Using TopGear in Overdrive: A more efficient ZKPoK for SPDZ

Carsten Baum! Daniele Cozzo? and Nigel P. Smart?:3

! Bar Ilan University, Israel
2 imec-COSIC, KU Leuven, Leuven, Belgium.
3 University of Bristol, Bristol, UK.
carsten.baum@biu.ac.il, daniele.cozzo@kuleuven.be, nigel.smart@kuleuven.be

Abstract. The HighGear protocol (Eurocrypt 2018) is the fastest currently known approach to pre-
processing for the SPDZ Multi-Party Computation scheme. Its backbone is formed by an Ideal Lattice-
based Somewhat Homomorphic Encryption Scheme and accompanying Zero-Knowledge proofs. Un-
fortunately, due to certain characteristics of HighGear such current implementations use far too low
security parameters in a number of places. This is mainly due to memory and bandwidth consumption
constraints.

In this work we present a new approach to the ZKPoKs as introduced in the HighGear work. We
rigorously formalize their approach and show how to improve upon it using a different proof strategy.
This allows us to increase the security of the underlying protocols, all while maintaining roughly the
same performance in terms of memory and bandwidth consumption.

1 Introduction

Multi-party computation (MPC) has turned in the last fifteen years from a mainly theoretical endeavor to one
which is now practical, with a number of companies fielding products based on it. MPC comes in a number
of flavours, depending on the underlying primitives (garbled circuits, secret sharing), number of parties (two
or many parties), security model (passive, covert, active), and so on. In this work we will focus on n-party
secret sharing-based MPC secure against a dishonest majority of parties. In this setting the most efficient
protocol known is the SPDZ protocol [15] from 2012, along with its many improvements such as [14,24,25].

The SPDZ protocol family uses a form of authenticated secret sharing over a finite field F, to perform
the secure computation. The protocol is divided into two phases, an offline phase (which produces, among
other things, multiplication triples) and an online phase (which consumes the multiplication triples to enable
multiplication to be performed). In this work we will be focusing on the offline phase, specifically how to
increase its security level while keeping or increasing the performance. The SPDZ protocol, among others,
has been implemented in the SCALE-MAMBA system [2], which we refer to as a reference implementation
allowing to measure and compare our contribution in practice.

To understand the difference of our approach in terms of efficiency and security we first consider the
genesis of the problem we solve. The SPDZ protocol is itself based on an earlier work called BDOZ [7].
The BDOZ protocol used a form of pairwise MACs to authenticate a secret sharing amongst n-parties. At
the heart of the offline phase for BDOZ is a pairwise multiplication protocol, using linearly homomorphic
encryption. To ensure that active adversaries do not cheat in this phase pairwise zero-knowledge proofs
are utilized to ensure active adversaries cannot deviate from the protocol without detection. In total O(n?)
ZKPoKs need to be carried out per multiplication triple of BDOZ.

The main contribution of the SPDZ paper [15] over BDOZ was to replace the pairwise MACs with a
global MAC. This was made possible by upgrading the linearly homomorphic encryption used in BDOZ to
a limited form of Somewhat Homomorphic Encryption (SHE) based on the BGV encryption scheme [10].
This new scheme permits to reduce the number of ZK proofs per multiplication triple by a factor of n. At
the same time, due to the Smart-Vercauteren SIMD packing underlying BGV plaintext spaces the overhead
due to the ZKPoKs per multiplication triple was drastically reduced. This is because a single ZKPoK could
be used to simultaneously prove statements for many thousands of multiplication triples.

However, BGV is a lattice based SHE scheme and ZKPoKs for these are relatively costly — due to the
necessity of proving bounds on the size of plaintexts and randomness. For a single ciphertext, the basic
XY-protocol has challenge space {0,1} and must thus be repeated many times to achieve reasonable security
levels. Furthermore, to provide zero-knowledge one needs to “blow-up” the proven bounds, thus an adversary
can only be shown to prove a statement which is strictly weaker than what an honest party proves®. This
introduces what is called the soundness slack between the honest proven language I and the adversarially
proven language L.

To get around the problem of having to perform multiple proofs for the same ciphertext, SPDZ uses a
standard amortization technique [12] to prove U statements at once, where U is the number of ciphertexts
used in the protocol. This boosts the soundness security from 1/2 to 27V, at the expense of introducing even
more soundness slack, namely an additional factor of 2U/2. At the same time, [12] crucially needs to send
V =2.U — 1 auxiliary ciphertexts. In the implementation of this ZKPoK in the original, and subsequent
works, the authors set U to be the same security level as the statistical zero-knowledge parameter ZK_sec.

Despite this use of amortization techniques, the ZKPoKs were for a long time considered too slow.
This resulted in two new techniques based on cut-and-choose (being introduced in [14]). The first of these
produced only covert security, but was highly efficient, and thus for a number of years all implementations of
the SPDZ offline phase only provided covert security. The second approach of [14] provided actively secure
ZKPoK which seemed asymptotically more efficient than those provided in [15], but which due to large
memory requirements were impossible to implement.

This inability to provide efficient actively secure offline phased based on SHE led to a temporary switch to
an Oblivious Transfer-based offline phase, called MASCOT [24]. However, in 2018 Keller et al. [25] introduced
the Overdrive suite of offline protocols. There, they revisited the original SPDZ offline phase and showed two
interesting ways how to optimize it. Firstly, in so-called Low Gear, for a small number of parties the original
pairwise ZKPoKs of the BDOZ methodology could be more efficient than that of SPDZ. They observe that
an O(n?) algorithm can beat an O(n) algorithm for small values of n and in addition improve the parameters
of the SHE. This was partially also enabled by using the same SIMD packing in BDOZ as was being used
for SPDZ.

The second variant of Overdrive, called High Gear, works for larger values of n. Here, the original SPDZ
ZKPoK was revisited and tweaked. Instead of at each iteration each party proving a statement to each other
party, the parties proved a single joint statement. Thus the n parties act as a single proving entity for a
joint statement of their secret inputs and an accumulated ciphertext. This did not provide an improvement
in communication efficiency, but it did make the computational costs a factor of n smaller.

In the SCALE-MAMBA system (as of v1.2 in Nov 2018) only the High-Gear variant of Overdrive is
implemented for the case of dishonest majority MPC, even when n = 2. However, like all prior work the
system adopts U = ZK_sec, and thus achieves the same soundness security Snd_sec as zero-knowledge indis-
tinguishability. This is neither as efficient, nor as secure, as one would want for two combined reasons.

1. The zero-knowledge security ZK_sec is related to a statistical distance, whereas the soundness security
Snd_sec is related to the probability that an adversary can cheat in an interactive protocol. A low value
for Snd_sec is rather acceptable than a low value for ZK_sec.

2. The practical complexity of the protocol, in particular the memory and computational consumption, is
dominated by Snd_sec. It turns out that ZK_sec has very virtually no effect on the overall execution time
of the offline phase, for large values of p.

It is for this reason that [25] gives performance metrics for 40, 64 and 128-bit active security, and why v1.2 of
SCALE-MAMBA utilizes only 40-bits of security for Snd_sec and ZK_sec, since the execution time is highly
dependent on Snd_sec.

Our Contribution. We first formalize the type of statement which the Overdrive ZKPoK tries to prove. The
original treatment in [25] is relatively intuitive. We formalize the statement by presenting a generalization of

4 There do exist ZKPoKs for lattice-based primitives which prove exact bounds. Unfortunately, their computation
and communication overhead makes them no match in practice for protocols having soundness slack.

standard Zero Knowledge-protocols to what we call an n-party Zero Knowledge-protocol. The formalization
is tailored at the use of such proofs in preprocessing.

We then present a modified ZKPoK for the HighGear variant of Overdrive, which we denote TopGear.
It treats the soundness security Snd_sec and the zero-knowledge security ZK _sec separately. This ZKPoK in
its unamortized variant (i.e. only proving one statement at a time) uses a non-binary challenge space in a
similar way as was done in [8]. Hence we obtain a challenge space of 2- N + 1 in the “base” ZKPoK (where
N is the ring dimension). We then amortize this base ZKPoK by proving U statements in parallel using a
technique from [3]. This enables us to achieve an arbitrary knowledge soundness of Snd_sec by selecting the
number of auxiliary ciphertexts V' such that V' > (Snd_sec + 2)/log,(2 - N + 1).

Since N is often 32768 = 2'°, we are able to achieve a high soundness security, with a low value of V,
e.g. we can obtain 128 bits of soundness security by setting V' to be 8. Thus we can use a smaller amount
of amortization than [25], and thus a smaller memory footprint and bandwidth for the same level of ZK _sec.
Alternatively, we can select higher values of ZK_sec, if so desired, as this has little impact on the overall
performance.

However, this leads to a change in the soundness slack. This slack mainly results from needing ZK_sec to
be larger to ensure zero-knowledge. In signature schemes based on lattices, such as BLISS, this issue is usually
dealt with using rejection sampling, e.g. [18,19,26]. As the slack will be removed due to the processing that
happens after the ZKPoK is executed (during a modulus switch operation in the SHE scheme), we start with
a simpler yet more efficient technique to achieve zero-knowledge called “noise drowning”. At the same time,
we still generally obtain a smaller slack and thus better SHE parameters due to the change of the ZKPoK
from [12] to [3]. An additional, different slack in our work is due to the use of the larger challenge space of [8].
Namely, their technique (and therefore our ZKPoK) does not allow to extract an “exact” preimage, but only
that of a related ciphertext. We show that this can be corrected easily in the case of SPDZ preprocessing.

Other Related Work. Multiple techniques have been introduced to cope with the problem of amortized
ZKPoK for lattice-based primitives. Multiple subsequent works [4, 13, 16] have introduced more and more
efficient proofs of knowledge which have small (down to linear in Snd_sec) slack. Unfortunately, all of these
require U to be in the multiple of 1000s to be efficient, which is far from practically feasible. Later, Baum
and Lyubashevsky [5] showed how to build small-slack proofs for realistic sizes of U, though their idea was
limited to structured lattices. The problem was only recently resolved in [3] which we therefore use as a
building block in our work.

