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Abstract. Protean Signatures (PS), recently introduced by Krenn et al. (CANS ’18), allow a semi-trusted third
party, named the sanitizer, to modify a signed message in a controlled way. The sanitizer can edit signer-chosen
parts to arbitrary bitstrings, while the sanitizer can also redact admissible parts, which are also chosen by the signer.
Thus, PSs generalize both redactable signature (RS) and sanitizable signature (SS) into a single notion. However,
the current definition of invisibility does not prohibit that an outsider can decide which parts of a message are
redactable — only which parts can be edited are hidden. This negatively impacts on the privacy guarantees provided
by the state-of-the-art definition.

We extend PSs to be fully invisible. This strengthened notion guarantees that an outsider can neither decide
which parts of a message can be edited nor which parts can be redacted. To achieve our goal, we introduce the
new notions of Invisible RSs and Invisible Non-Accountable SSs (SS′), along with a consolidated framework for
aggregate signatures. Using those building blocks, our resulting construction is significantly more efficient than the
original scheme by Krenn et al., which we demonstrate in a prototypical implementation.

1 Introduction

In their standard definition, digital signatures prohibit any kind of modification of signed messages. This
means, that only the holder of the secret signing key skΣ can sign messages [31]. Still, as time showed [6],
there are a plethora of application scenarios where a later modification of signed messages by a (semi-trusted)
third party has its merits. Consider the following use-case, based on the handling of patient data [2,40,53,57]:

Assume that a M.D. always signs the complete record of each patient. Further assume that each of those
records consists of the patient’s name, its insurance number and the treatments given. After the patient is
released from the hospital, the responsible accountant receives the complete signed record corresponding to
the to-be-released patient to be able to write a bill to the patient’s insurance company.

It is not hard to see that this process is not very privacy-friendly, especially from the patient’s point of
view, as the accountant receives all information related to patient. However, most of the information is not
relevant for writing the bill, e.g., the patient’s name. Thus, a solution is to only give the treatments and
the insurance number to the accountant, anonymizing the paperwork. The major obstacle is that standard
digital signatures prohibit any alterations, and thus the M.D. either needs to re-sign the document, or an
additional trusted entity does need to sign on behalf of the M.D. Still, both solutions are not very satisfactory,
as both induce additional overhead, one might even be impossible, e.g., if the M.D. is no longer employed.
We conclude that modifying signed messages in a controlled way does have its merits.

1.1 Motivation and Contribution

Strictly speaking, the above application scenario only requires that parts of a signed message can be redacted
without invalidating the signature, which is achieved by redactable signatures (RS) [36,54]. However, as
already shown by Bilzhause et al., editing, but not redacting, parts of a message also has many use-cases,
including secure routing, document sanitization, and outsourcing of computation [6]. This is achieved by
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sanitizable signatures (SS) [2]. Thus, a SS only allows for editing parts of a message, while a RS only allows
for redacting parts.

Bilzhause et al. [6] then asked the next logical question: Can SSs and RSs be combined, enabling signatures
which allow for editing and redacting blocks at the same time? This question was answered by Krenn et al.
by introducing “Protean Signatures” (PS) [40], which allow subsequent editing and redacting simultaneously.
They provide a formal security model, a provably secure construction, and present first implementation
results.

However, their definition of invisibility only guarantees that an outsider cannot decide which parts of a
message are editable, but not which are redactable. This negatively impacts on the privacy guarantees their
construction provides. Moreover, their corresponding implementation shows that their construction cannot
be considered practically efficient.

We extend their work in the following areas: (1) As our main contribution we introduce a stronger
invisibility definition for PSs. In more detail, in our definition, an outsider can neither decide which parts of a
message are redactable nor which parts are editable. (2) To show that our strengthened definition is actually
achievable, we provide an altered (black-box) construction of a PS, derived from the original one by Krenn et
al. [40]. (3) We provide a new framework for aggregate signatures [8], which may be useful in other contexts
as well. Namely, we introduce the new notions of strict aggregate uniqueness, a black-box “no-extraction”
notion, and explicitly allow for de-aggregation. (4) Our construction makes use of two new primitives which
we also introduce: An invisible designated redactor RS, and a non-accountable invisible SS′. In an invisible
designated redactor RS, only a signer-chosen semi-trusted third party can redact, while an outsider cannot
decide which parts are redactable. Likewise, non-accountable invisible SS′s behave as standard invisible SSs,
but do not offer any form of accountability. This allows for a far more efficient instantiation. For both new
notions, we provide formal frameworks, formal security models, and provably secure instantiations. (5) We
have implemented our scheme in a prototypical way. Using our new primitives, the resulting construction is
an order of magnitude more efficient than the one given by Krenn et al. [40], and can be considered really
practical. (6) Last, but not least, we provide a stronger definition of invisibility for standard SSs, where the
adversary is now able to query arbitrary messages to the sanitization oracle.

