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Abstract. This paper presents a very practical key recovery attack on Speck32/64
reduced to 11 rounds based on a novel type of differential distinguisher using machine
learning. These distinguishers exceed distinguishers based on the entire differential
distribution table of Speck32/64 in accuracy, specificity and sensitivity. We show that
they obtain significant gain from features of the output distribution that are invisible
to the differential distribution table. The key recovery attack has been completely
verified empirically and has an average runtime of approximately three minutes on a
desktop computer with a fast graphics card or about 30 minutes on the same machine
when not using the graphics card. This corresponds to roughly 41 bits of remaining
security for 11-round Speck32/64, which is a substantial improvement over previous
literature. The average data complexity of our attack is slightly lower than the best
previous attack on the same number of rounds.
While our attack is based on a known input difference taken from the literature, we
also show that neural networks can be used to rapidly (within a matter of minutes on
our machine) find good input differences without using prior human cryptanalysis.
Keywords: Deep Learning · Differential Cryptanalysis · Speck

1 Introduction
1.1 Motivation and goals of this paper
Deep Learning has led to great improvements recently on a number of difficult tasks
ranging from machine translation [BCB14, WSC+16] and autonomous driving [CSKX15]
to playing various abstract board games at superhuman level [CS15, SHM+16, SHS+17].
In cryptography, practical work using machine learning techniques has mostly focused on
side-channel analysis [MPP16, PHG16, PSK+18]. On a theoretical level, it has long been
recognized that cryptography and machine learning are naturally linked fields, see e.g. the
survey of the subject given in [Riv91]. Many cryptographic tasks can be naturally framed
as learning tasks and consequently cryptographic hardness assumptions may for instance
yield examples for distributions that are by design difficult to learn.

As far as regards cryptanalysis, few authors have conducted practical experiments to test
the applicability of machine learning to cryptanalytic problems. Indeed, a straightforward,
black-box application of machine learning is unpromising even for many tasks that are
cryptanalytically trivial. For instance, it should usually be practically impossible to learn
to simulate a cryptographically strong cipher if only given black box access to the cipher
(although there are counter-examples to this, e.g. the one-time pad provides perfect secrecy
but is easy to learn in this setting). The fact that a human cryptographer understands the
design of the primitive they want to attack certainly gives a large advantage to handcrafted
solutions.

However, this does not mean that machine learning cannot be used successfully to
solve nontrivial cryptographic problems. The logical structure of a cryptographic problem
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can be used at various steps of the development process of a machine learned solution,
e.g. in the design of the initial model, by pretraining the model on related problems or by
the choice of presentation and preprocessing of training data. The cryptographer can in
addition use their understanding of the mechanism under study by designing a subproblem
that can possibly be attacked by machine learning.

This paper therefore looks at the possibility of using machine learning as a tool for
the rapid prototyping of parts of cryptanalytic attacks and uses for this the exploitation
of differential properties of the Speck32/64 block cipher as a test case. This is mainly
motivated by the fact that Speck is easy to implement and has a fairly large amount of
published cryptanalysis. We use the smallest version of Speck primarily because for 32-bit
Speck we can optimize classical differential distinguishers very effectively. This allows us to
benchmark the performance of our machine learning models against very strong classical
baselines.

1.2 Contributions and structure of this paper
Main results This paper tries to teach neural networks to exploit differential properties
of round-reduced Speck. To this end, we train neural networks to distinguish the output
of Speck with a given input difference from random data. To test the strength of these
machine-learned distinguishers, we first calculate the expected efficiency of some multiple-
differential distinguishers for round-reduced Speck32/64 that use traditional cryptanalytic
techniques. These are based on computing and using the complete difference distribution
induced by a given input difference for the effort of distinguishing Speck output from
random data. This is the strongest form of differential distinguishing attack known
that does not involve key search and to the best of our knowledge, the efficiency of
distinguishing attacks of this kind has not been studied before for any Speck variant. A
fairly high detection efficiency is achieved for up to about seven rounds past our chosen
input difference.

Our neural distinguishers outperform these very strong baselines in terms of classifier
accuracy, sensitivity and specificity. We further investigate this by designing a cryptographic
task in which the adversary has to distinguish two ciphertext pair distributions that have
exactly the same ciphertext difference distribution. We find that our neural distinguishers
perform fairly well in this game, reinforcing the observation that the neural distinguishers
use features not represented in the differential distribution table.

However, the evaluation of a deep residual neural network is fairly costly compared to
traditional distinguishers used in differential cryptanalysis, and the real test of a novel
distinguisher is whether it can be used to improve key recovery attacks. In order to test
cryptographic usefulness, we construct a partial key recovery attack against 11 (out of 22)
rounds of Speck32/64 based on a lightweight version of our neural distinguishers. The
attack is expected to recover the last two subkeys after 213.6 chosen-plaintext queries at a
computational complexity equivalent to about 241 Speck encryptions; expected average
wall time to recovery of the last two subkeys on a desktop computer with a single GTX 1080
Ti graphics card is about three minutes in our implementation. The closest comparison to
this in the literature might be the attack on Speck32/64 reduced to 11 rounds presented
in [Din14], which needs an expected 214 chosen plaintexts to recover a Speck key with a
computational effort of about 246 reduced Speck evaluations. A summary may be found in
Table 3.

While other authors have tried to use neural networks for cryptanalytic tasks (see e.g.
[AEA15, DH14, Ala12, LMSV07, CLC12, dMX18] and the references cited therein), this
paper is to the best of our knowledge the first work that compares cryptanalysis performed
by a deep neural network to solving the same problems with strong, well-understood
conventional cryptanalytic tools. It is also to the best of our knowledge the first paper
to combine neural networks with strong conventional cryptanalysis techniques and the
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Table 1: Summary of the main distinguishing attacks presented in this paper for the
conventional setting of random or real distinguishing tasks. Accuracies given are best
available empirical estimates on a test set containing an equal number of examples for
both distributions.

ID Type Rounds Accuracy Reference
D5 Multiple differential real or ran-

dom distinguisher
5 0.911 Section 3

D7- Multiple differential real or ran-
dom distinguisher using an empir-
ically computed differential distri-
bution table (sample size: 1011)

7 0.541 Section 3

NC5 Deep residual neural network
solving the same task as D5

5 0.929 Section 4

NC7 Deep residual neural network
solving the same task as D7

7 0.611 Section 4

Search Perfect differential real or random
distinguisher solving the D5 task
based on optimized key search
used as a final benchmark.

5 ≈ 0.95 Section 3

Table 2: Summary of the main distinguishing attacks presented in this paper in the setting
of the real differences experiment. In the real differences experiment, the adversary must
distinguish execution of a primitive F based on seeing two output blocks with a known
input difference from F ′ = F ⊕ C, where C is a random value of appropriate bit size.

ID Type Rounds Accuracy Reference
Add Perfect real differences distin-

guisher for addition modulo 2n
- 0.864 (for

n = 16)
Section 5

NAdd Neural real differences distin-
guisher for addition modulo 2n

- 0.865 (for
n = 16)

Section 5

NC5
retrained

Same as for the D5 task 5 0.761 Section 5

Search_RD Search modified to solve the five
round real differences task for
Speck32/64

5 0.81 Section 5

first paper to demonstrate a neural network based attack on a symmetric cryptographic
primitive that improves upon the published state of the art.

The comparison with traditional techniques serves in this paper both a benchmark-
ing purpose and heuristically also as an additional safeguard against possible flaws in
experimental setup. In the examples here considered, the performance of our deep neural
networks is competitive with results obtained classically.

The most important distinguishing attacks developed in this paper are summarised in
Tables 1 and 2.

Structure of the paper In section 2, we give a short overview of the Speck family of
block ciphers and discuss some basic cryptographic properties. Nothing in this section
is new, but it is useful to explicitly state the mentioned properties to understand both
some aspects and possible extensions of the manually developed distinguishers of section 3.
In our machine learning experiments, input of prior knowledge into the learning system
is restricted to knowledge of the word-oriented structure of the cipher, the notion that
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Table 3: Summary of key recovery attacks on 11 round Speck32/64. Computational
complexity is given in terms of Speck evaluations on a modern CPU, i.e. assuming full
utilisation of SIMD parallelism for fast key search.

Type Complexity Data Source
Single-trail differential 246 214 CP [Din14]
Neural multiple differential 241 213.6 CP This paper, section

4

bit-sliced functions might be important, and the use of a fixed input difference in sample
generation.

