
CHURP: Dynamic-Committee Proactive Secret Sharing
Sai Krishna Deepak Maram

∗

Cornell Tech

Fan Zhang
∗

Cornell Tech

Ari Juels
∗

Cornell Tech

Lun Wang
∗

UC Berkeley

Andrew Low
∗

UC Berkeley

Yupeng Zhang
∗

UC Berkeley

Dawn Song
∗

UC Berkeley

ABSTRACT
We introduce CHURP (CHUrn-Robust Proactive secret sharing).

CHURP enables secure secret-sharing in dynamic settings, where
the committee of nodes storing a secret changes over time. Designed

for blockchains, CHURP has lower communication complexity

than previous schemes: O(n) on-chain and O(n2) off-chain in the

optimistic case of no node failures.

CHURP includes several technical innovations: An efficient new

proactivization scheme of independent interest, a technique (using

asymmetric bivariate polynomials) for efficiently changing secret-

sharing thresholds, and a hedge against setup failures in an efficient

polynomial commitment scheme. We also introduce a general new

technique for inexpensive off-chain communication across the peer-

to-peer networks of permissionless blockchains.

We formally prove the security of CHURP, report on an imple-

mentation, and present performance measurements.

1 INTRODUCTION
Secure storage of private keys is a pervasive challenge in cryp-

tographic systems. It is especially acute for blockchains and other

decentralized systems. In these systems, private keys control the

most important resources—money, identities [6], etc. Their loss has

serious and often irreversible consequences.

An estimated four million Bitcoin (today worth $14+ Billion)

have vanished forever due to lost keys [62]. Many users thus store

their cryptocurrency with exchanges such as Coinbase, which holds

at least 10% of all circulating Bitcoin [9]. Such centralized key

storage is also undesirable: It erodes the very decentralization that

defines blockchain systems.

An attractive alternative is secret sharing. In (t ,n)-secret sharing,
a committee of n nodes holds shares of a secret s—usually encoded

as P(0) of a polynomial P(x) [65]. An adversary must compromise

at least t + 1 players to steal s , and at least n − t shares must be lost

to render s unrecoverable.
Proactive secret sharing (PSS), introduced in the seminal work

of Herzberg et al. [43], provides even stronger security. PSS peri-

odically proactivizes the shares held by players, while keeping s
constant. Players obtain new shares of the secret s that are inde-
pendent of their old shares, which are then discarded. Provided an

adversary never obtains more than t shares between proactiviza-

tions, PSS protects the secret s against ongoing compromise of

players.

∗
Also part of IC3, The Initiative for CryptoCurrencies & Contracts

Secret sharing—particularly PSS—would seem to enable users to

delegate private keys safely to committees and avoid reliance on a

single entity or centralized system. Indeed, a number of commercial

and research blockchain systems, e.g., [10, 21, 29, 48, 73], rely on

secret sharing to protect users’ keys and other sensitive data.

These systems, though, largely overlook a secret-sharing prob-

lem that is critical in blockchain systems: node churn.
In permissionless (open) blockchains, such as Bitcoin or Ethereum,

nodes may freely join and leave the system at any time. In permis-
sioned (closed) blockchains, only authorized nodes can join, but

nodes can fail and membership change. Thus blockchain protocols

for secret sharing must support committee membership changes,

i.e., dynamic committees.

Today there are no adequate PSS schemes for dynamic commit-

tees. Existing protocols support static, but not dynamic commit-

tees [18, 43], assume weak, passive adversaries [28, 63], are efficient

only for batched secrets [13], or incur prohibitive communication

costs [54, 64, 66, 69, 72].

In this paper, we address this critical gap by introducing a new

dynamic-committee proactive secret-sharing protocol calledCHURP
(CHUrn-Robust Proactivization).

1.1 CHURP functionality
CHURP allows a dynamic committee, i.e., one undergoing churn,

to maintain a shared secret s securely.
Like a standard PSS scheme, CHURP proactivizes shares in every

fixed interval of time known as an epoch. It supports dynamic com-

mittees as follows. An old committee of size n with a (t ,n)-sharing
of a secret s can transition during a handoff to a possibly disjoint

new committee of size n with a new (t ,n)-sharing of s . CHURP
achieves security against an active adversary that compromises

t < n/2 nodes in each of the old and new committees. CHURP also

allows changes to t and n between epochs. (Periodic changes to s
are specifically not a goal of PSS schemes, but are easy to add.)

Our main achievement in CHURP is its very low communication
complexity: optimistic per-epoch communication complexity in a

blockchain setting of O(n) on-chain—which is optimal—and O(n2)
off-chain, i.e., over point-to-point channels. While the on-chain

complexity is lower than off-chain, it comes with the additional

cost of placing transactions on the blockchain. Cheating nodes

cause pessimistic O(n2) on-chain communication complexity (no

off-chain cost). Both communication costs are substantially lower

than in other schemes.

Despite somewhat complicated mechanics, CHURP realizes a

very simple abstraction: It simulates a trusted third party that stores

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

s for secure use in a wide range of applications—threshold cryptog-

raphy, secure multi-party computation, etc.

1.2 Technical challenges and solutions
To achieve its low communication complexity, CHURP must

overcome several major technical challenges. The first challenge is

that previous PSS schemes, relying on techniques from Herzberg et

al. [43], incur high communication complexity for proactivization

(O(n3) off-chain per epoch). CHURP uses a bivariate polynomial

B(x ,y) to share secret s , and introduces a new proactivization pro-

tocol with cost O(n2). This protocol is based on efficient bivari-
ate 0-sharing, i.e., generation of a randomized, shared polynomial

B(x ,y) with B(0, 0) = 0 to refresh shares. CHURP’s 0-sharing tech-

nique is of independent interest: It can also lower the communica-

tion complexity of Herzberg et al. [43] and related schemes.

The second challenge is that during a handoff, an adversary

may control t nodes in each of the old and new committees, and

thus 2t nodes in total. Compromise of 2t shares in a (t ,n)-sharing
would leak the secret s . Previous schemes, e.g., [64], address this

problem using “blinding” approaches with costly communication.

CHURP introduces a novel, low communication-complexity tech-

nique called dimension-switching. It uses an asymmetric bivariate
polynomial B(x ,y), with degree t in one dimension and degree 2t
in the other. During a handoff, it switches temporarily to a (2t ,n)-
sharing of s to tolerate up to 2t compromised shares; afterward, it

switches back to a (t ,n)-sharing.
Finally, most PSS schemes commit to secret degree-t polynomi-

als using classical schemes (e.g., [32, 59]) with per-commitment

size O(t). CHURP uses an alternative due to Kate, Zaverucha, and

Goldberg (KZG) [45] with size O(1). Use of KZG for secret sharing

isn’t new [11], but CHURP introduces a novel KZG hedge. KZG
assumes trusted setup and a non-standard hardness assumption.

If these fail, CHURP still remains secure—but degrades to slightly

weaker adversarial threshold t < n/3.
We compose these techniques to realize CHURP with provable

security. We give a simulation-based security proof.

1.3 Implementation and Experiments
We present an implementation of CHURP. Our experiments

show very practical communication and computation costs—at

least 1000x improvement over the existing state-of-the-art dynamic-

committee PSS scheme [64] in the off-chain communication com-

plexity for large committees (See Section 6).

Additionally, to achieve inexpensive off-chain communication

among nodes in CHURP, we introduce a new technique for per-

missionless blockchains that is of independent interest. It leverages

the peer-to-peer gossip network as a low-cost anonymous point-

to-point channel. We experimentally demonstrate off-chain com-

munication in Ethereum with monetary cost orders of magnitude

less than on-chain communication.

1.4 Outline and Contributions
After introducing the functional, adversarial, and communica-

tion models in Section 2, we present our main contributions:

• CHUrn-Robust Proactive secret sharing (CHURP): In Section 3,
we introduce CHURP, a dynamic-committee PSS scheme

with lower communication complexity than previous schemes.

• Novel secret-sharing techniques:We introduce a new 0-sharing
protocol for efficient proactivization in Section 4, a new

dimension-switching technique to safeguard the secret in

committee handoffs in Section 5.3, and hedging techniques

for failures in the KZG commitment scheme in Appendix D.2.

• New point-to-point blockchain communication technique: We

introduce a novel point-to-point communication technique

for permissionless blockchains in Section 7—usable inCHURP
and elsewhere—with orders of magnitude less cost than on-

chain communication.

• Implementation and experiments: We report on an imple-

mentation of CHURP in Section 6 and present performance

measurements demonstrating its practicality.

• Provable security: We give a simulation-based security proof

for CHURP in Appendix A.

We discuss related work in Section 8 and CHURP’s many po-

tential applications—threshold cryptography, smart contracts with

private keys, consensus simplification for light clients, etc.—in Ap-

pendix B. We have released the CHURP system as an open-source

tool at https://www.churp.io.

2 MODEL AND ASSUMPTIONS
We now describe the functional, adversarial, and communication

models used for CHURP.

A1

A2

A3

A4

s

B1

B2

B3

B4

B5

s

Old committee New committee

Figure 1:Handoffbetween two committees at the end of a dy-
namic proactive secret-sharing epoch. The secret s remains
fixed. Committees may intersect, e.g., B2 = A2 and B3 = A3.

In a secret-sharing scheme, a committee of nodes shares a fixed se-
cret s . Let C denote a committee and {Ci }

n
i=1 denote the n nodes in

the committee. Each node Ci holds a distinct share si .CHURP proac-
tivizes shares, i.e., changes them periodically to prevent leakage

of s to an adversary that gradually compromises nodes. Again, we

emphasize that CHURP does so for a dynamic committee [13, 64],

i.e., nodes may periodically leave / join the committee.

Shares change in a proactive secret-sharing protocol such as

CHURP during what is called a handoff protocol. Handoff proac-

tivizes s , i.e., changes its associated shares, while transferring s
from an old committee to a new, possibly intersecting one. Fig. 1

depicts the handoff process. The adversarial model for proactive

https://www.churp.io

CHURP: Dynamic-Committee Proactive Secret Sharing

secret sharing in general limits adversarial control to a threshold t
of nodes per committee. During a handoff, CHURP allows nodes to

agree out of band on a change to t , as explained below.

2.1 Functional model
Epoch:Time inCHURP, as in any proactive secret-sharing scheme [43],

is divided into fixed intervals of predetermined length called epochs.
In each epoch, a specific committee of nodes assumes control of

and then holds s . Concretely, in an epoch e , a committee C(e) of

size N (e) shares s using a (t ,N (e))-threshold scheme.

Handoff Committee C(e)Committee C(e−1)Handoff

Epoch eEpoch e − 1

Figure 2: Each epoch begins with a handoff phase where the
old committee hands off the secret s to the new committee.
It is followed by a period of committee operation.

Handoff: Fig. 2 depicts the handoff at the beginning of an epoch.

It involves a transfer of s from an old committee, which we denote

C(e−1), to a new committee, denoted C(e). Prior to completion of

the handoff, C(e−1) is able to perform operations using s .

Churn: In the dynamic-committee setting of CHURP, nodes can
leave a committee at any time, but can only be added during a hand-

off. Let C
(e−1)
lef t denote the set of nodes that have left the committee

before the handoff in epoch e . Let C
(e−1)
alive = C

(e−1) \ C
(e−1)
lef t denote

the set of nodes that participate in the handoff. We let churn rate
α denote a bound such that |C

(e−1)
alive | ≥ |C

(e−1) |(1 − α). Later, we
provide a lower bound on the committee size using the rate α .

Keys:We assume that every node in CHURP has private / public

key pair and that public keys are known to all nodes in the system.

Such a setup is common in secret-sharing systems [43, 64].

2.2 Adversarial model
We consider a powerful active adversaryA. It may decide to cor-

rupt nodes at any time. Once a node is corrupted by the adversary,

it is assumed to be corrupted until the end of the current epoch.

(A node may thus be “released” by an adversary in a new epoch

so that it is no longer corrupted.) Corrupted nodes are allowed to

deviate from the protocol arbitrarily. The proofs of correctness used

by nodes in CHURP requires that we assume a computationally
bounded (polynomial-time) adversary.

As noted above, we limit the adversary A to corruption of no

more than a threshold of nodes in a given committee. This thresh-

old, as noted above, may change in CHURP through out-of-band

agreement by committees. In this case, letting t and t ′ denote cor-
ruption thresholds for old and new committees respectively,A may

control at most t nodes in C(e−1) and t ′ nodes in C(e). We present

the protocol in CHURP for threshold changes in Appendix E. For

simplicity of exposition, however, we assume in what follows that

t = t ′, i.e., the corruption threshold t remains fixed.

Observe that during the handoff between epochs e − 1 and e ,

members of both committees, C(e−1) and C(e), are active. Thus

A may control up to 2t nodes at this time. As committees may

intersect, i.e., an adversary may control a given node i in both the

old and new committees. Alternatively,A may control node i in one
committee, but not the other, reflecting either a fresh corruption or

node recovery.

Definition 1. A protocol for dynamic-committee proactive se-

cret sharing satisfies the following properties in the functional model
above for any probabilistic polynomial time adversaryA with thresh-
old t :

Secrecy: IfA corrupts no more than t nodes in a committee of any
epoch, A learns no information about the secret s .

Integrity: If A corrupts no more than t nodes in each of the com-
mittees C(e−1) and C(e), after the handoff, the shares for honest nodes
can be correctly computed and the secret s remains intact.

2.3 Communication model
We aim to minimize communication complexity in CHURP.

Specifically, we optimize for on-chain complexity and off-chain

complexity in that order. We also consider the round complexity

of our protocol designs, but prioritize communication complexity

because blockchains—particularly permissionless ones—incur high

costs for on-chain operations. We measure the communication com-

plexity of our protocol (and related ones) in terms of on-chain and

off-chain communication cost, as follows:

On-chain: Existing approaches such as MPSS [64] use PBFT [19]

for consensus. Instead, we assume the availability of a blockchain

(or other bulletin-board abstraction) to all nodes in the committee.

We do this for two reasons. First, abstracting away the consensus

layer results in simpler, and more modular secret-sharing proto-

cols. Second, it makes sense to capitalize on the availability of

blockchains today, rather than re-engineer their functionality.

In our model, nodes can either post a message (or) retrieve any

number of messages from the blockchain. After a node posts a

message to the blockchain, within a finite time period T , it gets
published, i.e., blockchain access is synchronous and the message is

now retrievable by any node. This channel is assumed to be reliable:
messages posted are not lost. This model is widely adopted in the

literature (e.g., See [49, 58, 71]).

Permissionless blockchains. While our techniques apply also to

permissioned blockchains, we focus on permissionless blockchains—

e.g., Ethereum. On such chains, users pay (heavily) for writes, but

reads are free. Thus we measure on-chain communication complex-

ity only in terms of writes, e.g.,O(n) on-chain cost meansO(n) bits
written to the blockchain.

Off-chain: Nodes may alternatively communicate point-to-point

(P2P) without direct use of the blockchain. We assume that every

node has such a channel with every other node. P2P channels are

also assumed to be reliable: all messages arrive without getting lost.

We work in a synchronous model, i.e., any message sent via this

channel will be received within a known bounded time period, T ′.
We emphasize that synchronicity of the P2P network is required

only for performance, not for liveness, secrecy or integrity. Looking
ahead, by delaying messages an adversary may slow down the

protocol execution temporarily, but she cannot learn the secret or

corrupt the secret. Moreover, CHURP only requires a short period

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

of synchronicity (e.g., a few minutes) at the end of every epoch (a

relatively long epoch, e.g., a day, would be the norm for CHURP).
We discuss synchronicity assumptions in Section 5.4.

