WAN latency is 4.54 seconds while the
LAN latency is 2.92 seconds (Fig. 8a), i.e., the additional
time spent in network latency is around 1.6 sec and constant
across different committee sizes as expected. Note that we
were unable to execute experiments in the WAN setting for
committee sizes beyond 100 due to scaling limitations in the
Amazon infrastructure. (We plan to get around this soon.)

2) On-chain communication complexity: Opt-CHURP in-
curs a linear on-chain communication complexity—n hashes,
i.e. 32n bytes, are written to the blockchain in each handoff.

3) Off-chain communication complexity: Fig. 9 compares
the off-chain complexity for different committee sizes for

10

20 40 60 80 100

0

2

4

6

Nodes

L
at

en
cy

(s
ec

)

Opt-ShareReduce

Opt-Proactivize

Opt-ShareDist

20 40 60 80 100

0

2

4

6

(a) Opt-CHURP latency for the LAN & WAN setting with committee
sizes 11-101, in increments of 10. The left bar is LAN latency and
the right bar is WAN latency.

200 400 600 800 1,000

0

50

100

150

200

Nodes

L
at

en
cy

(s
ec

)

Opt-ShareReduce

Opt-Proactivize

Opt-ShareDist

(b) Opt-CHURP latency for the LAN setting with committee size 101-
1001, in increments of 100.

Fig. 8: Latency

Opt-CHURP and [17], a discussion about the comparison is
in Section VI-C. Now, we discuss the off-chain costs of Opt-
CHURP. The concrete performance numbers are consistent
with the expected O(n2) asymptotic complexity.

The off-chain data transmitted per node includes: 2n (poly-
nomial point, witness) pairs in the share reduction and the
share distribution phase, and n elements of Fp in the proac-
tivization phase; each node also sends 1 commitment to share,
3 commitments to polynomials, and 1 witness. With aforemen-
tioned parameters, a commitment to a t-degree polynomial
is of size 65 × t bytes (with compression) and points on
polynomial are of of size 32B. For example, for t = 50
and n = 101, the off-chain complexity of Opt-CHURP is
about 226n2 + 325n ≈ 2.3MB. In Fig. 9, the expected curve
is slightly below the observed data points because of trivial
header messages unaccounted in the above calculations.

As we’ll show now, the above is about 2300x lower than
the communication complexity of the state of the art.

C. Comparison with Schultz’s MPSS

The Mobile Proactive Secret Sharing (MPSS) protocol of
Schultz et al. [17], referred to as Schultz-MPSS hereafter,
achieves the similar goal as CHURP in asynchronous settings,
assuming t < n/3. Compared to [17], Opt-CHURP achieves an
O(n2) improvement for off-chain communication complexity.
To evaluate the concrete performance improvement, we also
implemented the optimistic path of Schultz-MPSS (Section 5 of
[17] and evaluated the communication complexity empirically.

0 200 400 600 800 1,000
10−2

103

108

Nodes

O
ff

-c
ha

in
co

m
m

.c
om

p.
(M

by
te

s)

Opt-CHURP
Opt-Schultz-MPSS

Fig. 9: Off-Chain communication complexity for Opt-CHURP
and Schultz-MPSS, with log-scale y-axis. Points show ex-
perimental results; expected polynomial curves (respectively
quadratic and quartic) are also shown.

1) Asymptotic improvement: Schultz-MPSS extends the us-
age of expensive blinding polynomials introduced by Herzberg
et al. [5] to enable a dynamic committee membership. We
recall briefly the asymptotic complexity of Schultz-MPSS
and refer readers to [17] for details. Each node in the old
committee generates a proposal of size O(n2) and send it to
other nodes, resulting in an O(n4) off-chain communication
complexity in total. Each node then validates the proposals
and reaches consensus on the set of proposals to use by
sending O(n) accusations to the primary, incurring a O(n2)
on-chain communication complexity. In the optimistic case
where no accusation is sent—labelled Opt-Schultz-MPSS—the
consensus publishes O(n) hashes of proposals on chain and
thus only incurs O(n) on-chain communication complexity.

Table II compares the asymptotic communication complex-
ity of Schultz-MPSS and CHURP. Schultz-MPSS has the same
on-chain complexity as CHURP, but is O(n2) more expensive
for off-chain communication.

2) Performance evaluation: We implemented the optimistic
path of Schultz-MPSS (Section 5 of [17]) in about 3, 100
lines of Go code. To adapt Schultz-MPSS to the blockchain
setting, we replace the BFT component of Schultz-MPSS with
a trusted node. Fig. 9 compares the off-chain communication
complexity of Opt-Schultz-MPSS and Opt-CHURP.

For practical parameterizations, our experiments show that
Opt-CHURP can incur orders of magnitude less (off-chain)
communication complexity than Opt-Schultz-MPSS. For exam-
ple, for a committee of size 100, the off-chain communication
complexity of Schultz-MPSS is 53.667n4 ≈ 5.3GB, whereas
that for Opt-CHURP is only 2.3MB, a 2300x improvement!
Since Schultz-MPSS incurs excessive (Gigabytes) off-chain
cost, we do not run it for committee sizes beyond 100.

VII. POINT-TO-POINT COMMUNICATION TECHNIQUE

CHURP takes advantage of a hybrid on-chain / off-chain
communication model to minimize communication costs. A
blockchain is used to reach consensus on a total ordering of
messages, while much cheaper and faster off-chain P2P com-
munication transmits messages with no ordering requirement.

11

Off-chain P2P channels can be implemented in different
ways depending on the deployment environment. However, in
a decentralized setting, establishing direct off-chain connec-
tion between nodes is undesirable, as it would compromise
nodes’ anonymity. Revealing network-layer identities (e.g., IP
addresses) would also be dangerous, as it could lead to targeted
attacks. One can instead use anonymizing overlay networks,
such as Tor—but at the cost of considerable additional setup
cost and engineering complexity.

Alternatively, off-chain channels can be implemented as an
overlay on existing blockchain infrastructure. In this section,
we present Transaction Ghosting, a technique for cheap P2P
messaging on a blockchain. The key trick to reduce cost is to
overwrite transactions so that they are broadcast, but subse-
quently dropped by the network. Most of these transactions—
and their embedded messages—are then essentially broadcast
for free. We focus on Ethereum, but similar techniques can
apply to other blockchains, e.g., Bitcoin.

A. Transaction Ghosting

A (simplified) Ethereum transaction tx = (n,m, g) includes
a nonce n, payload m, and a per-byte gas price g paid to the
miner of tx. For a basic (“send”) transaction, Alice pays a
miner f0 + |m| × g, where f0 is a base transaction cost and
|m| is the payload size. (We make this more precise below.)

Alice sends tx to network peers, who add tx to their pool of
unconfirmed transactions, known as the mempool [34]. They
propagate tx so that it can be included ultimately in all peers’
view of the mempool. tx remains in the mempool until a miner
includes it in a block, at which point it is removed and f0 +
|m|×g units of currency is transferred from Alice to the miner.

The key observation is, until tx is mined, Alice can over-
write it with another transaction tx′. When this happens, tx
is dropped from the mempool. Thus, both tx and tx′ are
propagated to all nodes, but Alice only pays for tx′.

Two additional techniques can further reduce costs. Alice
can embed m in tx only, putting no message data in tx′. She
then only pays nothing for the data containing m, only the cost
associated with tx′. Additionally, this technique generalizes to
multiple overwrites, i.e., Alice can embed a large message m
in multiple transactions {txi}i∈[k−1], which is useful given
bounds (e.g., 32kB in Ethereum) on transaction sizes. Alice
will still pay only the cost of the final transaction txk.

B. Choosing overwrite rate k

An optimal strategy is to make k as high as possible, i.e.,
overwrite many times. Ethereum, though, imposes a constraint
on overwriting: the sender must raise the transaction fee in
a fresh transaction by at least a minimum fraction ρ. (In
Ethereum clients, ρ ranges from 10% to 12.5%).

