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Abstract. We present a modification to the ZKPoKs used in the HighGear offline protocol for the
SPDZ Multi-Party Computation protocol. This modification allows us to both increase the security of
the underlying protocols, whilst at the same time maintaining roughly the same performance in terms
of memory and bandwidth consumption. The last two being major constraints of the original HighGear
protocol. We argue the inefficiency of HighGear means that current implementations of SPDZ use far
too low security parameters in a number of places. We show that using TopGear one can select high
security parameters for all cases.

1 Introduction

Multi-party computation (MPC) has turned in the last fifteen years from a mainly theoretical endeavour
to one which is now practical, with a number of companies fielding products based on it. MPC comes in
a number of flavours, depending on the underlying primitives (garbled circuit, secret sharing), number of
parties (two or many parties), security model (passive, covert, active), and so on. In this work we will focus
on n-party secret sharing based MPC secure against a dishonest majority of parties. In this setting the most
efficient protocol known is still the SPDZ protocol [10] from 2012, along with its many improvements such
as [9, 17,18].

The SPDZ protocol family uses a form of authenticated secret sharing over a finite field Fp to perform the
secure computation. The protocol is divided into two phases, an offline phase (which produces among other
things Beaver triples) and an online phase (which consumes the Beaver triples to enable multiplication to be
performed). In this work we will be focusing on the increasing the underlying security offered by the offline
phase, whilst maintaining the same performance. The SPDZ protocol, amongst others, has been implemented
in the SCALE-MAMBA system [2], which we refer to as a reference implementation for judging our own
contribution.

To understand our contribution in terms of efficiency and security we first consider the genesis of the
problem we solve. The SPDZ protocol is itself based on an earlier protocol called BDOZ [3]. The BDOZ
protocol used a form of pairwise MAC to authenticate a secret sharing amongst n-parties. At the heart of
the offline phase for BDOZ is a pairwise multiplication protocol, using linearly homomorphic encryption. To
ensure active adversaries do not cheat in this phase pairwise zero-knowledge proofs are utilized to ensure
active adversaries cannot deviate from the protocol without detection. Thus in total O(n2) ZKPoKs need to
be carried out per Beaver triple.

The main contribution of the SPDZ paper [10] over BDOZ was the pairwise MACs were replaced by
a global MAC. This was enabled by replacing the linearly homomorphic encryption used in BDOZ by a
limited form of Somewhat Homomorphic Encryption (SHE) based on the BGV encryption scheme [6]. Now
the pairwise ZKPoKs could be replaced by O(n) ZKPoKs per Beaver triple. Due to the Smart-Vercauteren
SIMD packing underlying BGV the implied constant here was relatively low, as a single ZKPoK could be
used to prove statements needed for many thousands of Beaver triples.

However, BGV is a lattice based SHE scheme and thus ZKPoKs are relatively costly. In particular the
basic underlying Σ-protocol has challenge space {0, 1}, and thus soundness security of only 1/2. Not only
that, but to provide zero-knowledge, one needs to “blow-up” the parameters proven, thus an adversary
can only be shown to prove a statement which is strictly weaker than what an honest party proves. This
introduces what is called the soundness slack between the honest proven language L and the adversarially



proven language L′. In particular to obtain statistical zero-knowledge of 2−ZK sec the parameters are (roughly)
blown up by a factor of 2ZK sec.

To get around the first of these problems (the low soundness security) SPDZ uses a standard amortization
technique [8] to prove U statements at once. This boosts the soundness security from 1/2 to 2−U , at the
expense of introducing slighly more soundness slack, namely 2U/2. In the implementation of this ZKPoK
in the original, and subsequent works, the authors set U to be the same security level as the statistical
zero-knowledge parameter ZK sec.

Despite this use of amortization techniques the ZKPoKs were considered too slow. This resulted in two
new techniques based on cut-and-choose being introduced in [9]. The first of these techniques produced only
covert security, but was highly efficient, and thus for a number of years all implementations of the SPDZ
offline phase only provided covert security. The second technique of [9] provided actively secure ZKPoK
which seemed assymptotically more efficient than that provided in [10], but which due to large memory
requirements was impossible to implement in practice.

This inability to provide efficient actively secure offline phased based on SHE led to a temporary switch to
an OT-based offline phase, called MASCOT [17]. However, in 2018 Keller et al [18] introduced the Overdrive
suit of offline protocols. The Overdrive paper revisited the previous work and came to some interesting
conclusions. Firstly, in so-called Low Gear, for a small number of parties the original pairwise ZKPoKs of the
BDOZ methodology could be more efficient than the SPDZ style methodology. Thus an O(n2) algorithm can
beat an O(n) algorithm for small values of n, this was enabled by using in BDOZ the same SIMD packing as
was being used for SPDZ. Interestingly this simple optimization had never been tried before on the BDOZ
protocol.

The second variant of Overdrive, so called High Gear, was for larger values of n. Here the original SPDZ
ZKPoK was revisited and tweaked. Instead of at each iteration each party proving a statement to each other
party, the parties proved a single joint statement. Thus the n parties act as a single proving entity for a joint
statement of their secret inputs. This did not provide an improvement in communication efficiency, but it
did make the computational costs a factor of n smaller.

In the SCALE-MAMBA system (as of v1.2 in Nov 2018) only the High-Gear variant of Overdrive is
implemented for the case of dishonest majority MPC, even when n = 2. However, like all prior work the
system adopts U = ZK sec, and thus achieves the same soundess security Snd sec as zero-knowledge indis-
tinguishability. This is not efficient, or as secure, as one would want for two combined reasons.

1. The zero-knowledge security ZK sec is related to a statistical distance, whereas the soundness security
Snd sec is related to the probability that an adversary can cheat. Thus a low value for Snd sec is more
of a concern than a low value for ZK sec.

2. The practical complexity of the protocol, in particular the memory and computational consumption, is
dominated by Snd sec. It turns out that ZK sec has very virtually no effect on the overall execution time
of the offline phase, for large values of p.

It is for this reason that [18] gives performance metrics for 40, 64 and 128-bit active security, and why v1.2 of
SCALE-MAMBA utilizes only 40-bits of security for Snd sec and ZK sec, since the execution time is highly
dependent on Snd sec.

Our Contribution: We first formalize the type of statement which the Overdrive ZKPoK tries to prove. The
original treatment in [18] is relatively intuitive. We formalize the statement by presenting a generalization
of standard Σ-protocols to what we call an n-party Σ-protocol. This allows us to somewhat simplify the
presentation of our protocol and also to elaborate on the effect of the various security parameters.

We then present a modified ZKPoK for the HighGear variant of Overdrive, which we denote TopGear.
In this variant we treat the soundess security Snd sec and the zero-knowledge security ZK sec seperately.
This ZKPoK in its unamortized variant (i.e. only proving one statement at once) uses a larger challenge set
than {0, 1}. In particular, using a Lemma from [4] we are able to use a challenge set of size 2 · N , where
N is the ring dimension. We then amortize this by proving U statements in parallel using a modification
of the technique of [8]. This enables us to achieve a soundness security of Snd sec = U · log2(2 · N) for the
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main zero-knowledge proofs in the offline phase of the SPDZ protocol. Since N is often 32768 = 215 we are
able to achieve a high soundness security, with a low value of U , i.e. using U = 8 we can obtain 128 bits
of soundness security. Thus we can use a smaller amount of amortization than in [18], and thus a smaller
memory footprint etc. This then allows us to also select higher values of ZK sec, if so desired, as this has
little affect on performance.

However, we still obtain a soundness slack. Namely a difference between the honestly proven language and
the language which we can guarantee a dishonest prover can select their statements from. This distinction
comes from two sources. The first source comes from needing ZK sec to be larger to ensure zero-knowledge. In
signature schemes based on lattices, such as BLISS, this issue is usually dealt with using rejection sampling,
e.g. [11,12,19]. However, in our case this slack will be removed due to the processing that happens after the
ZKPoK is executed (during a modulus switch operation in the homomorphic processing). The second source
comes from the use of the larger challenge set. To remove this we need to perform a minor tweak to how the
outputs of the ZKPoK are used in the offline phase of the SPDZ protocol.

2 Preliminaries

In this section we outline the details of what we require of the BGV encryption scheme [6]. Most of the details
can be found in [6, 13–15], although we will only require a variant, which supports circuits of multiplicative
depth one.