Off-chain P2P channels can be implemented in different ways de-

pending on the deployment environment. In a decentralized setting,

though, nodes are often assumed not to have P2P communication,

to protect them from targeted attacks and anonymity compromise.

In such cases, one can use anonymous channels, such as Tor [67],

to preserve anonymity with additional setup cost and engineering

complexity. Alternatively, off-chain channels can be implemented

by an overlay on top of the existing blockchain infrastructure. We

show how to leverage the gossip network of a blockchain sys-

tem [30] for inexpensive off-chain communication in Section 7.

We measure off-chain communication complexity as the total

number of bits transmitted in point-to-point channels. In general,

where we refer informally to proactivization protocols’ cost in this

work, we mean their communication complexity, on-chain or off-

chain, as the case may be.

3 OVERVIEW OF CHURP
Now we provide an overview of CHURP, with intuition behind

our core techniques. First, we briefly review two key new techniques

used in CHURP: bivariate 0-sharing and dimension-switching. (We

defer details until later in the paper.) Then we give an overview

and example of optimistic execution of CHURP. Finally, we briefly
discuss pessimistic execution paths in CHURP, i.e., what happens
when nodes are faulty, and our third key technique of hedging

against failures in KZG.

3.1 Key secret-sharing techniques
Recall that in an ordinary (t ,n)-threshold Shamir secret sharing

(see [65]), shares of secret s are points on a univariate polynomial

P(x) such that P(0) = s . Instead, to enable its two key techniques,

CHURP employs a bivariate polynomialB(x ,y) such thatB(0, 0) = s .
A share of B(x ,y) is itself a univariate polynomial: Either B(x , i) or
B(i,y) where i is the node index.

Bivariate 0-sharing: Proactivization in nearly all secret-sharing

schemes involves generating a fresh, randompolynomial that shares

a 0-valued secret, e.g., Q(x ,y) such that Q(0, 0) = 0. This is added

to the current polynomial that encodes the secret s . We call such

a polynomial Q(x ,y) a 0-hole polynomial and generation of this

polynomial 0-sharing. Previous approaches’ main communication

bottleneck is naïve 0-sharing that incurs high (O(n3) off-chain)
communication complexity. Our 0-sharing protocol achieves lower

(O(n2) off-chain) complexity. (Details in Section 4).

Dimension-switching:CHURP uses a bivariate polynomial B(x ,y)
asymmetric and of non-uniform degree. Specifically, it uses a poly-
nomial B(x ,y) of degree ⟨t , 2t⟩. By this, we mean that it is degree-t
in x (highest term xt) and degree-2t in y (highest term y2t).

This structure enables our novel dimension-switching technique
in CHURP. Nodes can switch between a sharing in the degree-t
dimension of B(x ,y) and the degree-2t dimension. The result is a

change from a (t ,n)-sharing of s to a (2t ,n)-sharing—and vice versa.
We achieve this by extending the dimension-reduction technique—

move from a (2t ,n)-sharing to (t ,n)-sharing—used by Ben-Or et

al. [14] to switch back and forth. As we show, dimension switching

provides an efficient way to address a key challenge mentioned

above. During a handover, the adversary can control up to 2t nodes,
but between handovers, we instead want a (t ,n)-threshold sharing

of s . (Details in Section 5.3.)

3.2 CHURP: Overview
We now give an overview of the execution of CHURP. We first

consider the optimistic case, and discuss pessimistic cases below

in Section 3.5.

At the end of a given epoch e − 1, before a handoff occurs, the

current committee C(e−1) is in what we call a steady state.
The committee C(e−1) holds a (t ,n)-sharing of s = B(0, 0). This

sharing uses the degree-t dimension of B(x ,y), as noted above.

Node C
(e−1)
i holds share si = B(i,y), and can compute B(x , 0) for

x = i . So it is easy to see that si is actually a share in a (t ,n)-sharing
of B(0, 0). We refer to the shares in steady state as full shares.

During the handoff in epoch e , nodes in the old and new com-

mittees C(e−1) and C(e) switch their sharing of s to the degree-2t
dimension of B(x ,y), resulting in what we call reduced shares.

Specifically, node C
(e)
j holds share sj = B(x , j). Node C

(e)
j can

compute B(0,y) for y = j , and consequently sj is a share in a (2t ,n)-
sharing of B(0, 0). The share sj here has “reduced” power in the

sense that 2t + 1 of these shares (as opposed to t + 1 full shares

in steady state) are needed to reconstruct s . Thus the adversary
cannot recover s despite potentially compromising 2t nodes across

the old and new committees C(e−1) and C(e).

After share reduction, the polynomial B(x ,y) is proactivized. A
0-hole bivariate polynomial Q(x ,y), i.e., such that Q(0, 0) = 0, is

generated (using the new protocol given in Section 4).Q(x ,y) is then
added to B(x ,y), yielding a fresh polynomial B′(x ,y) = B(x ,y) +
Q(x ,y). Nodes update their reduced shares accordingly. Because

Q(x ,y) is 0-hole, the secret s remains unchanged, i.e., s = B′(0, 0).
Shares in B′(x ,y), i.e., for the new committee, are now indepen-

dent of those for B(x ,y), i.e., for the old committee. So it is now

safe to perform full-share distribution, i.e., to switch to the degree-t
dimension of B′(x ,y). This involves distributing full shares to the

new committee C(e). At this point, the steady state is achieved for

epoch e . Committee C(e) holds a (t ,n)-sharing of s using B′(x ,y).
To summarize, the three phases in the CHURP handoff are:

• Share reduction: Nodes switch from the degree-t dimension

of B(x ,y) to the degree-2t dimension. As a result, each node

C
(e)
j in the new committee obtains a reduced share B(x , j).

• Proactivization: The new committee generates Q(x ,y) such

thatQ(0, 0) = 0, and each node C
(e)
j obtains a reduced share:

B′(x , j) = B(x , j)+Q(x , j). Proactivization ensures that shares
in the new committee are independent of those in the old.

• Full-share distribution: New shares B′(i,y) are generated

from reduced shares {B′(x , j)}j , by switching back to the

degree-t dimension of B′(x ,y).

The protocol thus returns to its steady state. Note that during the

handoff, remaining nodes in old committee can still perform opera-

tions using s . So there is no operational discontinuity in CHURP.

CHURP: Dynamic-Committee Proactive Secret Sharing

3.3 An example
In Fig. 3, we show a simple example of the handoff protocol in

CHURP assuming all nodes are honest. The old committee consists

of three nodes C(e−1) = {A1,A2,A3 }. A3 leaves at the end of the

epoch, and a new node A′
3
joins. The new committee is thus C(e) ={

A1,A2,A
′
3

}
. The underlying polynomial B(x ,y) is thus of degree

⟨1, 2⟩. NodeAi ’s share is B(i,y) or 3 points: B(i, 1),B(i, 2) and B(i, 3).
The figure depicts the three phases of the handoff, as follows.

Share reduction: To start the handoff, each node j in the new

committee constructs its reduced share B(x , j) from points received

from C(e−1). As shown in the figure, nodeA′
3
receives points B(1, 3)

and B(2, 3) from A1 and A2 respectively, from which B(x , 3) can be

constructed. Similarly, A1 and A2 construct B(x , 1) and B(x , 2).

Proactivization: Having reconstructed reduced shares {B(x , j)}j ,
nodes in the new committee collectively generate a 0-hole bi-

variate polynomial Q(x ,y) of degree ⟨t , 2t⟩, with the constraint

that each j only learns Q(x , j). Reduced shares are updated as

B′(x , j) = B(x , j) + Q(x , j). In the example above, node j ends up
with Q(x , j) of a random 0-hole polynomial Q(x ,y).

Full-share distribution: Nodes in the new committee get their full

shares from the updated reduced shares. Take A1 as an example.

By this point, A1 has B
′(x , 1) and sends B′(i, 1) to Ai for i ∈ {2, 3}.

Other nodes do the same. Hence, A1 receives B
′(1, 2) and B′(1, 3)

from A2 and A
′
3
respectively. It now has the necessary three points

{B′(1, j)}j ∈[3] in order to interpolate its full share B′(1,y).

3.4 Active security
As noted before, the above example assumes an honest-but-

curious adversary. Additional machinery in the form of crypto-

graphic proofs of correctness for node communications—detailed

in Section 5.3—are required against an active adversary. These

proofs do not alter the overall structure of the protocol.

3.5 Pessimistic CHURP execution paths
What we have described thus far is an optimistic execution of

CHURP. This corresponds to a subprotocol Opt-CHURP that is

highly efficient and optimistic: it only completes when all nodes

are honest and the assumptions of the KZG scheme hold.

When things go wrong, CHURP can detect the violation and

resort to pessimistic paths. Specifically, Exp-CHURP-A can hold

malicious nodes accountable. Moreover, CHURP can also efficiently

detect any soundness failure of the KZG scheme, due to either a

compromised trusted setup or a falsified hardness assumption (t-
SDH). When detected, CHURP switches to Exp-CHURP-B that only

relies on DL and no trusted setup.

As noted above, the on-chain / off-chain communication com-

plexity of CHURP is O(n) / O(n2) in the optimistic case. Unlike

the optimistic path, the two pessimistic paths do not use the off-

chain channel and incur O(n2) on-chain cost. Opt-CHURP and

Exp-CHURP-A requires t < n/2, while Exp-CHURP-B requires

t < n/3. We give more details on all the paths in CHURP in Sec-

tion 5.

4 EFFICIENT BIVARIATE 0-SHARING
In this section, we introduce our technique for efficient 0-sharing

of bivariate polynomials. It is a key new building block in CHURP,
used in the proactivization phase of the handoff.

Recall that in the context of bivariate polynomials, 0-sharing

means having a committee C generate a ⟨t , 2t⟩-bivariate polynomial

Q(x ,y) such that Q(0, 0) = 0. Each node Ci holds a share Q(i,y).
Previous works have naïvely extended 0-sharing techniques for

univariate polynomials to the bivariate case: Each node generates its

own 0-hole bivariate polynomialQi i.e.,Qi (0, 0) = 0, and distributes

points on it. Thus each node transmitsO(n) univariate polynomials,

resulting in O(n2) off-chain communication complexity per node,

and O(n3) in total.

Our new technique, specified as protocol BivariateZeroShare,
brings the total off-chain communication complexity down to just

O(tn) in the optimistic case. In the pessimistic case, i.e., if a node

is caught cheating, different protocols (see Section 5) must then

be invoked. Even in the pessimistic case, though, our techniques

incur no more cost than in previous schemes:O(n3) in the dynamic

setting and O(n2) in the static Herzberg et al. setting.

BivariateZeroShare comprises two steps. In the first step, a 0-

sharing subprotocol UnivariateZeroShare is executed among a sub-

setU of 2t + 1 nodes. At the end of this step, each nodeUj holds a

share sj of a univariate polynomial P(x). In the second step, each

node inU reshares its share sj among all nodes, i.e., the full com-

mittee. Each node Ci thereby obtains share Q(i,y) of bivariate
polynomial Q(x ,y), as desired.

BivariateZeroShare is formally specified in Fig. 10. (For the in-

terest of space, we present all protocols formally in the appendix.

Nonetheless, the text description here is sufficient to understand the

paper.) For ease of presentation, we describe an honest-but-curious

protocol version in this section. Our full protocol, which is secure

against active adversaries, is detailed in Section 5.3.

First step—Sharing P(x):As noted,BivariateZeroShare first chooses
a subsetU ⊆ C of 2t + 1 nodes, i.e., |U| = 2t + 1. This can be done

as follows: Order nodes lexicographically by their public keys and

choose the first 2t + 1. Without loss of generality,U = {Cj }
2t+1
j=1 .

The nodes ofU then execute the univariate 0-sharing subpro-

tocol UnivariateZeroShare presented in Fig. 9. This subprotocol is

not new—it was previously used for proactivization in [43]. Each

nodeUj generates a degree-2t univariate 0-hole polynomial Pj (x).

The sum P(x) =
∑
2t+1
j=1 Pj (x) is itself a degree-2t univariate 0-hole

polynomial P(x). Then,Uj redistributes points on its local polyno-

mial Pj (x), enabling everyUi at the end of the step to compute its

share si = P(i).1

Second step—Resharing P(x):Nodes inU now reshare P(x) among

all of C, resulting in a sharing of the desired bivariate polynomial

Q(x ,y).
Each nodeUj generates a degree-t univariate polynomial Rj (x)

uniformly at random under the constraint Rj (0) = sj , i.e., Rj (x)

1
An attack is outlined in [51] that breaks the original variant of UnivariateZeroShare
in [43]. It does so by considering an adversarial model similar to ours, where the

adversary controls t nodes in old and new committees and thus 2t in total, rather

than t in total as in [43]. CHURP defeats this attack via dimension-switching, using

reduced shares during the handoff.

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

𝐴1

𝐴2

𝐴3
′

𝐴1

𝐴2

𝐴1

𝐴2

𝐴3

Handoff

s s

𝐴3

Share
Reduction

Full Share
Distribution

Randomize

ProactivizationEpoch e-1 Epoch e

X
Figure 3: An example of the handoff protocol: Curves denote univariate polynomials (reduced shares) while squares denote
points on these polynomials. See Section 3.3 for a description.

encodes the node’s share sj . Together, the 2t + 1 degree-t poly-
nomials {Rj (x)} uniquely define a degree-⟨t , 2t⟩ bivariate polyno-
mial Q(x ,y) such that Q(x , j) = Rj (x) for j = 1, 2, . . . , 2t + 1 and

Q(0, 0) = 0.

NodeUj sends Rj (i) = Q(i, j) to every other node Ci in the full

committee. Using the received points, each committee member Ci
interpolates to compute its share—a 2t-degree polynomial Q(i,y).
The constraint Q(0, 0) = 0 is satisfied because the zero coefficients

of Rj (x) are composed of shares generated from the 0-sharing step

before, i.e., UnivariateZeroShare. Since each node inU transmits n
points, the overall cost incurred is just O(tn) off-chain.

We use (t ,n)-BivariateZeroShare as a subroutine in CHURP
with some modifications. As explained before, it can also reduce

the off-chain communication complexity of Herzberg et al.’s PSS

scheme [43], i.e., the static-committee setting, by a factor of O(n).
Due to lack of space, we present this application in the technical

report, the formal protocol can be found in Fig. 14.

5 CHURP PROTOCOL DETAILS
CHURP consists of a suite of tiered protocols with different trust

assumptions and communication complexity.

The execution starts at the top tier—a highly efficient optimistic

protocol. Only upon detection of adversarial misbehavior, does the

execution fall back to lower tiers. The three tiers of CHURP and

their relationship are shown in Fig. 4, detailed as below.

The top tier, Opt-CHURP, is the default protocol of CHURP. It is
optimistic and highly efficient: if no node misbehaves, the execution

completes incurring only O(n) on-chain and O(n2) off-chain cost.

As a design choice, Opt-CHURP does not identify faulty nodes

but rather just detects faulty behavior, upon which the execution

switches to a lower tier protocol, also referred to as a pessimistic

path.

The second tier is Exp-CHURP-A, the main pessimistic path

of CHURP. Unlike the optimistic path, Exp-CHURP-A exclusively

uses on-chain communication channel, which allows to identify

and expel faulty nodes using proofs of correctness. Exp-CHURP-A
trades performance for robustness: the execution is guaranteed to

complete as long as the adversarial threshold t < n/2, but incurs
O(n2) on-chain communication in the worst case.