Another recent methodology to perform such ZKPoKs as needed in this paper is given in [17] based on
bullet proofs. These give very short proofs but are not competitive with the approach in this paper. Firstly,
we use amortization over the number of parties to produce a joint proof whereas the direct application of [17]
would require pairwise proofs which would not scale well with the number of parties. The paper [17] also
concentrates on the case of “small moduli ¢” of the SHE plaintext space. In our case, we easily need ¢ to
have a size of say 500 bits. Apart from the problem of constructing a secure DLP group of a given order at
this size (leading to probably needing to use finite fields, or a group size larger than ¢ to deal with integer
overflow), this also leads to very large computational expenses. To sign and verify a proof from [17] requires
at least 12 - ¢(m) - log, q exponentiations. In our case this would equate to around 227 exponentiations for
each proof.

2 Preliminaries

In this section we provide a recap of the the BGV encryption scheme [10] as well as those building blocks
of SPDZ that are used in combination with it. Most of the details about BGV can be found in [10,20-22],
although we will employ a variant which supports circuits of multiplicative depth one only.

Notation. We generally let P; denote a party, of which there are n in total. Those parties are modeled as
probabilistic polynomial time (PPT) Turing machines. We let [n] denote the interval [1,...,n]. If M is a

matrix then we write M for the entry in the r-th row and c-th column. Vectors are (usually) written in
bold, and their elements in non-bold with a subscript, thus = (2;);c[,). We will write x[i] to denote the
i-th element in the vector . All modular reduction operations z (mod ¢) will be to the centered interval
(—a/2,q/2].

We let a < X denote randomly assigning a value a from a set X, where we assume a uniform distribution
on A. If A is an algorithm, we let a + A denote assignment of the output, where the probability distribution
is over the random tape of A; we also let a < b be a shorthand for a < {b}, i.e. to denote normal variable
assignment. If D is a probability distribution over a set X then we let a < D denote sampling from X with
respect to the distribution D.

We will make use of the following standard lemma in a number of places

Lemma 2.1. Let D be any distribution bounded whose values are bounded by B. Then the distributions
D+ (0,---,B’) (by which we mean the distribution obtained from sampling from the two distributions and
adding the result) is statistically close to the uniform distribution U (0,--- , B’), with statistical distance
bounded by g.

SPDZ Secret Sharing. This SPDZ protocol [15] processes data using an authenticated secret sharing
scheme defined over a finite field IF),, where p is prime. The secret sharing scheme is defined as follows: Each
party P; holds a share «; €), of a global MAC key o = Zie[n] a;. A data element x € F, is held in secret
shared form as a tuple {;,v; }ic[n], such that z =), z; and) ; = a- 2. We denote a value x held in such a
secret shared form as (z). The main goal of the SPDZ offline phase is to produce random triples ((a), (b}, {c))
such that ¢ = a - b. If we wish to denote the specific value on which +; is a MAC share then we write 7;[x].

The Rings. The BGV encryption scheme, as we will use it, is built around the arithmetic of the cyclotomic
ring R = Z[X]/($mn (X)), where @,,(X) is the m-th cyclotomic polynomial. For an integer ¢ > 0, we denote
by R, the ring obtained as reduction of R modulo q. We take m to be a power of two, m = 2”1 and hence
®,,(X) = XV +1 where N = 2". Elements of R (resp. R,) can either be thought of as polynomials (of
degree less than N) or as vectors of elements (of length N).

The canonical embedding of R is the mapping of R into C*™) given by o(x) = (2(¢}))ien), where we
think of = as a polynomial. We are interested in two norms of elements z in R (resp. R). For the co-norm
in the standard polynomial embedding we write ||z||,, whereas the co-norm in the canonical embedding we
will write as [|z[|Z" = ||o(x)]| . By standard inequalities we have ||z - y||Z" < [|z||2" - [Jy||=", 22" < ||z,
lz]|2" < ¢(m) - ||z]|,, and ||z]|,, < [|2||Z"; with the last two inequalities holding due to our specific choice
of cyclotomic ring. Such norms can also be employed on elements of R, by using the standard (centered)
embedding of R, into R.

We will use the following two facts in a number of places.
Lemma 2.2. Let m be a power of two. Thhen ||2- (X — X7)™! (mod ¢, (X))||, <1 forall0 <i,j <2-N.
Proof. Given in [8].

Lemma 2.3. In the ring R defined by ®,,,(X) with m a power of two we have that for all a € R that
lla- X" = llall -

Proof. This follows as X* acts as a shift operation, with the wrap-around modulo ¢(m) simply negating the
respective coordinate.

Distributions as used in BGYV. Following [22, Full version, Appendix A.5] and [2] we use different
distributions to define the BGV scheme, all of which produce vectors of length N which we consider as
elements in R.

- HWT(h, N): This generates a vector of length N with elements chosen at random from {—1,0, 1} subject
to the condition that the number of non-zero elements is equal to h.

- ZO(0.5,N): This generates a vector of length N with elements chosen from {—1,0, 1} such that the
probability of each coefficient is p_y = 1/4, pp = 1/2 and p; = 1/4. Thus if z + ZO(0.5,N) then
Jall,, < 1.

- dN(0?, N): This generates a vector of length N with elements chosen according to an approximation to
the discrete Gaussian distribution with variance o2.

- RC(0.5,0%, N): This generates a triple of elements (71,72, 73) where 73 is sampled from ZO4(0.5, N) and
r1 and 75 are sampled from dN4(o2, N).

- U(g, N): This generates a vector of length N with elements generated uniformly modulo ¢ in a centred
range. Thus z < U(¢, V) implies ||z|| < ¢/2.

Following prior work on SPDZ we select 0 = 3.17 and hence we can approximate the sampling from the
discrete Gaussian distribution using a binomial distribution, as is done in NewHope [1]. In such a situation
an element = < dN(co?, N) is gauranteed to satisfy |z|| < 20.

The Two-Level BGV Scheme. We consider a two-leveled homomorphic scheme, given by the algorithms
{KeyGen, Enc, SwitchMod, Dec}. The plaintext space is the ring R,, for some prime modulus p, which is
the same modulus used to define the SPDZ secret sharing scheme. The algorithms are parametrized by a
computational security parameter x and are defined as follows. First we fix two moduli ¢y and ¢; such that
q1 = po - p1 and qo = pg, where pg, p; are prime numbers. Encryption generates level one ciphertexts, i.e.
with respect to the largest modulo ¢;, and level one ciphertexts can be moved to level zero ciphertexts via
the modulus switching operation. We require p; = 1 (mod p) and pg — 1 = p; — 1 = 0 (mod p). The first
condition is to enable modulus switching to be performed efficiently, whereas the second is to enable fast
arithmetic using Number Theoretic Fourier Transforms.
The algorithms of the BGV scheme are then as follows:

- KeyGen(1"): The secret key st is randomly selected from a distribution with Hamming weight h, i.e.
HWT (h, N), much as in other systems, e.g. HELib [23] and SCALE [2]. The public key, pt, is of the form
(a,b), such that a < U(q;, N) and b=a -5t +p-e (mod q;), where € < dN(c?, N). This algorithm also
outputs the relinearization data (a2, bse e2) [11], Where

Agpge2 < U(q1, N) and bgp op> = Ugpep2 - SE+ P Top gp2 — P1 - 582 (mod ¢1),

with 74 g2 <= dN(02, N).
- Enc(m,r;pt): Given a plaintext m € R, and randomness r = (r1,72,73) chosen from RC(0.5,02,n),
i.e. 1,72 + dN(c2, N) and 73 < ZO(0.5, N), this algorithm sets

co=b-r3+p-r1+m (modgq), cit=a-r3+p-re (mod q).

Hence the initial ciphertext is ¢t = (1, ¢g, ¢1), where the first index denotes the level (initially set to be
equal to one). If the level ¢ is obvious we drop it in future discussions and refer to the ciphertext as an
element in R2,.

- SwitchMod((1, ¢g,¢1)): We define a modulus switching operation which allows us to move from a level
one to a level zero ciphertext, without altering the plaintext polynomial, that is

(0, cp, c) + SwitchMod((1, ¢, 1)), ¢4, ¢y € Ry,-

The effect of this operation is also to scale the noise term (see below) by a factor of go/q1 = 1/p1.

- Dec((cp, c1);5t): Decryption is obtained by switching the ciphertext to level zero (if it is not already at
level zero) and then decrypting (0, ¢g, ¢1) via the equation (¢o — st - ¢; (mod go)) (mod p), which results
in an element of R,.

Homomorphic Operations. Ciphertexts at the same level ¢ can be added,
(¢, co,c1) B (4, ch,c)) = (4, (co+ ¢y (mod q)), (1 + ¢ (mod q)),

with the result being a ciphertext, which encodes a plaintext that is the sum of the two initial plaintexts.
Ciphertexts at level one can be multiplied together to obtain a ciphertext at level zero, where the output
ciphertext encodes a plaintext which is the product of the plaintexts encoded by the input plaintexts. We do
not present the method here, although it is pretty standard consisting of a modulus-switch, tensor-operation,
then relinearization (which we carry out in this order). We write the operation as

(1,c0,c1) ® (1,¢p,¢h) = (0,¢5,¢f), with ¢f, ¢} € Ry,

or more simply as (co, c1) © (¢, ¢)) = (cf, ¢f) as the levels are implied.
Ciphertext Noise. The noise term associated with a ciphertext is the value ||co — st ¢1||2". To derive
parameters for the scheme we need to maintain a handle on this value. The term is additive under addition
and is roughly divided by p; under a modulus switch. For the tensoring and relinearization in multiplication
the terms roughly multiply. A ciphertext at level zero will decrypt correctly if we have ||co — st - c1| o, < qo/2,
which we can enforce by requiring [co — st 1]/ < go/2.
We would like a ciphertext (adversarially chosen or not) to decrypt correctly with probability 1 — 27¢.
In [22] € is chosen to be around —55, but the effect of € is only in producing the following constants: we define
e; such that erfc(e;)? ~ 27¢ and then we set ¢; = ef. This implies that c; - VV, is a high probability bound
on the canonical norm of a ring element whose coefficients are selected from a distribution with variance V,
while ¢5-v/V1 - V5 is a similar bound on a product of elements whose coefficient are chosen from distributions
of variance Vi and V5 respectively.
With probability much greater than 1 — 27¢ the “noise” of an honestly generated ciphertext (given
honestly generated keys) will be bounded by
lco—st-c1| 2" =||((a-st+p-€)-r3+p-ri+m—(a-rs+p-re)- st
=|m+p-(e-r3+r1 — 712 -5E)||C;n
can can

<l +p- (e rsllS + [+ lIr2 - st S)

< ¢(m)-p/2
+p-0- (e 6(m)/VE -+ e1 - /lm) +ca- /i o))
:Bclean~

Recall this is the average case bound on the noise of honestly generated ciphertexts. In the preprocessing
ciphertexts can be adversarially generated, and determining (and ensuring) a worst case bound on the
resulting ciphertexts is the main focus of the HighGear and TopGear protocols.