Notation: We assume that all the parties are probabilistic polynomial time Turing machines. We let [n]
denote the interval [1, . . . , n]. If M is matrix then we write M (r,c) for the entry in the r-th row and c-th
column. We shall write vectors (usually) in bold, and there elements in non-bold with a subscript, thus
x = (xi)i∈[n], sometimes we will also write x(i) to denote the i-th element in the vector x. All modular
reduction operations x (mod q) will be to the centered interval (−q/2, q/2].

We let a← X denote randomly assigning a value a from a set X, where we assume a uniform distribution
on A. If A is an algorithm, we let a← A denote assignment of the output, where the probability distribution
is over the random tape of A; we also let a ← b be a shorthand for a ← {b}, i.e. to denote normal variable
assignment. If D is a probability distribution over a set X then we let a← D denote sampling from X with
respect to the distribution D.

We will make use of the following lemma in a number of places

Lemma 2.1. Let D be any distribution bounded whose values are bounded by B. Then the distributions
D + (0, · · · , B′) (by which we mean the distribution obtained from sampling from the two distributions and
adding the result) is statistically close to the uniform distribution U (0, · · · , B′), with statistical distance
bounded by B

B′ .

SPDZ Secret Sharing: This SPDZ protocol [10] processes data using an authenticated secret sharing
scheme defined over a finite field Fp, where p is prime. The secret sharing scheme is defined as follows: Each
party Pi holds a global MAC key αi ∈ Fp and a data element x ∈ Fp is held in secret shared form as a tuple
{xi, γi}i∈[n], such that x =

∑
i xi and

∑
γi = α · x where α =

∑
i αi. We denote a value x held in such a

secret shared form as 〈x〉. The main goal of the SPDZ offline phase is to produce random triples (〈a〉, 〈b〉, 〈c〉)
such that c = a · b. If we wish to denote the specific value on which γi is a MAC share then we write γi[x].

The Rings: The BGV encryption scheme, as we will use it, is built around the arithmetic of the cyclotomic
ring R = Z[X]/(Φm(X)), where Φm(X) is the m-th cyclotomic polynomial. For an integer q > 0, we denote
by Rq the ring obtained as reduction of R modulo q. We take m to be a power of two, m = 2n+1 and hence
Φm(X) = XN + 1 where N = 2n. Elements of R (resp. Rq) can either be thought of as polynomials (of
degree less than N) or as vectors of elements (of length N).
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The canonical embedding of R is the mapping of R into Cφ(m) given by σ(x) = (x(ζim))i∈[n], where we
think of x as a polynomial. We are interested in two norms of elements x in R (resp. Rq). For the ∞-norm
in the standard polynomial embedding we write ‖x‖∞, where as the∞-norm in the canonical embedding we
will write as ‖x‖can

∞ = ‖σ(x)‖∞. By standard inequalities we have ‖x · y‖can
∞ ≤ ‖x‖

can
∞ · ‖y‖

can
∞ , ‖x‖can

∞ ≤ ‖x‖1,
‖x‖can
∞ ≤ φ(m) · ‖x‖∞ and ‖x‖∞ ≤ ‖x‖

can
∞ ; with the last two inequalities holding due to our specific choice

of cyclotimic ring. Such norms can also be employed on elements of Rq by using the standard (centered)
embedding of Rq into R.

We will use the following two facts in a number of places.

Lemma 2.2. Let m be a power of two then ‖2 · (Xi −Xj)−1 (mod φm(X))‖∞ ≤ 1 for all 0 ≤ i, j < 2 ·N
then

Proof. Given in [4].

Lemma 2.3. In the ring R defined by Φm(X) with m a power of two we have that for all a ∈ R that
‖a ·Xi‖∞ = ‖a‖∞.

Proof. This follows as Xi acts as a shift operation, with the wrap-around modulo φ(m) simply negating the
respective coordinate.

Various Distributions: Following [15][Full version, Appendix A.5] and [2] we need different distributions
to define the BGV scheme, all of which produce vectors of length N which we consider as elements in R.

- HWT(h,N): This generates a vector of length N with elements chosen at random from {−1, 0, 1} subject
to the condition that the number of non-zero elements is equal to h.

- ZO(0.5, N): This generates a vector of length N with elements chosen from {−1, 0, 1} such that the
probability of each coefficient is p−1 = 1/4, p0 = 1/2 and p1 = 1/4. Thus if x ← ZO(0.5, N) then
‖x‖∞ ≤ 1.

- dN(σ2, N): This generates a vector of length N with elements chosen according to an approximation to
the discrete Gaussian distribution with variance σ2.

- RC(0.5, σ2, N): This generates a triple of elements (r1, r2, r3) where r3 is sampled from ZOs(0.5, N) and
r1 and r2 are sampled from dNs(σ

2, N).
- U(q,N): This generates a vector of length N with elements generated uniformly modulo q in a centred

range. Thus x← U(q,N) implies ‖x‖∞ ≤ q/2.

Following prior work on SPDZ we select σ = 3.17 and hence we can approximate the sampling from the
discrete Gaussian distribution using a binomial distribution, as is done in NewHope [1]. In such a situation
an element x← dN(σ2, N) is gauranteed to satisfy ‖x‖∞ ≤ 20.

The Two Level BGV Scheme: We consider a two-leveled homomorphic scheme, given by the following
algorithms {KeyGen, Enc, SwitchMod, Dec}. The plaintext space is the ring Rp, for some prime modulus p,
which is the same modulus used to define the SPDZ secret sharing scheme. The algorithms are parametrized
by a computational security parameter κ and are defined as follows. First we fix two moduli q0 and q1 such
that q1 = p0 · p1 and q0 = p0, where p0, p1 are prime numbers. Encryption generates level one ciphertexts,
i.e. with respect to the largest modulo q1, and level one ciphertexts can be moved to level zero ciphertexts
via the modulus switching operation. We require p1 ≡ 1 (mod p) and p0− 1 ≡ p1− 1 ≡ 0 (mod p). The first
condition is to enable modulus switching to be performed efficiently, whereas the second is to enable fast
arithmetic using Number Theoretic Fourier Transforms.

- KeyGen(1κ): The secret key sk is randomly selected from a distribution with Hamming weight h, i.e.
HWT(h,N), much as in other systems, e.g. HELib [16] and SCALE [2] etc. The public key, pk, is of the
form (a, b), such that a← U(q1, N) and b = a · sk+ p · ε (mod q1), where ε← dN(σ2, N). This algorithm
also outputs the relinearisation data (ask,sk2 , bsk,sk2) [7], where

ask,sk2 ← U(q1, N) and bsk,sk2 = ask,sk2 · sk + p · rsk,sk2 − p1 · sk2 (mod q1),

with rsk,sk2 ← dN(σ2, N).
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- Enc(m, r; pk): Given a plaintext m ∈ Rp, and randomness r = (r1, r2, r3) chosen from RC(0.5, σ2, n),

i.e. r1, r2 ← dN(σ2, N) and r3 ← ZO(0.5, N), this algorithm sets

c0 = b · r3 + p · r1 +m (mod q1), c1 = a · r3 + p · r2 (mod q1).

Hence the initial ciphertext is ct = (1, c0, c1), where the first index denotes the level (initially set to be
equal to one). If the level ` is obvious we drop it in future discussions and refer to the ciphertext as an
element in R2

q`
.

- SwitchMod((1, c0, c1)): We define a modulus switching operation which allows us to move from a level
one to a level zero ciphertext, without altering the plaintext polynomial, that is

(0, c′0, c
′
1)← SwitchMod((1, c0, c1)), c′0, c

′
1 ∈ Rq0 .

The effect of this operation is also to scale the noise term (see below) by a factor of q0/q1 = 1/p1.
- Dec((c0, c1); sk): Decryption is obtained by switching the ciphertext to level zero (if it is not already at

level zero) and then decrypting (0, c0, c1) via the equation (c0 − sk · c1 (mod q0)) (mod p), which results
in an element of Rp.