In section 3, we systematically develop new high-gain random-or-real differential
distinguishers for round-reduced Speck based on an approach similar to that used on
KATAN32 in [AL12]. These distinguishers are based on calculating for Speck reduced to 5
and 6 rounds the probability of observed differences based on the transition probabilities of
all relevant differential paths. For seven rounds, we use empirically determined frequencies
of differential states based on 1011 observations. This gives distinguishers with overall
classification accuracy of 91.1 percent for five rounds, 75.5 percent for six rounds, and 54.1
percent for seven rounds, given only two blocks of ciphertext for an unknown plaintext
with the chosen input difference. To illustrate the possible benefit of considering the full
ciphertext pair distribution instead of the distribution of observed output differences, we
also develop a distinguisher in the chosen-ciphertext setting that uses a simple property
of Speck to this end as well as a five-round chosen-plaintext distinguisher based on key
search. Data on our five- and seven round distinguishers is summarised in Table 1.

In section 4, we first revisit the distinguishing problems on 5,6, and 7 rounds by training
deep residual neural networks to solve them. We describe in detail the learning pipeline,
data preprocessing and model structure for our best model. Our best models show a
distinguishing power that exceeds the all-in-one purely differential attacks outlined in
section 3, giving overall classification accuracies of approximately 93, 79 and 61 percent
for the five, six and seven round distinguishing tasks discussed previously; sensitivity and
specificity of the neural classifiers also exceed baseline. We further show that the internal
input representation of our neural networks can be used to rapidly develop distinguishers
for round numbers and input differences different from the ones seen in training. For
instance, a few examples of the output distribution induced by the input difference used
in our main attacks for six rounds usually suffice to train a fairly strong distinguisher for
six-round Speck if we already have a neural distinguisher trained to distinguish three-round
Speck with a fixed random input difference (see Figure 2). The necessary retraining can
be done in roughly a millisecond on our machine. We use this to automatically find good
input differences for Speck32/64 without using prior human cryptanalysis.

In section 5, we further investigate the capabilities of our networks by introducing
a differential cryptanalytic task which we call the real differences experiment where the
distinguishers of section 3 are made useless. In this model, the adversary has to distinguish
a real ciphertext C = (C0, C1) obtained by encrypting two blocks of data P0, P1 with a
known plaintext difference ∆ from ciphertext that has additionally been bitwise-added
with a random masking value Kout ∈ {0, 1}b, where b is the block size of the primitive
considered.

We show that our best neural models for the main distinguishing task discussed in
section 4 have discovered ways to win in this experiment significantly more often than
random guessing without any retraining. We perform retraining in the five-round example
and find that this significantly improves performance, although a significant gap remains
compared to a manually designed benchmark that employs partial key search. The
predictive performance of the key search based benchmark comes, however, at a large price
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the form of required computing power. We also discuss a concrete example of a ciphertext
pair that is misclassified by traditional differential distinguishers.

As a toy example, we analyze the differential properties of addition modulo 2n with
regards to xor-addition in the real differences experiment, deriving an optimal distinguisher
with running time linear in the size of the input data. We then train a recurrent neural
network using the long short term memory framework [HS97] to solve the same task for
16-bit integers, finding close to optimal performance of the neural model on a test dataset.
We test how the neural model scales with increasing input bitsize and find that scaling
is without any retraining likewise similar to the optimal distinguisher, proving that the
result is not substantially due to overfitting on the training dataset with relatively low
bitsize examples.

In section 6 we discuss our results and possible extensions of this work.

1.3 Related work

1.3.1 Related cryptographic work

Speck has since its publication [BTCS+15] received a fair amount of analysis, see e.g.
[BSS+15] for a review. We focus only on those works that are most relevant to the present
paper.

The differential cryptanalysis of Speck was first studied by Abed, List, Lucks and
Wenzel in [ALLW14]. They constructed efficient differential trails for round-reduced
versions of all members of the Speck family of ciphers and showed how to use these trails
for key recovery. For Speck32/64, the round 3 difference of their 9-round trail is used in
the present work as the input difference required by our differential distinguishers.

In [Din14], Dinur improved the analysis given in [ALLW14] by using a two-round guess
and determine attack to speed up key recovery and extend the number of rounds that can
be attacked. The two-round guess and determine stage of their attack takes as input a
bitwise input difference and the cipher output two rounds later and returns all possible
solutions for the subkeys used in these final rounds. In section 3, we use their two-round
attack to construct a practical distinguisher for Speck reduced to five rounds that exploits
the nonuniformity of the ciphertext pair distribution perfectly in the setting where only
the input difference but not the input values to the cipher are known.

Biryukov and Velichkov proposed in [BVLC16] a framework for the automatic search
for optimal single differential trails of Speck and further improved on the differential
trails found in [ALLW14]. They also showed that Speck is not a Markov cipher. This
latter finding is reinforced by our finding that neural distinguishers on Speck can for
a nontrivial number of rounds outperform in terms of prediction accuracy all purely
differential distinguishers.

Differential attacks are most useful in the chosen plaintext setting, as the adversary
needs to see the output of the primitive under study given plaintext inputs with a particular
chosen difference. The most powerful attacks against round-reduced Speck that have been
put forward in the known plaintext setting come from linear cryptanalysis [AB16, LFW+16].

Multiple differential cryptanalysis as an extension of truncated differential cryptanalysis
was first studied by Blondeau and Gerard in [BG11]. A multiple-differential attack
framework for block ciphers with small block size which under the assumption that
the relevant differential transition probabilities can be calculated correctly exploits the
difference between the wrong-key and right-key difference distributions perfectly was
developed by Albrecht and Leander [AL12] and used to provide new cryptanalytic results
on the KATAN32 block cipher, significantly extending the number of rounds that can be
shown to be attackable.



6 Improving Attacks on Speck32/64 using Deep Learning

1.3.2 Prior work on machine learning and data-driven techniques in cryptography

A number of works have explored the use of machine learning and broadly applicable
statistical techniques for cryptanalytic purposes previously. We give a brief review here.

For the purpose of this review, precomputation attacks are generally viewed as not
being machine learning.

Laskari, Meletiou, Stamatiou and Vrahatis [LMSV07] reported some success (in terms
of search tree size, not necessarily in terms of execution time) compared to the baseline
given by unoptimized brute force search in applying evolutionary computing methods
to the problem of recovering additional subkey bits in four- and six round reduced DES
subsequent to a classical differential attack. They also reported some evidence of successful
learning (but not of any advantage over traditional techniques) in neural networks trained
to solve various problems from classical public key cryptography with extremely small
parameter sizes.

A few authors have looked at the possibility of using machine learning directly to
distinguish between or to otherwise attack unreduced modern ciphers. From a cryptographic
point of view, this is clearly expected to be impossible, at least unless mode-of-operation
or other implementation issues make it feasible. This is e.g. also the conclusion reached by
Chou, Lin and Chen [CLC12], who perform some experiments along these lines and give a
review of the literature.

Rivest in [Riv91] reviewed various connections between machine learning and crypto-
graphy. He also suggested some possible directions of research in cryptanalytic applications
of machine learning.

Greydanus reported that recurrent neural networks can in a black box setting learn to
simulate a restricted version of Enigma [Gre17].

Purely data driven attacks have been used with good success e.g. against RC4 by
Paterson, Poettering and Schuldt [PPS14]. They basically learn from a very large amount
of RC4 keystream examples a Bayesian model of single-byte and two-byte biases of RC4.
This model is then used to derive some plaintext data given on the order of millions of
encryptions of the same plaintext.

2 The Speck family of block ciphers
2.1 Notations and conventions
Bitwise addition will in the sequel be denoted by ⊕, modular addition modulo 2n by �,
and bitwise rotation of a fixed-size word by � for rotation to the left and � for rotation
to the right. Here, k will be the word size of the primitive in question, which in the case
of Speck32/64 is 16.

In this paper, differential cryptanalysis will always mean cryptanalysis with regards
to bitwise differences in the adversary-controlled input to the cipher under study. Let
hence F : {0, 1}n → {0, 1}m be a map. Then, a differential transition for F is a pair
(∆in,∆out) ∈ {0, 1}n×{0, 1}m. The probability P (∆in → ∆out) of the differential transition
F : ∆in → ∆out is defined as

P (∆in → ∆out) := Card({x ∈ {0, 1}n : F (x)⊕ F (x⊕∆in) = ∆out})
2n .