Distributed Decryption. The BGV encryption scheme supports a form of distributed decryption, which
is utilized in the SPDZ offline phase. A secret key st € R, can be additively shared amongst n parties by
giving each party a value st; € R, such that st = s€; +... 4 st,,. We assume, as is done in most other works
on SPDZ, that the key generation phase, including the distribution of the shares of the secret key to the
parties, is done in a trusted setup.

To perform a distributed decryption of a ciphertext ¢t = (cp,c1) at level zero, each party computes
di < co—c1-s8 +p- R; (mod qo) where R; is a uniformly random value selected from [0, ..., 2PP-=. B /p]
where B is an upper bound on the norm ||cy — ¢; - s¢|| . The values d; are then exchanged between the
players and the plaintext is obtained from m + (d; + ...+ d, (mod ¢g)) (mod p). The statistical distance
between the distribution of the coefficients of d; and uniformly random elements of size 2PP-*¢. B is bounded
by 27PP-e¢ by Lemma 2.1.

To ensure valid decryption we need the value of gy to satisfy qq > 2 - (1 + n - 2PP=¢) . B instead of
qo > 2- B for a scheme without distributed decryption, which implies parameter growth in the BGV scheme
when using this distributed decryption procedure.

3 mn-Prover Zero Knowledge-Protocols

The Overdrive ZKPoK is an n 4 1 party X-protocol between n provers and one verifier®. Unlike traditional
proofs of knowledge, there is a difference between the language used for completeness and the language that
the soundness guarantees; much like the protocols considered in [9, Definition 2.2]. As the Overdrive paper
does not formalize such proofs, our first contribution is to do precisely this. We give a generalized treatment
of such proofs beyond regular X-protocols.

Let Samp be a PPT algorithm which, on input n,7 € N,0 < i < n outputs a pair of values x;, w; where we
consider x; as the public and w; as the private value. We require that if for all i € [n] we sample (x;, w;)
Samp,, (i), then a given predicate P always holds, i.e. we have that P(z1,...,z,,w1,...,w,) = 1. The

predicate P defines a language L via the binary relation on the pairs (x = (z1,...,2,), w = (w1,...,wy)).
Consider a set of n provers {P,..., P,}, each with private input w; and public input z;. The provers
wish to convince a verifier V' (that could be one or all of the provers) that, for the public values z1,...,z,

they know wi,...,w, such that P holds. The guarantee provided by our proof is, however, only that
P'(zy,...,2y,w1,...,w,) =1 for some second language ', defined by a predicate P’, with I. C I’. This is
still sufficient for the preprocessing of SPDZ.

Definition 3.1. An n-party ZKPoK-protocol with challenge set C for the languages L, " and sampler Samp,,
is defined as a tuple of algorithms (Comm, Resp, Verify). While Comm is a PPT algorithm, we assume that
Resp, Verify are not. The verifier V. will have input x1,...,x,. The protocol is executed in the following four
phases:

1. FEach prover P; independently executes the algorithms
(comm;, state;) < Comm(x;, w;)

and sends (comm;) to the verifier.
2. The verifier selects a challenge value ¢ € C and sends it to each prover.
3. Fach prover P;, again independently, runs the algorithm

resp; < Resp(state;, ¢)

and sends resp; to the verifier.
4. The verifier accepts if Verify({comm;, resp,, 7 }ic[n], ¢) = true.

Such a protocol should satisfy the following three properties

- Correctness:
If oll P;, each on input (x;,w;) < Samp, (i) honestly follow the protocol, then an honest verifier will
accept with probability one.

- Computational Knowledge Soundness: Let A = (A1, As) be a pair of PPT algorithms and e € [0,1).
Consider the following game:

Ay outputs I C [n] and statef'.

Choose (x;,w;) < Samp,,(j) honestly for each P;,j & I.

Ay on input statef', {x;},¢1 outputs stateg!, {x; }ier.

Compute (commj, state;) <— Comm(z;, w;) for j & I.

Ay on input states', {comm,},;¢1 outputs states', {comm; };c;.

Choose c € C uniformly at random and compute resp; <— Resp(state;, c).

Az on input states', c, {resp;}jgr outputs {resp, }icr.

We say that Ay, Ax wins if Verify({comm;, resp;, z; }ic[n], ¢) = true.

S N R

5 In the way it is used each prover also acts as an independent verifier.

Assume that A wins the above game with probability 6 > € where the probability is taken over the
randomness of Ay and the choice of c.

Then we say that the protocol is a computational proof of knowledge if there exists a PPT algo-
rithm Extract which, for any fired set I and states',{z;}icr generated by Ay, with honestly gener-
ated {x;,w;,statej,comm;} ¢ as input and black-box access to As(states', {comm;, state;};¢r) outputs
{w;}ier such that P'(zy1,...,Zp,w1,...,w,) = 1 in expected q(Snd_sec)/(§ — €) steps where q(-) is a
positive polynomial.

- Honest Verifier Zero-Knowledge: There is a PPT algorithm Sim; indezed by a set I C [n], which
takes as input an element in the language I and a challenge ¢ € C, and then outputs tuples {comm;, resp; };¢;.
We require that for all such I the output of Simy is statistically indistinguishable from a valid execution
of the protocol.

Since the execution of the commitment and response phases are independent for each player, we only
need to look at indistinguishability of the distribution of the values (c, {comm;, resp; };¢;) produced in a valid
and a simulated execution of the protocol. Whatever the adversary does cannot affect the zero-knowledge
property, as the values sent by the honest provers are independent of those sent by adversarially-controlled
parties. Our formalism for HV-ZK is therefore only to allow the simulator to be applied when some provers
are adversarial.

The knowledge extraction follows the standard definition of a proof of knowledge, but also incorporates
the slack-definition in [3] adapted to our situation of n-Prover ZKPoK-protocols: Note that we are not
assuming a special soundness definition as is usual in X' protocols, since our knowledge extractor will require
multiple rewind queries to the dishonest provers with correlated challenges. Also note that the knowledge
extractor above outputs a witness for a predicate P’ which is potentially different from the predicate that
honest parties were using. In traditional ZK proofs-protocols we have that P = P’ but in many lattice based
protocols these two predicates are distinct. The gap between the two predicates #P’/#P is what we earlier
referred to as the “soundness slack”.

The above definitions imply two security parameters Snd_sec and ZK_sec. The soundness parameter
Snd_sec controls the value e from Definition 3.1. Usually we set ¢ = 27545 wwhich then (loosely speaking) is
the probability that an adversary with control over a set of provers I C [n] can make an honest verifier accept
for values {z;};c; without actually having valid witnesses w;. The second parameter is the zero-knowledge
parameter ZK_sec, which defines the statistical distance between the distributions of genuine and simulated
transcripts. We let this distance be bounded by 272K-sec,

Relations to Other Definitions. It might seem that the above definition is related to multi-prover interactive
proofs [6], but this is not true. Firstly, the provers in our definition may arbitrarily collude during the above
protocol — which differs from multi-prover proofs where they cannot coordinate. Moreover, our definition
can be seen as each P; individually trying to convince the verifier about the correctness of an individual
statement, but the soundness takes into account a combination of the individual statements as expressed by
the language L. Therefore, in an n-party ZK proof of knowledge it might happen that any subset of n — 1
successful provers cannot produce a correct witness for the overall statement (z1,...,2,) by pooling their
w;. In multi-prover interactive proofs, each P; may itself have full knowledge of the complete witness.

Definition 3.1 also differs from just running n proofs in parallel, as the predicate P might introduce
constraints over all z;, w;. This is exactly how [25] used it in their work, where they perform checks both on
the individual ciphertexts and on all of them simultaneously, thus saving runtime.

4 A n-Prover ZKPoK for SPDZ

Our protocol, which we call TopGear, is given in Figure 1. The protocol is a n-Prover ZKPoK-Protocol in
which, in the way we have described it, the n players act both as a set of provers and individually as verifiers;
as this is how the proof will be used in the SPDZ protocol. Thus in our description in Figure 1 the challenge
is produced via calling a random functionality Frana which produces a single joint challenge between the
players. Such a functionality is standard, see for example [15]. further.

Protocol I1zkpok

The protocol is parametrized by integer parameters U, V and flag € {Diag, L} as well as pt and further parameters
of the encryption scheme.

Sampling Algorithm: Samp

1. If flag =1 then generate the plaintext m &€ Rg (considered as an element of Rgl) uniformly at random in
’Rg. If flag = Diag then instead for each k € [U] let m™ be a random “diagonal” message in Rp.
2. Generate a randomness triple as R € Rglx‘o’, each of whose rows is generated from RC (02, 0.5, N)

w

Compute the ciphertexts by encrypting each row separately, thus obtaining C' <+ Enc(m, R;pt) € Rgl“.
4. Output (z = (C),w = (m, R)).

Commitment Phase: Comm

1. Each P; samples V pseudo-plaintexts y; € RV and pseudo-randomness vectors S; = (sgl’[)) € R;XS such

that, for all [€ [V], ||yll)|| < 27Ksee=1 . and ||t [)|| < 27K .
2. Party P; computes A; < Enc(yi, Si; pt) € Ry %
3. The players broadcast comm; « A;.