Homomorphic Operations: Ciphertexts at the same level ` can be added,

(`, c0, c1) � (`, c′0, c
′
1) = (`, (c0 + c′0 (mod q`)), (c1 + c′1 (mod q`)),

with the result being a ciphertext, which encodes a plaintext that is the sum of the two initial plaintexts.
Ciphertexts at level one can be multiplied together to obtain a ciphertext at level zero, where the output
ciphertext encodes a plaintext which is the product of the plaintexts encoded by the input plaintexts. We do
not present the method here, although it is pretty standard consisting of a modulus-switch, tensor-operation,
then relinearization (which we carry out in this order). We write the operation as

(1, c0, c1)� (1, c′0, c
′
1) = (0, c′′0 , c

′′
1), with c′′0 , c

′′
1 ∈ Rq0 ,

or more simply as (c0, c1)� (c′0, c
′
1) = (c′′0 , c

′′
1) as the levels are implied.

Ciphertext Noise: The noise term associated with a ciphertext is the value ‖c0 − sk · c1‖can
∞ . To derive

parameters for the scheme we need to maintain a handle on this value. The term is additive under addition
and is roughly divided by p1 under a modulus switch. For the tensoring and relinearization in multiplication
the terms roughly multiply. A ciphertext at level zero will decrypt correctly if we have ‖c0 − sk · c1‖∞ ≤ q0/2,
which we can enforce by requiring ‖c0 − sk · c1‖can

∞ ≤ q0/2.
We would like a ciphertext (adversarially chosen or not) to decrypt correctly with probability 1 − 2−ε.

In [15] ε is chosen to be around −55, but the effect of ε is only in producing the following constants: we define
ei such that erfc(ei)

i ≈ 2−ε and then we set ci = eii. This implies that c1 ·
√
V , is a high probability bound

on the canonical norm of a ring element whose coefficients are selected from a distribution with variance V .
And c2 ·

√
V1 · V2 is a similar bound on a produce of elements whose coefficient are chosen from distributions

of variance V1 and V2 respectively.
With probability much greater than 1 − 2−ε the “noise” of an honestly generated ciphertext (given

honestly generated keys) will be bounded by

‖c0 − sk · c1‖can
∞ = ‖((a · sk + p · ε) · r3 + p · r1 +m− (a · r3 + p · r2) · sk‖can

∞

= ‖m+ p · (ε · r3 + r1 − r2 · sk)‖can
∞

≤ ‖m‖can
∞ + p ·

(
‖ε · r3‖can

∞ + ‖r1‖can
∞ + ‖r2 · sk‖can

∞
)

≤ φ(m) · p/2

+ p · σ ·
(
c2 · φ(m)/

√
2 + c1 ·

√
φ(m) + c2 ·

√
h · φ(m)

)
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= Bclean.

Recall this is the average case bound on the noise of honestly generated ciphertexts. In our protocols cipher-
texts can be adversarially generated, and determining (and ensuring) a worst case bound on the resulting
ciphertexts is the main focus of the HighGear and TopGear protocols.

Distributed Decryption: The BGV encryption scheme supports a form of distributed decryption, which
is utilized in the SPDZ offline phase. A secret key sk ∈ Rq can be additively shared amongst n parties by
giving each party a value ski ∈ Rq such that sk = sk1 + . . .+ skn. We assume, as is done in most other works
on SPDZ, that the key generation phase, including the distribution of the shares of the secret key to the
parties, is done in a trusted setup.

To perform a distributed decryption of a ciphertext ct = (c0, c1) at level zero, each party computes
di ← c0 − c1 · ski + p ·Ri (mod q0) where Ri is a uniformly random value selected from [0, . . . , 2DD sec ·B/p]
where B is an upper bound on the norm ‖c0 − c1 · sk‖∞. The values di are then exchanged between the
players and the plaintext is obtained from m ← (d1 + . . . + dn (mod q0)) (mod p). The statistical distance
between the distribution of the coefficients of di and uniformly random elements of size 2DD sec ·B is bounded
by 2−DD sec by Lemma 2.1.

To ensure valid decryption we need the value of q0 to satisfy q0 > 2 ·(1+n ·2DD sec) ·B instead of q0 > 2 ·B
for a scheme without distributed decryption. Thus the need for distributed decryption makes the parameters
get a lot larger.

3 n-Prover Σ-Protocols

The Overdrive ZKPoK is an n + 1 party Σ-protocol between n provers and one verifier3. The Overdrive
ZKPoK also has a difference, unlike traditional Σ-protocols, between the language used for completeness
and the language for soundness; much like the protocols considered in [5][Definition 2.2]. The Overdrive
paper does not formalize such Σ-protocols, so our first contribution is to do precisely this.

Consider a set of n provers {P1, . . . , Pn} each with private input wi and public input xi. The provers wish
to convince a verifier V (who could be one or all of the provers) that a given predicate holds between the
input values, i.e. P(x1, . . . , xn, w1, . . . , wn) = 1, and that the provers hold knowledge of the said witnesses
wi. The predicate P defines a language L; namely a binary relation on the pairs (x,w).

In the definition below we also utilize another language L′ such that L ⊂ L′ defined by a second predicate
P′. In the following definition if one sets n = 1, L = L′ and utilizes perfect zero-knowledge then we have the
traditional definition of a Σ-protocol.

Definition 3.1. An n-party Σ-protocol with challenge set C for the languages L and L′ is defined as a tuple
of PPT algorithms (Comm,Resp,Verify). The protocol is then executed in the following four phases:

1. Each prover independently executes the algorithms

(commi, statei)← Comm(wi)

and sends (xi, commi) to the verifier.
2. The verifier selects a challenge value c ∈ C and sends it to each prover.
3. The provers execute, again independently, the algorithms

respi ← Resp(statei, c)

and send respi to the verifier.
4. The verifier accepts if Verify({commi, respi}i∈[n], c) = true.

3 In the way it is used each prover also acts as an independent verifier.
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Such a protocol should satisfy the following three properties

- Correctness: A set of honest provers should make the verifier accept with probability one if the first
predicate P is true.

- Special Soundness: Two accepting conversations with the same commitment but different challenges,
can be passed into a PPT algorithm Extract (called the knowledge extractor) so as to obtain a witness
(w′1, . . . , w

′
n), to the second predicate P′. In other words given two tuples ({commi, respi}i∈[n], c) and

({commi, resp′i}i∈[n], c′) such that

Verify({commi, respi}i∈[n], c) = Verify({commi, resp′i}i∈[n], c′) = true,

we can obtain

(w′1, . . . , w
′
n)← Extract({commi, respi, comm′i, resp′i}i∈[n], c, c′)

such that P′(x1, . . . , xn, w
′
1, . . . , w

′
n) = true.

- Honest Verifier Zero-Knowledge: There is a PPT algorithm SimA indexed by a set A ⊂ [n],
which takes as input an element in the language L and a challenge c ∈ C, and then outputs tuples
{commi, respi}i/∈A. We require that for all such A the output of SimA is statistically indistinguishable
from a valid execution of the protocol.

We first discuss the definition of zero-knowledge. Firstly, the adversary, controlling the players in A,
can always learn something about the inputs to the predicate P, given it was true, and his own input. For
example if the predicate was x1 +x2 = 2 and the adversary has the witness x1 = 1, then he knows the other
players witness was x2 = 1. We require that the adversary learns no more than he can already deduce from
his own input and the predicate being true.

Secondly, since the execution of the commitment and response phases are independent for each player, we
only need to look at indistguishability of the distribution of the values {c, {commi, respi}i/∈A} produced in a
valid and a simulated execution of the protocol. What the adversary does cannot affect the zero-knowledge
as the adversaries values are independent. Our formalism for HV-ZK is therefore only to allow the simulator
to be applied when some provers are adversarial. Unlike in [5] we use a notion of statistical zero-knowledge,
whereas [5] uses computational zero-knowledge. This is because our final protocol will be have statistical
zero-knowledge. Modifying the definition for other forms of zero-knowledge is straight forward.

The above definitions implies two implied security parameters, which are important in what follows
(and in prior treatments of the HighGear ZKPoK have been confusingly merged into one parameter). The
first parameter is the soundness parameter Snd sec = log2 |C|; this gives the probability 2−Snd sec that a
dishonest prover (by which we mean all provers are dishonest) can make an honest verifier accept. The
second parameter is the zero-knowledge parameter ZK sec, which defines the closeness of the distributions of
genuine from simulated transcripts. We let the statistical distance between the distributed of valid transcripts
and transcripts produced by the simulator be bounded by 2−ZK sec.