Here we determine the optimal value of k. Recall that the
fee for a transaction with |m| bytes of data is f = f0 + g ×
|m|, for constants f0 and g. Overwriting transactions with a
fractional fee increase of ρ results in an average per-byte fee
of f×ρk

(1+k)×|m| for k overwritings, assuming the kth transaction
gets mined. For ρ = 12.5%, the optimal strategy is to write or

overwrite k = 7 times, yielding average cost 0.29 × f
|m| per

byte, about 70% less than without overwriting. Moreover, if
we send the first k−1 transactions with |m| bytes of data and
the last one empty, the average cost is driven down to f0×ρk

|m|×k
per byte (because one only pays for the last empty transaction).

The above analysis assumes the kth transaction can always
successfully overwrite previous ones, which happens in our
experiments for two reasons. First, the kth transaction is
smaller and higher-priced, thus preferred by miners; second,
previous transactions usually remain pending for a long time
(tens of minutes or longer), always allowing enough time for
the kth to fully propagate.

C. Experiments

On-chain Transaction Ghosting

Bandwidth (KB/sec) ≤ 6.4 32.3 (9.31)
Latency (sec) varies (Fig. 10) 1.09 (0.82)
Message transmission cost (USD/MB) varies (Fig. 10) $0.06 ($0.02)
Transaction delivery rate 100% 92.2% (14.2%)

TABLE III: Comparison between communication via the
Ethereum blockchain and via Transaction Ghosting. Numbers
in parentheses are standard deviations. The cost for Transac-
tion Ghosting is based on an initial gas price of 1GWei. See
Section VII-C for details.

We validate our ideas experimentally on the Ethereum
blockchain (mainnet). The sender and receiver are full nodes
connected to the Ethereum P2P network—with no out-of-band
channel. The goal is for the sender to transmit messages to
the receiver by embedding them in pending transactions. To
overwrite a pending transaction in Ethereum, the sender reuses
the same nonce and raises the gas price.

We set k = 7 in the experiment. Each of the first 7
transactions contains 31KB of data and the 8th is empty. A
total of approximately 100MB data is successfully transmitted
in 4, 200 transactions, in about 1 hour. Table III summarizes
the results of our experiments, which we now discuss.

a) Bandwidth: Experimentally, we can propagate over-
written transactions at a rate of just under once a second,
yielding approximate bandwidth 32.3KB/s, as the maximum
permitted per-transaction data is 32KB [35]. While this suf-
fices for CHURP, we believe more engineering would yield
higher bandwidth. Studies of blockchain arbitrage [36] show
that arbitrageurs can overwrite transactions in hundreds of
milliseconds.

We emphasize that the shown bandwidth is per channel.
One can establish N concurrent channels by overwriting N
transactions simultaneously.

b) Message-transmission cost: Transaction costs for
message delivery in Transaction Ghosting are extremely low:
$0.06 per megabyte on average, with gas price 1 GWei.
The gas price should be chosen minimum required to get
transactions relayed by peer nodes. Empirically of late, a gas
price between 1 to 2 GWei offers good delivery rate, which
we now explain.

12

c) Transaction delivery rate: Although a sender can
make sure overwriting succeeds in her mempool, overwritten
transactions are not guaranteed to arrive on the receiver’s side.
Possible reasons are an overloaded mempool [34], network
congestion and/or out-of-order delivery. Generally transactions
with a higher transaction fee are relayed preferentially by peer
nodes, and less frequently dropped. The 8th transaction in
our rewriting sequence has the highest fee and the smallest
payload, and is always delivered in our experiments.

Overall, we observe an average transaction delivery rate of
91.9% in our experiments, or a ≈ 9% loss rate. Our Transac-
tion Ghosting is thus an erasure channel. A sender can either
erasure-code m to ensure full delivery without interaction with
the receiver, or use a standard network retransmission protocol
so the receiver can signal a delivery failure. These techniques
are out of scope for our exploration here.

D. Comparison to on-chain communication

For comparison, we estimate the same metrics for on-
chain communication, i.e. using the Ethereum blockchain as
a message carrier. The results are summarized in Table III.

An upper bound on the on-chain bandwidth is estimated
assuming a 8 million block gas limit. Each block can hold at
most three 32KB transactions, thus a total of 96KB data every
15 seconds, or 6.4 KB/s.

The message transmission cost per megabyte is estimated
as that of sending 32 transactions with 32KB data in each,
assuming an exchange rate of 1ETH = $200. The latency, i.e.,
the time between a transaction first appears in the mempool
and the time it is mined, depends on the gas price and the
network condition. A lower latency requires a higher gas price
and thus a higher transmission cost. Several services such
as [37], [38] collect metrics for gas price vs. latency tradeoff.
We used [37] for our estimation. The tradeoff between latency
and message transmission cost is shown in Fig. 10.

Notes: While our techniques may seem an abuse of the
Ethereum P2P network, the idea of leveraging the network
for alternative forms of communication has been under con-
sideration by the community for some time; see, e.g., [39].

At the time of writing, gas prices in Ethereum have
been consistently low for a period of approximately two
months [40], preventing experimentation in a high-gas-price
regime. We believe, however, that the same techniques would
still work in such settings—with higher overall cost.

VIII. RELATED WORK

Verifiable Secret Sharing (VSS): Polynomial-based secret
sharing was introduced by Shamir [4]. Feldman [20] and
Pedersen [21] proposed an extension called verifiable secret
sharing (VSS), in which dealt shares’ correctness can be
verified against a commitment of the underlying polynomial.
In these schemes, a commitment to a degree-t polynomial has
size O(t). The polynomial-commitment scheme of Kate et
al. [22] (KZG) reduces this to O(1), and is adopted for secret
sharing in, e.g., [23], and in CHURP.

0 100 200 300

0

200

400

(0.06 s, 1.09 USD/MB)

Message transmission cost (USD/MB)

L
at

en
cy

(s
ec

)

On-chain (Ethereum)
Transaction Ghosting

Fig. 10: Tradeoff in latency vs. message transmission cost. The
blue curve shows the observed on-chain tradeoff. The red dot
at (0.06 s, 1.09 USD/MB) corresponds to Transaction Ghosting.

Protocol Dynamic Adversary Network Threshold Cost

Herzberg et al. [5] No active synch. t < n/2 O(n2)
Cachin et al. [11] No active asynch. t < n/3 O(n4)

Desmedt et al. [48] Yes passive synch. t < n/2 O(n2)
Wong et al. [15] Yes active synch. t < n/2 exp(n)
Zhou et al. [16] Yes active asynch. t < n/3 exp(n)

Schultz-MPSS [17] Yes active asynch. t < n/3 O(n4)
CHURP Yes active synch. t < n/2 O(n3)

TABLE IV: Comparison of Proactive Secret Sharing (PSS)
schemes—those above the line do not handle dynamic commit-
tees while the ones below do so. Cost indicates the off-chain
communication complexity.

Proactive Secret Sharing (PSS): Proactive security, the idea
of refreshing secrets to withstand compromise, was first pro-
posed by Ostrovsky and Yung [41] for multi-party computation
(MPC). It was first adapted for secret sharing by Herzberg et
al. [5], whose techniques continue to be used in subsequent
works, e.g., [42], [43], [44], [45], [17], [46], [47], and in
CHURP (in UnivariateZeroShare). As noted, a result of in-
dependent interest in our work is an O(n) reduction in the
off-chain communication complexity of [5]. (See Fig. 17.)

All the above schemes assume a synchronous network
model and computationally bounded adversary; CHURP does
too, given its blockchain setting. PSS schemes have also been
proposed in asynchronous settings [11], [16], [17] and uncon-
ditional settings [18], [19]. Nikov and Nikova [28] provide
a survey of the different techniques used in PSS schemes
along with some attacks (which CHURP addresses via its novel
dimension-switching techniques).

Dynamic committee membership: Desmedt and Jajodia [48]
propose a scheme that can change the committee and threshold
in a secret-sharing system, but is unfortunately not verifiable.
Wong et al. [15] build a verifiable scheme assuming that the
nodes in the new committee are non-faulty. Subsequent works
by Zhou et al. [16] and Schultz et al. [17] were the first to allow
for dynamic committee membership with an adversarial model
similar to ours. While [16] incurs exponential communication
cost, [17] improves it to O(n4) off-chain cost. In contrast,
as Table IV shows, CHURP achieves worst-case O(n3) cost.