Challenge Phase: Chall

1. Parties call Frand to obtain a V' x U challenge matrix_W.
2. If flag =L this is a matrix with random entries in {X"}.

i—0...2.n—1Y {0}. If flag = Diag then W is a random
matrix in {0,1}V*Y.
Response Phase: Resp

1. Each P; computes z; <~ y; + W -m; and T; < S; + W - R;.
2. Party P; sets resp, < (z;,71;), and broadcasts resp,.

Verification Phase: Verify

1. Each party P; computes D; < Enc(z;, T;; pt).
2. The parties compute A < >." | A;, C > " Ci, D« > " Dy, T+ >" T;and z < Y I, 2.
3. The parties check whether D = A+ W - C, and then whether the following inequalities hold, for [€ [V],

HZ(Z)HOO <n- QZK,sec - p, ”T(Z,/)HOO < 2.m- 2ZK,sec - pe for ¢ = 1’ 2’ 3.

4. If flag = Diag then the proof is rejected if z") is not a constant polynomial (i.e. a “diagonal” plaintext
element).
5. If all checks pass, the parties accept, otherwise they reject.

Figure 1. Protocol for global proof of knowledge of a set of ciphertexts

To understand its workings and security, first we give the two languages and then a security proof for the
standard case flag =L. The reason for this flag is that in the SPDZ protocol [15], at one stage ciphertexts
need to be proved to be “Diagonal”, namely each plaintext slot component contains the same element. We
will discuss this after giving the proof for the main protocol.

The Honest Language: In an honest execution of the preprocessing each party P; first generates a set of
U ciphertexts given by, for k € [U],

ctgk) N Enc((k) (l(k,l)’ l(k ,2) (k3) p’e)

Party P; wishes to keep the values mgk), rl(k’l) r(k 2) (k 3) private, whereas the ciphertexts ct() are public.
If we define C; = (ct; 1) . cth)) and m;, R; equlvalently, then we can instead say that P; wishes to prove

knowledge of w; = (m;, R;) for a given z; = (C;). By abuse of notation we relate to m;, R;, C; via the
equation C; < Enc(m;, R;; pt).

The proof shows a statement about m = ., m;, R=>5 . R, and C = .| C;, i.e. when summed
over all parties. It works over R (and not R,) to make || - ||ococ meaningful.

We define the “honest” language IL as

L= {((xl,...,xn),(wl,...,wn)) :
€Tr; = Cl w; = (mi,Ri),

C=3C, m=>m; R=) R,

C = Enc(m, R;pt) and for all k € [U]
Im®l <n-p/2, |R&D|, <nepe.

where p1 = pa = 20 and p3 = 1. Note, the language says nothing about whether the initial witnesses
encrypt to the initial public values Cj, it only considers a joint statement about all players inputs. In the
above definition we abuse notation by using Enc as a procedure irrespective of the distributions of the input
variables (as m®*) and R**% are now elements in R and not necessarily in the correct domain). Here we
simply apply the equations

b-R&D 4 p . RED £ m®) (mod ¢1), a-R* +p.R®? (mod q).

For dishonest provers (where we assume the worst case of all provers being dishonest) we will only be
able to show that the inputs are from the language

]L/c = {((xla"~7xn)7(w17""wn)) :

C:ZCi’ m:Zmi, R:ZRi,
C = Enc(m, R; pt) and for all k € [U]

le-mP)|| < 22Kt p,

o RO < 220ty

Notice that not only the bounds on m®*), R(*) have increased, but the values within the norms have also
been multiplied by a factor of two.

Thus we see that, at a high level, the bounds for the honest language are |w;| < B, whilst the bounds
for the proven language are |c - w;| < 22%-*¢+2. B. This additional factor 22X=¢*2 is called the soundness
slack. This soundness slack could be reduced by utilizing rejection sampling as in lattice signature schemes,
but this would complicate the protocol (being an n-party proof) and (more importantly) it turns out that
the soundness slack has no effect on the parameters needed in the protocol.

There is an added complication arising from the language L., corresponding to the factor of ¢ in Lemma
2.2. However, this can be side-stepped by a minor modification to how the ZKPoKs are used with the SPDZ
offline phase (which we describe in Section 5).

Theorem 4.1. Let flag =L and V > (Snd_sec+2)/(2N +1), then the algorithms in Figure 1 are an n-party
ZKPoK protocol according to Definition 3.1 for the languages L and 1Ly with soundness error 27514 gnd
statistical distance 27K in the simulation.

Proof.
Correctness: In proving the correctness property all the parties are assumed to be honest. We therefore
have that (z;,w;) + Samp,,(i) are generated by the sampling algorithm. Thus for all k € [U], ||mz(-k) lo <%

10

and H?“Z(k’e)Hoo < p¢, where p; = py = 20 and p3 = 1. As summing over the n values increases the overall

norm by at most n, we have ((z1,...,z,), (wi,...,wy)) € L.

We now prove that the protocol terminates by considering the checks in Step 3 of Verify. The equality
D = A+ W -C follows at once from the fact that everything is defined as a linear function of their arguments
and the BGV encryption, in particular, is linear and works component-wise. By repeatedly applying Lemma
2.3 (and using the fact that U < 225 in practice) we obtain

1= e < D@+ Wm) @l < (2= 2y v F)
i=1

<p-n- 2ZK5ec’

IT®O o < DS+ W - R)FO|| < n- (275 p + U - py)
=1
< 2.1 - 2ZK5ec - e

Honest verifier zero-knowledge: Following our definition of n-prover ZKPoK-protocol we give in Figure 2
a simulator, parametrized by a set of corrupted parties I and a challenge W, which produces transcripts. It
is clear that the statistical difference in the distribution of the coefficients of the ring elements in z; and T}
for j ¢ I in a real execution and the simulated execution can be bounded by Lemma 2.1 as 2-2K-sec,

The Simulator Sim;

The input is a challenge V' x U matrix W defined as in the main protocol.

1. For all j ¢ I do
(a) Sample z; € R}, such that, for | € [V], we have ||z§l)||Do < gfKsec—l)
(b) Sample T; € R *? such that, for I € [V] and £ = 1,2,3, we have HTj(M)Hoo < 27K .
(c) Set resp, < (z;,T5).
(d) Compute comm; = A; < Enc(z;, Tj;pt) — W - C;.
2. Output (commj,resp,);gr-

Figure 2. Simulator Sim; for our protocol

Knowledge soundness: The knowledge extractor follows the methodology of [3, Lemma 3 and 5]. We refer
the reader there for more details. Here we outline the technique and the effect it has on our bounds for the
language IL}. In the following we let § denote the probability that, for fixed I,{z;}ier of dishonest provers
Ay produces a valid transcript (sampled over the randomness tape x of As, the possible challenges W and
the values {A;, z;,T;};¢1). By assumption we have § > 275nd-sec,

We first need to ensure that we can apply the proof of [3] in our setting. Their construction only has a
single prover to extract from and they do not have extra messages which honest participants in the protocol
may send. To show applicability of their extractor, we construct a “hybrid” prover P that can be combined
with their technique.

Claim. Let A be an adversary as in the soundness definition of Definition 3.1. Then there exists a prover P
which as input only obtains the random tape x (as well as implicitly the parameters of the encryption scheme
and {x;, w;};¢r generated by Samp) and a challenge c. The player P has the same chance & of outputting a
correct transcript (when the probability is taken over x, W) as A.

Proof. We construct P as follows:

1. Let x = (x1]|x2) where x1 is of the same length as the randomness of Ay and y» is sufficiently long to
run n — |I| independent instances of Comm.
2. Compute (commj,state;) <— Comm(z;,w;) for all j & I using a fresh part of x» for each instance.

11

Run Aj on {comm;} ¢, obtain {comm;},c;.

Output {comm;};c[,) and wait for the challenge c.

Upon input ¢ compute (resp;) < Resp(state;, c) for all j & I.

Continue to run Ay on new inputs c, {resp;};gr. Then output {resp;};¢; and whatever A outputs.

O O W

Observe that by assumption Resp is a deterministic algorithm. Therefore, there is only one value {respj}jgl
which we can give to As in Step 7 of the soundness game. Thus, As’s actions are fully determined given

¢, {comm;},zr. As P generates {comm;} in the same way as it is done in the security experiment, it has
the same chance § of outputting a correct transcript (when probability is taken over x,c) as A. The only
additional runtime comes from running Comm, Resp for simulated honest parties, which is small. a

They then construct an ensemble of extractors {Sk}ke[U]v one for each of the inputs. This also works in
our setting, as we can extract each k—th plaintext and randomness from each of the parties simultaneously.
More in detail, each &, when adapted to our setting, works as follows:

1. Run P on random challenges W and uniformly random choices of x until it outputs an accepting
transcript. Save the accepting challenge W as well as response {z;, T; }7_;.

2. Select a new challenge matrix W) which is identical to W except in column k. This challenge is passed
to P(X) and the process is repeated, either until one of the W) succeeds or if Snd_sec/d challenges were
generated but none succeeded. In the latter case, the extractor aborts.

3. If the extractor succeeds, then it outputs {z;, zgk), T;, Ti(k)}ie[n] as well as W, W),

Assume that &, succeeds in outputting the two accepting transcripts W, {z;, T;}7_,, W), {z£k), Ti(k)}ie[n]
with the constraints as given above. Then, for this k € [U] we can compute the following: First, let [€ [V]
denote an index such that w;, # wj,, where w;; (resp. wj]) are the entries of W (resp. W*)). Using
Lemma 2.2 we can write g = 1/(w; — wj ;) € R with H2 9l

Setting D; < Enc(z;, T;; pt) and Dg) Enc(z f), T; ,p?) we obtain two matrix equations
D=A+W . Cand D® =A4+Ww® .C.
Write E = D — D) and note that the (i,5)’th element e, ; is equal to

U
/
eij =Y (wip—wi,) cr,
t=1
= (Wi — Wi) - Chyj by choice of W),

Hence 2 - ¢i; = 2- g - €15, which implies, by the linearity of encryption, that we can extract a message m*)
and randomness values corresponding to row R(*), which satisfy the bounds for £ = 1,2,3

J2:m®|, < 2. 22t B,
H2 . R(k,Z)HOO <2.n- 22K§ec+1 - py.