1.2 Related Work

Signatures allowing for subsequent alterations received a lot of attention in the recent past, as it became
apparent that there are many application scenarios where signed messages need to be modified in a con-
trolled way [1,6,23,29]. This weakens the standard unforgeability definition, where the messages protected by
signatures cannot be altered at all, which is clearly not avoidable, if one wants to allow for modifications or
derivations.

From our perspective, existing work can be grouped into three, not always distinct, directions. The first
direction are homomorphic signatures [1,7,36,55], and some other closely related concepts [9,56]. Homomorphic
signatures take several (signed) messages as input and can be used to compute functions on authenticated
data-sets. In such schemes, an entity not holding any secrets can derive a new (valid) signature σ′ on f(m),
where the function f is public.

Related are RSs, where anyone (i.e., no secrets are required) can publish a subset of signed data, along
with a new signature σ′. To illustrate this, let m = (I, do, not, like, fish) along with a valid redactable signa-
ture σ. Anyone can then derive a signature σ′ on m′ = (I, like, fish), i.e., redact the second and third block
m2 = do and m3 = not, if both blocks are marked as redactable. The original ideas of RSs [36,54] were later
formalized [10,43], including adding new values after signure generation [51]. Then, RSs have been extended
to allow for additional use-cases, including adding accountability [48], discussing their relation to SSs [22],
allowing for redactable structure [52], prohibiting additional redactions [33,34,35,46], yet also defining depen-
dencies between different parts of a message [53]. Moreover, there are also some real-world implementations



of this primitive proving that they are practical [49,57]. All these approaches (but accountability) have later
been unified into a generalized framework by Derler et al. [25]. We stress that the work by Izu et al. [34]
addresses the case of “sanitizable and deletable signatures”. However, they actually address the case of RSs
and not SSs. In particular, in their scheme, a third party can decide whether a redaction is visible or not,
but does not allow for any other alterations. We follow the nomenclature clarified by Bilzhause et al. [6], and
thus classify the work by Izu et al. [34] as an RS.

In contrast, SSs allow editing of signer-chosen blocks of signed messages by a semi-trusted entity named
the sanitizer [2]. In particular, the sanitizer holds its own secret key and can derive new messages, along with
the corresponding signatures, but cannot completely redact blocks. For example, if m = (I, do, not, like, fish)
(and m5 is admissible, i.e., modifiable), then the sanitizer can, e.g., derive a new signature σ′ on the message
m′ = (I, do, not, like, meat). Even though this seems to be off the limits, it turned out that this primitive
has many real-life application scenarios, see, e.g., Bilzhause et al. [6]. After the initial ideas by Ateniese et
al. [2], SSs also received a lot of attention in the recent past. Namely, the first thorough security model
was given by Brzuska et al. [11] (later slightly modified by Gong et al. [32]), which was later extended for
multiple signers/sanitizers [12,18], unlinkability (which means a derived signatures cannot be linked to its
original) [13,15,28,44], trapdoor SSs (where a signer can choose additional sanitizers after signature genera-
tion) [19,58], non-interactive public-accountability (an outsider can determine which party is accountable for
a given valid message/signature pair) [14], limiting the sanitizer to signer-chosen values [17,26,37], invisibility
(meaning that an outsider cannot derive which parts of a message are sanitizable) [3,16,27] and the case of
strongly unforgeable signatures [41]. All these extensions allow for additional use-cases of this primitive [6].

Additional related work is given in some recent surveys [6,23,30]. We stress that a slightly altered SS can
be used to “mimic” an RS by defining a special symbol to which the specific block is sanitized to, which
then marks the block as “redacted”. However, as shown by de Meer et al. [22], this has a negative impact
on the privacy guarantees of the resulting scheme because the special symbol remains visible. For example,
m′ = (I, like, fish) is clearly different from m′ = (I, ⊥,⊥, like, fish). We stress that our scheme supports both
possibilities, i.e., visible and non-visible (transparent) redactions, adding additional freedom.