Baron et al. [14], [49] recently proposed dynamic-
committee schemes with O(1) communication complexity
per secret. Their scheme has impractically high constants,
though, and assumes amortization over large numbers of

13

secrets (specifically for MPC), while we want efficiency even
for small numbers of secrets.
Bivariate polynomials: Bivariate polynomials have been ex-
plored extensively in the secret-sharing literature, to build VSS
protocols [50], [11], [51], for secret-sharing with unconditional
security [18], [19], [47], etc. Few works [12], [13], however,
have considered application to dynamic committees for secret
sharing, and these have been limited to passive adversaries.
CHURP’s novel use of dimension-switching provides security
against active, adaptive adversaries.

0-sharing, the technique of generating a 0-hole polynomial
has been widely used for proactive security since the work
of [5]. As we explain before, prior works [12], [13], [19]
have naively extended these to the bivariate case leading to
expensive 0-sharing protocols. Instead, CHURP applies known
share re-sharing techniques [52], [48] to build an efficient
bivariate 0-sharing protocol.

REFERENCES

[1] “Decentralized identity foundation (DIF) homepage,” https://identity.
foundation/, 2018.

[2] J. J. Roberts and N. Rapp, “Exclusive: Nearly 4 Million Bitcoins
Lost Forever, New Study Says,” 11 2017. [Online]. Available:
http://fortune.com/2017/11/25/lost-bitcoins/

[3] B. Armstrong, “Coinbase is not a wallet,” https://blog.coinbase.com/
coinbase-is-not-a-wallet-b5b9293ca0e7, Feb. 25, 2018.

[4] A. Shamir, “How to share a secret,” Communications of the ACM, 1979.
[5] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret

sharing or: How to cope with perpetual leakage,” in Annual International
Cryptology Conference, 1995.

[6] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz, O. Rottenstreich,
R. Tamari, and D. Yakira, “Helix: a scalable and fair consensus algo-
rithm,” Technical report, Orbs Research, Tech. Rep., 2018.

[7] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contract execution,” arXiv
preprint arXiv:1804.05141, 2018.

[8] M. Egorov, M. Wilkison, and D. Nuñez, “Nucypher kms: decentralized
key management system,” arXiv preprint arXiv:1707.06140, 2017.

[9] E. Kokoris-Kogias, E. C. Alp, S. D. Siby, N. Gailly, L. Gasser,
P. Jovanovic, E. Syta, and B. Ford, “Calypso: Auditable sharing of
private data over blockchains,” Cryptology ePrint Archive, 2018.

[10] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in Security and Privacy Workshops, 2015.

[11] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous
verifiable secret sharing and proactive cryptosystems,” in 9th ACM
conference on Computer and communications security, 2002.

[12] N. Saxena, G. Tsudik, and J. H. Yi, “Efficient node admission for short-
lived mobile ad hoc networks,” in 13th IEEE International Conference
on Network Protocols, 2005.

[13] S. Dolev, J. Garay, N. Gilboa, and V. Kolesnikov, “Swarming secrets,” in
Allerton Conference on Communication, Control, and Computing, 2009.

[14] J. Baron, K. El Defrawy, J. Lampkins, and R. Ostrovsky,
“Communication-optimal proactive secret sharing for dynamic groups,”
in International Conference on Applied Cryptography and Network
Security, 2015.

[15] T. M. Wong, C. Wang, and J. M. Wing, “Verifiable secret redistribution
for archive systems,” in the first International Security in Storage
Workshop, 2002.

[16] L. Zhou, F. B. Schneider, and R. Van Renesse, “Apss: Proactive secret
sharing in asynchronous systems,” ACM transactions on information and
system security (TISSEC), 2005.

[17] D. A. Schultz, B. Liskov, and M. Liskov, “Mobile proactive secret
sharing,” in ACM symposium on Principles of distributed computing,
2008.

[18] D. R. Stinson and R. Wei, “Unconditionally secure proactive secret shar-
ing scheme with combinatorial structures,” in International Workshop on
Selected Areas in Cryptography, 1999.

[19] M. Nojoumian, D. R. Stinson, and M. Grainger, “Unconditionally secure
social secret sharing scheme,” IET information security, 2010.

[20] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in Foundations of Computer Science, 1987., 28th Annual
Symposium on, 1987.

[21] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in Annual International Cryptology Conference,
1991.

[22] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in International Conference on
the Theory and Application of Cryptology and Information Security,
2010.

[23] M. Backes, A. Kate, and A. Patra, “Computational verifiable secret
sharing revisited,” in International Conference on the Theory and
Application of Cryptology and Information Security, 2011.

[24] R. Canetti, “Universally composable security: A new paradigm for cryp-
tographic protocols,” in IEEE Symposium on Foundations of Computer
Science, 2001.

[25] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems, 2002.

[26] P. Syverson, R. Dingledine, and N. Mathewson, “Tor: The secondgen-
eration onion router,” in Usenix Security, 2004.

[27] Ethereum, “Devp2p.” [Online]. Available: https://github.com/ethereum/
devp2p

[28] V. Nikov and S. Nikova, “On proactive secret sharing schemes,” in
International Workshop on Selected Areas in Cryptography, 2004.

[29] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques, 1999.

[30] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algo-
rand: Scaling byzantine agreements for cryptocurrencies,” in the 26th
Symposium on Operating Systems Principles, 2017.

[31] “Go language interface to gmp - gnu multiprecision library (golang),”
https://github.com/ncw/gmp, (Accessed on 11/14/2018).

[32] “The pbc go wrapper,” https://github.com/Nik-U/pbc, (Accessed on
11/14/2018).

[33] “grpc: A high performance, open-source universal rpc framework,” https:
//grpc.io/, (Accessed on 11/22/2018).

[34] Parity, “Transaction queue,” https://wiki.parity.io/Transactions-Queue.
[35] geth, “The maximum data size in a transaction is

32 KB,” https://github.com/ethereum/go-ethereum/blob/
6a33954731658667056466bf7573ed1c397f4750/core/tx pool.go#L570.

[36] frontrun.me, “Visualizing Ethereum gas auctions,” http://frontrun.me/.
[37] “ETH gas station — consumer oriented metrics for the ethereum gas

market,” https://ethgasstation.info/, (Accessed on 11/13/2018).
[38] “Ethereum gas price tracker,” https://etherscan.io/gastracker, (Accessed

on 11/13/2018).
[39] Ethereum, “Whisper.” [Online]. Available: https://github.com/ethereum/

wiki/wiki/Whisper
[40] Etherscan, “Ethereum average gasprice chart,” https://etherscan.io/chart/

gasprice, [Online; accessed 2018].
[41] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks,”

in ACM symposium on Principles of distributed computing, 1991.
[42] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold

dss signatures,” in International Conference on the Theory and Appli-
cations of Cryptographic Techniques, 1996.

[43] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung,
“Proactive public key and signature systems,” in the 4th ACM conference
on Computer and communications security, 1997.

[44] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally
efficient multi-authority election scheme,” European transactions on
Telecommunications, 1997.

[45] H. Luo, P. Zerfos, J. Kong, S. Lu, and L. Zhang, “Self-securing ad
hoc wireless networks,” in International Symposium on Computers and
Communications, 2002.

[46] K. D. Bowers, A. Juels, and A. Oprea, “Hail: A high-availability and
integrity layer for cloud storage,” in the 16th ACM conference on
Computer and communications security, 2009.

[47] M. Nojoumian and D. R. Stinson, “On dealer-free dynamic threshold
schemes.” Adv. in Math. of Comm., 2013.

[48] Y. Desmedt and S. Jajodia, “Redistributing secret shares to new ac-
cess structures and its applications,” Technical Report ISSE TR-97-01,
George Mason University, Tech. Rep., 1997.

14

https://identity.foundation/
https://identity.foundation/
http://fortune.com/2017/11/25/lost-bitcoins/
https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7
https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7
https://github.com/ethereum/devp2p
https://github.com/ethereum/devp2p
https://github.com/ncw/gmp
https://github.com/Nik-U/pbc
https://grpc.io/
https://grpc.io/
https://wiki.parity.io/Transactions-Queue
https://github.com/ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/core/tx_pool.go#L570
https://github.com/ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/core/tx_pool.go#L570
http://frontrun.me/
https://ethgasstation.info/
https://etherscan.io/gastracker
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice

[49] J. Baron, K. El Defrawy, J. Lampkins, and R. Ostrovsky, “How to
withstand mobile virus attacks, revisited,” in the 2014 ACM symposium
on Principles of distributed computing, 2014.