In a similar way as above we can moreover extract the individual mgk)7 Rv(;k) which add up to m*), R*®), By
concatenation of the outputs which we obtain this way from all &, this then permits to output a witness
for LY, as required.

We now consider runtime and success probability of this process. Following the analysis of [3, Lemma 5],
Step 1 of 5k takes expected time 1/§ to succeed. Afterwards in Step 2 of each &, we make at most Snd _sec/d
queries to P. Following the analysis of [3], by running &, at most 3 - Snd_sec times it will output a pair of
values, except with probability at most 275"4=¢. By a union bound, all the above extractors will output a
witness for L} in expectancy® in time (3U - Snd_sec?)/d with probability at least 1 — U - 25nd-sec, |

5 One can improve the runtime by making a different analysis: as the success probability for each run of E is
constant, one can analyze the chance of O(\) consecutive calls to different extractors having > U success events
using a Hoeffding bound.

12

The value ¢(\,U) =3 -U - Snd_sec? in the above proof should, correctly, be taken into account in our
security estimates later. However, the effect is marginal, and so to aid exposition we drop this consideration
from now on.

For the proof of “diagonal” elements, the main difference is that soundness must ensure that the extracted
m encodes a “diagonal” plaintext as well. Unfortunately, as we have to multiply with ring elements in the
extraction process, this might not necessarily be true. Instead, in such a case we fall back to a binary challenge
matrix W (as depicted in Figure 1), where the “diagonal” property follows as the extractor only performs
additions and subtractions on the values z;,T; in the process, but no multiplications with inverses. As a side
effect, the proof actually yields bounds on the exact m®) R**) and not just their multiples. One can easily
show the following

Corollary 4.1. Let flag = Diag and V > Snd_sec+2, then the algorithms in Figure 1 are an n-party ZKPoK
protocol according to Definition 3.1 for the languages L and L, with soundness error 275" and statistical
distance 277K in the simulation.

5 SPDZ Offline Phase

We nowshow how to combine the ZKPoK from Section 4 with the offline phase of the SPDZ protocol. After
a brief recap of it, we outline the necessary changes to the HighGear protocol of [25]. Recall that the offline
phase of SPDZ primarily generates shared random triples ({a), (b), (¢}) such that ¢ = a - b where a,b are
chosen uniformly at random from F, (and no subset of parties either know a, b or ¢, or can affect their
distribution). This is done, by each party P; encoding ¢(m) a; and b; values into two elements a; and b; in
R, These a; and b; are encrypted via the BGV scheme, and the parties obtain

cte, = Enc(a;, 74,43 pt) and cty, = Enc(b;, 7p4; pt).

Using the homomorphic properties of the BGV encryption scheme the parties can then compute an encryption
of the product ¢ € R, via
cte = (cty, B---Hecty,) O (ctp, B---Bety,). (1)

The product ct, is decrypted using a distributed decryption protocol which gives to each party a share ¢; € I,
of the plaintext of ct.. To achieve security in the online phase, one furthermore needs to compute shares of
the MACs ~[a], v[b] and ~y[c], which are obtained in a similar manner.

In the offline phase, the main attack vector is that dishonest parties could produce ciphertexts which
contain maliciously chosen noise or a plaintext unbeknownst to the sending party. This would result in
either selective failure attacks or information leakage during the distributed decryption procedure. Thus
each ciphertext ct,, needs to be accompanied by a ZKPoK showing that it is not too far from being an
honestly generated ciphertext. As the ZKPoKs bound the noise term associated to every ciphertext, we use
this bound to derive the parameters for the BGV encryption scheme. This in turn ensures that all ciphertexts
will validly decrypt. Quite obviously we want to execute U such proofs in parallel such as to amortize.

As noticed in HighGear [25], the ciphertexts ct,, are only ever used in a sum (as in Equation 1). Therefore
it is possible to replace n individual ZKPoKs for ct,, by a single ZKPoK for the sum ct, = ct,, BH---Hct,,
— which is exactly the strategy we outlined in the previous two sections. However, our proof comes at the
expense of not obtaining guarantees about the original ciphertext sum ct,, but instead of 2 - ¢t, = ct, H ct,.
Luckily this of no concern in preprocessing for SPDZ - we can simply later adjust some of the shares by
a factor of two and continue as before. The modifications are explained in Figure 3 for the case of triple
production. The modifications to obtain other forms of preprocessed data such as those in [14] are immediate.

The overhead V for the ciphertexts encrypting «; is quite big when compared to those of the triples and
MAC shares. This is because our proof from Section 4 is not as efficient when flag = Diag (see Corollary 4.1).
However, this is not an issue as we only produce one such ciphertext during the offline phase. To mitigate
this we actually run the ZKPoK for a fixed value (V' = 16) and then repeat this Snd_sec/V times. This
makes no difference to the overall running time, but keeps the memory requirements low for this part of the
protocol.

13

Protocol I1yine
Init:

1. Each P; runs Samp,, (i) with flag = Diag and U = 1 to obtain a; € F,, as well as the ciphertext ctq,.
2. Fori=1,...,Snd_sec/16
(a) The parties perform the other phases of IIzkpok with flag = Diag,U = 1 and V = 16. If any proof rejects
they abort.
3. The parties set ¢ty < (cto, B---Becta,,).

Triples:

1. We set V = (Snd_sec + 2)/log,(2- N +1)and U =2-V.

2. Each P; runs Samp,, () for this value of U with flag =_L. It thus obtains the plaintext vectors a b(k), f(k) €
(F,)?(™) as well as the ciphertexts ct(), t(k and ct() for k € [U].

3. The parties then run the remaining bteps of the protocol Izxpok using U, V and flag =_L. If any of the proofs
fail, then they abort.

4. The parties set ct{” « 2- (et 8- Betl"), off? 2 (VB Bet!") and o) 2. (B Bt

for k € [U].

The parties compute ¢t « ctf) © ct<k) as well as ct<+f — M B ct;k) for k € [U].

Using the distributed decryption operation of the BGV scheme they then decrypt A® for k € [U].

Py sets é(lk) — AW fl(k), while each remaining P; sets égk) — ffi(k) for k € [U].

The parties compute a fresh encryption of each é*) via Etﬁk) — Enc(A(k)7 0;pt) — ¢

coins 0 for k € [U].

9. The parties compute ct{) <— cta @ et tm —tq © ct<k) and t) « cto ® ct() for k € [U].

10. The MAC values vfk) [a], ’yi
for k € [U].

11. Each party sets

S N

tf‘-k) with default random

[b], ik) [c] are obtained by applying the DistDec protocol in Figure 14 from [25]

Ek) — 2 Alk b(k) — 2 B(k) and c *) 2. é) Tt then obtains the shares of the

elements encoded in a(k) b(k) (®) as well as their MACs 'y(k)[a] 'y(k>[b, %_(k) [c] by mapping the associated

’ Z

polynomials into the slot representation. They thus obtain U - ¢(m) shares.
Figure 3. TopGear version of the SPDZ Offline Phase

In the protocol in Figure 3 we have utilized the more efficient Distributed Decryption protocol from
HighGear to obtain the MAC shares, and have merged in the ReShare protocol of [14, Figure 11]. This
protocol is needed to obtain the shares of ¢ and the fresh encryption of c¢. The latter has been done so as to
demonstrate our modified ZKPoKs make no difference to the overall protocol.

The proof of security of this offline phase follows exactly as in the original SPDZ papers [14,15], all that
changes is the bound on the noise of the resulting ciphertexts. Suppose (co, ¢1) is a ciphertext corresponding
to one of ctq, ctq, ¢ty or cty in our protocol. To prove security, it is necessary to obtain worst case bounds on
the value ||co — st - ¢1]|S. We know that

co—st-c1 =2 meLp (3)+r(1) r§2)~5f))
i=1

where (m;, 1()7 E), 7"53)) are bounded due to the ZKPoK. From the soundness of it we can guarantee that

the ciphertexts must satisfy

H2 . Z m; S QZK,sec—&-l ‘n-p,
1€[n] o

H2_ Z U@H < QBKseet2
i€[n] e

14

Due to our assumption of an honest key generation phase, we also know that with probability 1 — 27 we
have [|e]|Z" < ¢; -0 - \/¢(m) and ||s€]|Z" < ¢; - V. Using the inequality ||z[|Z" < ¢(m) - [|z||,, we obtain

o0

can
oo

can
oo

n
oo — st et 2 < ST 2 ml| 2+ o (el 12+ eai

=1

can
oo

+12 €0,
+ [|s¢]]

can)
< 2. ¢(m) . 2ZK,sec+1 ‘n- p/2
+p- <C1 .o - ¢(m)3/2 .9 . 9ZKsectl
+ ¢(m) .92. QZK,sec+1 ‘n-20
4+ ¢ \/E . ¢(m) .92. 22K5ec+1 n- 20)

|2 e

41
= ¢(m) - 27K=+2 .y p. (5+c1-0-¢(m)1/2+20-c1-\/ﬁ)

__ pndishonest
- Bclean

Using this bound we can then derive the parameters for the BGV system using exactly the same methodology
as can be found in [2].

6 Results

Recall we have three different security parameters in play, apart from the computational security parameter s
of the underlying BGV encryption scheme. The main benefit of TopGear over HighGear is that it potentially
enables higher values of the parameter Snd_sec to be obtained. Recall 275" i the probability that an
adversary will be able to produce a convincing ZKPoK for an invalid input. The other two security parameters
are ZK_sec and DD _sec, which measure the statistical distance of coefficients of ring elements generated in a
protocol to the same coefficients being generated uniformly at random from a similar range.

