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Abstract. It has been shown that, for appropriate parameters, solving
the SIS problem in the average case is at least as hard as approximating
certain lattice problems in the worst case to within polynomial factor
β · Õ(

√
n), where typically β = O(

√
n logn) such that random SIS in-

stances admit a solution. In this work, we show that β = O(1), i.e., β is
essentially upper-bounded by a constant. This directly gives us a poly-
time exhaustive search algorithm for solving the SIS problem (resulting

in approximating certain worst-case lattice problems to within Õ(
√
n)

factor). Although the exhaustive search algorithm is rather inefficient
for typical setting of parameters, our result indicates that lattice-based
cryptography is not secure, at least in an asymptotical sense. Our work
is based on an observation of the lower/upper bounds on the smoothing
parameter for lattices.
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1 Introduction

Lattice-based cryptography has been one of the most attractive area in mathe-
matical cryptography over the decades. In the seminal work [1], Ajtai introduced
the small integer solution (SIS) problem which asks, given a uniformly random
matrix A ∈ Zn×m

q for appropriate parameters, to find a nontrivial combination
of columns of A that sums to zero. More importantly, he showed that the SIS
problem in the average case is at least as hard as approximating certain lattice
problems in the worst case to within polynomial factor. This remarkable worst-
case/average-case connection is of particular importance, because cryptography
inherently requires hard problems for which random instances are hard to solve.
If one can design provably secure cryptographic constructions based on the SIS
problem, then they are infeasible to break, unless all instances of certain lattice
problems are easy to solve. Ajtai’s breakthrough not only initiates the study of
modern lattice-based cryptography, but also motivates the following two lines of
research.
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Tighter worst-case/average-case reduction. Since up to now there is no poly-
time algorithms known for solving any of the worst-case problems used in Ajtai’s
reduction (even by quantum computers), it is reasonable to conjecture that they
are hard for any polynomial approximation factor. However, as these lattice
problems get easier and easier as the approximation factor increases, it is the-
oretically interesting and practically important to reduce the factor as small as
possible, thus improving the security guarantee of the the underlying crypto-
graphic constructions as much as possible. Therefore, subsequent to [1], several
efforts has been made [5, 4, 13, 16, 8, 15] to reduce the reduction factor. Specif-

ically, in [16], Micciancio and Regev reduced the factor down to β · Õ(
√
n) for

the first time, where β ≪ q is the upper bound on the l2 norm of the solution-
s to the SIS instances. As shown in [16], by the pigeon-hole principle, we can
set β =

√
mqn/m such that SIS instances are guaranteed to have solutions. For

typical choice of parameters, say β = O(
√
n log n), the worst-case/average-case

reduction factor can be as small as Õ(n), almost linear in n.

Showing hardness of lattice problems. As mentioned above, generally certain
worst-case lattice problems are conjectured hard to solve within polynomial ap-
proximation factor. In fact, for much smaller factors, a long sequence of works [3,
2, 6, 12, 7, 10, 9] have been made to show their NP hardness. The stat of the art
is that, for some c > 0, no efficient algorithm can approximate lattice problems
to within nc/ log logn, unless P=NP or another unlikely event occurs.

Although there still remains a gap between the factors that certain problems
are known to be NP-hard and the factors that the worst-case/average-case re-
duction can be established, everything seems to be going well. Since if this gap
can be filled, then the worst-case/average-case reduction can help us achieve
the ambitious goal that constructs cryptosystems whose security is based solely
on the P ̸=NP conjecture. But on the contrary, if we are able to solve the SIS
problem, then the reduction also gives us a possibility to solve the worst-case lat-
tice problems within polynomial factor. Further, it may help us understand the
relation between P and NP

Results and main ideas In this work, we show that for commonly used pa-
rameters in lattice-based cryptography, the length of the shortest nonzero vec-
tor in lattices of the form Λ⊥(A) for uniformly random A ∈ Zn×m

q is upper-

bounded by a small constant, i.e., λ1

(
Λ⊥(A)

)
= O(1), far from the upper bound

λ1

(
Λ⊥(A)

)
≤ β =

√
n log n given by the pigeon hole argument used in previ-

ous reductions. At first glance, a tighter worst-case/average-case reduction with

approximate factor Õ(
√
n) immediately follows and lattice-based cryptography

seems to enjoy stronger security guarantee. However, our result also directly
gives us a simple exhaustive search algorithm with running time polynomial in
m (thus in n) that finds the shortest nonzero vector on random lattice Λ⊥(A),
resulting in approximating certain worst-case problems on any n-dimensional
lattice to within Õ(

√
n) factor. Although for typical setting of parameters the

exhaustive search algorithm is rather inefficient and seems has no effect on the
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security of current underlying cryptographic applications, our result still indi-
cates that lattice-based cryptography is not secure, at least in an asymptotical
sense.