[50] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” in ACM
symposium on Theory of computing, 1988.

[51] P. Feldman and S. Micali, “An optimal probabilistic protocol for
synchronous byzantine agreement,” SIAM Journal on Computing, 1997.

[52] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung, “Optimal-
resilience proactive public-key cryptosystems,” in 38th Annual Sympo-
sium on Foundations of Computer Science, 1997.

[53] D. Chaum, C. Crépeau, and I. Damgard, “Multiparty unconditionally
secure protocols,” in the twentieth annual ACM symposium on Theory
of computing, 1988.

[54] R. Cramer, I. Damgård, and U. Maurer, “General secure multi-party
computation from any linear secret-sharing scheme,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques, 2000.

[55] Y. Desmedt and Y. Frankel, “Shared generation of authenticators and
signatures,” in Annual International Cryptology Conference, 1991.

[56] M. O. Rabin, “Randomized byzantine generals,” in Foundations of
Computer Science, 1983., 24th Annual Symposium on, 1983.

[57] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote, and
P. K. Khosla, “Survivable information storage systems,” In Computer,
2000.

[58] J. P. Njui, “Coinbase custody service secures major institutional
investor worth $20 billion,” Ethereum World News, July
24, 2018. [Online]. Available: https://ethereumworldnews.com/
coinbase-custody-service-secures-major-institutional-investor-worth-20-billion/

[59] Y. Akkawi, “Bitcoin’s most pressing issue summarized in two letters:
UX,” Inc., 21 Dec. 2017.

[60] “uport,” https://www.uport.me/, 2018.
[61] Kames, “The basics of decentralized identity how blockchain technology

& cryptographic primitives embolden the future of digital identity,” https:
//medium.com/uport/the-basics-of-decentralized-identity-d1ff01f15df1,
26 June 2018.

[62] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” Ieee Access, 2016.

[63] G. Prisco, “Slock.it to introduce smart locks linked to smart ethereum
contracts, decentralize the sharing economy,” Bitcoin Magazine, 2015.

[64] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs of
stake.” IACR Cryptology ePrint Archive, 2016.

[65] V. Buterin, “Slasher: A punitive proof-of-stake algorithm,” Ethereum
Blog URL: https://blog. ethereum. org/2014/01/15/slasher-a-punitive-
proof-of-stake-algorithm, 2014.

[66] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” self-published paper, August, 2012.

[67] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Interna-
tional Cryptology Conference, 2017.

[68] J. Groth, “Short pairing-based non-interactive zero-knowledge argu-
ments,” in International Conference on the Theory and Application of
Cryptology and Information Security, 2010.

APPENDIX A
SECURITY PROOF FOR Opt− CHURP

The ideal functionality of Opt− CHURP is defined in Fig-
ure 11. The simulator for FOpt−CHURP is given in Figure 13.

To prove the secrecy of the scheme, one can see that in step
5 of the share reduction, as |C(e)corrupted| ≤ t, B∗(e)(x, y) and
B(e)(x, y) are both uniformly random. In step 6, the witnesses
w
∗(e)
i,j are indistinguishable to those in the real world (i.e. step

7 in Figure 5). Similarly, in step 13 of share distribution, the
witnesses w∗(e+1)

i,j are indistinguishable to those generate in
step 5 of Figure 7. Therefore, A cannot distinguish between
the real world interacting with the protocol and the ideal world
interacting with S.

APPENDIX B
APPLICATIONS IN DECENTRALIZED SYSTEMS

Secret sharing finds use in innumerable applications involv-
ing cryptographic secrets, including secure multi-party com-
putation (MPC) [50], [53], [54], threshold cryptography [55],
Byzantine agreement [56], survivable storage systems [57],
and cryptocurrency custody [3], [58], to name just a few.

Decentralized systems, however, are an especially attractive
application domain, though, for two reasons.

First, blockchain systems task individual users with man-
agement of their own private keys, an unworkable approach for
most users. A frequent result, as noted above, is key loss [2]
or centralized key management [3], [58] that defeats the main
purpose of blockchain systems.

Second, blockchain objects cannot keep private state. This
fact notably limits the useful applications of smart contracts,
as they cannot compute digital signatures or manage encrypted
data.

We briefly enumerate a few of the most important poten-
tial applications in decentralized systems of the (dynamic-
committee proactive) secret-sharing enabled by CHURP:

a) Usable cryptocurrency management: Rather than re-
lying on centralized parties (e.g., exchanges) to custody private
keys for cryptocurrency, or using hardware or software wallets,
which are notoriously difficult to manage [59], users could
instead store their private keys with committees. These com-
mittees could authenticate users and enforce access-control,
resulting in the decentralized equivalent of today’s exchanges.

b) Decentralized identity: Initiatives such as the Decen-
tralized Identity Foundation [1], which is backed by a number
of major IT and services firms, as well as smaller efforts, such
as uPort [60], envision an ecosystem in which users control
their identities and data by means of private keys. Who will
store these keys and how is left an open question [61]. The
same techniques used in the cryptocurrency case for private-
key management would similarly apply to assets such as
identities. Additionally, a committee could manage encrypted
identity documents on users’ behalf.

c) Auditable access control: As proposed in [9], a
committee could manage encrypted documents and decrypt
them for recipients under a given access-control policy while
logging their accesses on-chain. The result would be a strongly

FOpt−CHURP

1 : Input: Shares of the old committee B(e)(i, j) for i ∈ C(e)alive and j ∈ [2t+1].

2 : Corruption: A requests to corrupt parties in C(e) and C(e+1). For each party i
in C(e) A corrupts, send B(e)(i, j) for j ∈ [2t+ 1].

3 : Computation:

4 : Reconstruct degree 〈t, 2t〉 polynomial B(e)(x, y) through polynomial inter-
polation.

5 : Generate random polynomials Q(x, y) such that Q(0, 0) = 0.

6 : Set B(e+1)(x, y) = B(e)(x, y) +Q(x, y).

7 : Output: Shares of the new committee B(e+1)(i, j) for i ∈ C(e+1) and j ∈
[2t+ 1].

Fig. 11: Ideal functionality FOpt−CHURP

15

https://ethereumworldnews.com/coinbase-custody-service-secures-major-institutional-investor-worth-20-billion/
https://ethereumworldnews.com/coinbase-custody-service-secures-major-institutional-investor-worth-20-billion/
https://www.uport.me/
https://medium.com/uport/the-basics-of-decentralized-identity-d1ff01f15df1
https://medium.com/uport/the-basics-of-decentralized-identity-d1ff01f15df1

Kate’s Polynomial Commitment

1 :
(sk, pk) ← Keygen(1λ, q): Select a bilinear group (p,G,GT , e, g) ←
BilGen(1λ) and s randomly in Z∗p. Set sk = s and pk = gs, gs

2
, . . . , gs

q
.

2 : Cφ ← Commit(φ(x), pk): Compute Cφ = gφ(s) using pk.

3 :
(φ(i),Wi)← CreateWitness(φ(x), i, pk): Compute φ(x)− φ(i) = (x−
i)w(x), set Wi = gw(s).

4 :
{True, False} ← VerifyEval(Cφ, i, φ(i),Wi, pk): Output True if
e(Cφ/g

φ(i), g) = e(gs−i,Wi). Otherwise, output False.

Fig. 12: Protocols of Kate’s polynomial commitment.

auditable access-control system. This application could be
managed by a smart contract.

d) Smart-contract attestations: Committee management
of smart-contract private keys could also enable digital signing
by smart contracts. The idea would be that committee mem-
bers execute threshold signatures using a shared private key,
emitting a signature for a particular smart contract in response
to a request issued by the contract on chain.