In the context of the HighGear ZKPoK in the Overdrive paper [25] the two security parameters are set
to be equal, i.e. ZK_sec = Snd_sec. In practice the value of Snd_sec needs to be very low for the HighGear
ZKPoK as it has a direct effect on the memory consumption of the underlying protocol. Thus in SCALE
v1.2 the default value for Snd_sec is 40. This is unfortunate as having a high probability of an adversary
being able to get away with cheating in a ZKPoK is not desirable. The first goal of our work is to enable
Snd_sec to be taken to be as large as is desired, whilst also obtaining an efficiency saving.

As a second goal we also aim to increase the values of ZK_sec and DD_sec. These measure statistical
distances of coefficients. But recall the ring elements have many thousands of coefficients, and in the course
of a protocol execution we generate many such ring elements. Picking ZK_sec and DD_sec at low values is also
not desirable, is it potentially introduces leakage about the either the plaintexts or the secret keys. Hence,
after demonstrating the effect of our new protocol with respect to the increase in Snd_sec, we then turn to
examining the effect of increasing the other security parameters.

In Table 1 we give various parameter sizes for the degree N and moduli ¢y = pg, g1 = po - p1 for different
plaintext space sizes p, and different security levels ZK_sec, Snd_sec, DD_sec and computational security
parameter , and two parties’. We selected parameters for which ZK_sec, DD_sec < Snd_sec to keep the
table managable. We use the methodology described in [2] to derive parameter sizes for both HighGear and
TopGear; which maps the computational security parameter is mapped to lattice parameters using Albrecht’s
tool®. A row which with values of * in the ZK_sec columns means that the values do not change when one
varies this parameter is 40 or 80.

7 Similar values can be obtained for other values of n, we selected n = 2 purely for illustration here, the effect of n
on the values is relatively minor.
8 https://bitbucket.org/malb/lwe-estimator

15

https://bitbucket.org/malb/lwe-estimator

HighGear TopGear
log, p| x |DD_sec|Snd_sec|ZK_sec N |log, po|logs p1 N |U|V|log, po|logs p1
64 |80 | 40 40 40 8192 | 177 114 8192 |6 3] 176 115
64 | 80 40 80 40 8192 | 177 114 8192 |12|6| 176 115
64 | 80 40 128 40 8192 | 177 114 8192 |18|9| 176 115
64 |80 | 40 80 80 8192 | 177 144 8192 |12|6| 176 115
64 |80 | 40 128 80 16384| 177 174 8192 |18|9| 167 115
64 | 80 80 40 40 16384| 218 163 |[16384| 6 | 3| 217 164
64 | 80 80 80 40 16384| 218 163 ||16384[12| 6| 217 164
64 | 80 80 128 40 16384| 218 163 ||16384[18|9| 217 164
64 | 80 80 80 80 16384| 218 163 ||16384[12| 6| 217 164
64 | 80 80 128 80 16384| 218 173 ||16384[18| 9| 217 164
64 |80 | 128 40 40 16384| 266 205 [[16384] 6 [3] 265 206
64 |80 | 128 80 * 16384| 266 205 [|16384|12|6| 265 206
64 |80 | 128 128 * 16384| 266 205 ||16384|18|9| 265 206
64 |128| 40 40 40 16384 178 123 ||16384| 6 (3| 177 124
64 |128| 40 80 40 16384| 178 123 ||16384|12| 6| 177 124
64 |128| 40 128 40 16384| 178 133 ||16384[18|9| 177 124
64 |128| 40 80 80 16384| 178 153 ||16384[12| 6| 177 124
64 |128| 40 128 80 16384| 178 173 ||16384[18| 9| 177 124
64 [128| 80 40 40 16384| 218 163 [[16384] 6 3| 217 164
64 |128| 80 80 40 16384| 218 163 ||16384[12| 6| 217 164
64 |128| 80 128 40 16384| 218 163 ||16384[18|9| 217 164
64 |128| 80 80 80 16384| 218 163 ||16384(12| 6| 217 164
64 |128| 80 128 80 16384 218 173 |116384|18| 9| 217 164
64 [128| 128 40 * 32768| 266 205 [[32768] 6 [3] 266 205
64 |128| 128 80 * 32768| 266 205 [|32768|10|5| 266 205
64 |[128| 128 128 * 32768| 266 205 [|32768|16|8| 266 205
64 |128| 128 128 128 ||32768| 266 225 ||32768|16| 8| 266 205
128 [80 [40 40 40 16384| 305 186 [[16384]6[3| 305 186
128 |80 | 40 80 * 16384| 305 186 ||16384[12| 6| 305 186
128 | 80 | 40 128 * 16384| 305 186 ||16384(18|9| 305 186
128 | 80 80 40 * 16384| 345 226 [/16384[6 [3] 345 226
128 | 80 80 80 * 16384| 345 226 [|16384|12|6| 345 226
128 | 80 80 128 * 16384 345 226 ||16384|18|9| 345 226
128 [80 | 128 40 * 16384 393 268 [/16384] 6 [3] 393 268
128 |80 | 128 80 * 16384| 393 268 [|16384|12|6| 393 268
128 |80 | 128 128 * 16384| 393 268 ||16384|18|9| 393 268
128 [128] 40 40 * 32768| 306 185 [[32768] 6|3 306 185
128 |128| 40 80 * 32768 306 185 32768(10| 5| 306 185
128 |128| 40 128 * 32768| 306 185 ||32768|16| 8| 306 185
128 [128] 80 40 * 32768| 346 225 [|32768| 6 |3 | 346 225
128 [128]| 80 80 * 32768| 346 225 [|32768|10| 5| 346 225
128 |128] 80 128 * 32768| 346 225 1|32768|16| 8| 346 225
128 [128] 128 40 * 32768| 394 277 1132768] 6 3] 394 277
128 [128] 128 80 * 32768| 394 277 1|32768|10| 5| 394 277
128 [128] 128 128 * 32768| 394 277 1|32768|16| 8| 394 277
128 |128| 128 128 128 ||32768| 394 277 113276816/ 8| 394 277

Table 1. SHE parameters sizes for various security parameters in HighGear and TopGear (two parties). With
DD_sec, ZK_sec < Snd_sec and DD_sec, ZK_sec, Snd_sec € {40, 80, 128}. The light grayed rows show the default param-
eters used in SCALE-MAMBA v1.2. The medium gray denote the parameters we use in the experiments in Sections
6.1 and 6.2. The dark grayed rows show the parameters we would recommend, i.e. the ones we use in Section 6.3.

16

From the table we see that the values of ZK_sec and Snd_sec produce relatively little effect on the overall
parameter sizes, especially for large values of the plaintext modulus p. This is because the modulus switch,
within the homomorphic evaluation, squashes the noise by a factor of at least p. The values ZK_sec and
Snd_sec only blow up the noise by a factor of 22X-sec+Snd-sec/2+2 (for HighGear) and 22%-=¢*2 (for TopGear),
and hence a large p value cancels out this increase in noise due to the ZKPoK security parameters. In addition
the parameter sizes are identical for both HighGear and TopGear, except in the case of some parameters for
low values of log, p.

We based our implementation and experiments on the SCALE-MAMBA system [2] which has an imple-
mentation of the HighGear protocol, which we modified to test against our TopGear protocol. We focused
on the case of 128-bit plaintext moduli in our experiments, being the recommended size in SCALE-MAMBA
v1.2 to support other MPC operations (such as fixed point operations). We first baselined the implementa-
tion in SCALE-MAMBA of HighGear against the implementation reported in [25]. The experiments in [25]
were executed on i7-4790 and i7-3770S CPUs, compared to our experiments which utilized i7-7700K CPUs.
From a pure CPU point of view our machines should be roughly 30% faster. The ping time between our
machines was 0.47 milliseconds, whereas that for [25] was 0.3 milliseconds.

Keller et al [25], in the case of 128-bit plaintext moduli, and with the security settings equivalent to
our setting of DD_sec = ZK_sec = Snd_sec = 64, utilize a ciphertext modulus of 572 bits, whereas SCALE-
MAMBA v1.2 utilizes a ciphertext modulus of 541 bits. In this setting Keller et al [25] achieve a maximum
throughput of 5600 triples per second, whereas SCALE-MAMBA’s implementation of HighGear obtains a
maximum throughput of roughly 2900 triples per second. We suspect the reason for the difference in costs is
that SCALE-MAMBA is performing other operations related to storing the triples for later consumption by
online operations. This also means that memory utilization grows as more triples are produced, leading to
larger numbers of non-local memory accesses. These effects decrease the measurable triple production rate
in SCALE-MAMBA.

We now turn to examining the performance differences between HighGear and the new TopGear protocol
within our modified version of SCALE-MAMBA. We first looked at two security settings so as to isolate
the effect of increasing the Snd_sec parameter alone. Our first setting was the standard SCALE-MAMBA
setting of DD_sec = ZK _sec = Snd_sec = 40, our second was the more secure setting of DD _sec = ZK_sec = 40
and Snd_sec = 128. There are two main parameters in SCALE-MAMBA one can tweak which affect triple
production; i) the number of threads devoted to executing the zero-knowledge proofs and ii) the number
of threads devoted to taking the output of these proofs and producing triples. We call these two values
tzk and tt,; we looked at values for which tzk,tt, € {1,2,4,8}. We focus here on triple production for
simplicity, a similar situation to that described below occurs in the case of bit production. We examine
memory consumption (Section 6.1) and triple production (Section 6.2) in these settings so as to see the
effect of changing Snd_sec. After this we examine increasing all the security parameters in Section 6.3, and
the effect this has on memory and triple production.

6.1 Memory Consumption

We see from Table 1 that the parameters in TopGear for the underlying FHE scheme are generally identical
to the those in HighGear. The only difference being when the extra soundness slack in HighGear compared
to TopGear is not counter balanced by size of the underlying plaintext modulus. However, the real affect of
TopGear comes in the amount of data one has to simultaneously process. Running the implementation in
SCALE-MAMBA for HighGear one sees immediately that memory usage is a main constraint of the system.