Our main result is closely related to an observation of the lower/upper bound
on the smoothing parameter for lattices. This notion was first introduced by
Micciancio and Regev in [16] and plays a crucial role in their reduction. Roughly
speaking, the smoothing parameter is the smallest amount of Gaussian noise that
can “smooth out” the discrete structure of the lattice. Micciancio and Regev also
showed that this parameter could be roughly bounded by λn, the nth successive
minima of the lattice. In [17], Peikert presented a new bound: the smoothing
parameter can be roughly upper-bounded by 1/λ∞

1 (L∗), where the denominator
is l∞ norm of the shortest nonzero vector in the dual lattice L∗. Then in [8],
Gentry et al. related the smoothing parameter to a certain lattice quantity,
called the Gram-Schmidt minimum and defined as b̃l(L) = minB ∥B̃∥, where the
minimum is taken over all bases B of L.

We now start with a simple observation. Let L(B) be a lattice with basis B

such that ∥B̃∥ = b̃l(L). As in the proof of Lemma 3.1 in [8], a rigid rotations and
reflections are applied to the lattice L (and its dual L∗) such that the orthogonal

Gram-Schmidt vectors b̃i are parallel to the standard basis vectors ei ∈ Rn. Here

we denote by L̄(B̄) the transformed version of L(B), i.e., ˜̄bi = ∥˜̄bi∥ · ei. Notice
that such transformations do not affect the values of the quantities defined with
respect to the l2 norm, e.g., the smoothing parameter, λ1(L), and b̃l(L) et al.,
because the structures of L (and L∗) are preserved. However, the quantities
relative to the l∞ norm, say λ∞

1 (L∗), are sensitive to rotations. This simple
observation serves as a good inspiration for us: to get a new bound as tight as
possible, by the bound in [17], one may rotate the lattices L (and L∗) such that
λ∞
1 (L∗) achieves its maximum value, making 1/λ∞

1 (L∗) as small as possible.
Actually, when L is of the form Λ⊥(A), our main line of thought is to show
that,

λ1(L) ≤ b̃l(L) ≤ 1

λ∞
1 (L∗)

≤ 4.

Notice that the first and the last inequalities have been shown in [8], so all
we need to show is the second one. At first, we tried to prove this inequality
directly and made some progress. In more detail, for any lattice L, we can show
that b̃l(L̄) ≤ 1/λ∞

1 (L̄∗). Combining with the inequality 1/λ∞
1 (L̄∗) ≤ b̃l(L̄) shown

in [8], we have b̃l(L̄) = 1/λ∞
1 (L̄∗). However, we cannot go further to show that

λ∞
1 (L̄∗) ≥ λ∞

1 (L∗). Hence, to get our main result, we have to take a slightly
“tortuous” approach.

The main idea underlying our result is simple and clear. Specifically, we show
that

b̃l(L̄) ·
√
ln(2/ϵ)/π < ηϵ(L̄) = ηϵ(L) ≤

√
ln(2n(1 + 1/ϵ))/π

λ∞
1 (L∗)

where ηϵ(·) is the smoothing parameter with respect to any ϵ ∈ (0, 1) (see Defi-
nition 4). Note that the fist inequality indicates that the upper bound given in
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[8] is essentially tight. Then we have

λ1(L) ≤ b̃l(L) = b̃l(L̄) < 1

λ∞
1 (L∗)

·
√
ln(2n(1 + 1/ϵ))/π√

ln(2/ϵ)/π
.

Notice that the multiplication term attached to 1/λ∞
1 (L∗) trends to 1 as ϵ → 0.