In the description of differential attacks, it is sometimes necessary to specify specific
ciphertext or plaintext differences or ciphertext/plaintext states. A single Speck block (or
the difference between two blocks, depending on context) will in this paper be described by
a pair of hexadecimal numbers. For instance, for Speck32/64, a state difference in which
only the most significant bit is set will be written as 0x8000/8000.
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For a primitive iteratively constructed by repeated application of a simpler building
block (i.e. a round function), a differential trail will be a sequence of differential transitions,
given by a sequence of differences ∆0,∆1, . . . ,∆n. When the same concepts are applied
to key-dependent function families (e.g. block ciphers), any key dependence of the
differential probability will usually be suppressed, although such key-dependencies can
make a difference for security evaluation and although they are known to exist in ARX
primitives (see e.g. [AK18]).

As introduced by Lai, Massey and Murphy [LMM91], a Markov cipher is an iterated
block cipher in which the probability of the individual differential transitions is independent
of the concrete plaintext values if the subkeys applied to each round are chosen in a uniformly
random manner. It is common to suppress the effect of initial or final keyless permutations
on the assessment of the Markov property, because the details of message modifying the
data that goes into these initial or final permutations are outside the scope of differential
cryptanalysis. In the case of Speck, the first round up to and excluding the first subkey
addition is for instance a fixed initial permutation on the plaintext.

A differential attack is any cryptographic attack that uses nonrandom properties of
the output of a cryptographic primitive when it is being given input data with a known
differential distribution. The most general form of differential attack that has been formally
discussed in the literature are multiple differential attacks [BG11], where information from
an arbitrary set of differential transitions is exploited in order to maximise the gain of the
resulting attack.

In this paper, we will see both attacks that only use the information contained in
observed ciphertext differences and the full information contained in output ciphertext
pairs. When it is useful to distinguish between the two, we will call the former purely
differential attacks and the latter general differential attacks.

A distinguisher is a classifier C that accepts as input d data sampled independently
from a finite event space Ω according to one of n probability distributions Di, i = 1, . . . , n,
and outputs a guess of i for the submitted input item d. Here, i is chosen at each trial
with a probability pi from the set {1, 2, . . . , n}. The selection method for i together with
the distributions Di is known in advance and is in this paper called an experiment.

2.2 A short description of Speck
Speck is an iterated block cipher designed by Beaulieu, Treatman-Clark, Shors, Weeks,
Smith and Wingers [BTCS+15] for the NSA with the aim of building a cipher efficient in
software implementations in IoT devices [BSS+15]. It is an ARX construction, meaning
that it is a composition of the basic functions of modular addition (mod 2k), bitwise
rotation, and bitwise addition applied to k-bit words. In [BTCS+15], various versions of
Speck were proposed, which differ from each other by the values of some rotation constants,
the number of rounds suggested, as well as by the block and key sizes used. Generally,
Speckn/m will denote Speck with n bit block size and m bits key size.

The round function F : Fk2 × F2k
2 → F2k

2 of Speck is very simple. It takes as input a
k-bit subkey K and a cipher state consisting of two k-bit words (Li, Ri) and produces
from this the next round state (Li+1, Ri+1) as follows:

Li+1 := ((Li � α) �Ri)⊕K,Ri+1 := (Ri � β)⊕ Li+1,

where α, β are constants specific to each member of the Speck cipher family (α = 7, β = 2
for Speck32/64 and α = 8, β = 3 for the other variants).

The round function is applied a fixed number of times (22 rounds for Speck32/64) to
produce from the plaintext input the ciphertext output. The subkeys for each round are
generated from a master key by a non-linear key schedule that uses as its main building
block also this round function. Some details of the round function differ between different
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versions of Speck due to the different number of words in the master key. The key schedule
will not be analyzed in this paper and we therefore refer to [BTCS+15] for reference.

2.3 Basic cryptographic properties
The only non-linear operation in the Speck round function is the modular addition used in
the computation of Li+1, and the only key-dependent operation is the subkey addition. The
subkey addition happens after the modular addition, i.e. the cipher operation is completely
predictable until this first subkey addition. This leads to the following observation:

Observation 1. Differential and linear transitions through a single round of Speck do not
depend on the key but only on the plaintext value supplied as input. In a chosen plaintext
setting, the adversary can freely choose the difference at the output of round one. In a
known plaintext setting, any intermediate ciphertext differences at the round 1 output can
be computed from the plaintext.

We note that a conceptually simple way to achieve e.g. the prediction of round-1
ciphertext differences is just to take the two plain texts P0, P1 in question and compute
F (0, P0)⊕ F (0, P1).

While Observation 1 is not new and quite basic, we mention it explicitly because it is
used in the manually designed distinguisher with ID CC2. This is the only handcrafted
distinguisher in this paper that can claim a substantial advantage in both speed and
accuracy over neural distinguishers solving the same problem.

In [Din14], a method is given to complete any differential trail for two-round Speck
when only input and output differences are given. We summarize their method as follows:

Observation 2. Let ∆in,∆out ∈ Fn2 , with ∆in = (Lin, Rin) and ∆out = (Lout, Rout). If
the differential transition ∆in → ∆out is possible for two-round Speck, then the round 1
difference for the corresponding differential trail must have been (X ⊕ (Rin � β), X) with
X := (Rout ⊕ Lout)� β.

Note that combining this with Observation 1, it is straightforward to derive all inter-
mediate differences even for three-round Speck if the full plaintext pair and the ciphertext
differences are given.

3 Multiple differential attacks on Speck32/64
3.1 Pure differential distinguishers
Setting Multiple differential attacks [BG11] build cryptographic distinguishers by using
a set S of differential transitions for some cryptographic function F to characterise its
behaviour. The basic idea is that each transition ∆i → δj in S has associated with it
a probability pij of being observed given the experimental setting the cipher is being
studied in and another probability p̃ij in some situation that is being distinguished against.
Given some observed data O from the experiment, Bayesian inference can then be used to
determine e.g. if the observed data comes from the real or the random experiment.

Calculating differential transition probabilities In this section, all of our differential
distinguishers start with the round 3 difference of the differential trail given in Table 7
of [ALLW14], i.e. with the difference ∆ = 0x0040/0000. We then use algorithm 2 in
[LM01] to compute the differential behaviour of the nonlinear component of Speck32/64,
which is simply modular addition modulo 216. A meet-in-the-middle approach is used to
calculate arbitrary entries of the difference distribution table for five and six round Speck.
By performing a short tree search, we obtain a table T of all possible state differences
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Table 4: Accuracy of differential distinguishers processing two blocks of ciphertext for
Speck reduced to Nr rounds. Error bars reported are for 2σ confidence intervals. The
precision of reported figures was truncated to three decimal places. Each test set contained
exactly the same number of examples drawn from the real and the random distribution
respectively. Values reported are overall classification accuracy as well as accuracy on
samples taken from the real and the random distribution respectively.

Nr ID Accuracy True Positive Rate True Negative Rate Size test set
5 D5 0.913± 1.26 · 10−3 0.879± 2.06 · 10−3 0.947± 1.42 · 10−3 2 · 105

6 D6 0.755± 9.97 · 10−3 0.673± 1.33 · 10−2 0.837± 1.04 · 10−2 104

7 D7- 0.541± 2.23 · 10−3 0.433± 3.33 · 10−3 0.649± 3.02 · 10−3 2 · 105

and their associated transition probabilities three rounds past our chosen input difference.
Given a ciphertext pair to classify, we then enumerate all differential trails leading to one
of the intermediate states stored in T . When computing the probabilities of individual
trails in the transition graph, we assume that at each round, an intermediate ciphertext
pair with difference δ that is to be further processed has uniformly and independently
from previous round transitions been drawn from all ciphertext pairs with difference δ.
This means in particular that when computing the probability of a differential trail, the
transition probabilities for subsequent rounds can be multiplied.

This calculation works only if the cipher under study does not deviate too strongly
from the Markov property. We have therefore tested the validity of this model by also
testing the performance of distinguishers against five and six rounds of Speck based on
empirically approximating the difference distribution table by observing a sample of 1011

differential transitions. The distinguishers so obtained had lower accuracy than the Markov
model, indicating that model error is relatively benign.

For 7-round Speck, the calculation of exact differential probabilities using the full
Markov model for Speck was not practical on the machine used in this study. We instead
opted to estimate the transition probabilities for 7-round Speck empirically. To this end,
we first produced a size 200000 sample of real and random ciphertext pairs to classify. We
then attached counters initialized to zero to all the ciphertext differences in our sample,
generated a larger sample of 100 billion ciphertext pairs, and incremented each counter
whenever the corresponding difference appeared in this bigger sample.