A rough (under) estimation of the memory requirements of the ZKPoKs in HighGear and TopGear can
be given by the sizes of the input and auxillary ciphertexts to the ZKPoK. A single ciphertext takes (roughly)
¢(m) -logs(po - p1) bits to represent it. There are U input ciphertexts and V auxillary ciphertexts per player
(where V is set to 2- U — 1 in HighGear). Hence, the total number of bits required to process a ZKPoK is
at least

(U+V)-n-6(m) - logy(po - p1)-

Now in HighGear we need to take U = Snd_sec, which is what limits the applicability of large soundness
security parameters in the implementations of HighGear. Whereas in TopGear we can take V' = (Snd_sec +

17

2)/log,(2- N + 1), and have arbitrary choice on U, although in practice we select U = 2 - V. For the proofs
for the encryptions of o we have U = 1 and set V = 16, simply to reduce memory costs, and then repeat the
TopGear proof Snd_sec/16 times. Thus, all other things being equal (which the above table gives evidence
for) the memory requirements in TopGear are reduced by a factor of roughly log,(2 - N 4 1). For the range
of N under consideration (i.e. 8192 to 32768) this gives a memory saving of a factor of between 14 and 16. A
similar saving occurs in the amount of data which needs to be transferred when executing the ZKPoK. Note,
this is purely the saving for holding the zero-knowledge proofs, the overall effect on memory consumption
will be much less.

To see this in practice we examined the memory consumption of running HighGear and TopGear with
the above settings (of DD_sec = ZK_sec = Snd_sec = 40, and DD _sec = ZK_sec = 40, Snd_sec = 128) the
results being given in Tables 2 and 3. We give the percentage memory consumption (given in thems of the
percentage maximum resident set size obtained from /usr/bin/time -v). This is the maximum percentage
memory consumed by the whole system when producing two million multiplication triples only. This value
can vary from run to run as the different threads allocate and de-allocate memory, thus figures will inevitably
vary. However, they do give an indication of memory overall consumption in a given configuration.

tzk tzk
tTv 1 2 4 8 t1v 1 2 4 8
1 25 | 41 | 68 | 98 1 70 | 98 | - -
2 25 | 38 | 68 | 98 2 72 | 98 | - -
4 28 49 75 98 4 73 98 - -
8 32 | 52 | 81 | 98 8 76 | 98 | - -
DD_sec = ZK_sec = Snd_sec = 40 DD_sec = ZK_sec = 40, Snd_sec = 128

Table 2. Percentage memory consumption for HighGear for two players and log, p = 128.

tzk tzk
tr 1 2 4 8 tr 1 2 4 8
1 7 9 15 | 27 1 11 | 19 | 33 | 63
2 8 10 15 26 2 12 18 33 64
4 10 12 17 28 4 14 21 34 64
8 14 | 17 | 21 | 33 8 16 | 24 | 39 | 70
DD_sec = ZK_sec = Snd_sec = 40 DD_sec = ZK_sec = 40, Snd_sec = 128

Table 3. Percentage memory consumption for TopGear for two players and log, p = 128.

We find that for HighGear with the higher security parameters we are unable to perform some experiments
due to memory consumption producing an abort of the SCALE-MAMBA system. We see immediately that
with TopGear we obtain much reduced memory consumption, and we are able to cope with a much larger
value for the security parameter Snd_sec.

6.2 Triple Production Throughput

We now turn to looking at throughput of the overall triple production process. We have found the best metric
to look at is the average time per triple. However due to the set up costs, (e.g. producing the zero-knowledge
proofs for the ciphertext encrypting the MAC key «) this average time decreases as one runs the system. In
the Appendix we provide graphs to show how this average time decreases as more triples are produced for

18

various settings. In this section we summarize the average number of triples per second we could obtain for
the various settings, after computing two million triples. See Tables 4 and 5 for a summary.

tzk tzk
tTe 1 2 4 8 tTr 1 2 4 8
1 1503 | 1602 | 1562 | 1335 1 1240 | 1369 | - -
2 1488 2347 2212 1976 2 1426 1834 - -
4 1272 1876 2150 1865 4 1231 1612 - -
8 976 1307 | 1464 | 1533 8 940 1129 | - -
DD _sec = ZK_sec = Snd_sec = 40 DD _sec = ZK_sec = 40, Snd_sec = 128

Table 4. Maximum Triples per Second for HighGear for two players and log, p = 128, after computing two million
triples.

tzk tzk
t1r 1 2 4 8 ttr 1 2 4 8
1 1594 1589 1579 1569 1 1501 1490 1490 1426
2 2421 2493 2463 2444 2 2267 2192 2222 2141
4 2364 2493 2590 2481 4 2293 2237 2272 2114
8 2644 1650 1658 1642 8 1526 1540 1494 1464
DD_sec = ZK_sec = Snd_sec = 40 DD_sec = ZK_sec = 40, Snd_sec = 128

Table 5. Maximum Triples per Second for TopGear for two players and log, p = 128, after computing two million
triples.

We immediately see that actual performance for larger values of Snd_sec is better for TopGear, both due
to reduced memory consumption (U and V' are smaller), but also because the ratio of V' to U in HighGear
is larger than that in TopGear (2 vs 1/2 in general). Thus in practice the actual work needed per triple is
less in TopGear than in HighGear. In both security settings the TopGear protocol works best, when we have
t1r € {2, 4}.

6.3 Recommendations

TopGear allows one to utilize a higher security for the parameter Snd_sec than is currently normally done
in implementations of SPDZ. Given that 275" represents the probability that an adversary can pass of
an invalid ZKPoK as valid, the default SCALE-MAMBA v1.2 setting of Snd_sec = 40 is arguably too low.
Thus increasing it to 128 seems definitely prudent.

As mentioned above we also recommend using higher values for ZK_sec and DD _sec. Despite these mea-
suring statistical distances, and hence can be arguably smaller than Snd_sec, in practice they measure the
statistical distance of distributions of coefficients from uniformly random. Each ZKPoK /distributed decryp-
tion produces tens of thousands of such coefficients, and thus having DD_sec = ZK_sec = 40 is also probably
too low.

Thus we end by giving some experimental results using TopGear for settings of DD _sec = ZK_sec = 80,
Snd_sec = 128. and DD_sec = ZK_sec = Snd_sec = 128. Again we focus on the two party case with a plaintext
prime of 128 bits in length, with results giving in Tables 6 and 7. We see that with DD _sec = ZK_sec = 80 we
obtain a performance which is slightly less what SCALE-MAMBA v1.2 achieves using much weaker security
levels (comparing the values in Table 6 with the left tables in Table 2 and 4). On the other hand with

19

DD_sec = ZK_sec = 128 the performance drops of markedly. We thus believe that DD_sec = ZK_sec = 80
gives a suitable compromise.

Also notice in the tables here the high memory consumption in the case of t1, = 1 and tzk = 8 compared
to (say) tt, = 2 and tzx = 8. This is because in this case memory is increasing as the validated ciphertexts
are being produced by the eight zero-knowledge proof threads faster than the single triple production thread
can process them.

tzk tzk
tTe 1 2 4 8 tTe 1 2 4 8
1121935 | 75 1 |[1288 (85) 1303 (81)|1302 (83)[1237 (92)
2 13 | 19 | 33 | 65 2 /1904 (127)|1865 (79)|1930 (87)[1824 (92)
4 15 | 21 | 36 | 67 4 ||1798 (141)|1779 (94)[1773 (82)|1686 (90)
8 || 18| 26| 40 | 76 8 [|1183 (121)[1189 (90)|1152 (78)|1172 (76)
Memory Consumption Triples per Second

Table 6. Percentage memory consumption and triples per second for TopGear for two players with DD sec = ZK _sec =
80 and log, p = Snd_sec = 128. We also give (in brackets) the percentage throughput compared to the (low security)
standard SCALE-MAMBA v1.2 settings using HighGear.

tZK tZK
trr 1 2 4 8 tre 1 2 4 8
1 14 | 21 40 | 90 1 {]1066 (70)|1082 (72)|1070 (68)|1026 (76)
2 14 | 22 | 38 | 78 2 [|1485 (99)|1547 (65)|1466 (66)|1440 (72)
4 17 | 24 | 40 | 78 4 ||1358 (106)|1404 (74) (1445 (67)[1356 (72)
8 18 | 28 | 47 | 87 8 937 (96)| 984 (75)| 969 (66)| 938 (61)
Memory Consumption Triples per Second

Table 7. Percentage memory consumption and triples per second for TopGear for two players with log, p = DD_sec =
ZK_sec = Snd_sec = 128. Again, we also give (in brackets) the percentage throughput compared to the (low security)
standard SCALE-MAMBA v1.2 settings using HighGear.

Acknowledgments

This work has been supported by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and Space
and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070, and by the
FWO under an Odysseus project GOH9718N.

References

1. E. Alkim, L. Ducas, T. Péppelmann, and P. Schwabe. Post-quantum key exchange - A New Hope. In T. Holz and
S. Savage, editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016., pages 327-343. USENIX Association, 2016.

2. A. Aly, M. Keller, E. Orsini, D. Rotaru, P. Scholl, N. P. Smart, and T. Wood. SCALE-MAMBA v1.2: Documen-
tation, 2018.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyubashevsky. Sub-linear lattice-based zero-
knowledge arguments for arithmetic circuits. In H. Shacham and A. Boldyreva, editors, Advances in Cryptology
— CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science, pages 669-699, Santa Barbara,
CA, USA, Aug. 19-23, 2018. Springer, Heidelberg, Germany.

C. Baum, I. Damgard, K. G. Larsen, and M. Nielsen. How to prove knowledge of small secrets. In M. Robshaw and
J. Katz, editors, Advances in Cryptology — CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Computer
Science, pages 478-498, Santa Barbara, CA, USA, Aug. 14-18, 2016. Springer, Heidelberg, Germany.

C. Baum and V. Lyubashevsky. Simple amortized proofs of shortness for linear relations over polynomial rings.
Cryptology ePrint Archive, Report 2017/759, 2017. http://eprint.iacr.org/2017/759.

M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs: How to remove in-
tractability assumptions. In 20th Annual ACM Symposium on Theory of Computing, pages 113—-131, Chicago,
1L, USA, May 2-4, 1988. ACM Press.