As a result, the inequality λ1(Λ
⊥(A)) ≤ 4 follows.

Organization In what follows, we start by briefly recalling some basic definitions
and results. Then we describe our main work in Sec. 3.

2 Preliminaries

Notations We denote by Z the integers. Vectors are assumed to be in column
form and are written using bold lower-case letters, e.g. x. The ith component of
x will be denoted by xi. The l2 and l∞ norms of a vector x are ∥x∥ =

√∑
i x

2
i

and ∥x∥∞ = maxi |xi|, respectively. Matrices are written as bold capital letters,
e.g. X, and the ith column vector of a matrix X is denoted by xi. The length
of a matrix ∥X∥ = maxi ∥xi∥ is the norm of its longest column. For notational
convenience, we use X−t = (X−1)t to represent the inverse and transpose of X.

Throughout the paper all quantities are implicitly functions of the security
parameter n. We use standard big-O notation to classify the growth of functions,
and say that f(n) = Õ(g(n)) if f(n) = O(g(n) · logc n) for some fixed constant c.
A negligible function is an f(n) such that f(n) = o(n−c) for every fixed constant
c.

Lattices A (full-rank) lattice is defined as the set of all integer combinations of
n linearly independent vectors B = {b1, . . . ,bn} ⊂ Rn:

L(B) =
{∑

i

zi · bi : zi ∈ Z
}
.

The matrix B is known as a basis of the lattice and is not unique. The determi-
nant det(L) of the lattice L, given by |det(B)|, is independent of the choice of
the basis.

The Gram-Schmidt orthogonalization B̃ of B is defined iteratively in the
following way: b̃1 = b1, and for each i = 2, . . . , n, b̃i is the component of bi

orthogonal to span(b1, . . . ,bi−1). Clearly, ∥b̃i∥ ≤ ∥bi∥.
The dual lattice L∗ of a lattice L is the set

L∗ = {x ∈ span(L) : ∀ y ∈ L, ⟨x,y⟩ ∈ Z}

of all vectors that have integer scalar product with all lattice vectors. The dual
of a lattice is also a lattice, and if a lattice L(B) is generated by basis B, then
B∗ = B(BtB)−1 is a basis for the dual lattice. We have the following fact that

relates B̃ and B̃∗.
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Lemma 1 ([8]). Let {b1, . . . ,bn} be an (ordered) basis. Let {dn, . . . ,d1} be its

dual basis in reverse order and d̃n, . . . , d̃1 be its Gram-Schmidt orthogonalization
(using this order). Then for all i ∈ [n], d̃i = b̃i/∥b̃i∥2.

Here we recall the shortest vector problem. For more details and other prob-
lems, please refer to [11, 16].

Definition 1 (Shortest Vector Problem, SVP). Given an arbitrary basis B
of some lattice L(B), find a shortest nonzero lattice vector, i.e., a vector v such
that ∥v∥ = λ1(L), where λ1(L) denotes the length of the shortest vector in L.

Definition 2 (Decisional Approximate SVP, GapSVPγ). Given a pair of
(B, d) where B is a basis of an n-dimensional lattice L and d is a rational
number. In yes input λ1(L) ≤ d, and in no input λ1(L) > γ · d.

Then we recall the average case problem SIS [1].

Definition 3 (Smallt Integer Solution (SISn,m,q,β) Problem). Given uni-
formly random matrix A ∈ Zn×m

q , find a nonzero vector z ∈ Zm with ∥z∥ ≤ β
such that

Az =
∑
i

ai · zi = 0 ∈ Zn
q .

Equivalently, the SIS problem can be seen as an average-case SVP on the
family of “q-ary” m-dimensional lattice

Λ⊥(A) = {z ∈ Zm : Az = 0 ∈ Zn
q } ⊇ qZm.

Typically, we often set β = O(
√
n log q) by the pigeon-hole principle such

that the SIS problem is hard enough and nontrivial. The following theorem is
one of the security foundations of modern lattice-based cryptography.

Theorem 1 (Worst-case/average-case Reduction [16, 8, 15]). For any m,
β = poly(n) and for any q ≥ β · ω(

√
n log n), solving a random instance of

SISn,m,q,β problem with non-negligible probability is at least at hard as approxi-

mating certain problems on any n-dimensional lattice to within γ = β · Õ(
√
n)

factors.