Both Opt-CHURP and Exp-CHURP-A use KZG commitments to

achieve t < n/2. As noted before, this commitment scheme requires

a trusted setup phase to generate public keys with a trapdoor. The

trapdoor must be “destroyed” after the setup; otherwise soundness

is lost. KZG introduces the only trusted setup in CHURP, and thus

represents its main protocol-level vulnerability. KZG also relies on

a non-standard hardness assumption, the t-Strong Diffie-Hellman

assumption (t-SDH).
To hedge against soundness failure in KZG (either due to a

falsified trust assumption or a compromised trusted setup), we

introduce an additional verification step (StateVerif), which can be

executed at the end of Opt-CHURP or Exp-CHURP-A. StateVerif is
highly efficient—incurs only O(n) on-chain complexity. Any fault

detected by StateVerif indicates that KZG is unusable, and triggers

a KZG-free pessimistic path named Exp-CHURP-B. Exp-CHURP-B
has the same cost as Exp-CHURP-A, but one drawback: It tolerates
a lower adversarial threshold, t < n/3. We defer the details of

StateVerif to Appendix D.2.

In summary, the three tiers (subprotocols) of CHURP are:

(1) Opt-CHURP: The default protocol of CHURP. It incursO(n)
on-chain and O(n2) off-chain communication complexity

under the optimal resilience bound t < n/2.
(2) Exp-CHURP-A: Invoked if Opt-CHURP fails. It incurs O(n2)

on-chain communication complexity under the optimal bound

t < n/2.
(3) Exp-CHURP-B: Invoked if a soundness breach of KZG is

detected by StateVerif. It incurs the same cost as Exp-CHURP-
A, but requires t < n/3.

Table 2 summarizes the three tiers. Due to space constraints, we

present only Opt-CHURP in the body of the paper and present

Exp-CHURP-A and Exp-CHURP-B in Appendix D.

5.1 Notation and Invariants
We now introduce the notation and invariants that will be used

to explain the protocols of CHURP. Notation introduced in this

section is summarized in Table 1.

KZG polynomial commitments:KZG commitment allows a prover

to commit to a polynomial P(x) and later prove the correct evalua-

tion P(i) to a verifier. (Further details in Fig. 8 and [45].)

CHURP invariants:We say the system arrives at a steady state
after it completes a successful handoff. The following invariants

stipulate the desired properties of a steady state. We use invariants

to explain the protocol and reason about its security.

CHURP: Dynamic-Committee Proactive Secret Sharing

Start
Opt-CHURP
(t < n/2)

Exp-CHURP-A
(t < n/2)

Exp-CHURP-B
(t < n/3)

End

Trusted-setup failure Fault detected

Figure 4: CHURP protocol tiers. Opt-CHURP is the default
protocol of CHURP. Exp-CHURP-A and Exp-CHURP-B are run
only if a fault occurs in Opt-CHURP.

Let C be a committee of n nodes {Ci }
n
i=1. Let B(x ,y) denote the

asymmetric bivariate polynomial of degree ⟨t , 2t⟩ used to share

the secret s , i.e., s = B(0, 0). In a steady state, the following three

invariants must hold:

• Inv-Secret: The secret s is the same across handoffs.

• Inv-State: Each node Ci holds a full share B(i,y) and a proof

to the correctness thereof. Specifically, the full share B(i,y) is a
degree-2t polynomial, and hence can be uniquely represented

by 2t + 1 points {B(i, j)}2t+1j=1 . The proof is a set of witnesses{
WB(i, j)

}
2t+1
j=1 .

• Inv-Comm: KZG commitments to reduced shares ({B(x , j)}2t+1j=1)

are available to all nodes.

The first invariant Inv-Secret ensures the secret remains un-

changed, a core functionality of CHURP.
Inv-State and Inv-Comm ensures the correctness of the protocol.

For example, recall from Section 3 that during the handoff (the

Share Reduction phase), nodes in the old and the new committee

switch their dimension of sharing, from full shares to reduced

shares. Using the commitments (specified by Inv-Comm) and the

witnesses (specified by Inv-State), new committee members can

verify the correctness of reduced shares, thus the correctness of

dimension-switching.

Note that to realize Inv-Comm, hashes of KZG commitments are

put on-chain for consensus while the commitments are transmitted

off-chain between nodes.

Notation Description

C(e−1),C(e) Old, New committee

B(x ,y) Bivariate polynomial used to share the secret

⟨t ,k⟩ Degree of ⟨x ,y⟩ terms in B
RSi (x) = B(x , i) Reduced share held by Ci
FSi (y) = B(i,y) Full share held by Ci ’s

CB(x, j) KZG commitment to B(x , j)
WB(i, j) Witness to evaluation of B(x , j) at i
Q(x ,y) Bivariate proactivization polynomial

U ′ Subset of nodes chosen to participate in handoff

λi Lagrange coefficients

Table 1: Notation

5.2 CHURP Setup
The setup phase of CHURP sets the system to a proper initial

steady state. To start, an initial committee C(0) is selected. The

setup of KZG is performed and the secret is shared among C(0).

Using their shares, members of C(0) can generate commitments to

install the three invariants.

The setup of KZG can be performed by a trusted party or a

committee assuming at least one of them is honest. The secret to

be managed by CHURP can be generated by a trusted party or in a

distributed fashion using, e.g., [37].

We leave committee selection out-of-scope for this paper. Read-

ers can refer to, e.g., [40], for a discussion.

5.3 CHURP Optimistic Path (Opt-CHURP)
Recall thatOpt-CHURP transfers shares of some secret s from an

old committee, denoted C = C(e−1), to a new committee C′ = C(e).

CHURP can support both committee-size and threshold changes,

i.e., a transition from (n, t) to some (n′, t ′) in any epoch. For ease

of exposition here, though, we allow n to change across epochs as-

suming a constant threshold t . Changing the threshold is discussed

in Appendix E.

Opt-CHURP proceeds in three phases. The first phase, Opt-
ShareReduce, performs dimension-switching to tolerate an adver-

sary capable of compromising 2t nodes across the old and new com-

mittees. By the end of this phase, reduced shares are constructed by

members of the new committee. The second phase,Opt-Proactivize,
proactivizes these reduced shares so that new shares are indepen-

dent of the old ones. The third and the final phase, Opt-ShareDist,
restores full shares from reduced shares, and thus completes a re-

turn to the steady state.

At the beginning of Opt-CHURP, each node in C′ requests the

set of KZG commitments from any node in C, say C1. Recall that

by the invariant Inv-Comm, each node in C holds the KZG com-

mitments to the current reduced shares,

{
CB(x, j)

}
2t+1
j=1 , while the

corresponding hashes are on-chain. The received commitments are

verified using the on-chain hashes. Optimistically, each node in C′

receives the correct set of commitments. If a node receives corrupt

ones, we switch to a pessimistic path where the KZG commitments

are published on-chain. The above check enabled by the on-chain

hashes ensures that new committee nodes receive the correct set

of commitments. The phases of Opt-CHURP are as follows:

5.3.1 Share Reduction (Opt-ShareReduce). The protocol starts by
choosing a subset U ′ ⊆ C′ of 2t + 1 members (possible because

|C′ | > 2t). The nodes inU ′ are denoted {U ′j }
2t+1
j=1 .

Somemembers in the old committee Cmay have left the protocol

by this point. Let Calive ⊆ C denote the subset of nodes that are

present, w.l.o.g., let this subset be {Ci }
|Calive |
i=1 .

Recall that by the invariant Inv-State, each node Ci holds a

full share B(i,y). Now, Ci distributes points on its full share al-

lowing computation of reduced shares B(x , j) by all members of

U ′—making a dimension-switch from the degree-t dimension of

B(x ,y) to the degree-2t dimension. Specifically, Ci sends B(i, j) to
U ′j , which interpolates the received points to get its reduced share

B(x , j). Note that in the optimistic path we require all 2t + 1 nodes

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

inU ′ to participate. If any adversarial nodes fail to do so, we switch

to a pessimistic path as detailed above.

The received points are accompanied by witnesses allowing for

verification using the KZG commitments received previously. Since

t + 1 correct points are sufficient to reconstruct the reduced share,

we need at least 2t + 1 points (|Calive | > 2t) to guarantee liveness.

The size of Calive is governed by the bounded churn rate α , i.e.,
|Calive | ≥ |C|(1−α). Thus, the condition for liveness, |Calive | > 2t ,
places a lower bound on the committee size, |C|(1 − α) > 2t or
|C| > ⌊2t/1−α⌋.

The protocol Opt-ShareReduce is formally specified in Fig. 11.

At the end of Opt-ShareReduce, dimension-switching is complete

and each nodeU ′j has a reduced share B(x , j).

Communication complexity: Each node inU ′ receives O(n) points,
so Opt-ShareReduce incurs O(nt) off-chain cost.

5.3.2 Proactivization (Opt-Proactivize). In this phase,U ′ proac-

tivizes the bivariate polynomial B(x ,y)—a key step in generating

new shares independent of the old ones held by members of C. The

polynomial B(x ,y) is updated using a random bivariate polynomial

Q(x ,y) generated such that Q(0, 0) = 0. The result is a new polyno-

mial B′(x ,y) = B(x ,y) +Q(x ,y). The fact that Q(0, 0) = 0 ensures

preservation of our first invariant Inv-Secret.
We achieve this by adapting the bivariate 0-sharing technique

(BivariateZeroShare) presented in Section 4 to handle active adver-

saries. Recall that BivariateZeroShare comprises two steps. First,

a univariate 0-sharing subroutine generates shares of the number

0. These shares are then re-shared in a second step resulting in a

sharing of Q(x ,y) among C′.

By the end of the previous, i.e., Share Reduction phase, every

nodeU ′j in the set of 2t + 1 nodesU ′ holds a reduced share B(x , j).

Now, by the end of the current, i.e., Proactivization phase, we update

these reduced shares by addingQ(x , j) from the generated bivariate

polynomial Q(x ,y).
The protocol starts by invoking the 0-sharing subroutine Uni-

variateZeroShare introduced previously, which is the first step of

BivariateZeroShare. Specifically, (2t , 2t + 1)-UnivariateZeroShare
is run amongU ′ to generate shares sj at eachU

′
j . To handle active

adversaries,U ′j sends a commitment to the share, дsj , to all other

nodes in U ′ (where д is a publicly known generator). Lagrange

coefficients {λ2tj }j can be precomputed to interpolate and verify if

the shares form a 0-sharing,

∑
2t+1
j=1 λ2tj sj = 0. Translating it to the

commitments, all nodes check the following:

2t+1∏
j=1
(дsj)λ

2t
j = 1 . (1)

Then,U ′j generates a random degree-t univariate polynomial

Rj (x) that encodes the node’s share sj , i.e., Rj (0) = sj . Together,
the 2t + 1 polynomials uniquely define a 0-hole bivariate polyno-

mial Q(x ,y) such that {Q(x , j) = Rj (x)}
2t+1
j=1 .U ′j also updates the

reduced share, B′(x , j) = B(x , j) + Rj (x). Points on B′(x , j) will be
distributed to the entire committee C′ in the next phase of Opt-
CHURP. (We make a modification to BivariateZeroShare: In the

re-sharing step of BivariateZeroShare, points on Q(x , j) were dis-
tributed directly.)

Each U ′j sends constant-size information to other nodes off-

chain enabling verification of the above step. Let Z j (x) = Rj (x) − sj
denote a 0-hole polynomial, the commitment to Z j (x), CZ j , and
a witness to the evaluation at zero are distributed enabling ver-

ification of the statement: Z j (0) = 0; equivalent to Rj (0) = sj .
The commitment to the updated reduced share B′(x , j) is also dis-

tributed. Since B′(x , j) = B(x , j) + Z j + sj , the homomorphic prop-

erty of the commitment scheme allows other nodes to verify if

CB′(x, j) = CB(x, j) ×CZ j ×Csj where Csj = дsj and the other two

commitments were received previously.

In total, eachU ′j generates the following set of commitment and

witness information duringOpt-Proactivize,
{
дsj ,CZ j ,WZ j (0),CB′(x, j)

}
.

While this set is transmitted off-chain to all nodes in the full commit-

tee C′, a hash of it is published on-chain. The received commitments

can then be verified using the published hash, thereby ensuring

that everyone receives the same commitments. Note that the set

of commitments is sent to C′ instead of just the subsetU ′ to pre-

serve the invariant Inv-Comm, i.e., ensure that all nodes hold KZG
commitments to the updated reduced shares.

The verification mechanisms used in this protocol are sufficient

to detect any faulty behavior, although they do not identify which

nodes are faulty. Thus, the adversary can disrupt the protocol with-

out revealing his / her nodes. For example, it could send corrupt

commitments to nodes selectively. Although the published hash

reveals this, a verifiable accusation cannot be made since the com-

mitments were sent off-chain. Another example would be a corrupt

node sending points from a non-0-hole polynomial in the Univari-
ateZeroShare protocol. Again, we detect such a fault but cannot

identify which nodes are faulty. So detection of a fault simply leads

to a switch to the pessimistic path, Exp-CHURP-A. While Exp-
CHURP-A is capable of identifying misbehaving nodes, note that

we do not retroactively identify the faulty nodes from Opt-CHURP.
The protocol Opt-Proactivize is formally specified in Fig. 12. By

the end of this, if no faults are detected, eachU ′j holds B
′(x , j). The

invariants Inv-Secret and Inv-Comm hold as s = B′(0, 0) and all of

C′ hold the KZG commitments respectively. In the next phase, we

preserve the other invariant Inv-State.

Communication complexity: Each node inU ′ publishes a hash on-

chain and transmits O(t) data off-chain. Hence, Opt-Proactivize
incurs O(t) on-chain and O(t2) off-chain cost.

5.3.3 Full Share Distribution (Opt-ShareDist). In the final phase,

full shares are distributed to all members of the new committee,

thus preserving the Inv-State invariant. A successful completion of

this phase marks the end of handoff.

By the end of the previous phase, eachU ′j in the chosen subset

of nodesU ′ ⊆ C′ holds a new reduced share B′(x , j).
Now, U ′j distributes points on B′(x , j), allowing computation

of full shares B′(i,y) by all members of C′—we make a dimension-
switch from the degree-2t dimension of B′(x ,y) to the degree-t
dimension. Specifically, each C′i receives 2t +1 points {B

′(i, j)}2t+1j=1 ,

which can be interpolated to compute B′(i,y), its full share. This is
made verifiable by sending witness along with the points.

Since the point distribution is off-chain, a faulty node can send

corrupt points without getting identified similar to the previous

CHURP: Dynamic-Committee Proactive Secret Sharing

Protocol On-chain, Off-chain Threshold Optimistic

Opt-CHURP O(n),O(n2) t < n/2 Yes

Exp-CHURP-A O(n2), n/a t < n/2 No

Exp-CHURP-B O(n2), n/a t < n/3 No

Opt-Schultz-MPSS O(n),O(n4) t < n/3 Yes

Schultz-MPSS O(n2),O(n4) t < n/3 No

Table 2: On-chain cost and Off-chain costs of all protocols
for the dynamic setting. An optimistic protocol ends success-
fully only if no faulty behavior is detected. n/a indicates Not
Applicable.

phase. In this event, we switch to the pessimistic path Exp-CHURP-
A without identifying which nodes are faulty.