2 Preliminaries and Notation

We now give our notation and the required preliminaries.

2.1 Notation

The main security parameter is denoted by λ ∈ N. All algorithms implicitly take 1λ as an additional input.
We write a ← A(x) if a is assigned to the output of the deterministic algorithm A with input x. If an
algorithm A is probabilistic, we write a ←r A(x). If we want to make the random coins r used explicit,
we write a ←r A(x; r). Otherwise, we assume that they are drawn internally. An algorithm is efficient if it
runs in probabilistic polynomial time (PPT) in the length of its input. For the remainder of this paper, all
algorithms are PPT if not explicitly mentioned otherwise. Most algorithms may return a special error symbol
⊥ /∈ {0, 1}∗, denoting an exception. If S is a set, we write a ←r S to denote that a is chosen uniformly at
random from S. For a message m = (m1,m2, . . . ,m`m), mi is called a block and `m ∈ N denotes the number
of blocks in m. If m is clear from the context, it is dropped from `m. To shorten notation, we use [a..b] (both
a and b, b ≥ a, are always positive natural numbers) for the set {a, a+ 1, . . . , b}. A function ν : N→ R≥0 is
negligible, if it vanishes faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k,
∀n > n0.

2.2 Building Blocks

We now present our required building blocks. These include labeled IND-CCA2 secure public-key encryption
schemes (Π), sanitizable signature (SS), PRFs, and aggregate signatures (Σ).



ExpIND-CCA2
A,Π (λ):

ppΠ ←r PPGen
Π(1λ)

(skΠ , pkΠ)←r KGen
Π(ppΠ)

b←r {0, 1}
(m∗0,m

∗
1, ϑ
∗, stateA)←r ADecΠ (skΠ ,·,·)(pkΠ)

If |m∗0| 6= |m∗1| ∨m∗0 /∈M∨m∗1 /∈M:
c∗ ← ⊥

Else:
c∗ ←r Enc

Π(pkΠ ,m
∗
b , ϑ
∗)

a←r ADecΠ ′(skΠ ,·,·)(stateA, c
∗)

where DecΠ ′(skΠ , ·, ·) behaves as DecΠ(skΠ , ·, ·),
but returns ⊥, if (c∗, ϑ∗) is queried.

return 1, if a = b
return 0

Fig. 1: Π IND-CCA2-Security

Labeled Public-Key Encryption Schemes A labeled public-key encryption scheme Π allows to encrypt
a message m using a given public key pkΠ and label ϑ ∈ {0, 1}∗. In a nutshell, the given ciphertext leaks no
information about the contained message, except its length, if the corresponding secret key skΠ is not known:

Definition 1 (Labeled Public-Key Encryption). A labeled public-key encryption scheme Π consists of
four algorithms {PPGenΠ ,KGenΠ ,EncΠ ,DecΠ}, such that:

PPGenΠ . The algorithm PPGenΠ outputs the public parameters of the scheme:

ppΠ ←r PPGen
Π(1λ)

It is assumed that ppΠ is implicit input to all other algorithms.
KGenΠ . The algorithm KGenΠ outputs the key pair, on input ppΠ :

(skΠ , pkΠ)←r KGen
Π(ppΠ)

EncΠ . The algorithm EncΠ gets as input the public key pkΠ , a message m, and a label ϑ ∈ {0, 1}∗ to encrypt.
It outputs a ciphertext c:

c←r Enc
Π(pkΠ ,m, ϑ)

DecΠ . The deterministic algorithm DecΠ outputs a message m (or ⊥, if the ciphertext is invalid) on input
skΠ , ϑ and a ciphertext c:

m← DecΠ(skΠ , c, ϑ)

Π IND-CCA2-Security We need IND-CCA2-security (and perfect correctness) for our construction to work.
Note, M is some message space implicitly defined by pkΠ and ppΠ .

Definition 2 (IND-CCA2-Security). A labeled encryption scheme Π is IND-CCA2-secure, if for any
PPT adversary A there exists a negligible function ν such that:

Pr
[
ExpIND-CCA2

A,Π (λ) = 1
]
≤ ν(λ)

The corresponding experiment is depicted in Figure 1.

A suitable instantiation is CS-encryption with labels [21].