The knowledge extractor above outputs a witness for a predicate P′ which is potentially different from
the predicate that honest parties are proving. In traditional Σ-protocols (such as Schnorr’s protocol) we have
that P = P′ but in many lattice based protocols these two predicates are distinct. The gap between the two
predicates #P′/#P what we earlier referred to as the “soundness slack”.

4 ZKPoK

Our protocol, which we call TopGear, is given in Figure 1 and Figure 2. The protocol is a n-Prover Σ-
Protocol in which, in the way we have described it, the n players act both as a set of provers and individually
as verifiers; as this is how the Σ-protocol will be used in the SPDZ protocol. Thus in our description in
Figure 1 and Figure 2 the challenge is produced via calling a random functionality FRand which produces a
single joint challenge between the players. Such a functionality is standard, see for example [10], so we do
not discuss its implementation further.
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Protocol ΠZKPoK: Commitment, Challenge and Response Phases

The protocol is parametrized by an integer parameter U and a flag ∈ {Diag,⊥}.

Input: Each (honest) party Pi enters U plaintexts mi ∈ RUp (considered as elements of RUq1) and U randomness

triples Ri ∈ RU×3
q1 , where each row of Ri (r

(j,1)
i , r

(j,2)
i , r

(j,3)
i ) is generated from RC

(
σ2, 0.5, N

)
. For honest Pi we

therefore have, for all j ∈ [U ], ‖m(j)
i ‖∞ ≤

p
2

and ‖r(j,k)i ‖∞ ≤ ρk, where ρ1 = ρ2 = 20 and ρ3 = 1. We write
V = 2 · U − 1.

Commitment Phase: Comm

1. Pi computes the BGV encryptions by applying the BGV encryption algorithm to the j plaintext/randomness
vectors in turn to obtain Ci ← Enc(mi, Ri; pk) ∈ RU×2

q1 .
2. The players broadcast Ci.
3. Each Pi samples V pseudo-plaintexts yi ∈ RVq1 and pseudo-randomness vectors Si = (s

(j,k)
i ) ∈ RV×3

q1 such

that, for all j ∈ [V ], ‖y(j)
i ‖∞ ≤ 2ZK sec−1 · p and ‖s(j,k)i ‖∞ ≤ 2ZK sec · ρk.

4. Party Pi computes Ai ← Enc(yi, Si; pk) ∈ RV×2
q1 .

5. The players broadcast commi ← Ai.

Challenge Phase: Chall

1. Parties call FRand to obtain a random vector e = (ei) such that e ∈
{{
Xi
}
i=0...,2·N−1

}U
if flag =⊥ and

e ∈ {0, 1}U if flag = Diag.

Response Phase: Resp

1. Parties define the V × U matrix Me where

M (k,l)
e =

{
ek−l+1 if 1 ≤ k − l + 1 ≤ U
0 otherwise

2. Each Pi computes zi ← yi +Me ·mi and Ti ← Si +Me ·Ri.
3. Party Pi sets respi ← (zi, Ti), and broadcasts respi.

Figure 1. Protocol for global proof of knowledge of a set of ciphertexts: Part I

Protocol ΠZKPoK: Verification Phase

Verification Phase: Verify

1. Each party Pi computes Di ← Enc(zi, Ti; pk).
2. The parties compute A←

∑n
i=1Ai, C ←

∑n
i=1 Ci, D ←

∑n
i=1Di, T ←

∑n
i=1 Ti and z ←

∑n
i=1 zi.

3. The parties check whether D = A+Me · C, and then whether the following inequalities hold, for j ∈ [V ],

‖z(j)‖∞ ≤ n · 2
ZK sec · p, ‖T (j,k)‖∞ ≤ 2 · n · 2ZK sec · ρk for k = 1, 2, 3.

4. If flag = Diag then the proof is rejected if z(j) is not a constant polynomial (i.e. a “diagonal” plaintext
element).

5. If all checks pass, the parties output C.

Figure 2. Protocol for global proof of knowledge of a set of ciphertexts: Part II

To understand its workings and security, first we give the two languages and then a security proof. We
present our proofs in the simpler case where no additional predicate needs to be proved about the ciphertexts.
In the SPDZ protocol [10], at one stage ciphertexts need to be proved to be “Diagonal”, namely each plaintext
slot component contains the same element. Adding this additional requirement into our protocols below can
be done using the standard method given in [10]. However, this results in a reduced soundness security
parameter for the underlying protocol. Later we shall see that this does not matter in practice in this specific
case.
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The Honest Language: In an honest execution of the SPDZ offline phase each party Pi has as input a
set of U ciphertexts given by, for j ∈ [U ],

ct
(j)
i = Enc

(
m

(j)
i , (r

(j,1)
i , r

(j,2)
i , r

(j,3)
i ); pk

)
.

Party Pi wishes to keep the values wi = (m
(j)
i , r

(j,1)
i , r

(j,2)
i , r

(j,3)
i )Uj=1 private, where as the ciphertext values

xi = (cti,j)
U
j=1 are public. The proof aims to prove something about the sum of these values, when summed

over the players. We write the vector of player Pi’s plaintexts as mi, the U × 3 matrix of its random values
as Ri and the resulting U × 2 elements of Rq1 giving the ciphertexts as Ci. By abuse of notation we relate
these via the equation Ci ← Enc(mi, Ri; pk). Thus the proof argues about the following values over R (and
not Rq1), m =

∑n
i=1mi, R =

∑n
i=1Ri and C =

∑n
i=1 Ci. Given the above notation, for honest provers the

language we define is

L =
{

((x1, . . . , xn),(w1, . . . , wn)) :

xi = Ci, wi = (mi, Ri),

C =
∑

Ci, m =
∑

mi, R =
∑

Ri,

C = Enc(m, R; pk) and for all j ∈ [U ]

‖m(j)‖∞ ≤ n · p/2, ‖R(j,k)‖∞ ≤ n · ρk
}
.

where ρ1 = ρ2 = 20 and ρ3 = 1. Note, the language says nothing about whether the initial witnesses encrypt
to the initial public values Ci, it only discusses a joint statement about all players inputs (i.e. there sum).
In the notation for the language we abuse notation by using Enc as simply a procedure irrespective of the
distributiosn of the input variables (as m(j) and R(j,k) are now elements in R and not necessarily in the
correct domain). Thus we mean simply apply the equations

b ·R(j,3) + p ·R(j,1) +m(j) (mod q1), a ·R(j,3) + p ·R(j,2) (mod q1).

For dishonest provers (where we assume the worst case of all provers being dishonest) we will only be able
to show that the inputs are from the language

L′ =
{

((x1, . . . , xn),(w1, . . . , wn)) :

xi = Ci, wi = (mi, Ri),

C =
∑

Ci, m =
∑

mi, R =
∑

Ri,

C = Enc(m, R; pk) and for all j ∈ [U ]

‖2 ·m(j)‖∞ ≤ 2ZK sec+U/2+1 · n · p,

‖2 ·R(j,k)‖∞ ≤ 2 · 2ZK sec+U/2+1 · n · ρk
}
.

Notice, how not only have the bounds increased on the right, but also the values within the norms have also
increased by two.

Thus we see that at a high level the bounds for the honest language are |wi| < B, whilst the bounds for
the proven language are |2 · wi| < 2ZK sec+U/2 · B, where U is our amortization parameter. This explosion
in the proved bounds, 2ZK sec+U/2, is called the soundness slack. This soundness slack could be reduced by
utilizing rejection sampling as in lattice signature schemes, but this would complicate the protocol (being an
n-party proof) and (more importantly) it turns out that the soundness slack has no effect on the parameters
needed in the protocol.

There is an added complication arising from the language L′, corresponding to the factor of two in
Lemma 2.2 arising in the inequality on the left. However, this complication is then side-stepped by a minor
modification to how the ZKPoKs are used with the SPDZ offline phase (which we describe in Section 5).
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Theorem 4.1. The protocol in Figure 1 and Figure 2 is an n-party Σ protocol in the sense of Definition
3.1 for the languages L and L′. The statistical distance between the coefficients of the ring elements in an
honest and simulated transcripts is bounded by 2−ZK sec.

The probability of an adversary being able to produce an invalid proof is given by

- 2−U if flag = Diag.

- (2 ·N)−U if flag =⊥.