R. Bendlin, I. Damgard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation.
In K. G. Paterson, editor, Advances in Cryptology — EUROCRYPT 2011, volume 6632 of Lecture Notes in
Computer Science, pages 169-188, Tallinn, Estonia, May 15-19, 2011. Springer, Heidelberg, Germany.

. F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven. Better zero-knowledge proofs for
lattice encryption and their application to group signatures. In P. Sarkar and T. Iwata, editors, Advances in
Cryptology — ASIACRYPT 2014, Part I, volume 8873 of Lecture Notes in Computer Science, pages 551-572,
Kaoshiung, Taiwan, R.O.C., Dec. 7-11, 2014. Springer, Heidelberg, Germany.

F. Benhamouda, S. Krenn, V. Lyubashevsky, and K. Pietrzak. Efficient zero-knowledge proofs for commitments
from learning with errors over rings. In G. Pernul, P. Y. A. Ryan, and E. R. Weippl, editors, ESORICS 2015:
20th European Symposium on Research in Computer Security, Part I, volume 9326 of Lecture Notes in Computer
Science, pages 305-325, Vienna, Austria, Sept. 21-25, 2015. Springer, Heidelberg, Germany.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrap-
ping. In S. Goldwasser, editor, ITCS 2012: 3rd Innovations in Theoretical Computer Science, pages 309-325,
Cambridge, MA, USA, Jan. 8-10, 2012. Association for Computing Machinery.

Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In R. Os-
trovsky, editor, 52nd Annual Symposium on Foundations of Computer Science, pages 97-106, Palm Springs, CA,
USA, Oct. 22-25, 2011. IEEE Computer Society Press.

R. Cramer and I. Damgard. On the amortized complexity of zero-knowledge protocols. In S. Halevi, editor,
Advances in Cryptology — CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 177-191,
Santa Barbara, CA, USA, Aug. 16-20, 2009. Springer, Heidelberg, Germany.

R. Cramer, I. Damgard, C. Xing, and C. Yuan. Amortized complexity of zero-knowledge proofs revisited: Achiev-
ing linear soundness slack. In J. Coron and J. B. Nielsen, editors, Advances in Cryptology — EUROCRYPT 2017,
Part I, volume 10210 of Lecture Notes in Computer Science, pages 479-500, Paris, France, Apr. 30 — May 4, 2017.
Springer, Heidelberg, Germany.

I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly secure MPC
for dishonest majority - or: Breaking the SPDZ limits. In J. Crampton, S. Jajodia, and K. Mayes, editors,
ESORICS 2013: 18th European Symposium on Research in Computer Security, volume 8134 of Lecture Notes in
Computer Science, pages 1-18, Egham, UK, Sept. 9-13, 2013. Springer, Heidelberg, Germany.

1. Damgard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology — CRYPTO 2012, volume 7417
of Lecture Notes in Computer Science, pages 643-662, Santa Barbara, CA, USA, Aug. 19-23, 2012. Springer,
Heidelberg, Germany.

R. del Pino and V. Lyubashevsky. Amortization with fewer equations for proving knowledge of small secrets. In
J. Katz and H. Shacham, editors, Advances in Cryptology — CRYPTO 2017, Part III, volume 10403 of Lecture
Notes in Computer Science, pages 365—394, Santa Barbara, CA, USA, Aug. 20-24, 2017. Springer, Heidelberg,
Germany.

R. del Pino, V. Lyubashevsky, and G. Seiler. Short discrete log proofs for FHE and Ring-LWE ciphertexts.
Cryptology ePrint Archive, Report 2019/057, 2019. http://eprint.iacr.org/2019/057.

L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal Gaussians. In R. Canetti
and J. A. Garay, editors, Advances in Cryptology — CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 40-56, Santa Barbara, CA, USA, Aug. 18-22, 2013. Springer, Heidelberg, Germany.
L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS-Dilithium: A
lattice-based digital signature scheme. TACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(1):238-268, 2018. https://tches.iacr.org/index.php/TCHES/article/view/839.

21

http://eprint.iacr.org/2017/759
http://eprint.iacr.org/2019/057
https://tches.iacr.org/index.php/TCHES/article/view/839

20

21.

22.

23.

24.

25.

26.

. C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic encryption. In M. Fischlin,
J. Buchmann, and M. Manulis, editors, PKC 2012: 15th International Conference on Theory and Practice of
Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science, pages 1-16, Darmstadt, Germany,
May 21-23, 2012. Springer, Heidelberg, Germany.

C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In D. Pointcheval
and T. Johansson, editors, Advances in Cryptology — EUROCRYPT 2012, volume 7237 of Lecture Notes in
Computer Science, pages 465—482, Cambridge, UK, Apr. 15-19, 2012. Springer, Heidelberg, Germany.

C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In R. Safavi-Naini and
R. Canetti, editors, Advances in Cryptology — CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 850-867, Santa Barbara, CA, USA, Aug. 19-23, 2012. Springer, Heidelberg, Germany.

S. Halevi and V. Shoup. Algorithms in HElib. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology —
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages 554-571, Santa Barbara, CA,
USA, Aug. 1721, 2014. Springer, Heidelberg, Germany.

M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster malicious arithmetic secure computation with oblivious
transfer. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 16: 23rd
Conference on Computer and Communications Security, pages 830-842, Vienna, Austria, Oct. 24-28, 2016. ACM
Press.

M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great again. In J. B. Nielsen and V. Rijmen,
editors, Advances in Cryptology — EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 158-189, Tel Aviv, Israel, Apr. 29 — May 3, 2018. Springer, Heidelberg, Germany.

V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In M. Matsui,
editor, Advances in Cryptology — ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages
598-616, Tokyo, Japan, Dec. 6-10, 2009. Springer, Heidelberg, Germany.

A Run Time Graphs

In

Figure 4 we provide graphs of the throughput for HighGear in our low security, Snd_sec = 40, setting,

with the comparable graph for TopGear in Figure 5 for two players; given graphs up to the production of
2 million triples. The fact that the graphs are not straight, they have bumps in them, is because the triple
production threads are producing triples faster than the ciphertexts can be supplied by the threads doing the
ZKPoKs. Thus the triple production threads often need to wait until a ZKPoK has been completed before
they can proceed. In Figure 6 and Figure 7 we provide similar graphs of the throughput for HighGear and
TopGear in our high security setting Snd_sec = 128.

22

0.001

0.0008

0.0006

0.0004

0.001

0.0008

0.0006

0.0004

0

Fig. 4. Average time y to produce a triple given the number of triples that have been produced x for HighGear with

T T T
500,000 1,000,000 1,500,000 2,000,000
x

tzk =1

L

tzk = 4

parameters DD_sec = ZK_sec = Snd_sec = 40.
Blue t1+ = 1, Red ttv = 2, Green t1, = 4, Magenta t1, = 8

T T T
500,000 1,000,000 1,500,000 2,000,000
T

23

0.001

0.0008

0.0006

0.0004

0.001

0.0008

0.0006

0.0004

0

T T T
500,000 1,000,000 1,500,000 2,000,000
x

tzk = 2

0

T T T
500,000 1,000,000 1,500,000 2,000,000
T

tzxk = 8

0.001 0.001
0.0008 |- 0.0008 |-
= = \
0.0006 |- 0.0006 |- \‘\
J\\N\ .
\\/\I\‘ e,
0.0004 ‘ ‘ : 0.0004 ‘ ‘ AL
0 500,000 1,000,000 1,500,000 2,000,000 0 500,000 1,000,000 1,500,000 2,000,000
x T

tzk =1 tzk = 2
0.001 — 0.001

W\

W\
\,
0.0008 |- \ 0.0008 |-
‘4 ‘
= =
\,‘\ .

0.0006 |- \J\& ; 0.0006 |

Mg\
0.0004 ‘ ‘ ASSS SN 0.0004 ‘ ‘ ‘ S

0 500,000 1,000,000 1,500,000 2,000,000 0 500,000 1,000,000 1,500,000 2,000,000
T T

tzk =4 tzk =8

Fig. 5. Average time y to produce a triple given the number of triples that have been produced x for TopGear with

parameters DD_sec = ZK_sec = Snd_sec = 40.
Blue t1+ = 1, Red ttv = 2, Green t1, = 4, Magenta t1, = 8

24

0.001

0.0008

0.0006

0.0004

Fig. 6. Average time y to produce a triple given the number of triples that have been produced = for HighGear with

\

0

T T T
500,000 1,000,000 1,500,000 2,000,000
x

tzk =1

parameters DD _sec = ZK_sec = 40 and Snd_sec = 128.
Blue t1, = 1, Red t1. = 2, Green t1, = 4, Magenta t1, = 8

0.001

0.0008

0.0006

0.0004

0.001

0.0008

0.0006

0.0004

Fig. 7. Average time y to produce a triple given the number of triples that have been produced z for TopGear with

T W
W
i \
\ \
\‘\\ w\
[W \
\v\ \N\\\
%
i \\\
\\\,\N\/\,\
\\'\\N\,\,
T T T
0 500,000 1,000,000 1,500,000 2,000,000
x
tzk = 1
T T T
0 500,000 1,000,000 1,500,000 2,000,000
x

tzk =4

parameters DD_sec = ZK_sec = 40 and Snd_sec = 128.
Blue t1+ = 1, Red ttv = 2, Green t1, = 4, Magenta t1, = 8

25

0.001

0.0008

0.0006

0.0004

0.001

0.0008

0.0006

0.0004

0.001

0.0008

0.0006

0.0004

[
% *\ N
W
\\\\
| \\\M\N
T T T
0 500,000 1,000,000 1,500,000 2,000,000

x

tzk = 2

‘\N
\N\M
T T T
0 500,000 1,000,000 1,500,000 2,000,000
x
tzk = 2
W\ V\J \ Ny
\ i
Y \
\\4
: W o
) N
\\\\
T T T
0 500,000 1,000,000 1,500,000 2,000,000
x

tzxk = 8

	Using TopGear in Overdrive: A more efficient ZKPoK for SPDZ