Such signing would be of particular benefit in creating a
simple smart-contract interface with off-chain systems. For
example, control of Internet-of-Things (IoT) devices is com-
monly proposed application of smart contracts [62] (smart
locks being a notable early example [63]). If smart con-
tracts cannot generate digital signatures, then the devices
they control must monitor a blockchain, an ongoing resource-
intensive operation. A smart contract that can generate a digital
signature, however, can simply issue authenticable commands
to target devices.

e) Simplified Committee-based consensus for light
clients: A number of consensus schemes, e.g., proof-of-stake
protocols [64], [65], [66], [67], aim to achieve good scalability
by delegating consensus to committees. These committees
change over time. Therefore verifying the blocks they sign
requires awareness of their identities. By instead maintaining
or only periodically rotating its public / private key pair, a
committee could instead make it easier for light clients to
verify signed blockchains.

f) Secure multiparty computation (MPC) for smart con-
tracts: More generally, dynamic-committee secret sharing
would enable decentralized secure multiparty computation
(MPC) by smart contracts, effectively endowing them with
confidential storage and computation functionalities, as envi-
sioned in, e.g., [10], [7].

APPENDIX C
THE STATIC SETTING: IMPROVED PSS

We also consider a different and narrower setting, one with a
static committee i.e., the old and new committees are identical.
The adversarial model is also weaker i.e., corruptions during
the handoff phase are counted towards the threshold in both
the adjacent epochs. The handoff in such a setting is simply
an update since the committee is static. Hence, the update
protocol consists of a recovery phase, enabling recovery of
lost shares and a refresh phase, updating shares of all nodes.

In this section, we look at different techniques seen in
literature for the static setting. Herzberg et al. [5] introduce

Univariate [5] Bivariate Improved PSS

Off-chain Recovery O(n2) O(n) O(n)
Refresh O(n2) O(n3) O(n2)

State O(1) O(n) O(n)

TABLE V: Comparison of protocols in the static setting
with a honest-but-curious adversary. The original protocol of
Herzberg et al. is presented in the univariate column. Recovery
costs are per node. Note that recovery costs of our protocol
are amortized over the total number of nodes being replaced.

this setting and present a protocol, Herzberg’s PSS. A second
technique seen in the literature makes use of bivariate poly-
nomials. We then present an improved PSS protocol which
achieves better overall performance than any known scheme.

Herzberg’s PSS: This protocol incurs O(n2) off-chain com-
munication complexity for refresh and an expensive O(n2) per
node recovery (See [5]).

Bivariate Polynomials: One way to avoid the expensive re-
covery cost is to perform secret sharing with a bivariate
polynomial. This allows for efficient recovery, i.e., O(n) off-
chain communication complexity. As discussed previously
in Section IV, existing techniques for refresh are expensive
costing O(n3).

Improved PSS: Much like the dynamic setting, we build an
improved PSS protocol using the efficient bivariate 0-sharing
technique. This technique brings down the total communi-
cation complexity to just O(n2) off-chain. A comparison of
communication costs incurred by different PSS schemes is in
Table V.

Let C denote the committee, C = C(e−1) = C(e), comprising
n nodes {Ci}ni=1. The secret is shared using an asymmetric
bivariate polynomial B(x, y), s = B(0, 0). Unlike before,
the degree of bivariate polynomial is only 〈t, t〉 as we have a
weaker adversary.

Recall that node’s share is a single polynomial B(i, y).
In Fig. 17, we present the improved PSS assuming a honest-
but-curious adversary. Throughout the protocol, each node
sends out atmost O(n) points. Thus, our improved PSS scheme
completes in O(n2) off-chain cost.

Active adversaries: In face of adversarial behaviour, multiple
reruns of the protocol might be needed. This is crucial since
all the t + 1 received points need to be correct in order to
compute the new share. Adversaries are detectable with the
use of KZG commitments similar to the dynamic setting. We
replace the detected adversarial nodes with uncorrupted nodes
from C (guaranteed to find such a node, |C| ≥ 2t + 1). We
stress that this protocol incurs O(n2) off-chain cost even after
adapting to handle active adversaries. This is achieved due
to the following key property: Honest nodes never rerun any
phase of the protocol. This is possible by making a slight
modification to the univariate 0-sharing (step 9): invoke (t, n)-
UnivariateZeroShare among all nodes in C instead of executing
it in a subset of nodes only. Observe that the set of univariate

16

Simulator S for FOpt−CHURP

1 : Input: Trapdoor of the KZG scheme sk = s. Public key pk. Commitments of the polynomials C
B(e)(x,j)

for j ∈ [2t+ 1].

2 : An adversaryA sends requests to corrupt parties in C(e) to S. S forwards the requests to FOpt−CHURP, and sends shares of these corrupted parties from FOpt−CHURP

back to A.
3 : Share reduction:

4 : A sends shares and witness for corrupted parties B(e)(i, j) and w(e)
i,j for j ∈ [2t+ 1] and i ∈ C(e)corrupted to S.

5 : S chooses a random polynomial B∗(e)(x, y) such that B∗(e)(i, j) = B(e)(i, j) for j ∈ [2t+ 1] and i ∈ C(e)corrupted.

6 :
S computes B∗(e)(i, j) and forges witnesses w∗(e)i,j using the trapdoor s for i ∈ C(e)alive \ C

(e)
corrupted. In particular, w∗(e)i,j =

(C
B(e)(x,j)

/gB
∗(e)(i,j))(s−i)

−1
. S sends these shares and witnesses to A.

7 : Verify the shares VerifyEval(C(B(e)(x, j)), j, B(e)(i, j), w
(e)
i,j) for i ∈ C(e)corrupted and j ∈ [2t+ 1]. If any of these output False, output abort.

8 : S sends B(e)(i, j) for j ∈ [2t+ 1] and i ∈ C(e)corrupted to FOpt−CHURP. S receives B(e+1)(i, j) for i ∈ C(e+1)
corrupted and j ∈ [2t+ 1].

9 : Proactivization:

10 :
S emulates the honest parties in U(e+1) to perform a bivariate 0-sharing protocol with A. (See step 6-13 in Figure 6.) If the protocol fails, output abort.

Otherwise, by the end of the protocol, S obtains polynomials Q(x, j) for j ∈ U(e+1) \ U(e+1)
corrupted.

11 : S computes B∗(e+1)(x, j) = B∗(e)(x, j) +Q(x, j) for j ∈ U(e+1) \ U(e+1)
corrupted.

12 : Share distribution:

13 :
S forges witnesses w∗(e+1)

i,j using the trapdoor s for i ∈ C(e+1) \ C(e+1)
corrupted. In particular, w∗(e+1)

i,j = (C
B(e+1)(x,j)

/gB
(e+1)(i,j))(s−i)

−1
, where

C
B(e+1)(x,j)

= C
B(e)(x,j)

· CQ(x,j). S sends witnesses and B(e+1)(i, j) received from FOpt−CHURP for i ∈ C(e+1)
corrupted and j ∈ [2t+ 1] to A.

Fig. 13: Simulator S for FOpt−CHURP

(2t, 2t+ 1)-UnivariateZeroShare
1 : Input: t, set of 2t+ 1 nodes {Uj}j∈[2t+1]

2 : Output: Each node Uj outputs a share sj = P (j) for randomly

3 : generated degree-2t polynomial P (y) with P (0) = 0

4 : node Uj
5 : Generate a random 2t-degree polynomial Pj s.t. Pj(0) = 0

6 : Send a point Pj(i) to node Ui for each i ∈ [2t+ 1]

7 : Wait to receive points {Pi(j)}i∈[2t+1] from all other nodes

8 : Let P =
∑
i∈[2t+1] Pi, compute share P (j) =

∑
i∈[2t+1] Pi(j)

Fig. 14: (2t, 2t+1)-UnivariateZeroShare between 2t+1 nodes.
A 0-hole univariate polynomial P of degree-2t is generated.