Aggregate Signatures Standard digital signatures allow the holder of a secret key sksig to sign a message
m, while with knowledge of the corresponding public key pksig everyone can verify whether a given signature
was actually endorsed by the signer, i.e., the holder of pksig [50]. An aggregate signature scheme (Σ) allows
to aggregate multiple signatures into a single (short) value [8].

As a side contribution, we introduce a new framework for aggregate signatures, where one can also de-
aggregate signatures, and a novel aggregate uniqueness definition. This was, to the best of our knowledge,
only considered in a white-box fashion in the context of BGLS-signatures [8], but was never formally defined
in a black-box way, or only in some ad-hoc fashion [47].

Definition 3 (Aggregate Signatures). An aggregate signature scheme Σ with explicit de-aggregation con-
sists of six algorithms {PPGenΣ ,KGenΣ , SignΣ ,AVerfΣ ,AggΣ ,DAggΣ} such that:

PPGenΣ. The algorithm PPGenΣ outputs the public parameters

ppΣ ←r PPGenΣ(1λ)

and we assume that ppΣ contains 1λ and is implicit input to all other algorithms.
KGenΣ. The algorithm KGenΣ outputs the key pair of a signer:

(skΣ , pkΣ)←r KGenΣ(ppΣ)

SignΣ. The algorithm SignΣ gets as input the secret key skΣ, and the message m to sign. It outputs a signature:

σ ← SignΣ(skΣ ,m)

AVerfΣ. The algorithm AVerfΣ outputs a decision bit d ∈ {0, 1}, indicating if an aggregate signature σ is
valid, w.r.t. to a set {(pkΣ,i,mi)} of public keys/messages:

d← AVerfΣ({(pkΣ,i,mi)}, σ)

AggΣ. The algorithm AggΣ receives a set of key/message tuples with corresponding aggregated signatures
Sagg = {{(pkΣ,i,j ,mi,j)}, σi} to aggregate, where the sets {(pkΣ,i,j ,mi,j)} must be pair-wise disjoint, and
each σi protects {(pkΣ,i,j ,mi,j)}. In case Sagg = ∅, it returns ⊥. Otherwise it outputs a new aggregate
signature σ′, protecting

⋃
i{(pkΣ,i,j ,mi,j)}:4

σ′′ ← AggΣ({{(pkΣ,i,j ,mi,j)}, σi})

DAggΣ. The algorithm DAggΣ gets a set {{(pkΣ,i,j ,mi,j)}, σi} of public key/message tuples, along with
an aggregate signature σi (protecting {(pkΣ,i,j ,mi,j)}), an additional set {(pkΣ,k,mk)}, protected by an
aggregate signature σk, and outputs an a new aggregate signature σ′, which protects {(pkΣ,k,mk)} \⋃
i{(pkΣ,i,j ,mi,j)}:

σ′ ← DAggΣ({{(pkΣ,i,j ,mi,j)}, σi}, {(pkΣ,k,mk)}, σk)

Clearly, an aggregate signature may also protect a single message, i.e., degenerate to a “normal” signature.
Moreover, we require the usual correctness properties to hold. Namely, honestly generated signatures

verify, which must also be true for honestly generated aggregates. Likewise, honestly generated signatures
stemming from de-aggregation must also verify.

From a security perspective, we require existential unforgeability under chosen-message attacks (eUNF-
CMA), a strict form of uniqueness, correctness, and that a third party cannot remove signatures from an
aggregate, if it does not know the signatures for the messages to be removed. We now formally define each
of those properties.

Unforgeability requires that an adversary A cannot (except with negligible probability) come up with a
signature for a message m∗ for which the adversary did not see any signature before. As usual, the adversary
A can adaptively query for signatures on messages of its own choice.

4 We note that Boneh et al. require that each message appears at most once [8]. However, there are also mitigation strategies [4,8].



ExpeUNF-CMA
A,Σ (λ)

ppΣ ←r PPGenΣ(1λ)
(skΣ , pkΣ)←r KGenΣ(ppΣ)
Q ← ∅
({(pk∗i ,m∗i )},m∗, σ∗)←r ASign′Σ(skΣ ,·)(pksig)

where Sign′Σ(skΣ ,m):
Q ← Q∪ {m}
return σ ← SignΣ(skΣ ,m)

return 1, if AVerfΣ({(pk∗i ,m∗i )} ∪ {(pkΣ ,m∗)}, σ∗) = 1 ∧ m∗ /∈ Q
return 0

Fig. 2: Σ Unforgeability

Definition 4 (Σ Unforgeability). We say a Σ scheme is unforgeable, if for every PPT adversary A, there
exists a negligible function ν such that:

Pr
[
ExpeUNF-CMA

A,Σ (λ) = 1
]
≤ ν(λ)

The corresponding experiment is depicted in Figure 2.