Classification To distinguish between examples of real ciphertext pairs and examples
generated at random, we assume that random ciphertext pair differences are distributed
according to the uniform distribution on nonzero ciphertext blocks. Since we have good
approximations of the probability of the observed ciphertext difference in the real distri-
bution, standard Bayesian inference can be used to obtain a classification that exploits
differential non-uniformity perfectly up to model and double precision arithmetic rounding
error.

Results The performance of the distinguishers so obtained was measured by empirical
testing on a random test dataset generated for each of the cases. The test dataset consisted
of equal numbers of random and real examples. During example generation, each example
was computed with a fresh randomly generated key and plaintext pair. The results
are summarised in Table 4.
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Table 5: Accuracy of chosen-ciphertext differential distinguishers processing two blocks
of ciphertext for Speck reduced to 5 rounds. Error bars reported are for 2σ confidence
intervals. The precision of reported figures was truncated to three decimal places.

ID Accuracy True Positive Rate True Negative Rate Size test set
CC1 0.873± 1.49 · 10−3 0.878± 2.07 · 10−3 0.869± 2.13 · 10−3 2 · 105

CC2 0.995± 9.97 · 10−4 0.997± 9.94 · 10−4 0.993± 9.96 · 10−4 2 · 104

3.2 Differential distinguishers using the full distribution of ciphertext
pairs

Setting and motivation The distinguishers so far considered in this paper observe a
ciphertext pair that has been generated from a known input difference (but unknown input
plaintext pairs) and try to guess based on the ciphertext difference whether the observed
pair has been generated by reduced Speck encryption or randomly chosen. It is clear that
one could improve on this by considering not only the difference data for an observed
ciphertext pair, but the entire data observed. However, this is more difficult, because
calculating the full distribution of ciphertext pairs for the real distribution is not feasible.
The goal of this section is to determine, for differential distinguishers on five-round Speck
with the input difference used in the previously studied distinguishers, how much of an
advantage the adversary might gain in still exploiting this additional information.

A case study: chosen ciphertext distinguishers As Observation 1 suggests that in the
case of chosen-ciphertext attacks one can easily access the differential distribution of
Speck one round prior to the observed output, we have as a first test performed a simple
experiment on five-round Speck decryption. In this experiment, we evaluated the efficiency
of two differential distinguishers for Speck32/64. Both of these are testing decryption of
random ciphertext pairs with difference 0x8000/8000 for five rounds. The first of these
distinguishers (which we will call CC1 ) simply uses the differential distribution calculated
by the same methods as used for five-round Speck in the forward direction. The other
(henceforward called CC2 ) first re-encrypts the plaintext pair received for one round
under the all-zero subkey and then compares the difference so obtained to the differential
distribution four rounds after the constant input difference. The results of this experiment
are summarised in Table 5.

A perfect differential distinguisher for Speck32/64 reduced to five rounds We have
also developed a perfect distinguisher for the D5 task. Given an observed ciphertext pair
C := (C0, C1) and an input difference ∆, the likelihood P (C|real) that we would observe
(C0, C1) under the real distribution given a uniformly random choice of input plaintexts
and keys and a block cipher E of block size b and key size k is given by

P (C|real) = Card({(P,K) ∈ {0, 1}b+k with EK(P ) = C0, EK(P ⊕∆) = C1})
2b+k ,

and the numerator is just the number Nkeys(C) of keys that decrypt C into a plaintext
pair with difference ∆. On the other hand, P (C|random) = 1/(22b − 2b), so applying
Bayes’ theorem again, for perfect classification we need to determine whether Nkeys(C) >
2b+k/(22b − 2b) ≈ 2b+k−2b or not. For Speck32/64, we hence check whether Nkeys > 232.
For the D5 task, it is possible to do this in practice by enumerating the possible round-3
differential states and then launching the two-round attack from [Din14] for each of these
intermediate differences, enumerating the subkeys sk5 and sk4 used in rounds 4 and 5.
After obtaining candidate round 3 output, we note that the round 1 output difference is
known (due to the first differential transition in the trail used being deterministic) and use
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the two round attack again to recover the first two subkeys. We stop after 232 + 1 solutions
have been found or the key space has been exhausted, whichever comes first. While this
distinguisher is fairly slow in our implementation, we tested it on a small sample of 320
examples and found that this achieves a classification accuracy of about 95 percent. We
also tried a simplified version of this distinguisher which uses key search only on the final
two rounds and estimates the number of solutions for the two remaining subkeys using the
differential table, i.e. by using the approximation Nkeys ≈ ptransition · Card(K), where K
denotes the set of subkeys for the rounds in question and where ptransition is the probability
of the differential transition of the sub-trail under study; this achieved an overall accuracy
of 94.3 percent on a sample of size 10000.

4 Neural distinguishers for Speck32/64
4.1 Overview
In this section, we will use neural networks to develop distinguishing attacks that try to
solve the same problems as those presented previously. We only report results on our best
neural models. Many other choices of architecture yield results that are also superior to
the distinguishers presented in the previous section.

4.2 Network structure
Input representation A pair (C0, C1) of ciphertexts for Speck32/64 can be written as a
sequence of four sixteen-bit words (w0, w1, w2, w3), mirroring the word-oriented structure
of the cipher. In our networks, the wi are directly interpreted as the row-vectors of a
4× 16-matrix and the input layer consists of 64 units likewise arranged in a 4× 16 array.

Overall network structure Our best network is a residual tower of two-layer convolutional
neural networks preceded by a single bit-sliced convolution and followed by a densely
connected prediction head. Deep residual networks were first introduced in [HZRS16] for
image recognition and have been successful since in a number of other applications, for
instance strategic board games [SSS+17, SHS+17]. The results reported in this paper were
obtained with a residual tower of depth 10 followed by a densely connected prediction
head with two hidden layers and one output cell.

Initial convolution The input layer is connected in channels-first mode to one layer of
bit-sliced, e.g. width 1, convolutions with 32 output channels. Batch normalization is
applied to the output of these convolutions. Finally, rectifier nonlinearities are applied to
the outputs of batch normalization and the resulting 32x16 matrix is passed to the main
residual tower.

Convolutional blocks Each convolutional block consists of two layers of 32 filters. Each
layer applies first the convolutions, then a batch normalization, and finally a rectifier layer.
At the end of the convolutional block, a skip connection then adds the output of the final
rectifier layer of the block to the input of the convolutional block and passes the result to
the next block.

Prediction head The prediction head consists of two hidden layers and one output unit.
The first and second layer are densely connected layers with 64 units. The first of these
layers is followed by a batch normalization layer and a rectifier layer; the second hidden
layer does not use batch normalization but is simply a densely connected layer of 64 relu
units. The final layer consists of a single output unit using a sigmoid activation.
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Rationale The use of the initial width-1 convolutional layer is intended to make the
learning of simple bit-sliced functions such as bitwise addition easier. The number of filters
in the initial convolution is meant to expand the data to the format required by the residual
tower. The choice of the input channels is motivated by a desire to make the word-oriented
structure of the cipher known to the network. The use of a densely connected prediction
head reflects the fact that for a nontrivial number of rounds, we do not expect the input
data to show strong spatial symmetries, so any attempt to extract local features from
the data using a spatially symmetric pooling layer of some sort is probably futile. The
size of the layers was determined by experiment, although we tried only a few settings.
The depth of the residual tower was chosen so as to allow for integration of input data
over the whole input string within the convolutional layers. However, even a design with
just one residual block achieves reasonably good (clearly superior to a purely differential
distinguisher) results.

4.3 Training real vs random classifiers
Data generation Training and validation data was generated by using /dev/urandom
to obtain uniformly distributed keys Ki and plaintext pairs Pi with the input difference
∆ = 0x0040/0000 as well as a vector of binary-valued real/random labels Yi. To produce
training or validation data for k-round Speck, the plaintext pair Pi was then encrypted for
k rounds if Yi was set, while otherwise the second plaintext of the pair was replaced with
a freshly generated random plaintext.

In this way, data sets consisting of 107 samples were generated for training. Prepro-
cessing was performed to transform the data so obtained into the format required by the
network. Data generation is very cheap. It takes a few seconds to generate a data set of
size 107 in our implementation.

Training Training was run for 200 epochs on the dataset of size 107. The datasets were
processed in batches of size 2048, except for the NCC distinguisher, which used a batch size
of 5000. The last 106 samples were withheld for validation. Optimization was performed
against mean square error loss plus a small penalty based on L2 weights regularization
(with regularization parameter c = 10−5) using the Adam algorithm [KB14] with default
parameters in Keras [C+15]. A cyclic learnrate schedule was used, setting the learnrate li
for epoch i to li := α + (n−i) mod (n+1)

n · (β − α), with α = 10−4,β = 2 · 10−3 and n = 9.
The networks obtained at the end of each epoch were stored and the best network by
validation loss was evaluated against a test set of size 106 not used in training or validation.