(t, n)-BivariateZeroShare
1 : Input: t, n, set of nodes {Ci}i∈[n] (2t < n)

2 :
Output: Each node Ci outputs a share Q(i, y) for randomly generated degree-
〈t, 2t〉 bivariate polynomial Q(x, y) with Q(0, 0) = 0

3 : Order {Ci}i∈[n] based on lexicographic order of their public keys

4 : Choose first 2t+ 1 nodes, w.l.o.g., U = {Cj}j∈[2t+1]

5 :
Invoke (2t, 2t+1)-UnivariateZeroShare among {Uj}j∈[2t+1] to generate shares
{sj }j∈[2t+1]

6 : node Uj :

7 : Generate a random t-degree polynomial Rj s.t Rj(0) = sj

8 : Send a point Rj(i) to node Ci for each i ∈ [n]

9 : Denote the bivariate polynomial Q(x, y) where {Q(x, j) = Rj(x)}j∈[2t+1]

10 : node Ci:

11 : Wait to receive points {Rj(i)}j∈[2t+1] = {Q(i, j)}j∈[2t+1]

12 : Interpolate to reconstruct a 2t-degree polynomial Q(i, y)

13 : Output share Q(i, y)

Fig. 15: (t, n)-BivariateZeroShare between n nodes. A 0-hole
bivariate polynomial Q of degree-〈t, 2t〉 is generated.

Improved-PSS
1 : Input: Set of n nodes C. Each node C′i is given a degree-t polynomial B(i, y)

2 :
Output: C′i outputs B′(i, y) for a degree-〈t, t〉 bivariate polynomial B′(x, y)
with B′(0, 0) = B(0, 0)

3 : Order nodes in C based on the lexicographic ordering determined by public keys

4 : Choose first t+ 1 nodes, U ⊂ C, |U| = t+ 1

5 : node Ci:
6 : send B(i, j) to node Uj , ∀j ∈ [t+ 1]

7 : node Uj :

8 : Reconstruct degree-t polynomial B(x, j)

9 :
Invoke (t, t+ 1)-UnivariateZeroShare among U generating shares {sj}j , ∀j ∈
[t+ 1]

10 : node Uj :

11 : Generate a degree-t polynomial Q(x, j) s.t. Q(0, j) = sj

12 : Update the reconstructed polynomial B′(x, j) = B(x, j) +Q(x, j)

13 : send B′(i, j) to each node i ∈ C
14 : node Ci:
15 : Construct degree-t polynomial B′(i, y) using t+ 1 received points

Fig. 16: Improved PSS for static setting, honest-but-curious
adversary.

polynomials held by any t + 1-sized subset in C defines a 0-
hole bivariate polynomial. Thus, reruns are executed only by
the new uncorrupt nodes that replace the detected faulty nodes.

APPENDIX D
CHURP PESSIMISTIC PATHS

In this section, we present protocols for the two pessimistic
paths of CHURP: Exp-CHURP-A and Exp-CHURP-B.

A. Exp-CHURP-A

This path is invoked when a failure occurs in Opt-CHURP.
It also consists of three phases: Exp-ShareReduce, Exp-
Proactivize, Exp-ShareDist.

Before the first phase starts, commitments to reduced shares
{B(x, j)}2t+1

j=1 are published on-chain by t + 1 nodes in the

17

Improved-PSS
1 : Input: Set of n nodes C. Each node C′i is given a degree-t polynomial B(i, y)

2 :
Output: C′i outputs B′(i, y) for a degree-〈t, t〉 bivariate polynomial B′(x, y)
with B′(0, 0) = B(0, 0)

3 : Order nodes in C based on the lexicographic ordering determined by public keys

4 : Choose first t+ 1 nodes, U ⊂ C, |U| = t+ 1

5 : node Ci:
6 : send B(i, j) to node Uj , ∀j ∈ [t+ 1]

7 : node Uj :

8 : Reconstruct degree-t polynomial B(x, j)

9 :
Invoke (t, t+ 1)-UnivariateZeroShare among U generating shares {sj}j , ∀j ∈
[t+ 1]

10 : node Uj :

11 : Generate a degree-t polynomial Q(x, j) s.t. Q(0, j) = sj

12 : Update the reconstructed polynomial B′(x, j) = B(x, j) +Q(x, j)

13 : send B′(i, j) to each node i ∈ C
14 : node Ci:
15 : Construct degree-t polynomial B′(i, y) using t+ 1 received points

Fig. 17: Improved PSS for static setting, honest-but-curious
adversary.

old committee. The on-chain hashes can be used to verify
the posted commitments. As atleast one of the t+ 1 nodes is
honest, and thus each member of the new committee has the
commitments.

1) Share Reduction (Exp-ShareReduce): This phase is the
same as Opt-ShareReduce, and is not re-executed if Opt-
ShareReduce ends successfully. This is because the degree
of B(x, j) is t and an honest member U ′j can successfully
reconstruct the polynomial given t + 1 honest values from
Calive assuming |Calive| ≥ 2t+ 1.

2) Proactivization (Exp-Proactivize): The goal of this phase
is to perform a bivariate 0-sharing, and identify and expel
adversaries if malicious behavior is detected.

We first use a different zero-sharing protocol. Each node U ′i
generates 2t+1 sub-shares {sij }j∈[2t+1] that form a 0-sharing
i.e.,

∑2t+1
j=1 λ2tj sij = 0 where the Lagrange coefficients λ2tj

are introduced before. U ′i then publishes {gsij}j∈[2t+1] and
{Encpkj [sij]}j∈[2t+1] on-chain. U ′i also publishes a zk proof
of correctness of the encrypted ciphertext. A receiving node
U ′j verifies the set {gsij}j using Eq. (1). Then, it decrypts the
ciphertext to receive sij . Nodes publish verifiable accusations
in case of a corruption. .

The advantage of this univariate zero-sharing protocol is
that honest parties do not need to re-execute the protocol when
an adversary is detected. They can simply discard the shares
generated by the adversarial nodes. This is depicted pictorially
in Fig. 18. One can see that by setting sj =

∑
i∈U ′\U ′corrupt

sij
for j ∈ U ′, the shares form a valid univariate zero-sharing
among the honest parties.

After the univariate zero-sharing, the same protocol as
that in Opt-Proactivize (step 6-16 in Figure 6) is executed
with commitments and witnesses in step 12 posted on-chain.
Finally, another major difference to the optimistic path is that
if any adversary in the U ′ is expelled in this phase, we do not
have enough nodes to recover the full shares in the next phase,

s11 s12 s13 s14 s15

s21 s22 s23 s24 s25

s31 s32 s33 s34 s35

s41 s42 s43 s44 s45

s51 s52 s53 s54 s55

−

−

Fig. 18: Matrix of sub-shares. The sub-share sij is generated
by node i and sent to j. Each node generates a row while it’s
share is the sum of sub-shares in a column. If nodes 4 and 5
are adversarial, sub-shares generated by them are discarded.

Exp-Proactivize
1 : Public Input:

{
CB(x,j)

}
j∈[2t+1]

2 : Input: Set of 2t+ 1 nodes {U ′j}j∈[2t+1]. Each node U ′j is given B(x, j)

3 :
Output: U ′j outputs B′(x, j) for a degree-〈t, k〉 bivariate polynomial B′(x, y)
with B′(0, 0) = B(0, 0)

4 : Public Output:
{
CB′(x,j)

}
j∈[2t+1]

5 : node U ′i :

6 : Generate {sij }j∈[2t+1] that form a 0-sharing i.e.,
∑2t+1
j=1 λ2t

j sij = 0.

7 : Publish {gsij }j∈[2t+1] and {Encpkj [sij]}j∈[2t+1] on-chain.

8 : node U ′j :

9 : Decrypt {Encpkj [sij]} from node i and validate sij using gsij on-chain.
Perform a verifiable accusation if it fails.

10 : node U ′j :

11 :
If any adversarial node i is detected in step 9, add it to U ′corrupted, and publish

sji.

12 : Set sj =
∑
i∈U′\U′

corrupted
sij .

13 :
Execute step 7-9, 11-12 of Opt-Proactivize in Figure 6, with messages posted on

the chain in step 12.
14 : node C′

15 :
Execute step 16-17 of Opt-Proactivize in Figure 6. If it outputs fail, perform

a verifiable accusation and add j to U ′corrupted.

16 : node Ci:

17 :
For all malicious nodes j detected in step 9 and 15, publish point and witness
{B(i, j), wi,j } on-chain.

Fig. 19: Exp-Proactivize protocol.

as the degree of B′(i, y) is 2t and a member C′i needs 2t+ 1
points to reconstruct the polynomial. To address this problem,
we further ask members in the old committee to publish the
shares and witnesses sent to the adversarial nodes during Opt-
ShareReduce on the chain. In this way, all honest parties have
access to those reduced shares that belong to adversarial nodes,
which allows them to reconstruct the full shares in the next
phase. The security of the new protocol still holds, as these
shares were accessed by the adversary anyway.