The protocol Opt-ShareDist is formally specified in Fig. 13. If all

nodes receive correct points, this phase ends successfully and the

optimistic path ends. The remaining invariant Inv-State is fulfilled
as each node in C′ receives a full share, and hence the system

returns to the steady state. After a successful completion ofCHURP,
we require that members of the old committee C delete their old

full shares and members ofU ′ delete their new reduced shares.

Communication complexity: Each node in C′ receives 2t + 1 points,
thus Opt-ShareDist incurs O(nt) off-chain cost.

Each of the three phases in Opt-CHURP (and thus Opt-CHURP
itself) incur no more than O(n) on-chain and O(n2) off-chain cost.

In terms of round complexity, it completes in three rounds (one for

each phase) that does not depend on the committee size. Due to

lack of space, we reiterate that the pessimistic paths of CHURP are

discussed in Appendix D. Table 2 compares on-chain and off-chain

costs of the three paths of CHURP and Schultz-MPSS [64], the

latter will be explained in more detail in Section 6.3.

Theorem 1. Protocol Opt-CHURP is a dynamic-committee proac-
tive secret sharing scheme by Definition 1.

We present the security proof in Appendix A.

5.4 Notes on the synchronicity assumptions
As discussed in Section 2, CHURP works in the synchronous

model and assumes a latency bound for both on-chain and off-chain

communication. While the former is a well-accepted assumption

(e.g., see [49, 58, 71]), the latter is assumed by the blockchain con-

sensus protocol itself, as the required difficulty of proof-of-work is

dependent on the maximum network delay [57]. However, we em-

phasize that synchronicity for off-chain communication is needed

only for performance, not for liveness or safety. In the optimistic

path, if messages take longer to deliver, a fault is detected and

the protocol switches to the pessimistic path. After that, nodes

communicate via the on-chain channel only.

6 CHURP IMPLEMENTATION & EVALUATION
We now report on an implementation and experiments with

CHURP, including a comparison with the state-of-the-art alterna-

tive, Schultz-MPSS [64].

6.1 Implementation
We implemented Opt-CHURP in about 2, 100 lines of Go and

the code is available at https://www.churp.io. Our implementation

uses the GNU Multiprecision Library [3] and the Pairing-Based

Cryptography Library [5] for cryptographic primitives, and gRPC

[4] for network infrastructure.

For polynomial arithmetic, we used the polynomial ring Fp [x]
for a 256-bit prime p. For the KZG commitment scheme, we used a

type A pairing on an elliptic curve y2 = x3 +x over Fq for a 512-bit

q. The order of the EC group is also p. We use SHA256 for hashing.

Blockchain Simulation: CHURP can be deployed on both per-

missioned and permissionless blockchains. To abstract away the

specific choice, we simulate one using a trusted node. Note that

when deployed in the wild, writing to the blockchain would incur

an additional constant latency.

6.2 Evaluation
In our evaluation, experiments are run in a distributed network

of up to 1000 EC2 c5.large instances, each with 2 vCPU and 4GB

of memory. Each instance acts as a node in the committee and

the handoff protocol is executed assuming a static committee. All

experiments are averaged over 1000 epochs, i.e., 1000 invocations

of Opt-CHURP. We measure three metrics for each protocol epoch:

the latency (the total execution time), the on-chain complexity (the

total bytes written to the blockchain (i.e. the trusted node)), and

the off-chain complexity (the total bytes transmitted between all

nodes). The evaluation results are presented below.

Latency: In the first set of experiments, all EC2 instances belong

to the same region, also referred to as the LAN setting. This set-

ting is useful to understand the computation time of Opt-CHURP,
results are presented in Fig. 5. The experimental results show a

quadratic increase consistent with the O(n2) asymptotic compu-

tational complexity of Opt-CHURP and suggests a low constant,

e.g., for a committee of size 1001 the total protocol execution time

is only about 3 minutes (Fig. 5b). As noted before, this does not

include the additional latency for on-chain writes. Note that Opt-
CHURP involves only 1 on-chain write per node which happens at

the end of Opt-Proactivize, and in Ethereum currently each write

takes about 15 seconds. Fig. 5b also shows that among the three

phases, Opt-ShareDist dominates the execution time due to the

relatively expensive O(n) calls to KZG’s CreateWitness per node.
(CreateWitness involves O(n) group element exponentiation, thus

total O(n2) computation.)

In the second set of experiments, we select EC2 instances across

multiple regions in US, Canada, Asia and Europe, also referred to

as the WAN setting. In this setting the network latency is relatively

unstable, although even in the worst-case it is still sub-second.

Hence, during a handoff of Opt-CHURP in the WAN setting, we

expect a constant increase in the latency over the LAN setting.

Moreover, we expect this constant to be relatively small compared

to the time spent in computation. We validate our hypothesis—for

a committee size of 100, the WAN latency is 4.54 seconds while the

LAN latency is 2.92 seconds (Fig. 5a), i.e., the additional time spent

in network latency is around 1.6 sec and constant across different

committee sizes as expected. Note that we were unable to execute

https://www.churp.io

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

20 40 60 80 100

0

2

4

6

Nodes

L
a
t
e
n
c
y
(
s
e
c
)

Opt-ShareReduce

Opt-Proactivize

Opt-ShareDist

20 40 60 80 100

0

2

4

6

(a) Latency for the LAN (left bar) and WAN (right bar) setting with
committee sizes 11-101.

200 400 600 800 1,000

0

50

100

150

200

Nodes

L
a
t
e
n
c
y
(
s
e
c
)

Opt-ShareReduce

Opt-Proactivize

Opt-ShareDist

(b) Latency for the LAN setting with committee size 101-1001.

Figure 5: Latency

experiments in the WAN setting for committee sizes beyond 100

due to scaling limitations in AWS. (We plan to get around this soon.)

On-chain communication complexity:Opt-CHURP incurs a linear

on-chain communication complexity—n hashes, i.e. 32n bytes, are

written to the blockchain in each handoff.

Off-chain communication complexity: Fig. 6 compares the off-

chain complexity for different committee sizes for Opt-CHURP
and [64], a discussion about the comparison is in Section 6.3. Now,

we discuss the off-chain costs of Opt-CHURP. The concrete perfor-
mance numbers are consistent with the expected O(n2) complexity.

The off-chain data transmitted per node includes: 2n (polynomial

point, witness) pairs in the share reduction and the share distri-

bution phase, and n elements of Fp in the proactivization phase;

each node also sends 1 commitment to share, 3 commitments to

polynomials, and 1 witness. With aforementioned parameters, a

commitment to a t-degree polynomial is of size 65B (with compres-

sion) and points on polynomial are of size 32B. For example, for

t = 50 and n = 101, the off-chain complexity of Opt-CHURP is

about 226n2+325n ≈ 2.3MB. In Fig. 6, the expected curve is slightly

below the observed data points because of trivial header messages

unaccounted in the above calculations.

As we’ll show now, the above is about 2300x lower than the

communication complexity of the state of the art.

6.3 Comparison with Schultz’s MPSS
The Mobile Proactive Secret Sharing (MPSS) protocol of Schultz

et al. [64], referred to as Schultz-MPSS hereafter, achieves the sim-

ilar goal as CHURP in asynchronous settings, assuming t < n/3.
Compared to [64], Opt-CHURP achieves an O(n2) improvement

0 200 400 600 800 1,000
10
−2

10
3

10
8

Nodes

O
ff
-
c
h
a
i
n
c
o
m
m
.
c
o
m
p
.
(
M
b
y
t
e
s
)

Opt-CHURP
Opt-Schultz-MPSS

Figure 6: Concrete off-chain communication complexity
for Opt-CHURP and Schultz-MPSS, with log-scale y-axis.
Points show experimental results; expected polynomial
curves(respectively quadratic and quartic) are also shown.

for off-chain communication complexity. To evaluate the concrete

performance, we also implemented the optimistic path of Schultz-
MPSS (Section 5 of [64]) and evaluated the communication com-

plexity empirically.

Asymptotic improvement: Schultz-MPSS extends the usage of

expensive blinding polynomials introduced by Herzberg et al. [43]

to enable a dynamic committee membership. We recall briefly the

asymptotic complexity of Schultz-MPSS and refer readers to [64]

for details. Each node in the old committee generates a proposal

of size O(n2) and send it to other nodes, resulting in an O(n4) off-
chain communication complexity in total. Each node then validates

the proposals and reaches consensus on the set of proposals to

use by sending O(n) accusations to the primary, incurring a O(n2)
on-chain communication complexity. In the optimistic case where

no accusation is sent—labelled Opt-Schultz-MPSS—the consensus
publishes O(n) hashes of proposals on chain and thus only incurs

O(n) on-chain communication complexity.

Table 2 compares the asymptotic communication complexity of

Schultz-MPSS and CHURP. Schultz-MPSS has the same on-chain

complexity as CHURP, but is O(n2) more expensive for off-chain.

Performance evaluation: We implemented the optimistic path of

Schultz-MPSS in about 3, 100 lines of Go code. To adapt Schultz-
MPSS to the blockchain setting, we replace the BFT component of

Schultz-MPSS with a trusted node. Fig. 6 compares the off-chain

communication complexity ofOpt-Schultz-MPSS andOpt-CHURP.
For practical parameterizations, our experiments show that Opt-

CHURP can incur orders of magnitude less (off-chain) communica-

tion complexity than Opt-Schultz-MPSS. For example, for a com-

mittee of size 100, the off-chain complexity of Schultz-MPSS is

53.667n4 ≈ 5.3GB, whereas that for Opt-CHURP is only 2.3MB, a

2300x improvement! (If n ≥ 65, the improvement is at least three

orders of magnitude.) Since Schultz-MPSS incurs excessive (GB)

off-chain cost, we do not run it for committee sizes beyond 100.

7 POINT-TO-POINT COMMUNICATION
TECHNIQUE

CHURP takes advantage of a hybrid on-chain / off-chain com-

munication model to minimize communication costs. A blockchain

is used to reach consensus on a total ordering of messages, while

CHURP: Dynamic-Committee Proactive Secret Sharing

much cheaper and faster off-chain P2P communication transmits

messages with no ordering requirement.

Off-chain P2P channels can be implemented in different ways

depending on the deployment environment. However, in a decen-

tralized setting, establishing direct off-chain connection between

nodes is undesirable, as it would compromise nodes’ anonymity.

Revealing network-layer identities (e.g., IP addresses) would also

be dangerous, as it could lead to targeted attacks. One can instead

use anonymizing overlay networks, such as Tor—but at the cost of

considerable additional setup cost and engineering complexity.

Alternatively, off-chain channels can be implemented as an over-

lay on existing blockchain infrastructure. In this section, we present

Transaction Ghosting, a technique for cheap P2P messaging on a

blockchain. The key trick to reduce cost is to overwrite transactions
so that they are broadcast, but subsequently dropped by the network.

Most of these transactions—and their embeddedmessages—are then

essentially broadcast for free. We focus on Ethereum, but similar

techniques can apply to other blockchains, e.g., Bitcoin.

7.1 Transaction Ghosting
A (simplified) Ethereum transaction tx = (n,m,д) includes a

nonce n, payloadm, and a per-byte gas price д paid to the miner of

tx. For a basic (“send”) transaction, Alice pays a miner f0 + |m | × д,
where f0 is a base transaction cost and |m | is the payload size. (We

make this more precise below.)

Alice sends tx to network peers, who add tx to their pool of

unconfirmed transactions, known as the mempool [56]. They prop-

agate tx so that it can be included ultimately in all peers’ view of

the mempool. tx remains in the mempool until a miner includes it

in a block, at which point it is removed and f0 + |m | × д units of

currency is transferred from Alice to the miner.

The key observation is, until tx is mined, Alice can overwrite it

with another transaction tx′. When this happens, tx is dropped from
the mempool. Thus, both tx and tx′ are propagated to all nodes, but
Alice only pays for tx′.

Two additional techniques can further reduce costs. Alice can

embedm in tx only, putting no message data in tx′. She then pays

nothing for the data containingm, only the cost associated with tx′.
This technique also generalizes to multiple overwrites, i.e., Alice

can embed a large messagem in multiple transactions {txi }i ∈[k−1],
which is useful given bounds (e.g., 32kB in Ethereum) on transaction

sizes. Alice will only pay the cost of the final transaction txk .

7.2 Choosing overwrite rate k
An optimal strategy is to make k as high as possible, i.e., over-

write many times. Ethereum, though, imposes a constraint on over-

writing: the sender must raise the transaction fee in a fresh trans-

action by at least a minimum fraction ρ. (In Ethereum clients, ρ
ranges from 10% to 12.5%).

Here we determine the optimal value of k . Recall that the fee for
a transaction with |m | bytes of data is f = f0+д× |m |, for constants
f0 and д. Overwriting transactions with a fractional fee increase of

ρ results in an average per-byte fee of
f ×ρk

(1+k)×|m | for k overwritings,

assuming thekth transaction gets mined. For ρ = 12.5%, the optimal

strategy is to write or overwrite k = 7 times, yielding average

cost 0.29 ×
f
|m | per byte, about 70% less than without overwriting.

Moreover, if we send the firstk−1 transactionswith |m | bytes of data

and the last one empty, the average cost is driven down to
f0×ρk

|m |×k
per byte (because one only pays for the last empty transaction).

The above analysis assumes the kth transaction can always suc-

cessfully overwrite previous ones, which happens in our exper-

iments for two reasons. First, the kth transaction is smaller and

higher-priced, thus preferred by miners; second, previous transac-

tions usually remain pending for a long time (tens of minutes or

longer), always allowing enough time for the kth to fully propagate.

7.3 Experiments

On-chain Transaction Ghosting

Bandwidth (KB/sec) ≤ 6.4 32.3 (9.31)

Latency (sec) varies (Fig. 7) 1.09 (0.82)

Message transmission cost (USD/MB) varies (Fig. 7) $0.06 ($0.02)

Transaction delivery rate 100% 92.2% (14.2%)

Table 3: Comparison between communication via the
Ethereum blockchain and via Transaction Ghosting. Num-
bers in parentheses are standard deviations. The cost for
Transaction Ghosting is based on an initial gas price of
1GWei. See Section 7.3 for details.

We validate our ideas empirically on the Ethereum blockchain

(mainnet). The sender and receiver are full nodes connected to the

Ethereum P2P network—with no out-of-band channel. The goal is

for the sender to transmit messages to the receiver by embedding

them in pending transactions.

To overwrite a pending transaction in Ethereum, the sender

reuses the nonce with raised gas price. As discussed above, we

choose k = 7 in the experiment. Each of the first 7 transactions

contains 31KB of data and the 8th is empty. A total of approximately

100MB data is successfully transmitted in 4, 200 transactions, in

about 1 hour. Table 3 summarizes the results of our experiments,

which we now discuss.

Bandwidth: Experimentally, we can propagate overwritten trans-

actions at a rate of just under once a second, yielding approximate

bandwidth 32.3KB/s, as the maximum permitted per-transaction

data is 32KB [39]. While this suffices for CHURP, we believe more

engineering would yield higher bandwidth. Studies of blockchain

arbitrage [35] show that arbitrageurs can overwrite transactions in

hundreds of milliseconds.

We emphasize that the shown bandwidth is per channel. One
can establish N concurrent channels by overwriting N transactions

simultaneously.

Message-transmission cost: Transaction costs for message deliv-

ery in Transaction Ghosting are extremely low: $0.06 per megabyte

on average, with gas price 1 GWei. The gas price should be cho-

sen minimum required to get transactions relayed by peer nodes.