Training cost A single epoch of training according to this schedule for one of our ten-block
networks takes about 150 seconds on a single GTX 1080 Ti graphics card at batch size
5000. A full training cycle can therefore be run in less than a day, and results superior to
the differential distribution table can be obtained in less than fifteen minutes after starting
the training cycle in all the examples considered.

4.4 Results
Test set accuracy We summarize our findings in Table 6. The neural distinguishers
achieve higher accuracies than the purely differential baselines discussed in the previous
section on all tasks. The accuracy of the CC2 and key search based distinguishers was not
matched, as expected. Validation losses were only slightly lower than training losses at
the end of training, suggesting that only mild overfitting took place. An example learning
history for a five-round network is shown in Figure 1.



Aron Gohr 13

Figure 1: Training a neural network to distinguish Speck output for the input difference
∆ = 0x0040/0 from random data. (left) Training and validation loss by epoch. (right)
Validation accuracy. (both) The weak validation performance at Epoch 174 does not
represent overfitting. Performance on the training set for this network is in fact equally
weak. This is not apparent from the data on training loss since it represents an average
over the loss observed in all training steps.

Table 6: Empirically measured test set accuracies for neural distinguishers on 5, 6, and 7
rounds of Speck32/64 as well as for a 5-round neural chosen-ciphertext distinguisher. The
reported accuracies were obtained on a randomly generated test set of size 106 containing
approximately 500000 positive and negative examples each.

Network Accuracy True Positive Rate True Negative Rate
NC5 0.929± 5.13 · 10−4 0.904± 8.33 · 10−4 0.954± 5.91 · 10−4

NC6 0.788± 8.17 · 10−4 0.724 · 1.26 · 10−3 0.853± 1.00 · 10−3

NC7 0.613± 8.5 · 10−4 0.551± 1.41 · 10−3 0.674± 1.33 · 10−3

NCC 0.971± 3.35 · 10−4 0.975± 4.41 · 10−4 0.967± 5.05 · 10−4
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Inference speed The deep residual architecture described yields networks that are still
reasonably efficient to evaluate. On a single machine using a GTX 1080 Ti graphics
card we were able to process roughly 200000 ciphertext pairs per second. Inference speed
can be increased to about one million ciphertext pairs per second at a small cost in
accuracy by using a simple form of knowledge distillation [HVD15]. We generate a size 9
million training data set as described before, then predict each example using a pre-trained
ten-block network, and use the predictions as training targets for a one-block student
network. Training was performed for 30 epochs, with the learnrate being lowered from
0.001 to 0.0001 after epoch 20. For the 7-round case, the distinguisher so obtained was
more or less equivalent in quality to the original ten-block distinguisher; for 6 rounds, a
very small loss in accuracy was observed on a size one million test set. For five rounds, a
more substantial but still mild loss in prediction quality was found on the test set.

Improving the distinguishers by key search We tested whether the distinguishers ob-
tained can be improved by key search. To this end, a size one million test set for Speck
reduced to seven rounds was generated as previously described. For each ciphertext pair c
in the test set, brute force key search was performed on the last round key and the resulting
partially-decrypted ciphertext pairs ck were fed through a six-round neural distinguisher.
The scores zk returned by the neural distinguisher were heuristically treated as estimates
for the probability that ck was sampled from the real distribution in our real-vs-random
experiment. Setting z′k := zk/(1 − zk) we obtained the corresponding likelihood ratios.
These were averaged for all keys to obtain an average score zav and a score z for the
ciphertext pair c was obtained by applying the transformation z := zav/(1 + zav). c was
classified as real if z > 0.5 and as random otherwise. This procedure did indeed slightly
improve prediction accuracy: ground truth was matched in 62.7 percent of the test sample.
See Algorithm 1 for a summary of the algorithm used.

Algorithm 1 KeyAveraging: Deriving a differential distinguisher against a block cipher
Er+1 reduced to r + 1 rounds for input difference ∆ from a corresponding distinguisher D
against Er. A sample is predicted to come from the real distribution if and only if the
output value of the algorithm is ≥ 0.5.
Require: Observed output ciphertext pair C0, C1 ∈ {0, 1}b

1: Di ← [DecryptOneRound(Ci, k) for k ∈ Subkeys]
2: vk ← D(D0[k], D1[k]) for all k ∈ Subkeys
3: vk ← vk/(1− vk) for all k ∈ Subkeys
4: v ← Average([vk, k ∈ Subkeys])
5: v ← v/(1 + v)
6: return v

Using key search as a teacher for a fast neural distinguisher The size one million
sample set so obtained was further used as a training target for a single-block distinguisher
against seven rounds of Speck. Training was performed for 30 epochs with a single learnrate
drop from 0.001 to 0.0001 at epoch 20. The solution so trained was tested on a separately
generated test set and was found to be our strongest neural distinguisher for seven rounds
of Speck, with a global accuracy of 61.6 percent. Compared to the original ten-block
distinguisher, this gain is mostly due to increased specificity, at the cost of losing some
sensitivity, i.e. a higher rejection rate for samples from the real distribution.

Disagreement with differential distribution table For five-round Speck, we generated a
size one million test set and calculated for each example both the relevant entry of the
differential distribution table for Speck32/64 using the Markov model of Speck, and the
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output of a five-round one-block neural predictor. Exactly half of the test sample was
generated using the real distribution, with the other half being drawn at random. We
used this data set to study disagreements between the neural predictor and the differential
distribution table.

Disagreement between both predictors was observed in 48826 samples, of which the
majority was from the random distribution (about 57 percent). Our neural network
chose the classification corresponding to ground truth in 67 percent of these cases of
disagreement. This shows that the neural predictor provides a considerably clearer signal
than the differential distribution table on this subset of cases.

However, exploitation of information that can be obtained reliably from the differential
distribution table was not perfect. For instance, 1549 of our samples were found to
correspond to impossible differential transitions. Two of these were misclassified by
the neural network as coming from the real distribution, although in both cases the
confidence level returned by the neural network output was low (56 percent and 53 percent
respectively).

On the other hand, the neural network also successfully identified output pairs that
could not have appeared in the real distribution. For instance, the lowest neural net-
work score on the set of disagreements was obtained for the output pair (c0, c1) :=
(0xc65d2696, 0xa6a37b2a). This corresponds to an output difference of 0x60fe/0x5dbc,
and the transition 0x0040/0000→ 0x60fe/5dbc for five rounds has a transition probability
of about 2−26 according to the Markov model. Accordingly, the predictor based on the
differential distribution table assigns a 98 percent probability to this output pair being
from the real distribution. In an empirical test of this prediction, we found 44 good pairs
for this differential transition in 1010 trials, which is substantially lower than predicted, but
still within an order of magnitude of the expected value. However, the neural distinguisher
returns an almost zero likelihood of (c0, c1) being produced by the real distribution. This
turns out to be correct both by comparison to the ground truth as given by the labelling
of the test sample and more importantly by comparison with the result of key search. The
latter shows that this output pair is in fact impossible to produce by the real distribution.

Few-shot learning of cryptographic distributions Few-shot learning is the ability of
people (and sometimes machines) to learn to recognize objects of a certain category or to
solve certain problems after having been shown only a few or even just one example. We
tested if our neural networks can successfully perform few-shot learning of a cryptographic
distribution given knowledge of another related distribution by performing the following
experiment: a fresh neural network with one residual block was first trained to recognize
Speck reduced to three rounds with a fixed but randomly chosen input difference. Training
consisted of a single epoch of 2000 descent steps with batch size 5000, which on our
hardware corresponds to about a minute of training time. We then accessed the output
of the second-to-last layer of this network, treating it as a representation of the input
data. We generated small samples (only real examples, specifically between 1 and 50 of
them) of the output distribution for six rounds of Speck with the chosen input difference
of our main distinguishers. Each example set so created was complemented by the same
number of samples drawn from the random distribution. The resulting example set S
was sent through the neural network to obtain the corresponding set S′ ⊂ R64 of internal
representation vectors. Ridge regression (with regularization parameter α = 1) was used
to create from this small training set a linear predictor L : R64 → R for the six-round
distribution minimizing the squared error between labels and predictions on S′. We
classified an example x ∈ S′ as real if L(x) > 0.5 and as random otherwise. This predictor
was then tested on a size 50000 test set to determine its accuracy. This worked well even
with a single-figure number of examples. Figure 2 gives detailed results, Algorithm 2
summarizes the algorithm used.
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Algorithm 2 TrainByTransfer: Training a distinguisher for a block cipher with block size
b reduced to r rounds Er with input difference δ by transfer learning given an auxiliary
neural distinguisher N for input difference ∆ and Es.
Require: N, r, δ, n

1: X0 ← n samples drawn from the real output distribution of Er with input difference
δ.