Proof. In the proof we concentrate on the case flag =⊥, as the case flag = Diag is (roughly) the same.

Correctness: In proving the correctness property all the parties are assumed to be honest. We show that
if this is the case then the final output passes the check. The equality D = A+Me · C follows at once from
the fact that everything is defined as a linear function of their arguments and the BGV encryption function,
in particular, is linear and works componentwise.

As for the bounds, verification is carried out according to the honest-prover language L, as the parties
are honest and thus produce elements with the right bounds. By repeatedly applying Lemma 2.3 one has,
and using the fact that U ≤ 2ZK sec in practice,

‖z(j)‖∞ ≤
n∑
i=1

‖(yi +Me ·mi)
(j)‖∞ < n ·

(
2ZK sec · p

2
+ U · p

2

)
≤ p · n · 2ZK sec,

‖T (j,k)‖∞ ≤
n∑
i=1

‖(Si +Me ·Ri)(j,k)‖∞ < n ·
(
2ZK sec · ρk + U · ρk

)
≤ 2 · n · 2ZK sec · ρk.

Honest verifier zero-knowledge: Following our definition of n-prover Σ-protocol we give in Figure 3 a
simulator, parametrized by a set of adversaries A, which produces transcripts. It is clear that the statistical
difference in the distribution of the coefficients of the ring elements in zi and Ti for i 6∈ A in a real execution
and the simulated execution can be bounded by Lemma 2.1 by 2−ZK sec.

The Simulator SimA

If flag =⊥ then the input is a challenge value e ∈
{{
Xi
}
i=0,...,2·N−1

}U
otherwise the input is a vector e ∈ {0, 1}U .

1. For all i 6∈ A do
(a) Sample zi ∈ RVq1 such that, for j ∈ [V ], we have ‖z(j)

i ‖∞ ≤ 2ZK sec · p.
(b) Sample Ti ∈ RV×3

q1 such that, for j ∈ [V ] and k = 1, 2, 3, we have ‖T (j,k)
i ‖∞ ≤ 2 · 2ZK sec · ρk.

(c) Set respi ← (zi, Ti).
(d) Compute commi = Ai ← Enc(zi, Ti; pk)−Me · Ci.

2. Output (commi, respi)i 6∈A.

Figure 3. Simulator SimA for our protocol

Special soundness: Let the two accepting transcripts be ({Ai}i∈[n], e, {zi, Ti}i∈[n]) and ({Ai}i∈[n], e′, {z′i, T ′i}i∈[n]).
We need to show we can recover a set of witnesses (mi, Ri)i∈[n] such that the sum m =

∑
mi and R =

∑
Ri

satisfies the bounds in the language L′. The proof relies crucially on the shape of the matrix Me generated
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in the proof, which is

Me =



e1 0 . . . 0
e2 e1 0 . . . 0
e3 e2 e1 0 . . . 0

. . .
. . .

. . .
. . .

...
eU eU−1 eU−2 . . . e1
0 eU eU−1 . . . e2
0 0 eU eU−1 . . . e2
...

. . .
. . .

. . .
. . .

...
0 . . . 0 eU eU−1
0 . . . . . . 0 eU


Since both the transcripts accept, we obtain a system of equations

(Me −Me′) · C = D −D′

where D =
∑
i∈[n] Enc(zi, Ti; pk), D

′ =
∑
i∈[n] Enc(z′i, T

′
i ; pk) and C =

∑
Ci.

As the challenge vectors are distinct, there is an index j such that ej 6= e′j . Take the largest of these indices
and consider the submatrix obtained from Me−Me′ by taking the rows from j to j+U/2− 1, and columns
1 to U/2. This is an upper triangular U/2 × U/2 matrix, whose diagonal elements are defined by ej − e′j ,
which we will denote by U . This matrix gives rise to equations in the first U/2 ciphertexts ct1, . . . , ctU/2,

U ·

 ct1
. . .
ctU/2

 =

 dj
. . .

dj+U/2−1

 .

This turns into 2 · (U/2) equations in the unknowns (inherent in the ct1) namely m(`) and R(`,k) for ` =
1, . . . , U/2 and k = 1, 2, 3, in terms of the known values (inherent in the dj , . . . ,dj+U/2−1) namely T (`′,k),

T ′(`
′,k), z(`

′), z′(`
′) for `′ = j, . . . , j+U/2−1 and k = 1, 2, 3. Equating suitable coefficients in the encryption

equation we can solve for the variables using back substitution. Using Lemma 2.2 and the bounds on the
known values (from the successful acceptance of the two transcripts) we obtain the bounds, for j = 1, . . . , U/2
and k = 1, 2, 3,

‖2 ·m(`)‖∞ ≤ 2 · n · 2ZK sec+U/2+1 · p
2
,

‖2 ·R(`,k)‖∞ ≤ 2 · n · 2ZK sec+U/2+1 · ρk.

To obtain similar bounds for the same variables with ` = U/2 + 1, . . . , U we return to the original matrix
equation and now take the smallest index j such that ej 6= e′j . Then we take the U/2 × U/2 submatrix
consisting of rows U/2 + j to j + U/2− 1 and columns U/2 + 1, . . . , U . This is a lower triangular matrix L,
giving rise to an equation

L ·

 ctU/2+1

. . .
ctU

 =

 dU/2+j. . .
dj+U−1

 .

We now solve the linear system in the same way, obtaining solutions such that for j = U/2 + 1, . . . , U and
k = 1, 2, 3,

‖2 ·m(`)‖∞ ≤ 2 · n · 2ZK sec+U/2+1 · p
2
,

‖2 ·R(`,k)‖∞ ≤ 2 · n · 2ZK sec+U/2+1 · ρk.

From these solutions for the sums it is then easy to obtain witnesses for each individual players contribution
which produces the given sum.
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Given these extracted sums we can now produce witnesses for the specific players inputs in any way
we choose (as long as they add up to the correct sum). Recall that the language does not require that the
witness produce the encryptions Ci enterred by the players, only that the sum C is correct.

5 SPDZ Offline Phase

The application of the previously considered ZKPoK is to the offline phase of the SPDZ protocol. We briefly
recap on this here and give the necessary adaption from the HighGear protocol of [18]. Recall the offline
phase of SPDZ primarily generates shared random triples (〈a〉, 〈b〉, 〈c〉) such that c = a · b where a, b are
selected uniformly at random from Fp (and no subset of parties either know a, b or c, or can affect their
distribution). This is done, at a high level, by each party Pi encoding φ(m) ai and bi values into two elements
ai and bi in Rp The elements ai and bi are encrypted via the BGV scheme, and the parties obtain

ctai = Enc(ai, ra,i; pk) and ctbi = Enc(bi, rb,i; pk).

Using the homomorphic properties of the BGV encryption scheme the parties can then compute an encryption
of the product c ∈ Rp via

ctc = (cta1 � · · ·� ctan)� (ctb1 � · · ·� ctbn). (1)

This is then passed to a distributed decryption protocol which gives to each party a share ci ∈ Fp of the
underlying plaintext behind ctc. The associated shared MAC values, γi[a], γi[b] and γi[c], to obtain the full
sharing 〈a〉, 〈b〉, 〈c〉 are obtained in a similar manner.

The problem is that dishonest parties could produce invalid ciphertexts, which would result in either
selective failure attacks or information leakage during the distributed decryption procedure. Thus in the
SPDZ protocol [10] each ciphertext ctai needs to be accompanied by a ZKPoK that it is not too far from
being a valid ciphertext. Essentially we use the ZKPoK to bound the noise term associated to even adversarial
ciphertexts, and then we use this bound to ensure that all ciphertexts will validly encrypt (by using this
bound to derive the parameters for the BGV encryption scheme). This is done for the ciphertexts encrypting
ai and the ciphertext encrypting the shares of the MAC key αi. Where we execute U such proofs in parallel
so as to make use of good amortization in the ZKPoK.

In HighGear from [18] it is noticed that the ciphertexts ctai are only ever used in a sum (as in Equation
1). Thus one can replace the n ZKPoKs for ctai by a single ZKPoK for the sum cta = cta1 � · · · � ctan . It
is this strategy we adapted in the previous section, to enable smaller values of U to be used. However, our
adaption comes at the expense of us having a bound on the noise of not the original ciphertext sum cta but
of the sum 2 · cta = cta � cta. Luckily this does not affect our final application as we can simply multiply
the underlying plaintexts by two and continue as normal. The modifications are explained in Figure 4 for
the case of triple production. The modifications to obtain other forms of offline data such as those in [9] are
immediate.