The full protocol of Exp-Proactivize is presented in Fig-
ure 19. The on-chain cost of this phase is O(t2).

3) Full Share Distribution (Exp-ShareDist): Finally, full
shares are distributed to all members of the new committee in
this phase. To allow identification and expulsion of malicious
nodes, members post all messages on the chain in contrast to

18

the optimistic path.
If adversarial nodes are detected in this phase, similar

to the proactivization phase, we ask members of the old
committee to publish the reduced shares sent to them in Opt-
ShareReduce. In addition, honest members need to exclude
the proactivization polynomials generated by the adversarial
nodes in the second phase. In particular, they discard the sub-
shares related to the adversaries in the new univariate zero-
sharing protocol, as explained in the previous section, and
post their sub-shares for the the adversaries publicly on-chain.
Fortunately, this only incurs a small extra on-chain cost.

The full protocol of Exp-ShareDist is presented in Figure 20.
The on-chain cost of this phase is also O(tn). Therefore, the
overall on-chain complexity of the Exp-CHURP-A is O(n2),
and the off-chain complexity is O(n3).

B. State Verification (StateVerif)

The protocols of both Opt-CHURP and Exp-CHURP-A use
the KZG commitment scheme, which requires a trusted setup
phase and its security relies on the t-SDH assumption. In this
section, we devise a hedge against the these — a verification
phase, StateVerif, that relies only on discrete log assumptions.

Recall that by the end of Opt-CHURP or Exp-CHURP-A,
each member C′i in the new committee C′ holds the full share
B′(i, y), a degree 2t univariate polynomial. StateVerif further
checks that the invariants given in Section V-A still hold at this
point. That is, (1) Inv-Secret: the secret is not changed; (2) Inv-
State: these full shares form a 〈t, 2t〉 bivariate polynomial. (We
don’t check Inv-Comm as it is only used in the KZG scheme.)
We describe the two checks below.

Exp-ShareDist

1 : Public Input:
{
CB′(x,j)

}
j∈[2t+1]

2 :
Input: Set of nodes {C′i}i∈[n′]. Let U ′ = {C′j}j∈[2t+1], each node U ′j is
given B′(x, j)

3 : Output: ∀i ∈ [n′], C′i outputs B′(i, y)

4 : node U ′j :

5 :
∀i ∈ [n′], publish Encpki (B

′(i, j)), gB
′(i,j), w′i,j on-chain, where

w′i,j = CreateWitness(B′(x, j), i)

6 : node C′i:

7 : Decrypt the message on-chain to get
{
B′(i, j), w′i,j

}
j∈[2t+1]

8 :
∀j ∈ U ′ \ U ′corrupted, invoke VerifyEval(CB′(x,j), i, B

′(i, j), w′i,j). If
any of the checks fails, perform a verifiable accusation and add j to U ′corrupted

9 : node Ci:
10 : Publish B(i, j), wi,j for any new adversarial node j detected above.

11 : node U ′i :

12 : Publish sij for any new adversarial node j detected above.

13 : node C′i:

14 :
∀j ∈ U ′corrupted, validate their reduced shares posted by the old committee

by ∀i ∈ [n], VerifyEval(CB(x,j), i, B(i, j), wi,j).

15 :
∀j ∈ U ′corrupted Interpolate any t+ 1 verified points to construct B(x, j).

Set B′(i, j) = B(i, j) +
∑
i∈honest sij

16 : Interpolate all B′(i, j) for j ∈ [2t+ 1] to construct B′(i, y)

17 : Output the full share B′(i, y)

Fig. 20: Exp-ShareDist protocol.

a) Checking Inv-Secret: To perform this check, we fur-
ther require that the commitment to the secret gs is public
on the chain from the beginning of the protocols. The secret
can also be computed from the zero points of the full shares.
Using lagrange coefficients, we have s =

∑n
i=1 λiB

′(i, 0)
where λi = λn−1i (defined in Eq. (1)). Each node Ci computes
si = B′(i, 0) and publishes gsi . Parties use this information
to check that the invariant Inv-Secret remains intact:

gs =

n∏
i=1

(gsi)λi

b) Checking Inv-State: As the degree of full shares
B′(i, y) is 2t (as they are interpolated from 2t + 1 points in
ShareDist), to validate that B′(i, y) for i ∈ [n′] form a degree
〈t, 2t〉 bivariate polynomial, it suffices to check that the degree
of B′(x, j) is t for j ∈ [2t + 1]. To improve efficiency, we
reduce the checks to a single check through a random linear
combination. If the degree of Prnd(x)

def
=
∑2t+1
j=1 rjB

′(x, j) is
t, where rjs are randomly selected, then with high probability,
the degree of all B′(x, j) is t.

To perform this check, each node C′i computes s′i =
Prnd(i) =

∑2t+1
j=1 rjB

′(i, j) and publishes gs
′
i on-chain. In

practice, rjs can be obtained from a public source of fresh
randomness .

With these commitments of evaluations, all members can
compute the commitments of the coefficients of Prnd(x)
using Lagrange interpolation. Let Prnd(x) = a0 + a1x +

. . . + an′−1x
n′−1, then aj =

∑n′

i=1 Prnd(i)λij , where λij
are coefficients of Λi(x) =

∑n′

j=1 λijx
j such that Prnd(x) =∑n′

i=1 Prnd(i)Λi(x). As λij only depends on the degree of
the polynomial, they can be precomputed by each member.
Therefore, and gaj =

∏n′

i=1 Prnd(i)
λij . By checking that

∀j > t, gaj = 1 we can ensure that the degree of polynomial
Prnd(x) is t.

The two checks above incur O(n) on-chain cost in total.

Failure. There are two possible reasons that may cause Stat-
eVerif to fail: either the commitments are computed incorrectly
by adversarial nodes, or the assumptions in the KZG scheme
fails. We further perform the following test in case of a failure
of StateVerif to determine the reason.

We make use of the on-chain KZG commitments (published
in CHURP) to verify the commitments Zi = gsi and Zrndi =
gs
′
i . Each node i posts exponents of their state {gB′(i,j)} for

j ∈ [2t + 1], and their witness w′j,i to the KZG polynomial
commitments CB′(x,j) on the chain (each node already has
these witnesses at the end of Opt-CHURP or Exp-CHURP-A).
Then all members verify the message published by node i by:
VerifyEvalExp(CB′(x,j), i, g

B′(i,j),Wj,i) for j ∈ [2t+ 1].2

If the checks above pass, all members then validate Zi, Zrndi

as:

2We make use of the following additional functionality in KZG scheme that
allows us to verify the exponent of the evaluation without any changes to the
scheme: {True,False} ← VerifyEvalExp(Cφ, i, g

φ(i),Wi).

19

Zi =

2t+1∏
j=1

(gB
′(i,j))λ

2t
j , Zrndi =

2t+1∏
j=1

(gB
′(i,j))rjλ

2t
j

If any of the checks above fails, it means the commitments
are not correctly computed. The members can perform a
verifiable accusations since all information is on-chain, and
then switch to pessimistic path Exp-CHURP-A. Otherwise, it
implies a failure of the assumptions in the KZG scheme. In this
case, we switch to a different pessimistic path Exp-CHURP-B.
In this test, each node publishes O(n) data on-chain, incurring
O(n2) on-chain cost overall.

C. Exp-CHURP-B

This pessimistic path is taken only after a detection of
breach in the underlying assumptions of KZG commitment
scheme.

In this path, we use relatively expensive polynomial com-
mitments (Pedersen commitments) instead of KZG and sup-
ports a lower threshold on the number of adversarial nodes
n > 3t. In the share reduction phase, as n > 3t, we rely
on the error correcting mechanisms of Reed-Solomon codes
to construct reduced shares, instead of the verification of KZG
scheme. In the proactivization phase and full share distribution
phase, we replace the KZG commitments and verification with
the Pedersen commitments (step 13 in Figure 19 and step
5,8,12 in Figure 20). Exp-CHURP-B incurs O(n2) on-chain
cost and O(n3) off-chain cost, assuming n > 3t. Due to the
space limit, we omit the full protocol of Exp-CHURP-B.