2: Y0 ← (1, 1, ..., 1) ∈ Rn
3: X1 ← n samples drawn uniformly at random from {0, 1}2b.
4: Y1 ← 0 ∈ Rn.
5: N ′ ← N [−2], where N [−2] denotes the output of the second-to-last layer of N .
6: Z, Y ← N ′(X0||X1), Y0||Y1
7: L← RidgeRegression(Z, Y )
8: return L ◦N ′

Figure 2: Few-shot learning on the D5 and D6 tasks using a pre-trained classifier to
preprocess the input data. Algorithm 2 was used with a fixed auxiliary network trained to
distinguish Speck32/64 reduced to three rounds with a random fixed input difference. The
number of training examples supplied was varied from 1 to 50. The accuracy figures shown
are an average over 100 runs for each training set size, where for each training run a fresh
training set of the indicated size was generated on the fly. Accuracy was measured against
a fixed test set of size 50000. Measured accuracy is above guessing at 2σ significance level
even for a single training example.

Training a new distinguisher using Algorithm 2 is very efficient. For instance, retraining
on a thousand example training set takes about a millisecond on our platform.

Deriving good input differences without human knowledge This few-shot learning
capability allows us to very quickly derive a rough lower bound for the effectiveness of
truncated differential distinguishers for Speck for a given input difference and a given
number of rounds. Concretely, given a pre-trained network for three-round Speck and a
random input difference δ, we can quickly train a distinguisher for another random input
difference δ′ and evaluate its accuracy on a small test set. Starting with a random δ′, we
then use Algorithm 3 to optimize δ′ for test set accuracy of the resulting distinguishers.
Using α = 0.01, t = 2000, and test and training datasets of size 1000 for each new input
difference to be tested, we need less than two minutes of computing time for the training
of the initial three-round distinguisher and about 15 seconds for each full run of Algorithm
3 on our platform. The initial difference of our main neural distinguishers is usually found
within a few random restarts of the greedy optimizer and extending the number of rounds
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to be attacked, one can then easily show using transfer learning that at least six rounds of
Speck can be distinguished with fairly high gain.

Algorithm 3 GreedyOptimizerWithExplorationBias: Given a function F : {0, 1}b → R,
try to find x ∈ {0, 1}b which maximises F .
Require: F , number t of iterations, exploration factor α, input bit size b

1: x← Rand(0, 2b − 1)
2: vbest ← F (x)
3: xbest ← x
4: v ← vbest
5: H ← hashtable with default value 0
6: for i ∈ {1, . . . , t} do
7: H[x]← H[x] + 1
8: r ← Rand(0, b− 1)
9: xnew ← x⊕ (1� r)

10: vnew = F (xnew)
11: if vnew − α log2(H[xnew]) > v − α log2(H[x]) then
12: v, x← vnew, xnew
13: end if
14: if vnew > vbest then
15: vbest, xbest ← v, x
16: end if
17: end for
18: return xbest

It seems likely that other generic optimization algorithms, e.g. suitable variants of
Monte Carlo Tree Search, might work even better.

Remark on data augmentation In the context of few-shot-learning, it is natural to ask
whether symmetries of the problem could be used to improve the process. For instance, it
is a priori known that the ciphertext pairs C0, C1 and C1, C0 have the same probability
of appearing in the real or the random distribution. Also, it is easy to calculate from
C0, C1 all ciphertext pairs that would result if the last subkey used in encryption where
exchanged for a different subkey. However, in our testing these data augmentation methods
seemed not to be helpful. The reason for this is that the auxiliary network used in transfer
learning apparently most of the time knows about these symmetries already and maps
inputs randomized in this way to nearby internal representations.

4.5 Key recovery attack
To showcase the utility of our neural distinguishers as research tools, we have constructed
a partial-key recovery attack based on the NC7 and NC6 distinguisher that is competitive
to the best attacks previously known from the literature on Speck32/64 reduced to 11
rounds, i.e. in particular to the 11-round attack of [Din14]. The attack proposed by Dinur
has a computational complexity approximately equivalent to 246 Speck evaluations. The
attack is expected to succeed after querying 213 chosen-plaintext pairs and obtaining the
corresponding ciphertexts. Attacks on 12 to 14 rounds were also proposed in [Din14],
naturally with substantially larger computational and data complexities.

Our eleven-round attack, in contrast, is expected to succeed with a computational
complexity of roughly 241 Speck evaluations if it is executed on a CPU. Its data complexity
is slightly lower than that of the attack in [Din14].
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Basic attack idea The idea of our attack is to extend our neural 7-round distinguisher to
a 9-round distinguisher by prepending a two-round differential transition δ → 0x0040/0000
that is passed as desired with a probability of about 1/64. The 9-round distinguisher
is then extended by another round at no additional cost by asking for encryptions of
ciphertext pairs P0, P1 that encrypt to the desired input difference δ after one round of
Speck encryption; this is easy, since no key addition happens in Speck before the first
nonlinear operation.

The signal from this distinguisher will be rather weak. We therefore boost it by using k
(probabilistic) neutral bits [BC04] to create from each plaintext pair a plaintext structure
consisting of 2k plaintext pairs that are expected to pass the initial two-round differential
together. For each plaintext structure, we decrypt the resulting ciphertexts under all
final subkeys and rank each partially decrypted ciphertext structure using our neural
distinguisher. If the resulting score is beyond a threshold c1, we attempt to decrypt another
round and grade the resulting partially-decrypted ciphertexts using a six-round neural
distinguisher. A key guess is returned if the resulting score for the partially decrypted
ciphertext structure then exceeds another threshold c2.

Ranking a partial decryption Our neural distinguishers return for each ciphertext pair
C processed a score z between 0 and 1. This score can heuristically be treated as the
probability that in a real-vs-random distinguishing experiment, this ciphertext pair has
been drawn from the real distribution. The ratio between the probabilities preal and prand
that the ciphertext pair C will be generated by the real and the random distribution
respectively can then be calculated by the relation preal/prand = z/(1− z). To calculate a
score for a structure of ciphertexts that should either all be from the random distribution
or all from the real distribution, we take dual logarithms of these likelihood ratios and
sum up the results to obtain a score for the structure.

Attack parameters This basic idea can be turned into a practical key recovery attack on
11-round Speck. The initial difference (0x211/0xa04) and the neutral bits set consisting of
bits 14,15,20,21,22,23 of the cipher state work well, even though bits 14,15 and 23 are not
totally neutral. Using c1 = 15, c2 = 100 one obtains an attack that succeeds on average
within about 20 minutes of computing time on a machine equipped with a GTX 1080 Ti
graphics card, or in about 12 hours on a single core of a modern CPU. In one hundred
trials, a key guess was output after processing on average 213.2 ciphertext pairs. Recovery
of both true last subkeys was successful in 81 cases; the final subkey was correctly guessed
in 99 cases. In the one remaining case, the second-to-last subkey was correct and the guess
for the last subkey was incorrect in one bit.
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Figure 3: Decryption with a partially known subkey. 107 ciphertext pairs with the input
difference 0x0040/0000 were encrypted for 7 (left) or 8 (right) rounds of Speck using
randomly generated keys. Then, the most significant bits of the final subkey were zeroized
and the messages partially decrypted using this changed subkey were processed by the
appropriate neural distinguisher. The average scores returned by the neural network in
each case are shown.

Refinements This basic attack can be accelerated in various ways. We have implemented
the following enhancements:

1. Our neural distinguishers can recognize decryptions by partially correct subkeys, as
can be seen from Figure 3. We use this by not performing brute force search on
the last round-key. Instead, we implement a guess-and-determine attack where an
initial set of key candidates is tried and ranked, the most promising keys are kept,
expanded by one bit, and the process is repeated until all bits of the remaining key
candidates are fixed.

2. Likewise, in a preliminary step we can rank the ciphertext structures by performing a
partial last-round key search in the described manner using only half the ciphertexts
for each ciphertext structure. This reduces data usage and saves time since we do
not need to query the encryption oracle further for ciphertext structures that have
already been found to likely not have passed the initial differential based on looking
at the first half of their members.