Empirically of late, a gas price between 1 to 2 GWei offers good

delivery rate, which we now explain.

Transaction delivery rate: Although a sender can make sure over-

writing succeeds in her mempool, overwritten transactions are not

guaranteed to arrive on the receiver’s side. Possible reasons are

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

0 100 200 300

0

200

400

(0.06 s, 1.09 USD/MB)

Message transmission cost (USD/MB)

L
a
t
e
n
c
y
(
s
e
c
)

On-chain (Ethereum)

Transaction Ghosting

Figure 7: Tradeoff in latency vs. message transmission cost.
The blue curve shows the on-chain tradeoff. The red dot at
(0.06 s, 1.09USD/MB) corresponds to Transaction Ghosting.

an overloaded mempool [56], network congestion and/or out-of-

order delivery. Generally transactions with a higher transaction

fee are relayed preferentially by peer nodes, and less frequently

dropped. The 8th transaction in our rewriting sequence has the

highest fee and the smallest payload, and is always delivered in our

experiments.

Overall, we observe an average transaction delivery rate of 92%

in our experiments, or a ≈ 8% loss rate. Our Transaction Ghosting

is thus an erasure channel. A sender can either erasure-codem to

ensure full delivery without interaction with the receiver, or use

a standard network retransmission protocol so the receiver can

signal a delivery failure. These techniques are out of scope for our

exploration here.

7.4 Comparison to on-chain communication
For comparison, we estimate the same metrics for on-chain com-

munication, i.e. using the Ethereum blockchain as a message carrier.

The results are summarized in Table 3.

Bandwidth: An upper bound is estimated assuming a 8 million

block gas limit. Each block can hold at most three 32KB transactions,

thus a total of 96KB data every 15 seconds, or 6.4 KB/s.

Message-transmission cost: The cost of sending 1MB data is esti-

mated as that of sending 32 transactions with 32KB data in each,

assuming an exchange rate of 1ETH = $200. The latency, i.e., the

time between a transaction first appears in the mempool and the

time it is mined, depends on the gas price and the network condi-

tion. A lower latency requires a higher gas price and thus a higher

transmission cost. Several services such as [1, 2] collect metrics for

gas price vs. latency tradeoff. We used [1] for our estimation. Fig. 7

shows the tradeoff between latency and message transmission cost.

Notes: While our techniques may seem an abuse of the Ethereum

P2P network, the idea of leveraging the network for alternative

forms of communication has been under consideration by the com-

munity for some time; see, e.g., [31].

8 RELATEDWORK
Verifiable Secret Sharing (VSS): Polynomial-based secret sharing

was introduced by Shamir [65]. Feldman [32] and Pedersen [59]

proposed an extension called verifiable secret sharing (VSS), in which
dealt shares’ correctness can be verified against a commitment of

the underlying polynomial. In these schemes, a commitment to a

degree-t polynomial has size O(t). The polynomial-commitment

Protocol Dynamic Adversary Network Threshold Cost

Herzberg et al. [43] No active synch. t < n/2 O(n2)
Cachin et al. [18] No active asynch. t < n/3 O(n4)

Desmedt et al. [26] Yes passive synch. t < n/2 O(n2)
Wong et al. [69] Yes active synch. t < n/2 exp(n)
Zhou et al. [72] Yes active asynch. t < n/3 exp(n)

Schultz-MPSS [64] Yes active asynch. t < n/3 O(n4)
CHURP (this work) Yes active synch. t < n/2 O(n3)

Table 4: Comparison of Proactive Secret Sharing (PSS)
schemes—those above the line do not handle dynamic com-
mittees while the ones below do so. Cost indicates the off-
chain communication complexity.

scheme of Kate et al. [45] (KZG) reduces this toO(1), and is adopted
for secret sharing in, e.g., [11], and in CHURP.

Proactive Secret Sharing (PSS): Proactive security, the idea of

refreshing secrets to withstand compromise, was first proposed by

Ostrovsky and Yung [55] for multi-party computation (MPC). It

was first adapted for secret sharing by Herzberg et al. [43], whose

techniques continue to be used in subsequent works, e.g., [16, 24, 36,

42, 50, 53, 64], and in CHURP (in UnivariateZeroShare). As noted,
a result of independent interest in our work is anO(n) reduction in

the off-chain communication complexity of [43]. (See Fig. 14.)

All the above schemes assume a synchronous networkmodel and

computationally bounded adversary; CHURP does too, given its

blockchain setting. PSS schemes have also been proposed in asyn-

chronous settings [18, 64, 72] and unconditional settings [54, 66].

Nikov and Nikova [51] provide a survey of the different techniques

used in PSS schemes along with some attacks (which CHURP ad-

dresses via its novel dimension-switching techniques).

Dynamic committee membership: Desmedt and Jajodia [26]

propose a scheme that can change the committee and threshold in

a secret-sharing system, but is unfortunately not verifiable. Wong

et al. [69] build a verifiable scheme assuming that the nodes in the

new committee are non-faulty. Subsequent works [27, 72] build

schemes that do not make such assumptions, but are impractical

for our use—[72] incurs exponential communication cost, and [27]

incurs exponential computation cost. Schultz et al. [64] were the

first to build a practical scheme under an adversarial model similar

to ours. While [64] incurs O(n4) off-chain communication cost,

as Table 4 shows, CHURP improves it to O(n3) off-chain cost. We

convert the worst-case O(n2) on-chain cost incurred by CHURP to

its equivalent off-chain cost in order to facilitate a comparison with

prior work in the following manner: Instead of using a blockchain,

use PBFT [19] to post messages on the bulletin board which incurs

an additional O(n) off-chain cost per bit.

Baron et al. [12, 13] recently proposed dynamic-committee schemes

with O(1) communication complexity per secret. Their scheme has

impractically high constants, though, and assumes amortization

over large numbers of secrets (specifically for MPC), while we want

efficiency even for small numbers of secrets.

Bivariate polynomials:Bivariate polynomials have been explored

extensively in the secret-sharing literature, to build VSS proto-

cols [18, 33], for multipartite secret-sharing [68], to achieve uncon-

ditional security [54], and to buildMPC protocols [14, 38]. Ben-Or et

al. [14] redistribute the secret-sharing during multiplication using

a technique similar to dimension-switching. CHURP on the other

CHURP: Dynamic-Committee Proactive Secret Sharing

hand uses dimension-switching to facilitate dynamic committees.

Prior to CHURP, few works [28, 63] have considered application of

bivariate polynomials to dynamic committees, but these have been

limited to passive adversaries. CHURP’s novel use of dimension-

switching provides security against active adversaries.

0-sharing, the technique of generating a 0-hole polynomial has

been widely used for proactive security since the work of [43]. As

we explain before, prior works [28, 54, 63] have naively extended

these to the bivariate case leading to expensive 0-sharing protocols.

Instead,CHURP applies known share re-sharing techniques [26, 34]
to build an efficient bivariate 0-sharing protocol.

ACKNOWLEDGEMENT
This workwas funded byNSF grants CNS-1514163, CNS-1564102,

and CNS-1704615, as well as ARO grant W911NF16-1-0145 and

support from IC3 industry partners.

REFERENCES
[1] [n.d.]. ETH Gas Station | Consumer oriented metrics for the Ethereum gas market.

https://ethgasstation.info/. (Accessed on 11/13/2018).

[2] [n.d.]. Ethereum Gas Price Tracker. https://etherscan.io/gastracker. (Accessed

on 11/13/2018).

[3] [n.d.]. Go language interface to GMP - GNU Multiprecision Library (golang).

https://github.com/ncw/gmp. (Accessed on 11/14/2018).

[4] [n.d.]. gRPC: A high performance, open-source universal RPC framework. https:

//grpc.io/. (Accessed on 11/22/2018).

[5] [n.d.]. The PBC Go Wrapper. https://github.com/Nik-U/pbc. (Accessed on

11/14/2018).

[6] 2018. Decentralized Identity Foundation (DIF) homepage. https://identity.

foundation/.

[7] 2018. uPort. https://www.uport.me/.

[8] Yazin Akkawi. 21 Dec. 2017. Bitcoin’s Most Pressing Issue Summarized in Two

Letters: UX. Inc. (21 Dec. 2017).
[9] Brian Armstrong. Feb. 25, 2018. Coinbase is not a wallet. https://blog.coinbase.

com/coinbase-is-not-a-wallet-b5b9293ca0e7.

[10] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich,

Ronen Tamari, and David Yakira. 2018. Helix: a scalable and fair consensus
algorithm. Technical Report. Technical report, Orbs Research.

[11] Michael Backes, Aniket Kate, and Arpita Patra. 2011. Computational verifiable

secret sharing revisited. In International Conference on the Theory and Application
of Cryptology and Information Security.

[12] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. 2014.

How to withstand mobile virus attacks, revisited. In the 2014 ACM symposium on
Principles of distributed computing.

[13] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. 2015.

Communication-optimal proactive secret sharing for dynamic groups. In Applied
Cryptography and Network Security.

[14] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

theorems for non-cryptographic fault-tolerant distributed computation. In ACM
symposium on Theory of computing.

[15] Iddo Bentov, Rafael Pass, and Elaine Shi. 2016. Snow White: Provably Secure

Proofs of Stake. IACR Cryptology ePrint Archive (2016).
[16] Kevin D Bowers, Ari Juels, and Alina Oprea. 2009. HAIL: A high-availability and

integrity layer for cloud storage. In the 16th ACM conference on Computer and
communications security.

[17] Vitalik Buterin. 2014. Slasher: A punitive proof-of-stake algorithm. Ethereum
Blog URL: https://blog. ethereum. org/2014/01/15/slasher-a-punitive-proof-of-stake-
algorithm (2014).

[18] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. 2002.

Asynchronous verifiable secret sharing and proactive cryptosystems. In 9th ACM
conference on Computer and communications security.

[19] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and

proactive recovery. ACM Transactions on Computer Systems (2002).
[20] David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty uncondi-

tionally secure protocols. In the twentieth annual ACM symposium on Theory of
computing.

[21] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah

Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2018. Ekiden: A Platform

for Confidentiality-Preserving, Trustworthy, and Performant Smart Contract

Execution. arXiv preprint arXiv:1804.05141 (2018).

[22] Konstantinos Christidis and Michael Devetsikiotis. 2016. Blockchains and smart

contracts for the internet of things. Ieee Access (2016).
[23] Ronald Cramer, Ivan Damgård, and Ueli Maurer. 2000. General secure multi-party

computation from any linear secret-sharing scheme. In International Conference
on the Theory and Applications of Cryptographic Techniques.

[24] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A secure and

optimally efficient multi-authority election scheme. European transactions on
Telecommunications (1997).

[25] Yvo Desmedt and Yair Frankel. 1991. Shared generation of authenticators and

signatures. In Annual International Cryptology Conference.
[26] Yvo Desmedt and Sushil Jajodia. 1997. Redistributing secret shares to new access

structures and its applications. Technical Report. Technical Report ISSE TR-97-01,

George Mason University.

[27] Yvo Desmedt and Kirill Morozov. 2015. Parity check based redistribution of secret

shares. In 2015 IEEE International Symposium on Information Theory (ISIT).
[28] Shlomi Dolev, Juan Garay, Niv Gilboa, and Vladimir Kolesnikov. 2009. Swarming

secrets. In Allerton Conference on Communication, Control, and Computing.
[29] Michael Egorov, MacLane Wilkison, and David Nuñez. 2017. Nucypher KMS:

decentralized key management system. arXiv preprint arXiv:1707.06140 (2017).
[30] Ethereum. [n.d.]. Devp2p. https://github.com/ethereum/devp2p

[31] Ethereum. [n.d.]. Whisper. https://github.com/ethereum/wiki/wiki/Whisper

[32] Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret

sharing. In Foundations of Computer Science, 1987., 28th Annual Symposium on.
[33] Pesech Feldman and Silvio Micali. 1997. An optimal probabilistic protocol for

synchronous Byzantine agreement. SIAM J. Comput. (1997).
[34] Yair Frankel, Peter Gemmell, Philip D MacKenzie, and Moti Yung. 1997. Optimal-

resilience proactive public-key cryptosystems. In 38th Annual Symposium on
Foundations of Computer Science.

[35] frontrun.me. [n.d.]. Visualizing Ethereum gas auctions. http://frontrun.me/.

[36] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1996. Ro-

bust threshold DSS signatures. In International Conference on the Theory and
Applications of Cryptographic Techniques.

[37] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure

distributed key generation for discrete-log based cryptosystems. In Advances in
Cryptology - EUROCRYPT.

[38] Rosario Gennaro, Michael O Rabin, and Tal Rabin. [n.d.]. Simplified VSS and

fast-track multiparty computations with applications to threshold cryptography.

Citeseer.

[39] geth. [n.d.]. The maximum data size in a transaction is 32 KB. https://github.com/

ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/

core/tx_pool.go#L570.

[40] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In the 26th
Symposium on Operating Systems Principles.

[41] Jens Groth. 2010. Short pairing-based non-interactive zero-knowledge arguments.

In Advances in Cryptology - ASIACRYPT.
[42] Amir Herzberg, Markus Jakobsson, Stanislław Jarecki, Hugo Krawczyk, and Moti

Yung. 1997. Proactive public key and signature systems. In the 4th ACM conference
on Computer and communications security.

[43] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. 1995. Proac-

tive secret sharing or: How to copewith perpetual leakage. InAnnual International
Cryptology Conference.

[44] Kames. 26 June 2018. The Basics of Decentralized Identity How Blockchain

Technology & Cryptographic Primitives Embolden the Future of Digital Identity.

[45] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. In Advances in Cryptology -
ASIACRYPT.

[46] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference.

[47] Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake. self-published paper, August (2012).
[48] Eleftherios Kokoris-Kogias, Enis CeyhunAlp, Sandra Deepthy Siby, Nicolas Gailly,

Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford. 2018. CALYPSO:

Auditable Sharing of Private Data over Blockchains. Cryptology ePrint Archive.

[49] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. 2016. Hawk: The

Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts. In

2016 IEEE Symposium on Security and Privacy (SP). 839–858. https://doi.org/10.

1109/SP.2016.55

[50] Haiyun Luo, Petros Zerfos, Jiejun Kong, Songwu Lu, and Lixia Zhang. 2002. Self-

Securing Ad Hoc Wireless Networks. In International Symposium on Computers
and Communications.

[51] Ventzislav Nikov and Svetla Nikova. 2004. On proactive secret sharing schemes.

In International Workshop on Selected Areas in Cryptography.
[52] John P. Njui. July 24, 2018. Coinbase Custody Service Secures Major Institutional

Investor Worth $20 Billion. Ethereum World News (July 24, 2018).

[53] Mehrdad Nojoumian and Douglas R Stinson. 2013. On dealer-free dynamic

threshold schemes. Adv. in Math. of Comm. (2013).

https://ethgasstation.info/
https://etherscan.io/gastracker
https://github.com/ncw/gmp
https://grpc.io/
https://grpc.io/
https://github.com/Nik-U/pbc
https://identity.foundation/
https://identity.foundation/
https://www.uport.me/
https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7
https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7
https://github.com/ethereum/devp2p
https://github.com/ethereum/wiki/wiki/Whisper
http://frontrun.me/
https://github.com/ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/core/tx_pool.go#L570
https://github.com/ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/core/tx_pool.go#L570
https://github.com/ethereum/go-ethereum/blob/6a33954731658667056466bf7573ed1c397f4750/core/tx_pool.go#L570
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/SP.2016.55

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

[54] Mehrdad Nojoumian, Douglas R Stinson, and Morgan Grainger. 2010. Uncondi-

tionally secure social secret sharing scheme. IET information security (2010).