ExpUniqueness
A,Σ (λ)

ppΣ ←r PPGenΣ(1λ)
({(pk∗i ,m∗i )}, σ∗, σ′∗)←r A(ppΣ)
return 1, if AVerfΣ({(pk∗i ,m∗i )}, σ∗) = 1 ∧

AVerfΣ({(pk∗i ,m∗i )}, σ′∗) = 1 ∧ σ∗ 6= σ′∗

return 0

Fig. 3: Σ Uniqueness

Uniqueness for aggregate signatures requires that for each set {(pki,mi)} at most one signature can be
found, even if all values can be adversarially generated. In contrast to Kuchta and Manulis [42], we require a
slightly different uniqueness notion, i.e., the complete signature must be unique, and not only some part of
it. Additionally, all values, but the public parameters, are explicitly generated by the adversary.

Definition 5 (Σ Uniqueness). We say a Σ scheme is unique, if for every PPT adversary A, there exists
a negligible function ν such that:

Pr
[
ExpUniqueness

A,Σ (λ) = 1
]
≤ ν(λ)

The corresponding experiment is depicted in Figure 3.

Remark 1. It should be obvious that uniqueness for aggregate signatures implies uniqueness for normal signa-
tures. However, the converse is not true by the following argument: Append a random bit for every generated
aggregate, and remove it before proceeding with the other algorithms, appending another random bit once
they are finished, if the resulting signature is an aggregate.

Our final definition requires that an adversary cannot de-aggregate signatures from an aggregate signa-
ture, if the adversary never saw a signature (or aggregate) for the messages for which it tries to remove the
signature from the aggregate. This resembles the k-element extraction assumption by Boneh et al. [8,20], but



for general aggregate signatures. To find out whether the adversary actually wins, we need to explicitly disre-
gard aggregates which the adversary could find using non-avoidable transitivity relationships and adverserial
signatures added “on top”. We therefore use the algorithm Closure which finds all “trivial” relations.

Algorithm 1: Algorithm Closure
Input: S = {(pki,mi)}, D = {{(pkj ,mj)}}
Output: D′ = {{(pkk,mk)}}

1 l← 0
2 l′ ← 0
3 D′ ← D ∪ S
4 do
5 T ← D′
6 l← |T |
7 foreach {(pkl,ml)} ∈ T do
8 foreach {(pkm,mm)} 6= {(pkl,ml)} ∈ T do
9 if {(pkl,ml)} ( {(pkm,mm)} then

10 D′ ← D′ ∪ ({{(pkm,mm)} \ {(pkl,ml)}})

11 l′ ← |D′|
12 while l 6= l′

13 return D′

ExpNoExtract
A,Σ (λ)

ppΣ ←r PPGenΣ(1λ)
M← ∅
K ← ∅
({(pk∗i ,m∗i )}, σ∗)←r AKGen′Σ(ppΣ),Sign′Σ(·)(ppΣ)

where KGen′Σ(ppΣ):
(ski, pki)←r KGenΣ(ppΣ)
K ← K ∪ (ski, pki)
return pki

where Sign′Σ({(pki,mi)}):
return ⊥, if ∃i : (·, pki) /∈ K
for all (pki,mi), let σi ← SignΣ(ski,mi)
σ′′i ← AggΣ({{(pki,mi}, σi)})
M← Closure({(pki,mi)},M)
return σ′′i

C ← {(pk∗i ,m∗i ) | (pk∗i , ·) ∈ K}
return 1, if AVerfΣ({(pk∗i ,m∗i )}, σ∗) = 1 ∧ C /∈M
return 0

Fig. 4: Σ Extraction Secure

Definition 6 (Σ No-Extraction). We say a Σ scheme provides no-extraction, if for every PPT adversary
A, there exists a negligible function ν such that:

Pr
[
ExpNoExtract

A,Σ (λ) = 1
]
≤ ν(λ)

The corresponding experiment is depicted in Figure 4, where the algorithm Closure is given in Algorithm 1.



We additionally require that, regardless of the message m, each signature is of constant size. This can
easily be achieved by hashing the message m using a collision-resistant hash-function prior to signing. A
suitable instantiation is BGLS-signatures [8], if one can enforce distinct messages (what we do).