Gaussian measures For any vectors c, x and any s > 0, let

ρs,c(x) = exp(−π∥(x− c)/s∥2)

be a Gaussian function centred in c scaled by a factor of s. we can define the
discrete Gaussian distribution over the n-dimensional lattice Λ as

∀ x ∈ Λ, DΛ,s,c(x) =
ρs,c(x)

ρs,c(Λ)
∝ ρs,c(x).
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The smoothing parameter Micciancio and Regev in [16] proposed a fundamental
quantity for lattices called the smoothing parameter.

Definition 4 (The Smoothing Parameter [16]). For any n-dimensional lat-
tice Λ and positive real ϵ > 0, the smoothing parameter ηϵ(Λ) is the smallest real
s > 0 such that ρ1/s(Λ

∗) ≤ 1 + ϵ.

Note that since ρ1/s(Λ
∗) is a continuous and strictly decreasing function of s,

the ‘≤’ in above definition can be replaced by ‘=’. Micciancio and Regev [16] also
showed that this parameter can be roughly bounded by λn, the nth successive
minima. In [17], Peikert first relates the smoothing parameter of a lattice to the
minimum distance of its dual lattice in the l∞ norm.

Lemma 2 ([17]). For any n-dimensional lattice Λ and real ϵ > 0, we have

ηϵ(Λ) ≤
√
ln(2n(1 + 1/ϵ))/π

λ∞
1 (Λ∗)

.

Then for any ω(
√
lnn) function, there is a negligible ϵ(n) for which ηϵ(Λ) ≤

ω(
√
lnn)/λ∞

1 (Λ∗).

In [8], Gentry et al. presented a new smoothing parameter bound, which
related the smoothing parameter to the longest Gram-Schmidt vector in any
basis of the lattice.

Lemma 3 ([8]). For any n-dimensional lattice Λ and real ϵ > 0, we have

ηϵ(Λ) ≤ b̃l(Λ) ·
√

ln(2n(1 + 1/ϵ))/π,

where b̃l = minB ∥B̃∥ is called the Gram-Schmidt minimum. Then for any

ω(
√
lnn) function, there is a negligible ϵ(n) for which ηϵ(Λ) ≤ b̃l(Λ) · ω(

√
lnn).

In [8], Gentry et al. also showed that for lattice of the form Λ⊥(A), it has a
small smoothing parameter.

Lemma 4 ([8]). Let n and q be positive integers with q prime, and let m ≤
2n log q. Then for all but an at most q−n fraction of A ∈ Zn×m

q , we have

λ∞
1

(
(Λ⊥(A))∗

)
≥ 1/4.

In particular, for such A and for any ω(
√
logm), there is a negligible function

ϵ(m) such that ηϵ
(
Λ⊥(A)

)
≤ ω(

√
logm).

3 Upper Bound on λ1

(
Λ⊥(A)

)
For any lattice L(B) with basis B such that ∥B̃∥ = b̃l(L), denote by L̄(B̄) its
transformed version (by applying rigid rotations and reflections as in the proof

of Lemma 3.1 in [7]), such that the orthogonal Gram-Schmidt vectors ˜̄bi are

parallel to the standard basis vectors ei, i.e.,
˜̄bi = ∥˜̄bi∥ · ei. Notice that such

transformations do not affect the values of the quantities defined with respect to

the l2 norm, e.g., ηϵ(L) = ηϵ(L̄) and b̃l(L) = b̃l(L̄) = ∥ ˜̄B∥, because the structures
of L (and L∗) are preserved.
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Theorem 2 (Main Result). Let n, q be positive integers with q prime, and let
m ≥ 2n log q. Then for uniformly random A ∈ Zn×m

q , we have λ1(Λ
⊥(A)) =

O(1) with overwhelming probability.