[55] Rafail Ostrovsky and Moti Yung. 1991. How to withstand mobile virus attacks.

In ACM symposium on Principles of distributed computing.
[56] Parity. [n.d.]. Transaction Queue. https://wiki.parity.io/Transactions-Queue.

[57] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain

protocol in asynchronous networks. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 643–673.

[58] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with Optimistic

Instant Confirmation. In Advances in Cryptology – EUROCRYPT 2018, Jesper Buus
Nielsen and Vincent Rijmen (Eds.). Springer International Publishing, Cham,

3–33.

[59] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic secure

verifiable secret sharing. In Annual International Cryptology Conference.
[60] Giulio Prisco. 2015. Slock.it to Introduce Smart Locks Linked to Smart Ethereum

Contracts, Decentralize the Sharing Economy. https://www.uport.me/. Bitcoin
Magazine (2015).

[61] Michael O Rabin. 1983. Randomized byzantine generals. In Foundations of Com-
puter Science, 1983., 24th Annual Symposium on.

[62] Jeff John Roberts and Nicolas Rapp. 2017. Exclusive: Nearly 4 Million Bitcoins

Lost Forever, New Study Says. http://fortune.com/2017/11/25/lost-bitcoins/

[63] Nitesh Saxena, Gene Tsudik, and Jeong Hyun Yi. 2005. Efficient node admission

for short-lived mobile ad hoc networks. In 13th IEEE International Conference on
Network Protocols.

[64] David A Schultz, Barbara Liskov, and Moses Liskov. 2008. Mobile proactive secret

sharing. In ACM symposium on Principles of distributed computing.
[65] Adi Shamir. 1979. How to share a secret. Commun. ACM (1979).

[66] Douglas R Stinson and Ruizhong Wei. 1999. Unconditionally secure proactive

secret sharing scheme with combinatorial structures. In International Workshop
on Selected Areas in Cryptography.

[67] Paul Syverson, R Dingledine, and NMathewson. 2004. Tor: The secondgeneration

onion router. In Usenix Security.
[68] Tamir Tassa and Nira Dyn. 2009. Multipartite secret sharing by bivariate inter-

polation. Journal of Cryptology (2009).

[69] Theodore M Wong, Chenxi Wang, and Jeannette M Wing. 2002. Verifiable secret

redistribution for archive systems. In the first International Security in Storage
Workshop.

[70] Jay J Wylie, Michael W Bigrigg, John D Strunk, Gregory R Ganger, Han Kiliccote,

and Pradeep K Khosla. 2000. Survivable information storage systems. In Computer
(2000).

[71] Fan Zhang, Philip Daian, Gabriel Kaptchuk, Iddo Bentov, Ian Miers, and Ari Juels.

2018. Paralysis Proofs: Secure Access-Structure Updates for Cryptocurrencies

and More. Cryptology ePrint Archive, Report 2018/096. https://eprint.iacr.org/

2018/096.

[72] Lidong Zhou, Fred B Schneider, and Robbert Van Renesse. 2005. APSS: Proactive

secret sharing in asynchronous systems. ACM transactions on information and
system security (TISSEC) (2005).

[73] Guy Zyskind, Oz Nathan, et al. 2015. Decentralizing privacy: Using blockchain

to protect personal data. In Security and Privacy Workshops.

A SECURITY PROOF FOR Opt − CHURP
Recall that a protocol for dynamic-committee proactive secret

sharing satisfies secrecy and integrity. We prove secrecy first.

Secrecy.We consider the handoff protocol of one epoch first. As

described in Section 5.3, Opt-CHURP consists of three phases: Opt-
ShareReduce, Opt-Proactivize and Opt-ShareDist. Other than the

public inputs, the information obtained by the adversary A is:

Opt-ShareReduce:

• For all corrupted nodesUj in the previous handoff, reduced share

B(x , j).
• For all corrupted nodesCi in the old committee,

{
B(i, j),WB(i, j)

}
j ∈[2t+1]

(full share B(i,y)).
• For all corrupted nodesU ′j in the new committee selected to par-

ticipate in the handoff,

{
B(i, j),WB(i, j)

}
i ∈[2t+1] (reduced share

B(x , j)).

Opt-Proactivize:

• For all corrupted nodesU ′j , sj and Q(x , j) = Rj (x).

• For all corrupted nodes C′i in the new committee, Hj and{
дsj ,CZ j ,WZ j (0),CB′(x, j)

}
.

Opt-ShareDist:

• For all corrupted nodesC′i in the new committee,

{
B′(i, j),W ′B(i, j)

}
j ∈[2t+1]

.

The information above assumes the secrecy of our bivariate 0-

sharing protocol, which we explained in the main body. In addition,

note that the public information posted on chain are all commit-

ments of the polynomials. By the hiding property of the commit-

ment scheme based on the discrete log assumption, the PPT A

learns no extra information from these commitments. To prove

secrecy, we have the following lemmas.

Lemma 2. If A corrupts no more than t nodes in the old committe
node , and no more than t nodes inU ′, the information received by
A in Opt-ShareReduce is random and independent of the secret s .

Proof. This is implied by the degree of the bivariate polynomial

B(x ,y). In the worst case when all t corrupted nodes are inU and

U ′, A learns 2t reduced shares B(x , j) and t full shares B(i,y). For
a ⟨t , 2t⟩-bivariate polynomial, any t shares of B(i,y) and 2t shares
of B(x , j) are random and independent of s = B(0, 0).

Moreover, based on the discrete-log assumption, the proofsWB(i, j
are computationally zero-knowledge by the KZG scheme, and the

PPT adversary cannot learn additional information from them. □

Lemma 3. Given a bivariate 0-sharing scheme with secrecy and
integrity, if at least one node is honest in Opt-Proactivize, Q(x ,y) is
randomly generated.

Proof. Any 2t+1 degree t univariate polynomialsQ(x , j) uniquely
define a ⟨t , 2t⟩-bivariate polynomial. Therefore, as long as one node

is honest and generates a random degree t polynomial, Q(x ,y) is
randomly generated to mask B(x ,y).

Similar to the proof above, the hashes and commitments posted

on chain and sent to other nodes do not leak additional information

to a PPT adversary A.

□

Lemma 4. IfA corrupts no more than t nodes in the new committee
C′, the information received by A in Opt-ShareDist is random and
independent of the secret s .

Proof. By Lemma 2,Q(x ,y) is randomly generated, thusB′(x ,y) =
B(x ,y)+Q(x ,y) is independent of B(x ,y). Regardless of the number

of nodes corrupted by A inU ′, A receives no more than t out of
n′ shares of B′(i,y) in Opt-ShareDist. As the degree of B′(x ,y) is
⟨t , 2t⟩ and is independent of B(x ,y), these shares are random and

independent of s . Again, the proofs in the second part do not leak

additional information. □

By Lemma 2, 3 and 4, A does not learn any information about

s in two consecutive epochs. The secrecy of the whole scheme

follows by induction.

Integrity. For integrity, we have the following lemmas.

Lemma 5. After Opt-ShareReduce, at least t + 1 honest nodesU ′j
can successfully reconstruct B(x , j).

https://wiki.parity.io/Transactions-Queue
https://www.uport.me/
http://fortune.com/2017/11/25/lost-bitcoins/
https://eprint.iacr.org/2018/096
https://eprint.iacr.org/2018/096

CHURP: Dynamic-Committee Proactive Secret Sharing

KZG Commitment

1 :

(sk, pk) ← Keygen(1λ, q): Select a bilinear group (p, G, GT , e, д) ← BilGen(1λ) and s ran-

domly in Z∗p . Set sk = s and pk = дs , дs
2

, . . . , дs
q
.

2 : Cϕ ← Commit(ϕ(x), pk): ComputeCϕ = д
ϕ(s)

using pk.

3 :

(ϕ(i),Wi) ← CreateWitness(ϕ(x), i, pk): Compute ϕ(x) − ϕ(i) = (x − i)w (x), setWi =

дw (s) .

4 :

{True, False} ← VerifyEval(Cϕ , i, ϕ(i),Wi , pk): Output True if e(Cϕ /д
ϕ(i), д) =

e(дs−i ,Wi). Otherwise, output False.

Figure 8: Protocols of KZG commitment scheme.

(2t, 2t + 1)-UnivariateZeroShare

1 : Input: t , set of 2t + 1 nodes {Uj }j∈[2t+1]

2 : Output: Each node Uj outputs a share sj = P (j) for randomly

3 : generated degree-2t polynomial P (y) with P (0) = 0

4 : node Uj

5 : Generate a random 2t -degree polynomial Pj s.t. Pj (0) = 0

6 : Send a point Pj (i) to node Ui for each i ∈ [2t + 1]

7 : Wait to receive points {Pi (j) }i∈[2t+1] from all other nodes

8 : Let P =
∑
i∈[2t+1] Pi , compute share P (j) =

∑
i∈[2t+1] Pi (j)

Figure 9: (2t , 2t + 1)-UnivariateZeroShare between 2t + 1 nodes.
A 0-hole univariate polynomial P of degree-2t is generated.

Proof. As the number of nodes in the old committee n ≥ 2t + 1,
each nodeU ′j receives at least t + 1 correct shares of B(i, j). As the

degree on the first variable of B(x ,y) is t ,U ′j can reconstruct B(x , j)

successfully. Finally, as the number of nodes inU ′ is 2t + 1, there
are at least t + 1 honest nodes. □

Lemma 6. Assuming the correctness of the bivariate 0-sharing
scheme, after Opt-Proactivize, either honest nodesU ′j hold the cor-
rect shares of B′(x , j) such that B′(0, 0) = B(0, 0) = s and their
commitments CB′(x, j) are on-chain, or at least t + 1 honest nodes in
C′ output fail.

Proof. By line 15 in Figure 12,

{
дsj ,CZ j ,WZ j (0),CB′(x, j)

}
is con-

sistent with the hash Hj posted on chain by U ′j . If CZ j is not a

univariate polynomial with constant term 0, by line 16, VerifyEval
outputs false and C′i outputs fail by the soundness of KZG. Other-
wise, by the second check of line 16, CB′(x, j) is the commitment of

a polynomial B′(x , j) with constant term B(x , j)+ sj . Finally, by the

check of line 17, by the discrete-log assumption,

∑
2t+1
j=1 sjλ

2t
j = 0.

Therefore, B′(0, 0) = B(0, 0) because of the property of Lagrange

coefficients. □

By Lemma 5 and 6, if Opt-ShareReduce and Opt-Proactivize do
not fail, all nodesU ′j hold the correct shares of B′(x , j) such that

B′(0, 0) = B(0, 0) = s and their commitments CB′(x, j) are on the

chain. In Opt-ShareDist, each node C′i receives 2t + 1 shares of

B′(i, j) from allU ′j s. By the soundness of the KZG scheme, if any

of these shares is corrupt, VerifyEval rejects, and honest nodes in

C′ output fail. Otherwise, with 2t + 1 correct shares of B′(i, j), C′i
can successfully reconstruct B′(i,y), which completes the proof of

integrity.

(t, n)-BivariateZeroShare

1 : Input: t, n, set of nodes {Ci }i∈[n] (2t < n)

2 :

Output: Each node Ci outputs a shareQ (i, y) for randomly generated degree-⟨t, 2t ⟩ bivariate
polynomialQ (x, y) withQ (0, 0) = 0

3 : Order {Ci }i∈[n] based on lexicographic order of their public keys

4 : Choose first 2t + 1 nodes, w.l.o.g., U = {Cj }j∈[2t+1]

5 : Invoke (2t, 2t + 1)-UnivariateZeroShare among {Uj }j∈[2t+1] to generate shares

{
sj

}
j∈[2t+1]

6 : node Uj :

7 : Generate a random t -degree polynomial Rj s.t Rj (0) = sj

8 : Send a point Rj (i) to node Ci for each i ∈ [n]

9 : Denote the bivariate polynomialQ (x, y) where
{
Q (x, j) = Rj (x)

}
j∈[2t+1]

10 : node Ci :

11 : Wait to receive points

{
Rj (i)

}
j∈[2t+1] = {Q (i, j) }j∈[2t+1]

12 : Interpolate to reconstruct a 2t -degree polynomialQ (i, y)

13 : Output shareQ (i, y)

Figure 10: (t ,n)-BivariateZeroShare between n nodes. A 0-hole
bivariate polynomial Q of degree-⟨t , 2t⟩ is generated.

Opt-ShareReduce

1 : Public Input:
{
CB(x, j)

}
j∈[2t+1]

2 :

Input: Set of nodes {Ci }i∈[n] where each node Ci is given
{
B(i, j),WB(i, j)

}
j∈[2t+1] . Set of

nodes {C′j }j∈[n′] s.t. n
′ ≥ 2t + 1

3 : Output: ∀j ∈ [2t + 1], node C′j output B(x, j)
4 : Order {C′j } based on lexicographic order of their public keys

5 : Choose the first 2t + 1 nodes, denoted as U′, w.l.o.g., U′ = {C′j }j∈[2t+1]

6 : node Ci :

7 : ∀j ∈ [2t + 1], send a point and witness

{
B(i, j),WB(i, j)

}
to U′j off-chain

8 :
node U′j :

9 : Wait and receive n points and witnesses,

{
B(i, j),WB(i, j)

}
i∈[n]

10 : ∀i ∈ [n], invoke VerifyEval(CB(x, j), i, B(i, j),WB(i, j))

11 : Interpolate any t + 1 verified points to construct B(x, j)

Figure 11: Opt-ShareReduce between the committees C and
C′.

B APPLICATIONS IN DECENTRALIZED
SYSTEMS

Secret sharing finds use in innumerable applications involving

cryptographic secrets, including secure multi-party computation

(MPC) [14, 20, 23], threshold cryptography [25], Byzantine agree-

ment [61], survivable storage systems [70], and cryptocurrency

custody [9, 52], to name just a few.

Decentralized systems, however, are an especially attractive ap-

plication domain, though, for two reasons.

First, blockchain systems task individual users with management
of their own private keys, an unworkable approach for most users.

A frequent result, as noted above, is key loss [62] or centralized key

management [9, 52] that defeats the main purpose of blockchain

systems.

Second, blockchain objects cannot keep private state. This fact
notably limits the useful applications of smart contracts, as they

cannot compute digital signatures or manage encrypted data.