Note we repeat the proofs for the ciphertexts encrypting αi a total of Snd sec/U times. This is because
we only have soundness parameter U for the proofs when flag = Diag. However, this is not an issue since the
amortization does not produce any advantages here when we are trying to prove a single fixed ciphertext
has been validly created. We select U so that the ZKPoKs for the a′i, b

′
i and f ′i need only be repeated once

for the desired soundness security parameter.
In the protocol in Figure 4 we have utilized the more efficient Distributed Decryption protocol from

HighGear to obtain the MAC shares, and have merged in the ReShare protocol, [9][Figure 11], needed to
obtain the shares of c and the fresh encryption of c. The latter has been done so as to demonstrate our
modified ZKPoKs make no difference to the overall protocol.

The proof of security of this offline phase follows exactly as in the original SPDZ papers [9, 10], all that
changes is the bounds on the noise of the resulting ciphertexts. Suppose (c0, c1) is a ciphertext corresponding
to one of ctα, cta, ctb or ctf in our protocol. We need to obtain worst case bounds on the value of ‖c0 − sk · c1‖can

∞
for such ciphertexts, comparable to the average case bound on honestly generated fresh ciphertexts given
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Πoffline

Init:

- Each party generates α′i ∈ Fp.
- Each party sets αi ← 2 · α′i.
- Each party computes an encryption ctα′

i
of the plaintext consisting of α′i in each slot position.

- The resulting ciphertexts, and associated random coins, are passed to Protocol ΠZKPoK from Figure 1 and
Figure 2 using flag = Diag, where we use the same input for all U inputs of the protocol ΠZKPoK. The ZKPoK
is repeated Snd sec/U times to achieve the desired soundness security parameter.

- The parties set ctα ← 2 · (ctα′
1
� · · ·� ctα′

n
).

Triples:

- Each party generates a′i, b
′
i,f
′
i ∈ (Fp)φ(m) and the associated elements a′i, b

′
i, f
′
i ∈ Rp.

- Each party sets ai ← 2 · a′i, bi ← 2 · b′i. and fi ← 2 · f ′i .
- Each party computes an encryption cta′i , ctb′i and ctf ′i of a′i, b

′
i and f ′i .

- The resulting ciphertexts, and associated random coins, are passed to Protocol ΠZKPoK from Figure 1 and
Figure 2 using flag =⊥.

- The parties set cta ← 2 · (cta′1 � · · ·� cta′n), ctb ← 2 · (ctb′1 � · · ·� ctb′n) and ctf ← 2 · (ctf ′1 � · · ·� ctf ′n).
- The parties compute ctc ← cta � ctb and ctc+f ← ctc � ctf .
- Using the distributed decryption operation of the BGV scheme the parties obtain in the clear c+ f .
- Party one sets c1 ← (c+ f)− f1 and party i 6= 1 sets ci ← −fi.
- The parties compute a fresh encryption of c via ct′c ← Enc(c+ f,0; pk)− ctf with some default random coins

0.
- The parties compute ctα·a ← ctα � cta, ctα·b ← ctα � ctb and ctα·c ← ctα � ct′c.
- The MAC values γi[a], γi[b], γi[c] are obtained by applying the DistDec protocol in Figure 14 from [18] and

mapping the associated polynomials into the slot representation.

Figure 4. TopGear Variant of the SPDZ Offline Phase

earlier. We know that

c0 − sk · c1 = 2 ·
n∑
i=1

(mi + p · (ε · r(3)i + r
(1)
i − r

(2)
i · sk))

where (mi, r
(1)
i , r

(2)
i , r

(3)
i ) were enterred into our ZKPoK. From the soundness of our ZKPoK we can guarantee

that even adversarially produced inputs must satisfy∥∥∥2 ·
∑
i∈[n]

mi

∥∥∥
∞
≤ 2ZK sec+U/2+1 · n · p,

∥∥∥2 ·
∑
i∈[n]

r
(k)
i

∥∥∥
∞
≤ 2ZK sec+U/2+2 · n · ρk.

Due to our assumption of an honest key generation phase we also know that with probability 1 − 2−ε we
have that ‖ε‖can

∞ ≤ c1 ·σ ·
√
φ(m) and that ‖sk‖can

∞ ≤ c1 ·
√
h. Then using the inequality ‖x‖can

∞ ≤ φ(m) · ‖x‖∞
we obtain the following inequality, for the ciphertexts output by the ZKPoK procedure,

‖c0 − sk · c1‖can
∞ ≤

n∑
i=1

‖2 ·mi‖can
∞ + p ·

(
‖ε‖can
∞ · ‖2 · e2,i‖

can
∞ + ‖2 · e0,i‖can

∞

+ ‖sk‖can
∞ · ‖2 · e1,i‖

can
∞

)
≤ 2 · φ(m) · 2ZK sec+U/2+1 · n · p/2

+ p ·
(
c1 · σ · φ(m)3/2 · 2 · 2ZK sec+U/2+1 · n

13



+ φ(m) · 2 · 2ZK sec+U/2+1 · n · 20

+ c1 ·
√
h · φ(m) · 2 · 2ZK sec+U/2+1 · n · 20

)
= φ(m) · 2ZK sec+U/2+2 · n · p ·

(41

2
+ c1 · σ · φ(m)1/2 + 20 · c1 ·

√
h
)

= Bdishonest
clean .

Using this bound we can then derive the parameters for the BGV system using exactly the same methodology
as can be found in [2].

6 Results

Recall we have three different security parameters in play, apart from the computational security parameter κ
of the underlying BGV encryption scheme. The main benefit of TopGear over HighGear is that it potentially
enables higher values of the parameter Snd sec to be obtained. Recall 2−Snd sec is the probability that an
adversary will be able to produce a convincing ZKPoK for an invalid input. The other two security parameters
are ZK sec and DD sec, which measure the statistical distance of coefficients of ring elements generated in a
protocol to the same coefficients being generated uniformly at random from a similar range.

In the context of the HighGear ZKPoK in the Overdrive paper [18] the two security parameters are set
to be equal, i.e. ZK sec = Snd sec. In practice the value of Snd sec needs to be very low for the HighGear
ZKPoK as it has a direct effect on the memory consumption of the underlying protocol. Thus in SCALE
v1.2 the default value for Snd sec is 40. This is unfortunate as having a high probability of an adversary
being able to get away with cheating in a ZKPoK is not desirable. The first goal of our work is to enable
Snd sec to be taken to be as large as is desired, whilst also obtaining an efficiency saving.

As a second goal we also aim to increase the values of ZK sec and DD sec. These measure statistical
distances of coefficients. But recall the ring elements have many thousands of coefficients, and in the course
of a protocol execution we generate many such ring elements. So whilst a high statistical distance is not
as worrisome as a high probability of cheating, picking ZK sec and DD sec at low values we feel is also not
desirable. Hence, after demonstrating the effect of our new protocol with respect to the increase in Snd sec,
we then turn to examining the effect of increasing the other security parameters.

In Table 1 we give various parameter sizes for the degree N and moduli q0 = p0, q1 = p0 · p1 for different
plaintext space sizes p, and different security levels ZK sec, Snd sec, DD sec and computational security
parameter κ, and two parties4. We selected parameters for which ZK sec,DD sec ≤ Snd sec to keep the
table managable. We use the methodology described in [2] to derive parameter sizes for both HighGear and
TopGear; which maps the computational security parameter is mapped to lattice parameters using Albrecht’s
tool5. A row which with values of ? in the ZK sec columns means that the values do not change when one
varies this parameter is 40 or 80.

From the table we see that the values of ZK sec and Snd sec produce relatively little effect on the
overall parameter sizes, especially for large values of the plaintext modulus p. This is because the modulus
switch, within the homomorphic evaluation, squashes the noise by a factor of at least p. The values ZK sec
and Snd sec only blow up the noise by a factor of 2ZK sec+U/2+2 (where U = Snd sec for HighGear and
U = Snd sec/ log2(2 ·N) for TopGear) and hence a large p value cancels out this increase in noise due to the
ZKPoK security parameters. In addition the parameter sizes are identical for both HighGear and TopGear,
except in the case of some parameters for low values of log2 p.