3. With these changes, keys are often found that are at hamming distance one or two
of the real subkeys. To fix this, a short verification search is done around hamming
weight two of the final best key guess, using the six-round distinguisher to rank the
key guesses in this verification search.

A conceptually simple way to use the key division property exhibited in Figure 3 is to
use Algorithm 3 to optimize the combined score returned by a ciphertext structure as a
function of the last subkey. We have tested this and it does in fact work reasonably well,
but it is not the most effective attack we tried.

The basic building block of the improved key recovery attack is Algorithm 4. It takes
as input a ciphertext structure (i.e. a set of ciphertexts that are expected to have passed
the initial differential together) as well as a set of final subkey candidates to be considered.
It outputs a reduced set of key guesses and scores for the structure.

In our implementation, we slightly deviate from Algorithm 4 by additionally varying
the most significant bits of each candidate key when decrypting the ciphertext structure.
Conceptually, this means that we consider some bits of a key candidate k as undefined
and use different settings of these bits when decrypting different ciphertexts within one
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Algorithm 4 RemoveKeyCandidates: Narrow down a set of key candidates given a
ciphertext structure
Require: Ciphertext structure C = C0, . . . Cn, set of candidate subkeys S =
{sk0, . . . , skm}, selectivity parameter q, neural distinguisher N

1: Pi,k ← Decrypt(Ci, k) for all k ∈ S.
2: vi,k ← N(Pi,k) for all i,k
3: vi,k ← log2(vi,k/(1− vi,k)) for all i,k
4: vk ←

∑n
i=1 vi,k for all k

5: v, S′ ← sort S and the vk together in descending order by vk
6: c← bq ·mc
7: return S′[0, . . . , c], v[0, . . . , c]

structure. However, the scores obtained from all of these keys will be fused into the score
of key k as described. This slightly improves key space coverage by ensuring that some
ciphertexts within the structure to be tested get decrypted by the correct key or an almost
correct key if the bits of the key that are considered fixed are correct.

A high-level view of the entire attack can be given as follows: for each ciphertext
structure, we first create a set of key guesses that covers all values of the 10 least significant
bits of the last subkey. We apply RemoveKeyCandidates to these with q = 1/2, extend
the remaining subkeys by one bit, and repeat until all subkey bits have been fixed and we
are left with a set of 512 candidates for the last subkey and corresponding network scores.
We throw away all subkey candidates with a score less than a cutoff parameter c1. For
each of the remaining candidates, a trial decryption is performed. We then create a set
of candidates for the second subkey that covers all values of the least significant 9 bits
and repeatedly apply RemoveKeyCandidates and extend the key candidates as described
before. We use the more aggressive pruning parameter q = 1/3 this time, as the six-round
distinguisher yields a very strong signal.

If this process finds a pair of subkey candidates that score higher than a second cutoff
c2 after the application of the second round key, we decide to output a key guess but
finish processing all key candidates for the current ciphertext structure before doing so. In
the whole process, we keep track of the current best candidates for the two round keys.
Whenever a new best pair of round keys is found, the list of candidates for the last round
key is extended by adding all keys within hamming distance two of the best guess.

Before a key guess is output, a short verification search is done with hamming radius
two around each of the two round keys to be recovered. The verification search is repeated
if it yields a score improvement. The pair of keys with the best score returned by the six
round network is finally given as the best guess for the key values.

Pre-sorting of ciphertext structures applies the same procedure as generating the
candidate lists for the last round key but uses more aggressive pruning (q = 1/3) and only
half of the data in each ciphertext structure. The key candidates generated are thrown
away and the ciphertext structures are sorted in descending order by best score returned.

Results In the trials subsequently described, we use the cutoff parameters c1 = 5 and
c2 = 10. Given a hundred ciphertext structures, our implementation outputs a key guess
in approximately two minutes on average (measured average in 100 trials: 132 seconds) on
a computer with a GTX 1080 Ti graphics card. This key guess is not always correct, but if
it is not, this is easily apparent from the scores returned. On a single core of one CPU of
the same system, we expect an average runtime under the same conditions of roughly two
hours. Efficiency slightly increases when more data is available, since pre-sorting then has
a larger impact. With five hundred ciphertext structures of data and aggressive selectivity
settings, an average time to solution of about a minute can be reached.
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One hundred ciphertext structures correspond to 12800 chosen plaintexts. In one
hundred trials, our attack queried on average 212.9 chosen plaintexts under these conditions.
We count a key guess as successful if the last round key was guessed correctly and if
the second round key is at hamming distance at most one of the real key. Under these
conditions, the attack was successful in 63 out of 100 trials; recovery of the first round key
was successful in 66 cases and in all of these cases, the second round key guess was within
hamming weight two of the real key. For comparison, the attack presented in [Din14]
is expected to succeed with the same data complexity in about 55 percent of all trials.
Our success rate and data usage when using 100 ciphertext structures correspond to an
expected data usage of 213.6 chosen plaintexts until success in the simple model where in
case of failure we request ciphertext values for another 100 plaintext structures.

Computational complexity We estimate that a highly optimized, fully SIMD-parallelized
implementation of Speck32/64 could perform brute force key search on our system at a
speed of about 228 keys per second per core. Adjusting for the empirically measured success
rate of our attack we expect to need about three hours on average to execute the key
recovery algorithm on a single core of our system. This yields an estimated computational
attack complexity of 241 Speck encryptions until a solution is found. The additional effort
needed for full-key recovery can be trivially upper bounded by 236.1 Speck encryptions
assuming that the last round key has been guessed correctly and that the second-to-last
round key guess is correct up to a single bit flip.

On a fast GPU, we expect that brute force key search can be massively sped up.
The GTX 1080 Ti, for instance, has 3584 CUDA cores and runs at a clock rate of 1582
Mhz. Speck encryption needs ten basic arithmetic operations per round including the key
schedule. Since Speck32/64 operates on 16-bit words, it seems reasonable to assume that
data level parallelism may be exploited to perform four basic 16-bit integer arithmetic
operations per CUDA core per cycle. This suggests that the GTX 1080 Ti could be used
to perform 237.5 Speck encryptions per second. Three minutes of wall time per attack until
solution then suggest an attack complexity of 245 Speck encryptions.

It is not unusual that an attack that is more naturally run on a GPU than on CPU
has an apparently worse complexity if it is compared to brute force key search on the
same platform [SBK+17]. We believe that both figures likely understate the computational
complexity advantage of our attack compared to other attacks in the literature when both
are run fully utilizing the capabilities of modern CPUs or GPUs. For instance, it does not
seem obvious that the attack in [Din14] is able to effectively use data-level parallelism or a
GPU-type execution model, while this is obvious both for brute force key search and for
our attack.

Tradeoffs There are various tradeoffs available in this attack between data usage, selec-
tivity of the search, and search cutoff criteria. These have a real impact on the complexity
of the attack. For instance, with slightly higher data usage, we can construct an attack
that has roughly half the runtime claimed here. Fundamentally improving the search,
however, is likely to have higher impact than parameter tuning. We leave this to further
research.

5 The real differences experiment

5.1 Speck32/64
Motivation We have seen in the previous section that our best neural distinguishers are
better at recognizing Speck32/64 reduced to five and six rounds than a distinguisher based
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on the full differential table. In principle, there are two main reasons that could explain
this observation:

1. The Markov model used to calculate differential probabilities for Speck is wrong and
the neural distinguisher exploits the available differential information better because
it is unaffected by the error of our mathematical model of the differential transitions
of Speck.

2. The neural distinguishers exploit features of the ciphertext pair distribution that are
not visible to purely differential distinguishers.

In this section, we give evidence supporting the second hypothesis. To this end, we
introduce a differential cryptographic distinguishing task in which perfect knowledge of the
differential distribution of a primitive under study does not in itself allow the adversary to
do better than random guessing. We also briefly report on an experiment to train a neural
network to solve a toy problem in this setting in a fairly general way.

Experimental setup First, 106 samples were drawn from the real distribution for the D5,
D6 and D7 tasks. Then, half of these samples were randomized in the following way: for an
output ciphertext pair C = (C0, C1) ∈ F2b

2 to be randomized, a blinding value K ∈ Fb2 was
generated uniformly at random by reading from /dev/urandom. This value was bitwise-
added to both ciphertexts to produce the randomized ciphertext C̃ = (C0 ⊕K,C1 ⊕K).

The resulting 106 samples of randomized or non-randomized ciphertext pairs were
preprocessed as previously described and the results were passed to the appropriate
pretrained neural network for five, six or seven rounds for classification as random or real.
No further training took place.