Definition 7 (Pseudo-Random Functions). A pseudo-random function PRF consists of two algorithms
{KGenPRF,EvalPRF} such that:

KGenPRF. The algorithm KGenPRF outputs a function key x ∈ {0, 1}λ, where λ is the security parameter:

x←r KGenPRF(1λ)

EvalPRF. The algorithm EvalPRF gets as input the secret key x and a point p ∈ {0, 1}λ to evaluate. It outputs
a new point p′ ∈ {0, 1}λ:

p′ ← EvalPRF(x, p)

Security For security, it is required that PRF is actually pseudo-random.

ExpPR
A,PRF(λ)

x←r KGenPRF(1λ)
b←r {0, 1}
f ←r Fλ

a←r AEval′PRF(x,·)(1λ)
where oracle Eval′PRF(x, p):

return ⊥, if p /∈ {0, 1}λ
if b = 0, return EvalPRF(x, p)
return f(p)

return 1, if a = b
return 0

Fig. 5: PRF Pseudo-Randomness

Definition 8 (PRF Pseudo-Randomness). A pseudo-random generator PRF is called pseudo-random, if
for any PPT adversary A there exists a negligible function ν such that:∣∣∣∣Pr[ExpPR

A,PRF(λ) = 1]− 1

2

∣∣∣∣ ≤ ν(λ)

The corresponding experiment is depicted in Figure 5, where Fλ = {f : {0, 1}λ → {0, 1}λ} is the set of all
functions f mapping a value v ∈ {0, 1}λ to another value v′ ∈ {0, 1}λ.

Sanitizable Signatures Subsequently, we restate the definitions of (standard) SSs [3,11,41]. To recap, a SS
allows a semi-trusted third party, named the sanitizer, to alter signer-chosen blocks to arbitrary bit-strings.
The sanitizer holds its own key-pair and can be held accountable, if it sanitizes a message.

The following framework is essentially the one given by Camenisch et al. [16], which is itself based on
existing work [11]. However, some additional notation is required beforehand. The variable ASS contains the
set of indices of the modifiable blocks, as well as `, denoting the total number of blocks in the message m.
For example, let ASS = ({1, 2, 4}, 4). Then, m must contain four blocks (` = 4) and all but the third are
admissible. Note, ASS can be encoded in a length-invariant way by using a sequence of bits, e.g., (1, 1, 0, 1)
for ASS = ({1, 2, 4}, 4). The variable MSS is a set containing pairs (i,mi′) for those blocks that are modified,



Signer Sanitizer Verifier

skSSsig, pk
SS
san, m, ASS = ({2}, 5) skSSsan, pk

SS
sig, m, MSS = {(2, E)} pkSSsig, pk

SS
san

Signer Input Sanitizer Input Verifier Input

Output: σSS Output: (σSS′,m′) Output: d ∈ {0, 1}

Fig. 6: Example workflow of an SS. The message m is set to (H,A,L, L,O) and is sanitized m′ =
(H,E,L, L,O)

Signer Judge

skSSsig, pk
SS
san, m, σSS, {(mi, σ

SS
i )} pkSSsig, pk

SS
san, m, σSS

Proof-Generation Input Judge Input

Output: πSS Output: d ∈ {SigSS, SanSS,⊥}

Fig. 7: Additional algorithms ProofSS and JudgeSS for an accountable SS

meaning that mi is replaced by mi′. We use the shorthand notation m′ ← MSS(m) to denote the result of
this replacement, while MSS ≺ (m,ASS) means that MSS is a valid modification instruction w.r.t. m and
ASS. Likewise, we use ASS ≺ m to denote that ASS is valid description of the admissible blocks w.r.t. m. An
example workflow is depicted in Figure 6 and Figure 7. Both are derived from Bilzhause et al. [6].