Proof. As mentioned before, for any lattice L, if we can show that

b̃l(L̄) ·
√
ln(2/ϵ)/π < ηϵ(L̄) = ηϵ(L) <

√
ln(2n(1 + 1/ϵ))/π

λ∞
1 (L∗)

,

i.e.,

b̃l(L̄) < 1

λ∞
1 (L∗)

·
√

ln(2n(1 + 1/ϵ))/π√
ln(2/ϵ)/π

,

then by Lemma 4 and the fact that
√
ln(2n(1 + 1/ϵ))/π/

√
ln(2/ϵ)/π → 1 as

ϵ → 0, our main result

λ1(L) ≤ b̃l(L) = b̃l(L̄) < 1

λ∞
1 (L∗)

·
√
ln(2n(1 + 1/ϵ))/π√

ln(2/ϵ)/π
= O(1)

follows when L is of the form Λ⊥(A).

We now show that b̃l(L̄) ·
√

ln(2/ϵ)/π < ηϵ(L̄).

On one hand, b̃l(L̄) ·
√
ln(2/ϵ)/π < ηϵ

(
b̃l(L̄) · Z

)
.

By the definition of ηϵ(·) and the fact that ρ1/s(·) is a continuous and strictly

decreasing function of s, we only need to show that ρ1/s
(
(b̃l(L̄) ·Z)∗

)
> 1+ ϵ for

s = b̃l(L̄) ·
√
ln(2/ϵ)/π. Indeed,

ρ1/s
(
(b̃l(L̄) · Z)∗

)
= ρ1/s

(
1/b̃l(L̄) · Z

)
= ρ

(√
ln(2/ϵ)/π · Z

)
=

∑
i∈Z

(
ϵ/2

)i2
> 1 + ϵ.

On the other hand, ηϵ(b̃l(L̄) · Z) < ηϵ(L̄).

For the same reason, it is enough to show that ρ1/s
(
(b̃l(L̄) ·Z)∗

)
< ρ1/s(L̄∗).

Let B̄ = QDU, then by the definition of Gram-Schmidt orthogonolization,
Q = I is the identity matrix, D is a diagonal matrix with diagonal entries

{∥˜̄bi∥}ni=1 and U is a upper triangular matrix with 1’s on the diagonal.

When ∥˜̄bn∥ = b̃l(L̄), we have

ρ1/s(L̄∗) = ρ1/s(B̄
−t · Zn)

= ρ1/s(D
−t ·U−t · Zn)
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> ρ1/s(1/∥˜̄bn∥ · Z)

= ρ1/s
(
(b̃l(L̄) · Z)∗

)
,

since D−t is a diagonal matrix with diagonal entries {1/∥˜̄bi∥}ni=1 and U−t is a
lower triangular matrix with 1’s on the diagonal.

When ∥˜̄bj∥ = b̃l(L̄) for some j < n, consider the sub-lattice L̄j(B̄j) of
L̄(B̄) generated by B̄j = (b̄1, . . . , b̄j). Then we have B̄j = QjDjUj , where Qj

consists of the first j columns of Q, Dj is a diagonal matrix with diagonal entries

{∥˜̄bi∥}ji=1 and Uj is a j-dimensional upper triangular matrix with 1’s on the
diagonal. Note that L̄∗

j is also a sub-lattice of L̄∗. Then

ρ1/s(L̄∗) > ρ1/s(L̄∗
j )

= ρ1/s
(
(B̄j)

∗ · Zj
)

= ρ1/s(Qj ·D−t
j ·U−t

j · Zj)

> ρ1/s(1/∥˜̄bj∥ · Z)

= ρ1/s
(
(b̃l(L̄) · Z)∗

)
,

where D−t
j is also a diagonal matrix with diagonal entries {1/∥˜̄bi∥}ji=1 , and

U−t
j ∈ Rj×j is also a lower triangular matrix with 1’s on the diagonal. This

completes the proof of our main result.

Corollary 1. There is a poly-time exhaustive search algorithm (in security pa-
rameter n) for solving the SISn,m,q,4 problem, where n,m, q are as above. Specif-
ically, by the worst-case/average-case reduction, the algorithm can be used to

approximate GapSVP (among others) to within factor Õ(
√
n) in the worst case.

Remark 1. This simple algorithm runs in time roughly
∑c2

i=2 2
i−1Ci

m = O(mc2)
for finding a vector x ∈ Zm with ∥x∥∞ = 1 and ∥x∥ ≤ c ≤ 4. In [14], the authors
provide a strengthening version of Lemma 4, which can reduce the complexity
of this algorithm and offer trade-offs between m and c.
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