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

Opt-Proactivize

1 : Public Input:
{
CB(x, j)

}
j∈[2t+1]

2 : Input: Set of nodes {C′i }i∈[n′] . Let U
′ = {C′j }j∈[2t+1] , each node U′j is given B(x, j)

3 :

Output: U′j outputs success and B
′(x, j) for a degree-⟨t, 2t ⟩ bivariate polynomial B′(x, y)

with B′(0, 0) = B(0, 0) (or) fail

4 : Public Output:
{
CB′(x, j)

}
j∈[2t+1]

5 :

Invoke (2t, 2t + 1)-UnivariateZeroShare among the nodes {U′j }j∈[2t+1] to generate shares{
sj

}
j∈[2t+1]

6 :
node U′j :

7 : Generate random t -degree polynomial Rj (x) such that Rj (0) = sj

8 : Denote the bivariate polynomialQ (x, y) where
{
Q (x, j) = Rj (x)

}
j∈[2t+1]

9 : Denote the bivariate polynomial B′(x, y) = B(x, y) +Q (x, y)

10 :
node U′j :

11 : Compute B′(x, j) = B(x, j) +Q (x, j) and Zj (x) = Rj (x) − sj

12 :

Send

{
дsj , CZj ,WZj (0), CB′(x, j)

}
off-chain to all nodes in C′, whereCZj = Commit(Zj);

WZj (0) = CreateWitness(Zj , 0);CB′(x, j) = Commit(B′(x, j))

13 : Publish hash of the commitments on-chain Hj = H (д
sj | |CZj | |WZj (0) | |CB′(x, j))

14 : node C′i :

15 : ∀j ∈ [2t+1], retrieve on-chain hashHj , also receive
{
дsj , CZj ,WZj (0), CB′(x, j)

}
off-chain

16 :

∀j ∈ [2t + 1], if Hj , H (дsj | |CZj | |WZj (0) | |CB′(x, j)) or

VerifyEval(CZj , 0, 0,WZj (0)) , True orCB′(x, j) , CB(x, j) ×CZj × д
sj

, output

fail

17 :
Using Lagrange coefficients in Eq. (1), if

∏
2t+1
j=1 (д

sj)
λ2tj , 1 output fail

18 :
node U′j :

19 : Output success and B′(x, j)

Figure 12: Opt-Proactivize updates the reduced shares.

Opt-ShareDist

1 : Public Input:
{
CB′(x, j)

}
j∈[2t+1]

2 : Input: Set of nodes {C′i }i∈[n′] . Let U
′ = {C′j }j∈[2t+1] , each node U′j is given B

′(x, j)

3 : Output: ∀i ∈ [n′], C′i outputs success and B′(i, y) (or) fail
4 :

node U′j :

5 :
∀i ∈ [n′], send a point and witness off-chain

{
B′(i, j),W ′B(i, j)

}
to C′i whereW

′
B(i, j) =

CreateWitness(B′(x, j), i)

6 : node C′i :

7 : Wait and receive points and witnesses

{
B′(i, j),W ′B(i, j)

}
j∈[2t+1]

8 : ∀j ∈ [2t + 1], invoke VerifyEval(CB′(x, j), i, B′(i, j),W ′B(i, j))
9 : If all 2t + 1 points are correct, interpolate to construct B′(i, y)

10 : Output success and the full share B′(i, y)

11 : In all other cases, output fail

Figure 13: Opt-ShareDist uses the updated reduced shares to
distribute full shares in C′.

We briefly enumerate a few of the most important potential

applications in decentralized systems of the (dynamic-committee

proactive) secret-sharing enabled by CHURP:

Improved-PSS

1 : Input: Set of n nodes C. Each node C′i is given a degree-t polynomial B(i, y)

2 :

Output: C′i outputs B
′(i, y) for a degree-⟨t, t ⟩ bivariate polynomial B′(x, y) with B′(0, 0) =

B(0, 0)
3 : Order nodes in C based on the lexicographic ordering determined by public keys

4 : Choose first t + 1 nodes, U ⊂ C, |U | = t + 1

5 : node Ci :

6 : send B(i, j) to node Uj , ∀j ∈ [t + 1]
7 : node Uj :

8 : Reconstruct degree-t polynomial B(x, j)

9 : Invoke (t, t + 1)-UnivariateZeroShare among U generating shares {sj }j , ∀j ∈ [t + 1]
10 : node Uj :

11 : Generate a degree-t polynomialQ (x, j) s.t.Q (0, j) = sj

12 : Update the reconstructed polynomial B′(x, j) = B(x, j) +Q (x, j)

13 : send B′(i, j) to each node i ∈ C

14 : node Ci :

15 : Construct degree-t polynomial B′(i, y) using t + 1 received points

Figure 14: Improved PSS for static setting, honest-but-
curious adversary.

Usable cryptocurrency management. Rather than relying on cen-

tralized parties (e.g., exchanges) to custody private keys for cryp-

tocurrency, or using hardware or software wallets, which are no-

toriously difficult to manage [8], users could instead store their

private keys with committees. These committees could authenti-

cate users and enforce access-control, resulting in the decentralized

equivalent of today’s exchanges.

Decentralized identity. Initiatives such as the Decentralized Iden-

tity Foundation [6], which is backed by a number of major IT and

services firms, as well as smaller efforts, such as uPort [7], envision

an ecosystem in which users control their identities and data by

means of private keys. Who will store these keys and how is left

an open question [44]. The same techniques used in the cryptocur-

rency case for private-key management would similarly apply to

assets such as identities. Additionally, a committee could manage

encrypted identity documents on users’ behalf.

Auditable access control. As proposed in [48], a committee could

manage encrypted documents and decrypt them for recipients un-

der a given access-control policy while logging their accesses on-

chain. The result would be a strongly auditable access-control sys-

tem. This application could be managed by a smart contract.

Smart-contract attestations. Committee management of smart-

contract private keys could also enable digital signing by smart

contracts. The idea would be that committee members execute

threshold signatures using a shared private key, emitting a signature

for a particular smart contract in response to a request issued by

the contract on chain.

Such signing would be of particular benefit in creating a sim-

ple smart-contract interface with off-chain systems. For example,

control of Internet-of-Things (IoT) devices is commonly proposed

application of smart contracts [22] (smart locks being a notable

early example [60]). If smart contracts cannot generate digital sig-

natures, then the devices they control must monitor a blockchain,

an ongoing resource-intensive operation. A smart contract that can

CHURP: Dynamic-Committee Proactive Secret Sharing

Univariate [43] Bivariate Improved PSS

Off-chain

Recovery O(n2) O(n) O(n)
Refresh O(n2) O(n3) O(n2)

State O(1) O(n) O(n)

Table 5: Comparison of protocols in the static setting with
a honest-but-curious adversary. The original protocol of
Herzberg et al. is presented in the univariate column. Re-
covery costs are per node. Note that recovery costs of our
protocol are amortized over the total number of nodes be-
ing replaced.

generate a digital signature, however, can simply issue authentica-

ble commands to target devices.

Simplified Committee-based consensus for light clients. A number

of consensus schemes, e.g., proof-of-stake protocols [15, 17, 46, 47],

aim to achieve good scalability by delegating consensus to commit-

tees. These committees change over time. Therefore verifying the

blocks they sign requires awareness of their identities. By instead

maintaining or only periodically rotating its public / private key

pair, a committee could instead make it easier for light clients to

verify signed blockchains.

Secure multiparty computation (MPC) for smart contracts. More

generally, dynamic-committee secret sharing would enable decen-

tralized secure multiparty computation (MPC) by smart contracts,

effectively endowing them with confidential storage and computa-

tion functionalities, as envisioned in, e.g., [21, 73].

C THE STATIC SETTING: IMPROVED PSS
We also consider a different and narrower setting, one with a

static committee i.e., the old and new committees are identical. The

adversarial model is also weaker i.e., corruptions during the hand-

off phase are counted towards the threshold in both the adjacent

epochs. The handoff in such a setting is simply an update since
the committee is static. Hence, the update protocol consists of a

recovery phase, enabling recovery of lost shares and a refresh phase,

updating shares of all nodes.

In this section, we look at different techniques seen in literature

for the static setting. Herzberg et al. [43] introduce this setting and

present a protocol, Herzberg’s PSS. A second technique seen in the

literature makes use of bivariate polynomials. We then present an

improved PSS protocol which achieves better overall performance

than any known scheme.

Herzberg’s PSS: This protocol incursO(n2) off-chain communication

complexity for refresh and an expensive O(n2) per node recovery
(See [43]).

Bivariate Polynomials:Oneway to avoid the expensive recovery cost
is to perform secret sharing with a bivariate polynomial. This allows

for efficient recovery, i.e.,O(n) off-chain communication complexity.

As discussed previously in Section 4, existing techniques for refresh

are expensive costing O(n3).

Improved PSS:Much like the dynamic setting, we build an improved

PSS protocol using the efficient bivariate 0-sharing technique. This

technique brings down the total communication complexity to just

O(n2) off-chain. A comparison of communication costs incurred by

different PSS schemes is in Table 5.

Let C denote the committee, C = C(e−1) = C(e), comprising n
nodes {Ci }

n
i=1. The secret is shared using an asymmetric bivariate

polynomialB(x ,y), s = B(0, 0). Unlike before, the degree of bivariate
polynomial is only ⟨t , t⟩ as we have a weaker adversary.

Recall that node’s share is a single polynomial B(i,y). In Fig. 14,

we present the improved PSS assuming a honest-but-curious adver-

sary. Throughout the protocol, each node sends out atmost O(n)
points. Thus, our improved PSS scheme completes in O(n2) off-
chain cost.

Active adversaries: In face of adversarial behaviour, multiple reruns

of the protocol might be needed. This is crucial since all the t + 1
received points need to be correct in order to compute the new

share. Adversaries are detectable with the use of KZG commitments

similar to the dynamic setting. We replace the detected adversarial

nodes with uncorrupted nodes from C (guaranteed to find such

a node, |C| ≥ 2t + 1). We stress that this protocol incurs O(n2)
off-chain cost even after adapting to handle active adversaries.

This is achieved due to the following key property: Honest nodes

never rerun any phase of the protocol. This is possible by making a

slight modification to the univariate 0-sharing (step 9): invoke (t ,n)-
UnivariateZeroShare among all nodes in C instead of executing

it in a subset of nodes only. Observe that the set of univariate

polynomials held by any t + 1-sized subset in C defines a 0-hole

bivariate polynomial. Thus, reruns are executed only by the new

uncorrupt nodes that replace the detected faulty nodes.

D CHURP PESSIMISTIC PATHS
In this section, we present protocols for the two pessimistic paths

of CHURP: Exp-CHURP-A and Exp-CHURP-B.

D.1 Exp-CHURP-A
This path is invoked when a failure occurs in Opt-CHURP. It

also consists of three phases: Exp-ShareReduce, Exp-Proactivize,
Exp-ShareDist.

Before the first phase starts, commitments to reduced shares

{B(x , j)}2t+1j=1 are published on-chain by t + 1 nodes in the old com-

mittee. The on-chain hashes can be used to verify the posted com-

mitments. As at least one of the t + 1 nodes is honest, and thus each
member of the new committee has the commitments.

D.1.1 Share Reduction (Exp-ShareReduce). This phase is the same

as Opt-ShareReduce, and is not re-executed if Opt-ShareReduce
ends successfully. This is because the degree of B(x , j) is t and an

honest member U ′j can successfully reconstruct the polynomial

given t + 1 honest values from Calive assuming |Calive | ≥ 2t + 1.

D.1.2 Proactivization (Exp-Proactivize). The goal of this phase is
to perform a bivariate 0-sharing, and identify and expel adversaries

if malicious behavior is detected.

We first use a different zero-sharing protocol. Each node U ′i
generates 2t + 1 sub-shares

{
si j

}
j ∈[2t+1] that form a 0-sharing i.e.,∑

2t+1
j=1 λ2tj si j = 0where the Lagrange coefficients λ2tj are introduced

before.U ′i then publishes {дsi j }j ∈[2t+1] and {Encpkj [si j]}j ∈[2t+1]

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

s11 s12 s13 s14 s15

s21 s22 s23 s24 s25

s31 s32 s33 s34 s35

s41 s42 s43 s44 s45

s51 s52 s53 s54 s55

−

−

Figure 15: Matrix of sub-shares. The sub-share si j is gener-
ated by node i and sent to j. Each node generates a rowwhile
it’s share is the sum of sub-shares in a column. If nodes 4
and 5 are adversarial, sub-shares generated by them are dis-
carded.

on-chain. U ′i also publishes a zk proof of correctness of the en-

crypted ciphertext. A receiving node U ′j verifies the set {дsi j }j
using Eq. (1). Then, it decrypts the ciphertext to receive si j .

The advantage of this univariate zero-sharing protocol is that

honest parties do not need to re-execute the protocol when an

adversary is detected. They can simply discard the shares generated

by the adversarial nodes. This is depicted pictorially in Fig. 15.

One can see that by setting sj =
∑
i ∈U′\U′corrupt si j for j ∈ U

′
,

the shares form a valid univariate zero-sharing among the honest

parties.

After the univariate zero-sharing, the same protocol as that in

Opt-Proactivize (step 6-16 in Figure 12) is executed with commit-

ments and witnesses in step 12 posted on-chain. Finally, another

major difference to the optimistic path is that if any adversary in

theU ′ is expelled in this phase, we do not have enough nodes to

recover the full shares in the next phase, as the degree of B′(i,y) is
2t and a member C′i needs 2t + 1 points to reconstruct the polyno-

mial. To address this problem, we further ask members in the old

committee to publish the shares and witnesses sent to the adver-

sarial nodes during Opt-ShareReduce on the chain. In this way, all

honest parties have access to those reduced shares that belong to

adversarial nodes, which allows them to reconstruct the full shares

in the next phase. The security of the new protocol still holds, as

these shares were accessed by the adversary anyway.

The full protocol of Exp-Proactivize is presented in Figure 16.

The on-chain cost of this phase is O(t2).

D.1.3 Full Share Distribution (Exp-ShareDist). Finally, full shares
are distributed to all members of the new committee in this phase.

To allow identification and expulsion of malicious nodes, members

post all messages on the chain in contrast to the optimistic path.

If adversarial nodes are detected in this phase, similar to the

proactivization phase, we ask members of the old committee to

publish the reduced shares sent to them in Opt-ShareReduce. In
addition, honest members need to exclude the proactivization poly-

nomials generated by the adversarial nodes in the second phase.

In particular, they discard the sub-shares related to the adversaries

in the new univariate zero-sharing protocol, as explained in the

previous section, and post their sub-shares for the the adversaries

publicly on-chain. Fortunately, this only incurs a small extra on-

chain cost.

Exp-Proactivize

1 : Public Input:
{
CB(x, j)

}
j∈[2t+1]

2 : Input: Set of 2t + 1 nodes {U′j }j∈[2t+1] . Each node U′j is given B(x, j)

3 :

Output: U′j outputs B
′(x, j) for a degree-⟨t, 2t ⟩ bivariate polynomial B′(x, y) with B′(0, 0) =

B(0, 0)

4 : Public Output:
{
CB′(x, j)

}
j∈[2t+1]

5 : node U′i :

6 : Generate

{
si j

}
j∈[2t+1] that form a 0-sharing i.e.,

∑
2t+1
j=1 λ2tj si j = 0.

7 :
Publish {дsi j }j∈[2t+1] , {Encpkj [si j]}j∈[2t+1] and zk proofs of correctness of the encryp-

tions on-chain.

8 :
node U′j :

9 : Decrypt {Encpkj [si j]} from node i and verify si j using д
si j

on-chain.

10 :
node U′j :

11 : If any adversarial node i is detected in step 9, add it to U′corrupted , and publish sji .

12 :
Set sj =

∑
i∈U′\U′corrupted

si j .

13 :

Execute step 7-9, 11-12 of Opt-Proactivize in Figure 12, with messages posted on the chain in

step 12.

14 : node C′i

15 :

Execute step 16 ofOpt-Proactivize in Figure 12. If it outputs fail, add j toU′corrupted . Nodes

in U′ discard shares by executing step 12 again.

16 : node Ci :

17 :
For all malicious nodes j detected in step 9 and 15, publish point and witness

{
B(i, j), wi, j

}
on-chain.

Figure 16: Exp-Proactivize protocol.