We based our implementation and experiments on the SCALE-MAMBA system [2] which has an impe-
mentation of the HighGear protocol, which we modified to test against our TopGear protocol. We focused
on the case of 128-bit plaintext moduli in our experiments, being the recommended size in SCALE-MAMBA
to support other MPC operations (such as fixed point operations). We first baselined the implementation

4 Similar values can be obtained for other values of n, we selected n = 2 purely for illustration here, the effect of n
on the values is relatively minor.

5 https://bitbucket.org/malb/lwe-estimator
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HighGear TopGear
log2 p κ DD sec Snd sec ZK sec N log2 p0 log2 p1 N U log2 p0 log2 p1
64 80 40 40 40 8192 177 114 8192 3 177 114
64 80 40 80 40 8192 177 114 8192 6 177 114
64 80 40 128 40 8192 177 114 8192 10 177 114
64 80 40 80 80 8192 177 144 8192 6 177 114
64 80 40 128 80 16384 177 174 8192 10 177 165
64 80 80 40 40 16384 218 163 16384 3 218 163
64 80 80 80 40 16384 218 163 16384 6 218 163
64 80 80 128 40 16384 218 163 16384 9 218 163
64 80 80 80 80 16384 218 163 16384 6 218 163
64 80 80 128 80 16384 218 173 16384 9 218 163
64 80 128 40 ? 16384 266 205 16384 3 266 205
64 80 128 80 ? 16384 266 205 16384 6 266 205
64 80 128 128 ? 16384 266 205 16384 9 266 205
64 128 40 40 40 16384 178 123 16384 3 178 123
64 128 40 80 40 16384 178 123 16384 6 178 123
64 128 40 128 40 16384 178 133 16384 9 178 123
64 128 40 80 80 16384 178 153 16384 6 178 123
64 128 40 128 80 16384 178 173 16384 9 178 123
64 128 80 40 40 16384 218 163 16384 3 218 163
64 128 80 80 40 16384 218 163 16384 6 218 163
64 128 80 128 40 16384 218 163 16384 9 218 163
64 128 80 80 80 16384 218 163 16384 6 218 163
64 128 80 128 80 16384 218 173 16384 9 218 163
64 128 128 40 ? 32768 266 205 32768 3 266 205
64 128 128 80 ? 32768 266 205 32768 5 266 205
64 128 128 128 ? 32768 266 205 32768 8 266 205
64 128 128 128 128 32768 266 225 32768 8 266 205
128 80 40 40 ? 16384 305 186 16384 3 305 186
128 80 40 80 ? 16384 305 186 16384 6 305 186
128 80 40 128 ? 16384 305 186 16384 9 305 186
128 80 80 40 ? 16384 345 226 16384 3 345 226
128 80 80 80 ? 16384 345 226 16384 6 345 226
128 80 80 128 ? 16384 345 226 16384 9 345 226
128 80 128 40 ? 16384 393 268 16384 3 393 268
128 80 128 80 ? 16384 393 268 16384 6 393 268
128 80 128 128 ? 16384 393 268 16384 9 393 268
128 128 40 40 ? 32768 306 185 32768 3 306 185
128 128 40 80 ? 32768 306 185 32768 5 306 185
128 128 40 128 ? 32768 306 185 32768 8 306 185
128 128 80 40 ? 32768 346 225 32768 3 346 225
128 128 80 80 ? 32768 346 225 32768 5 346 225
128 128 80 128 ? 32768 346 225 32768 8 346 225
128 128 128 40 ? 32768 394 277 32768 3 394 277
128 128 128 80 ? 32768 394 277 32768 5 394 277
128 128 128 128 ? 32768 394 277 32768 8 394 277
128 128 128 128 128 32768 394 277 32768 8 394 277

Table 1. SHE parameters sizes for various security parameters in HighGear and TopGear (two parties). With
DD sec,ZK sec ≤ Snd sec and DD sec,ZK sec,Snd sec ∈ {40, 80, 128}. The light grayed rows show the default param-
eters used in SCALE-MAMBA. The medium gray denote the parameters we use in the experiments in Sections 6.1
and 6.2. The dark grayed rows show the parameters we would recommend, i.e. the ones we use in Section 6.3.

15



in SCALE-MAMBA of HighGear against the implementation reported in [18]. The experiments in [18] were
executed on i7-4790 and i7-3770S CPUs, compared to our experiments which utilzied i7-7700K CPUs. From
a pure CPU point of view our machines should be roughly 30% faster. The ping time between our machines
was 0.47 milliseconds, whereas that for [18] was 0.3 milliseconds.

Keller et al [18], in the case of 128-bit plaintext moduli, and with the security settings equivalent to
our setting of DD sec = ZK sec = Snd sec = 64, utilize a ciphertext modulus of 572 bits, whereas SCALE-
MAMBA utilizes a ciphertext modulus of 541 bits. In this setting Keller et al [18] achieve a maximum
throughput of 5600 triples per second, whereas SCALE-MAMBA’s implementation of HighGear obtains a
maximum throughput of roughly 2900 triples per second. We suspect the reason for the difference in costs is
that SCALE-MAMBA is performing other operations related to storing the triples for later consumption by
online operations. This also means that memory utilization grows as more triples are produced, leading to
larger numbers of non-local memory accesses. These effects decrease the measurable triple production rate
in SCALE-MAMBA.

We now turn to examining the performance differences between HighGear and the new TopGear protocol
within our modified version of SCALE-MAMBA. We first looked at two security settings so as to isolate
the effect of increasing the Snd sec parameter alone. Our first setting was the standard SCALE-MAMBA
setting of DD sec = ZK sec = Snd sec = 40, our second was the more secure setting of DD sec = ZK sec = 40
and Snd sec = 128. There are two main parameters in SCALE-MAMBA one can tweak which affect triple
production; i) the number of threads devoted to executing the zero-knowledge proofs and ii) the number
of threads devoted to taking the output of these proofs and producing triples. We call these two values
tZK and tTr; we looked at values for which tZK, tTr ∈ {1, 2, 4, 8}. We focus here on triple production for
simplicity, a similar situation to that described below occurs in the case of bit production. We examine
memory consumption (Section 6.1) and triple production (Section 6.2) in these settings so as to see the
effect of changing Snd sec. After this we examine increasing all the security parameters in Section 6.3, and
the effect this has on memory and triple production.

6.1 Memory Consumption

We see from Table 1 that the parameters in TopGear for the underlying FHE scheme are generally identical
to the those in HighGear. The only difference being when the extra soundness slack in HighGear compared
to TopGear is not counter balanced by size of the underlying plaintext modulus. However, the real affect of
TopGear comes in the amount of data one has to simultaneously process. Running the implementation in
SCALE-MAMBA for HighGear one sees immediately that memory usage is a main constraint of the system.

A rough (under) estimation of the memory requirements of the ZKPoKs in HighGear and TopGear can
be given by the sizes of the input and auxillary ciphertexts to the ZKPoK. A single ciphertext takes (roughly)
φ(m) · log2(p0 · p1) bits to represent it. There are U input ciphertexts and V = 2 ·U − 1 auxillary ciphertexts
per player. Hence, the total nunber of bits required to process a ZKPoK is at least

3 · U · n · φ(m) · log2(p0 · p1).

Now in HighGear we need to take U = Snd sec, which is what limits the applicability of large sound-
ness security parameters in the implementations of HighGear. Whereas in TopGear we can take U =
Snd sec/ log2(2 ·N). Thus, all other things being equal (which the above table gives evidence for) the memory
requirements in TopGear are reduced by a factor of roughly log2(2 · N). For the range of N under consid-
eration (i.e. 8192 to 32768) this gives a memory saving of a factor of between 14 and 16. A similar saving
occurs in the amount of data which needs to be transferred when executing the ZKPoK. Note, this is purely
the saving for holding the zero-knowledge proofs, the overall effect on memory consumption will be much
less.