For reference, the Search distinguisher on five rounds from section 3 was modified to
work in the real differences setting. In this setting, an exact solution by counting the keys
leading to a decryption with the desired input difference seems infeasible, as both random
and real examples are expected to regularly have a very high number of solutions. We
therefore calculate two approximations to Nkeys: first, we calculate

Arand := 264 ·DP (∆C),

where DP (∆C) is the differential probability of observing the output difference of the
ciphertext pair C as given by the Markov model of Speck. Second, we calculate

Areal := 232 ·
∑

δ∈Dmid

P (δ) ·Nδ(C),

where Dmid is the set of possible round-3 differences, P (δ) denotes for one such difference
the probability of observing this round 3 difference given the fixed input difference of our
trail, and Nδ(C) denotes the number of solutions for the final two subkeys that decrypt
our observed ciphertext pair C to the round 3 difference δ.

C is then labelled as real if Areal > Arand and as random otherwise.

Rationale The distribution of difference values is clearly the same in both the random
and the real sample in this experiment. On the other hand, in the random sample any
information about the ciphertext other than the difference between the two ciphertext
blocks given is perfectly hidden, as the blinding makes the results of the random sampling
uniformly distributed on the hyperplane given by each possible difference.
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Table 7: Performance of the NC5, NC6 and NC7 networks in the real differences experiment.
For comparison, the performance of a key search based distinguisher and a version of
the NC5 network retrained to this task are also given. Test set size is 106 for the neural
distinguishers and 104 for Search.

Nr Network ID Accuracy
5 NC5 0.707± 9.10 · 10−4

6 NC6 0.606± 9.77 · 10−4

7 NC7 0.548± 9.95 · 10−4

5 Search 0.810± 3.92 · 10−3

5 NC5 retrained 0.762± 8.51 · 10−4

Results Our best five, six and seven round networks were found to solve the real differences
task measurably better than random guessing without ever having explicitly been trained
for it. Training on the real differences task was tried in the five-round case and expanded
this advantage considerably. Predictably, however, key search yielded clearly superior
distinguishing power. See Table 7 for details.

These tests show that ciphertext pairs are not evenly distributed within their respective
difference equivalence classes. Indeed, using neural distinguishers as a search tool it is easy
to find examples of ciphertext pairs with relatively high-likelihood differences which have
very little chance of appearing in the ciphertext pair distribution of reduced Speck. One
such example has already been discussed in section 4.4. For another, consider the output
pairs (0x58e0bc4, 0x85a4ff6c) and (0xaa12b7f2, 0x2a38435a). Both have the difference
0x802a/f4a8, and the transition 0x0040/0000 → 0x802a/f4a8 is of fairly high likelihood
for five round Speck (roughly 2−15.3 according to the full Markov model, which matches
empirical trials well here). However, the former ciphertext pair decrypts to the starting
difference of this transition with a much lower likelihood, around 2−36 according to our
calculations.

5.2 Real differences of addition
Motivation Even in the case of five-round Speck32/64, it seems difficult to achieve perfect
exploitation of the nonuniformity of the ciphertext pair distribution present in the real
differences experiment. We therefore briefly looked at a simpler situation, namely the real
differences of addition. In the sequel, we give a brief account of our results.

Setting We assume that we are given a differential equation of addition, i.e. a problem
of the form

(x⊕ a) � (y ⊕ b) = (x� y)⊕ c,

where a, b, c ∈ Fn2 are known. We assume further that the adversary is additionally given
z := x� y or a blinded version z := (x� y)⊕K, where K is randomly chosen for each
sample. The adversary has to distinguish whether they have been given a blinded (random)
or not blinded (real) problem. For problem generation, a, b, x, y,K are chosen uniformly at
random from Fn2 . z and c are set to the values z := x�y and c := (x�y)⊕((x⊕a)�(y⊕b))
so that the resulting problem always has at least one solution.

Exact solution The probability prand of observing the tuple (a, b, c, z) in the blinded
distribution can be readily calculated by the methods given in the literature on differential
equations of addition, see e.g. [LM01, SG13]. To calculate also the probability preal, we
designed a finite-state machine S(a, b, c, z) with 64n+ 1 states that traverses a proposed
solution x, y, z, x′ = (x⊕ a), y′ = (y ⊕ b), z′ = (z ⊕ c) in a bit-sliced manner from least to
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Table 8: Number of correctly classified examples for real differences of addition test sets of
size 105, with problem bit sizes 16 and 128. Add here denotes classification by counting all
solutions to the given problem, while NAdd is a neural distinguisher based on a recurrent
neural network. The same test set was used for both solutions. The handcrafted solution
is superior outside experimental error margins for the 128 bit problem size.

Problem size Add NAdd
16 86438 86582
128 99751 99273

most significant bit and which checks whether the proposed solution is in fact a solution,
entering a special non-accepting state otherwise. We then calculate the number of accepting
end-states by multiplying the transition matrices for each time step. To process an n-
bit string, this requires the construction of at most 64 transition matrices and n − 1
multiplications of matrices of size 64× 64. preal can then be obtained from the number
of solutions multiplying by 2−6n. The given data is finally classified as real if and only if
preal > prand.

Neural network We also trained a neural network to solve the same problem. The input
data is presented as a sequence of 4-bit vectors representing (a, b, c, z) in the natural way.
The neural network consists of a recurrent layer with 16 LSTM units with rectifier output
activations followed by a dense output layer with a single unit using a sigmoid activation.
Training was performed in batches of size 1000 against binary crossentropy loss on a data
set of 106 samples of length 16 bit for 100 epochs using the Adam optimizer and the same
cyclic learnrate schedule as described previously for the Speck distinguisher networks. The
last 105 samples of the training set were withheld for validation testing. The best network
by validation loss was retained for further study. Finally, the solution was evaluated on
two test sets of size 100000 corresponding to problem sizes (bit length of the DEA problem)
n = 16 and n = 128 respectively. No regularization was used, as overfitting did not seem
to be a problem.

Results The overall performance of the machine-learned and the manually designed
solution were found to be comparable, with the latter slightly superior for the 128 bit
problem size. Scaling with bit size was similar for both solutions. Quantitative results of
the final evaluation can be seen from Table 8.

6 Conclusions
We have tested in this paper whether neural networks can be used to develop statistical
tests that efficiently exploit differential properties of a symmetric primitive that has been
weakened sufficiently by round reduction to allow for attacks to be carried out in a low
data setting. In the setting considered, this works reasonably well: our distinguishers
offer classification accuracy superior to the differential table for the primitive in question
and use less memory, even if inference speed is of course low compared to the simple
memory lookup needed with a precomputed differential table. We consider it interesting
that this much knowledge about the differential distribution of round-reduced Speck can
be extracted from a few million examples by black-box methods.

The time needed to train a network from the ground up to an accuracy level beyond
the differential distribution table is on the order of minutes in our trials when a single fast
graphics card is available. Our networks start training with no cryptographic knowledge
beyond the word-structure of the cipher, making our approach fairly generic. The transfer
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learning capabilities shown in this paper demonstrate that finding good input differences
from scratch is likewise possible using our networks with minimal input of prior crypto-
graphic knowledge. Our distinguishers have various novel properties, most notably the
ability to differentiate between ciphertext pairs within the same difference class.

In the context of this study, it certainly helped that Speck32/64 is a small blocksize,
lightweight primitive. However, this is true both for the optimisation of conventional
attacks and for the application of machine learning.

Given that the present work is an initial case study, we would not be surprised if our
results could be improved. Various directions for further research suggest themselves. For
instance, it would be interesting if a reasonably generic way were found to give the model
to be trained more prior knowledge about the cipher or to enable the researcher to more
easily extract knowledge from a trained model.

Small improvements to network performance are also completely expected to be possible
within the architecture and setting given by this paper.

It would also in the specific cases considered be interesting to see the effect of giving
the network cryptographic knowledge in the form of precomputed features. We did some
tests along these lines, for instance by giving the prediction head a classification derived
from the differential table as an additional input, but this was only marginally helpful.

We do not think that machine learning methods will supplant traditional cryptanal-
ysis. However, we do think that our results show that neural networks can learn to do
cryptanalysis at a level that is interesting for a cryptographer and that ML methods can
be a useful addition to the cryptographic evaluators’ tool box. We expect that similar
to other general-purpose tools used in cryptography such as SAT solvers or Groebner
basis methods, machine learning will not solve cryptography but usefully complement and
support conventional dedicated methods of doing research on the security of symmetric
constructions.
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