The full protocol of Exp-ShareDist is presented in Figure 17. The

on-chain cost of this phase is also O(tn). Therefore, the overall

on-chain complexity of the Exp-CHURP-A is O(n2) on-chain (no

off-chain).

D.2 State Verification (StateVerif)
The protocols of both Opt-CHURP and Exp-CHURP-A use the

KZG commitment scheme, which requires a trusted setup phase

and its security relies on the t-SDH assumption. In this section, we

devise a hedge against these — a verification phase, StateVerif, that
relies only on discrete log assumptions.

Recall that by the end of Opt-CHURP or Exp-CHURP-A, each
member C′i in the new committee C′ holds the full share B′(i,y), a
degree 2t univariate polynomial. StateVerif further checks that the
invariants given in Section 5.1 still hold at this point. That is, (1)

Inv-Secret: the secret is not changed; (2) Inv-State: these full shares
form a ⟨t , 2t⟩ bivariate polynomial. (We don’t check Inv-Comm as

it is only used in the KZG scheme.) We describe the two checks

below.

Checking Inv-Secret. To perform this check, we further require

that the commitment to the secret дs is public on the chain from the

beginning of the protocols. The secret can also be computed from

the zero points of the full shares. Using lagrange coefficients, we

have s =
∑n
i=1 λiB

′(i, 0) where λi = λn−1i (defined in Eq. (1)). Each

node Ci computes si = B′(i, 0) and publishes дsi . Parties use this
information to check that the invariant Inv-Secret remains intact:

дs =
n∏
i=1
(дsi)λi

CHURP: Dynamic-Committee Proactive Secret Sharing

Checking Inv-State. As the degree of full shares B′(i,y) is 2t (as
they are interpolated from 2t + 1 points in ShareDist), to validate

that B′(i,y) for i ∈ [n′] form a degree ⟨t , 2t⟩ bivariate polynomial,

it suffices to check that the degree of B′(x , j) is t for j ∈ [2t +
1]. To improve efficiency, we reduce the checks to a single check

through a random linear combination. If the degree of Prnd (x)
def

=∑
2t+1
j=1 r jB

′(x , j) is t , where r j s are randomly selected, then with

high probability, the degree of all B′(x , j) is t .
To perform this check, eachC′i computes s ′i = Prnd (i) =

∑
2t+1
j=1 r jB

′(i, j)

and publishes дs
′
i on-chain. In practice, r j s can be obtained from a

public source of randomness.

With these commitments of evaluations, all members can com-

pute the commitments of the coefficients of Prnd (x) using Lagrange

interpolation. Let Prnd (x) = a0 + a1x + . . . + an′−1x
n′−1

, then aj =∑n′
i=1 Prnd (i)λi j , where λi j are coefficients of Λi (x) =

∑n′
j=1 λi jx

j

such that Prnd (x) =
∑n′
i=1 Prnd (i)Λi (x). As λi j only depends on

the degree of the polynomial, they can be precomputed by each

member. Therefore, and дaj =
∏n′

i=1 Prnd (i)
λi j

. By checking that

∀j > t ,дaj = 1we can ensure that the degree of polynomial Prnd (x)
is t .

The two checks above incur O(n) on-chain cost in total.

Failure. There are two possible reasons that may cause StateVerif
to fail: either the commitments are computed incorrectly by ad-

versarial nodes, or the assumptions in the KZG scheme fails. We

further perform the following test in case of a failure of StateVerif
to determine the reason.

Exp-ShareDist

1 : Public Input:
{
CB′(x, j)

}
j∈[2t+1]

2 : Input: Set of nodes {C′i }i∈[n′] . Let U
′ = {C′j }j∈[2t+1] , each node U′j is given B

′(x, j)

3 : Output: ∀i ∈ [n′], C′i outputs B′(i, y)
4 :

node U′j :

5 :
∀i ∈ [n′], publish Encpki (B

′(i, j)), дB
′(i, j), w ′i, j on-chain, where w′i, j =

CreateWitness(B′(x, j), i). Also publish zk proofs of correctness of the encryption.

6 : node C′i :

7 : Decrypt the message on-chain to get

{
B′(i, j), w ′i, j

}
j∈[2t+1]

8 :

∀j ∈ U′ \U′corrupted , invoke VerifyEval(CB′(x, j), i, B′(i, j), w ′i, j). If any of the checks
fail, add j to U′corrupted

9 : node Ci :

10 : Publish B(i, j), wi, j for any new adversarial node j detected above.

11 : node U′i :

12 :

Publish si j for any new adversarial node j detected above and discard shares by executing step

12 in Fig. 16.

13 : node C′i :

14 :

∀j ∈ U′corrupted , validate their reduced shares posted by the old committee by ∀i ∈ [n],
VerifyEval(CB(x, j), i, B(i, j), wi, j).

15 :

∀j ∈ U′corrupted Interpolate any t + 1 verified points to construct B(x, j). Set B′(i, j) =

B(i, j) +
∑
i∈honest si j

16 : Interpolate all B′(i, j) for j ∈ [2t + 1] to construct B′(i, y)

17 : Output the full share B′(i, y)

Figure 17: Exp-ShareDist protocol.

We make use of the on-chain KZG commitments (published in

CHURP) to verify the commitments Zi = д
si
and Z rnd

i = дs
′
i . Each

node i posts exponents of their state {дB
′(i, j)} for j ∈ [2t + 1], and

their witnessw ′j,i to the KZG polynomial commitmentsCB′(x, j) on

the chain (each node already has these witnesses at the end of Opt-
CHURP or Exp-CHURP-A). Then all members verify the message

published by node i by: VerifyEvalExp(CB′(x, j), i,д
B′(i, j),Wj,i) for

j ∈ [2t + 1].2

If the checks above pass, all members validate Zi , Z
rnd
i as:

Zi =
2t+1∏
j=1
(дB

′(i, j))
λ2tj ,Z rnd

i =

2t+1∏
j=1
(дB

′(i, j))
r jλ2tj

If any of the checks above fail, it means the commitments are

not correctly computed. The members can perform a verifiable

accusations since all information is on-chain, and then switch to

pessimistic path Exp-CHURP-A. Otherwise, it implies a failure of

the assumptions in the KZG scheme. In this case, we switch to a

different pessimistic path Exp-CHURP-B. In this test, each node

publishesO(n) data on-chain, incurringO(n2) on-chain cost overall.

D.3 Exp-CHURP-B
This pessimistic path is taken only after a detection of breach in

the underlying assumptions of the KZG scheme.

In this path, we use relatively expensive polynomial commit-

ments (Pedersen commitments) instead of KZG and supports a

lower threshold on the number of adversarial nodes n > 3t . In the

share reduction phase, as n > 3t , we rely on the error correcting

mechanisms of Reed-Solomon codes to construct reduced shares,

instead of the verification of KZG scheme. In the proactivization

phase and full share distribution phase, we replace the KZG com-

mitments and verification with the Pedersen commitments (step

13 in Figure 16 and step 5,8,12 in Figure 17). Exp-CHURP-B incurs

O(n2) on-chain cost, assuming n > 3t . Due to the space limit, we

omit the full protocol of Exp-CHURP-B.

E CHANGING THE THRESHOLD
Thus far we have focused on schemes that allow the committee

size to change while the threshold t remains constant. This allows

CHURP to be adaptive to changing churn rates: if an increased

churn rate α is observed, the new committee can grow to a larger

size of 2t/1−α .

We now describe how CHURP supports dynamic thresholds.

Specifically, the (te−1, te)-handoff protocol presented below enables

a committee C(e−1) with threshold te−1 (i.e. the adversary can cor-

rupt up to te−1 nodes of C
(e−1)

) to handoff shares to a new com-

mittee C(e) with a different threshold te . Note that we assume an

out-of-band mechanism by which the committee members reach

consensus to increase or decrease the threshold and leave details

of governance for future work.

2
We make use of the following additional functionality in KZG scheme that allows

us to verify the exponent of the evaluation without any changes to the scheme:

{True, False} ← VerifyEvalExp(Cϕ, i, дϕ(i),Wi).

Sai Krishna Deepak Maram, Fan Zhang, Ari Juels, Lun Wang, Andrew Low, Yupeng Zhang, and Dawn Song

KZG extended with degree verification

1) (sk, pk) ← Keygen(1λ, q): Select a bilinear group (p, G, GT , e, д) ← BilGen(1λ), q + 1

group elements {αi }i∈[q] and s randomly in Z∗p . Set sk = s , pk0 = {д
s , . . . , дs

d
}, pkd =

{дαd s , . . . дαd s
d
} for d ∈ [q] and pk = {pk

0
, pk

1
, . . . , pkq }.

2)Cϕ ← Commit(ϕ(x), pk): Let d = deg(ϕ). ComputeCϕ = (d, д
ϕ(s), дαdϕ(s)) using

pk
0
and pkd .

3) (ϕ(i),Wi) ← CreateWitness(ϕ(x), i, pk): Compute ϕ(x) − ϕ(i) = (x − i)w (x), set
Wi = дw (s) .

4) {True, False} ← VerifyEval(Cϕ , i, ϕ(i),Wi , pk): ParseCϕ as (d, C, Cd). Output True if

e(C/дϕ(i), д) = e(дs−i ,Wi). Otherwise, output False.

5) {True, False} ← VerifyDegree(Cϕ): ParseCϕ as (d, C, Cd). Output True if e(Cd , д) =
e(C, дαd). Otherwise, output False.

Figure 18: KZG [45] extended with degree verification.

E.1 Increasing the threshold: te > te−1
Note that a change of the threshold reflects that of the adversary’s

power, i.e., the number of nodes it can corrupt in the committee

C(e−1) and C(e), respectively. Therefore extra care is needed if we

were to increase the power of the adversary (i.e. te > te−1). Similar

to [64], increasing the threshold takes two steps: first, a handoff is

executed between C(e−1) and C(e) assuming the threshold doesn’t

change; then we increase the threshold to te after the handoff. As

illustrated below, the new threshold takes effect after the handoff.

te−1, te
handoff

committee C(e)committee C(e−1)handoff

threshold te−1 threshold te

epoch e + 1epoch e

To increase the threshold, (te−1, te)-handoff runs the proactiviza-

tion phase with parameters t = te . That is, during the proactiviza-
tion protocol, a bivariate polynomial Q(x ,y) of degree (te , 2te) is
generated such thatQ(0, 0) = 0. Each node i holds a te -degree poly-
nomialQ(x , i) and commitments to {Q(x , i)}i are publicly available.
The rest of the proactivization follows without modification, be-

sides now each node i holds two polynomials with different degrees:

B′(x , i) that is te−1-degree whileQ(x , i) is te -degree. Thus the proac-
tivized global polynomial B′(x ,y) is of degree (te , 2te), concluding
the threshold upgrade.

We also need to extend KZG to support dynamic thresholds.

Essentially, the setup phase of the KZG fixes the highest degree

(say, D) of polynomials it can work with. In the setting of a static

threshold t , we set D = t and a KZG commitment can guarantee

that hidden polynomials are of degree ≤ t , which is critical to the

correctness of shares. To support dynamic thresholds up to tmax, we

run the trusted setup with D = tmax and extend KZG with degree

verification functionality. Specifically, given a commitment Cϕ , it
can be publicly verified that ϕ is at most d-degree. The extended
scheme is specified in Fig. 18. Our extension relies on the q-power
knowledge of exponent (q-PKE [41]) assumption.

E.2 Decreasing the threshold
The intuition of decreasing the threshold is to create 2 × (te−1 −

te) virtual nodes, denoted asV , and execute the handoff protocol

between C = C(e−1) and C′ = C(e) ∪ V , assuming the threshold

remains te−1. A virtual node participates in the protocol as if an

honest player, but exposes its state publicly. At the end of the

handoff protocol, nodes in C′ incorporateV’s state and restore the

invariants. The handoff protocol is outlined as follows.

Decreasing the threshold

1) Choose a subset U ⊆ C′ of 2te + 1 nodes. For notational simplicity, suppose U =
{1, . . . , 2te + 1 } and V = {2te + 2, . . . , 2te−1 + 1 }. Each node i ∈ U recovers a re-

duced share RS (e−1)i (x) = B(x, i). In addition, C publishes reduced shares for virtual nodes:

RS (e−1)j (x) = B(x, j) for j ∈ V .

2) U executes the proactivization phase and collectively generate a (te , 2te)-degree bivariate
zero-hole polynomialQ (x, y). At the end of this phase, each node i ∈ U hasQ (x, i).

3) Let V =
∑
j∈V λ2te−1j RS (e−1)j (0). Each node i ∈ U incorprates virtual nodes’ state and

updates its state as RS (e)i (x) =
λ
2te−1
i
λ2tei

(
RS (e−1)i (x) + V

λ
2te−1
i (2te +1)

)
+Q (x, i) where

λ2te−1 and λ2te are Lagrange coefficients for corresponding thresholds. One can verify that

RS (e)i (x) are 2te -sharing of the secret, i.e., B(0, 0) can be calculated from any 2te + 1 of

RS (e)i (x).

4) Each node i ∈ U sends to every node j ∈ C′ a point RS (e)i (j). The full share of each

node j ∈ C′ consists of 2te + 1 points {RS
(e)
i (j) = B

′(i, j)}i∈U , from which j can compute

FSj (y) = B′(j, y).

The updated reduced shares RS
(e)
i (x) can be verified using the

published value V , and the commitment to RS
(e−1)
i (x) and Q(x , i).

At the end of the protocol, each node i has 2te + 1 points on

B′(i,y). It remains to show that {FSj (y) = B′(j,y)}j form a te -

sharing of B(e)(0, 0), which can be checked by

∑te+1
i=1 λtei FSi (0) =∑

2te−1+1
j=1 λ2te−1j RS

(e−1)
j (0) = B(0, 0).

Several optimizations are possible. For example, one can reduce

the degree of RS
(e)
i (x) to te (as opposed to te−1 currently) by build-

ing new polynomials and proving equivalence to RS
(e−1)
i (x). We

leave further optimization for future work.

	Abstract
	1 Introduction
	1.1 CHURP functionality
	1.2 Technical challenges and solutions
	1.3 Implementation and Experiments
	1.4 Outline and Contributions

	2 Model and Assumptions
	2.1 Functional model
	2.2 Adversarial model
	2.3 Communication model

	3 Overview of CHURP
	3.1 Key secret-sharing techniques
	3.2 CHURP: Overview
	3.3 An example
	3.4 Active security
	3.5 Pessimistic CHURP execution paths

	4 Efficient Bivariate 0-Sharing
	5 CHURP Protocol Details
	5.1 Notation and Invariants
	5.2 CHURP Setup
	5.3 CHURP Optimistic Path (Opt-CHURP)
	5.4 Notes on the synchronicity assumptions

	6 CHURP Implementation & Evaluation
	6.1 Implementation
	6.2 Evaluation
	6.3 Comparison with Schultz's MPSS

	7 Point-to-Point Communication Technique
	7.1 Transaction Ghosting
	7.2 Choosing overwrite rate k
	7.3 Experiments
	7.4 Comparison to on-chain communication

	8 Related Work
	References
	A Security Proof for Opt-CHURP
	B Applications in Decentralized Systems
	C The Static Setting: Improved PSS
	D CHURP Pessimistic paths
	D.1 Exp-CHURP-A
	D.2 State Verification (StateVerif)
	D.3 Exp-CHURP-B

	E Changing the threshold
	E.1 Increasing the threshold: te> te-1
	E.2 Decreasing the threshold