To see this in practice we examined the memory consumption of running HighGear and TopGear with
the above settings (of DD sec = ZK sec = Snd sec = 40, and DD sec = ZK sec = 40, Snd sec = 128) the
results being given in Tables 2 and 3. We give the percentage memory consumption (given in thems of the
percentage maximum resident set size obtained from /usr/bin/time -v). This is the maximum percentage
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memory consumed by the whole system when producing two million multiplication triples only. This value
can very from run to run as the different threads allocate and de-allocate memory, thus figures will inevitably
vary. However, they do give an indication of memory overall consumption in a given configuration.

tZK

tTr 1 2 4 8

1 25 41 68 98
2 25 38 68 98
4 28 49 75 98
8 32 52 81 98

DD sec = ZK sec = Snd sec = 40

tZK

tTr 1 2 4 8

1 70 98 - -
2 72 98 - -
4 73 98 - -
8 76 98 - -

DD sec = ZK sec = 40, Snd sec = 128

Table 2. Percentage memory consumption for HighGear for two players and log2 p = 128

tZK

tTr 1 2 4 8

1 7 9 13 21
2 8 11 13 23
4 9 12 16 24
8 15 16 20 27

DD sec = ZK sec = Snd sec = 40

tZK

tTr 1 2 4 8

1 11 16 26 47
2 12 16 29 53
4 12 17 32 54
8 16 20 33 54

DD sec = ZK sec = 40, Snd sec = 128

Table 3. Percentage memory consumption for TopGear for two players and log2 p = 128

We find that for HighGear with the higher security parameters we are unable to perform some experiments
due to memory consumption producing an abort of the SCALE-MAMBA system. We see immediately that
with TopGear we obtain much reduced memory consumption, and we are able to cope with a much larger
value for the security parameter Snd sec.

6.2 Triple Production Throughput

We now turn to looking at throughput of the overall triple production process. We have found the best metric
to look at is the average time per triple. However due to the set up costs, (e.g. producing the zero-knowledge
proofs for the ciphertext encrypting the MAC key α) this average time decreases as you run the system. In
the Appendix we provide graphs to show how this average time decreases as more triples are produced for
various settings. In this section we summarize the average number of triples per second we could obtain for
the various settings, after computing two million triples. See Tables 4 and 5 for a summary.

We immediately see that although, asymptotically in the security parameter, the computational difference
between HighGear and TopGear should be the same (in terms of the amount of work needed to be done per
triple), the actual performance is much better for TopGear. This is because of both the reduced memory
foot and in addition the fact that the ration of V = 2 · U − 1 to U in HighGear is larger than that in
TopGear (79/40 vs 5/3 for this security setting). Thus in practice the actual work needed per triple is less in
TopGear than in HighGear for (non-asymptotic) values of Snd sec. This is born out in our experiments. In
both security settings the TopGear protocol works best, when we have tZK, tTr ∈ {2, 4}. We find we achieve a
better throughput with TopGear in these two security setting. Indeed at the higher security level we are only
marginally less efficient using TopGear, than we would be using HighGear using the lower security setting.
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tZK

tTr 1 2 4 8

1 1503 1602 1562 1335
2 1488 2347 2212 1976
4 1272 1876 2150 1865
8 976 1307 1464 1533

DD sec = ZK sec = Snd sec = 40

tZK

tTr 1 2 4 8

1 1240 1369 - -
2 1426 1834 - -
4 1231 1612 - -
8 940 1129 - -

DD sec = ZK sec = 40, Snd sec = 128

Table 4. Maximum Triples per Second for HighGear for two players and log2 p = 128, after computing two million
triples.

tZK

tTr 1 2 4 8

1 1494 1515 1519 1492
2 1862 2487 2403 2309
4 2487 2439 2463 2481
8 2079 1848 1683 1675

DD sec = ZK sec = Snd sec = 40

tZK

tTr 1 2 4 8

1 1464 1481 1468 1400
2 2132 2207 2150 2057
4 1605 2183 2184 2008
8 1406 1587 1612 1510

DD sec = ZK sec = 40, Snd sec = 128

Table 5. Maximum Triples per Second for TopGear for two players and log2 p = 128, after computing two million
triples.

6.3 Recommendations

TopGear allows one to utilize a higher security for the parameter Snd sec than is currently normally done
in implementations of SPDZ. Given that 2−Snd sec represents the probability that an adversary can pass of
an invalid ZKPoK as valid, the default SCALE-MAMBA setting of Snd sec = 40 is arguably too low. Thus
increasing it to 128 seems definitely prudent.

As mentioned above we also recommend using higher values for ZK sec and DD sec. Despite these mea-
suring statistical distances, and hence can be arguably smaller than Snd sec, in practice they measure the
statistical distance of distributions of coefficients from uniformly random. Each ZKPoK/distributed decryp-
tion produces tens of thousands of such coefficients, and thus having DD sec = ZK sec = 40 is also probably
too low.

tZK

tTr 1 2 4 8

1 11 16 27 49
2 13 20 27 50
4 13 20 30 51
8 17 24 35 58

Memory Consumption

tZK

tTr 1 2 4 8

1 1254 (83) 1275 (79) 1273 (81) 1216 (91)
2 1814 (121) 1757 (74) 1795 (81) 1748 (88)
4 1270 (99) 1798 (95) 1689 (78) 1620 (86)
8 1206 (123) 1283 (98) 1231 (84) 1197 (78)

Triples per Second

Table 6. Percentage memory consumption and triples per second for TopGear for two players with DD sec = ZK sec =
80 and log2 p = Snd sec = 128. We also give (in brackets) the percentage throughput compared to the (low security)
standard SCALE-MAMBA settings using HighGear.

Thus we end by giving some experimental results using TopGear for settings of DD sec = ZK sec = 80,
Snd sec = 128. and DD sec = ZK sec = Snd sec = 128. Again we focus on the two party case with a plaintext
prime of 128 bits in length, with results giving in Tables 6 and 7. We see that with DD sec = ZK sec = 80
we obtain a performance which is slightly less what SCALE-MAMBA currently achieves using much weaker
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security levels (comparing the tables in Table 6 with the left tables in Table 2 and 4). On the other hand with
DD sec = ZK sec = 128 the performance drops of markedly. We thus believe that DD sec = ZK sec = 80
gives a suitable compromise.

tZK

tTr 1 2 4 8

1 13 19 31 58
2 13 21 32 60
4 14 22 34 66
8 18 26 44 66

Memory Consumption

tZK

tTr 1 2 4 8

1 994 (66) 1035 (64) 943 (60) 1001 (75)
2 1386 (93) 1377 (58) 1466 (66) 1314 (66)
4 1061 (83) 1371 (73) 1366 (63) 1281 (68)
8 977 (100) 1023 (78) 1028 (70) 980 (64)

Triples per Second

Table 7. Percentage memory consumption and triples per second for TopGear for two players with log2 p = DD sec =
ZK sec = Snd sec = 128. Again, we also give (in brackets) the percentage throughput compared to the (low security)
standard SCALE-MAMBA settings using HighGear.
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A Run Time Graphs

In Figure 5 we provide graphs of the throughput for HighGear in our low security, Snd sec = 40, setting,
with the comparable graph for TopGear in Figure 6 for two players; given graphs up to the production of
2 million triples. The fact that the graphs are not straight, they have bumps in them, is because the triple
production threads are producing triples faster than the ciphertexts can be supplied by the threads doing the
ZKPoKs. Thus the triple production threads often need to wait until a ZKPoK has been completed before
they can proceed. In Figure 7 and Figure 8 we provide similar graphs of the throughput for HighGear and
TopGear in our high security setting Snd sec = 128.
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Fig. 5. Average time y to produce a triple given the number of triples that have been produced x for HighGear with
parameters DD sec = ZK sec = Snd sec = 40.
Blue tTr = 1, Red tTr = 2, Green tTr = 4, Magenta tTr = 8
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Fig. 6. Average time y to produce a triple given the number of triples that have been produced x for TopGear with
parameters DD sec = ZK sec = Snd sec = 40.
Blue tTr = 1, Red tTr = 2, Green tTr = 4, Magenta tTr = 8
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Fig. 7. Average time y to produce a triple given the number of triples that have been produced x for HighGear with
parameters DD sec = ZK sec = 40 and Snd sec = 128.
Blue tTr = 1, Red tTr = 2, Green tTr = 4, Magenta tTr = 8
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Fig. 8. Average time y to produce a triple given the number of triples that have been produced x for TopGear with
parameters DD sec = ZK sec = 40 and Snd sec = 128.
Blue tTr = 1, Red tTr = 2, Green tTr = 4, Magenta tTr = 8
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