APPENDIX E
CHANGING THE THRESHOLD

Thus far we have focused on schemes that allow the com-
mittee size to change while the threshold t remains constant.
This allows CHURP to be adaptive to changing churn rates: if
an increased churn rate α is observed, the new committee can
grow to a larger size of 2t/1−α.

We now describe how CHURP supports dynamic thresholds.
Specifically, the (te−1, te)-handoff protocol presented below
enables a committee C(e−1) with threshold te−1 (i.e. the
adversary can corrupt up to te−1 nodes of C(e−1)) to handoff
shares to a new committee C(e) with a different threshold te.
Note that we assume an out-of-band mechanism by which
the committee members reach the consensus to increase or
decrease the threshold and leave details of governance for
future work.

A. Increasing the threshold: te > te−1

Note that a change of the threshold reflects that of the
adversary’s power, i.e., the number of nodes it can corrupt
in the committee C(e−1) and C(e), respectively. Therefore
extra care is needed if we were to increase the power of
the adversary (i.e. te > te−1). Similar to [17], increasing the
threshold takes two steps: first, a handoff is executed between
C(e−1) and C(e) assuming the threshold doesn’t change; then

KZG extended with degree verification
1) (sk, pk) ← Keygen(1λ, q): Select a bilinear group (p,G,GT , e, g) ←
BilGen(1λ), q+1 group elements{αi}i∈[q] and s randomly in Z∗p. Set sk = s,

pk0 = {gs, . . . , gs
d
}, pkd = {gαds, . . . gαds

d
} for d ∈ [q] and pk =

{pk0, pk1, . . . , pkq}.
2) Cφ ← Commit(φ(x), pk): Let d = deg(φ). Compute Cφ =

(d, gφ(s), gαdφ(s)) using pk0 and pkd.
3) (φ(i),Wi)← CreateWitness(φ(x), i, pk): Compute φ(x)−φ(i) = (x−
i)w(x), set Wi = gw(s).
4) {True, False} ← VerifyEval(Cφ, i, φ(i),Wi, pk): Parse Cφ as (d,C,Cd).
Output True if e(C/gφ(i), g) = e(gs−i,Wi). Otherwise, output False.
5) {True, False} ← VerifyDegree(Cφ): Parse Cφ as (d,C,Cd). Output True
if e(Cd, g) = e(C, gαd). Otherwise, output False.

Fig. 21: KZG [22] extended with degree verification.

we increase the threshold to te after the handoff. As illustrated
below, the new threshold takes effect after the handoff.

te−1, te
handoff committee C(e)committee C(e−1)handoff

threshold te−1 threshold te

epoch e+ 1epoch e

To increase the threshold, (te−1, te)-handoff runs the proac-
tivization phase with parameters t = te. That is, during the
proactivization protocol, a bivariate polynomial Q(x, y) of
degree (te, 2te) is generated such that Q(0, 0) = 0. Each node
i holds a te-degree polynomial Q(x, i) and commitments to
{Q(x, i)}i are publicly available. The rest of the proactiviza-
tion follows without modification, besides now each node i
holds two polynomials with different degrees: B′(x, i) that is
te−1-degree while Q(x, i) is te-degree. Thus the proactivized
global polynomial B′(x, y) is of degree (te, 2te), concluding
the threshold upgrade.

We also need to extend KZG to support dynamic thresholds.
Essentially, the setup phase of the KZG fixes the highest
degree (say, D) of polynomials it can work with. In the
setting of a static threshold t, we set D = t and Kate’s
commitment can guarantee that hidden polynomials are of
degree ≤ t, which is critical to the correctness of shares. To
support dynamic thresholds up to tmax, we run the trusted setup
with D = tmax and extend the Kate’s scheme with degree
verification functionality. Specifically, given a commitment
Cφ, it can be publicly verified that φ is at most d-degree.
The extended scheme is specified in Fig. 21. Our extension
relies on the q-power knowledge of exponent (q-PKE [68])
assumption.

B. Decreasing the threshold

The intuition of decreasing the threshold is to create 2 ×
(te−1−te) virtual nodes, denoted as V , and execute the handoff
protocol between C = C(e−1) and C′ = C(e) ∪ V , assuming
the threshold remains te−1. A virtual node participates in the
protocol as if an honest player, but exposes its state publicly.
At the end of the handoff protocol, nodes in C′ incorporate
V’s state and restore the invariants. The handoff protocol is
outlined as follows.

20

Decreasing the threshold
1) Choose a subset U ⊆ C′ of 2te + 1 nodes. For notational simplicity, suppose
U = {1, . . . , 2te + 1} and V = {2te + 2, . . . , 2te−1 + 1}. Each node
i ∈ U recovers a reduced shareRS(e−1)

i (x) = B(x, i). In addition, C publishes
reduced shares for virtual nodes: RS(e−1)

j (x) = B(x, j) for j ∈ V .

2) U executes the proactivization phase and collectively generate a (te, 2te)-
degree bivariate zero-hole polynomial Q(x, y). At the end of this phase, each
node i ∈ U has Q(x, i).

3) Let V =
∑
j∈V λ

2te−1
j RS

(e−1)
j (0). Each node i ∈ U in-

corprates virtual nodes’ state and updates its state as RS
(e)
i (x) =

λ
2te−1
i

λ
2te
i

(
RS

(e−1)
i (x) + V

λ
2te−1
i

(2te+1)

)
+ Q(x, i) where λ2te−1 and

λ2te are Lagrange coefficients for corresponding thresholds. One can verify that
RS

(e)
i (x) are 2te-sharing of the secret, i.e., B(0, 0) can be calculated from any

2te + 1 of RS(e)
i (x).

4) Each node i ∈ U sends to every node j ∈ C′ a point RS(e)
i (j). The full share

of each node j ∈ C′ consists of 2te + 1 points {RS(e)
i (j) = B′(i, j)}i∈U ,

from which j can compute FSj(y) = B′(j, y).

The updated reduced shares RS
(e)
i (x) can be verified

using the published value V , and the commitment to
RS

(e−1)
i (x) and Q(x, i). At the end of the protocol, each

node i has 2te + 1 points on B′(i, y). It remains to
show that {FSj(y) = B′(j, y)}j form a te-sharing of
B(e)(0, 0), which can be checked by

∑te+1
i=1 λtei FSi(0) =∑2te−1+1

j=1 λ
2te−1

j RS
(e−1)
j (0) = B(0, 0).

Several optimizations are possible. For example, one can
reduce the degree of RS(e)

i (x) to te (as opposed to te−1 cur-
rently) by building new polynomials and proving equivalence
to RS(e−1)

i (x). We leave further optimization for future work.

21

	Introduction
	CHURP functionality
	Technical challenges and solutions
	Implementation and Experiments
	Outline and Contributions

	Model and Assumptions
	Functional model
	Adversarial model
	Communication model

	Overview of CHURP
	Key secret-sharing techniques
	CHURP: Overview
	An example
	Adaptive security
	Pessimistic CHURP execution paths

	Efficient Bivariate 0-Sharing
	CHURP Protocol Details
	Notation and Invariants
	CHURP Setup
	CHURP Optimistic Path (Opt-CHURP)
	Share Reduction (Opt-ShareReduce)
	Proactivization (Opt-Proactivize)
	Full Share Distribution (Opt-ShareDist)

	CHURP Implementation & Evaluation
	Implementation
	Evaluation
	Latency
	On-chain communication complexity
	Off-chain communication complexity

	Comparison with Schultz's MPSS
	Asymptotic improvement
	Performance evaluation

	Point-to-Point Communication Technique
	Transaction Ghosting
	Choosing overwrite rate k
	Experiments
	Comparison to on-chain communication

	Related Work
	References
	Appendix A: Security Proof for Opt-CHURP
	Appendix B: Applications in Decentralized Systems
	Appendix C: The Static Setting: Improved PSS
	Appendix D: CHURP Pessimistic paths
	Exp-CHURP-A
	Share Reduction (Exp-ShareReduce)
	Proactivization (Exp-Proactivize)
	Full Share Distribution (Exp-ShareDist)

	State Verification (StateVerif)
	Exp-CHURP-B

	Appendix E: Changing the threshold
	Increasing the threshold: te> te-1
	Decreasing the threshold