Definition 9 (Sanitizable Signatures). A sanitizable signature scheme SS consists of the following eight
ppt algorithms {PPGenSS,KGSS

sig,KG
SS
san,Sign

SS,VerifySS,SanitSS,ProofSS, JudgeSS} such that:

PPGenSS. The algorithm PPGenSS generates the public parameters:

ppSS ←r PPGen
SS(1λ)

We assume that ppSS is implicitly input to all other algorithms.
KGSS

sig. The algorithm KGSS
sig generates the key pair of the signer:

(skSSsig, pk
SS
sig)←r KG

SS
sig(ppSS)

KGSS
san. The algorithm KGSS

san generates the key pair of the sanitizer:

(skSSsan, pk
SS
san)←r KG

SS
san(ppSS)

SignSS. The algorithm SignSS generates a signature σSS on input of the public key pkSSsan, ASS, a message m
and skSSsig:

σSS ←r Sign
SS(skSSsig, pk

SS
san,m,ASS)

VerifySS. The algorithm VerifySS verifies a signature σSS, i.e., outputs a decision d ∈ {0, 1} w.r.t. pkSSsan, pkSSsig
and a message m:

d← VerifySS(pkSSsig, pk
SS
san,m, σ

SS)

SanitSS. The algorithm SanitSS generates a sanitized signature σSS′ on input skSSsan, ASS, a message m and
pkSSsig:

(m′, σSS′)←r Sanit
SS(skSSsan, pk

SS
sig,m, σ

SS,MSS)



ExpUnforgeability
A,SS (λ)

ppSS ←r PPGen
SS(1λ)

(skSSsig, pk
SS
sig)←r KG

SS
sig(ppSS)

(skSSsan, pk
SS
san)←r KG

SS
san(ppSS)

(m∗, σSS∗)←r A
SignSS(skSSsig,·,·,·),Sanit

SS(skSSsan,·,·,·,·)
ProofSS(skSSsig,·,·,·,·)

(pkSSsig, pk
SS
san)

for i = 1, 2, . . . , q let (pkSSsan,i,mi,ASS
i ) and σSS

i

index the queries/answers to/from SignSS

for j = 1, 2, . . . , q′ let (pkSSsig,j ,mj , σ
SS
j ,Mj) and (m′j , σ

SS
j
′)

index the queries/answers to/from SanitSS

return 1, if VerifySS(pkSSsig, pk
SS
san,m

∗, σSS∗) = 1 ∧
∀i ∈ [1..q] : (pkSSsan,m

∗, σSS∗) 6= (pkSSsan,i,mi, σ
SS
i ) ∧

∀j ∈ [1..q′] : (pkSSsig,m
∗, σSS∗) 6= (pkSSsig,j ,m

′
j , σ

SS
j
′)

return 0

Fig. 8: SS Unforgeability

ProofSS. The algorithm ProofSS outputs a proof πSS on input m, σSS, skSSsig, pkSSsan and a set of polynomially

many additional signature/message pairs {(σSSi ,mi)}. The proof πSS is used by the next algorithm to
pinpoint the accountable party for a given signature:

πSS ←r Proof
SS(skSSsig, pk

SS
san,m, σ

SS, {(σSSi ,mi)})

JudgeSS. The algorithm JudgeSS outputs a decision d ∈ {SigPS,SanPS,⊥} indicating whether the message/signature
pair has been created by the signer, or the sanitizer:

d← JudgeSS(pkSSsig, pk
SS
san,m, σ

SS, πSS)

Correctness was already specified by Brzuska et al. [11].

SSs Security Definitions We now introduce the security properties required. These are the ones given
by Beck et al. [3], but altered for the used notation, already incorporating the strong definitions by Krenn
et al. [41], but a stronger notion of invisibility, where the adversary is now able to query arbitrary signa-
tures to the sanitization oracle. Moreover, we do neither consider unlinkability nor non-interactive public-
accountability, as it depends on the context whether these properties are required [3,16]. However, non-
interactive public-accountability is easy to achieve, e.g., by signing the resulting signature again [14].

Unforgeability This definition requires that an adversary A not having any secret keys is not able to produce
any new valid signature σ∗ on a message m∗ which it has never seen, even if A has full oracle access.

Definition 10 (Unforgeability). An SS is unforgeable, if for any PPT adversary A there exists a negligible
function ν such that

Pr[ExpUnforgeability
A,SS (λ) = 1] ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 8.

Immutability This definition prohibits that an adversary A can generate a verifying signature σSS∗ for a
message m∗ not derivable from the signatures given by an honest signer, even if it can generate the sanitizer’s
key pair.

Definition 11 (Immutability). An SS is immutable, if for any PPT adversary A there exists a negligible
function ν such that

Pr[ExpImmutability
A,SS (λ) = 1] ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 9.



ExpImmutability
A,SS (λ)

ppSS ←r PPGen
SS(1λ)

(skSSsig, pk
SS
sig)←r KG

SS
sig(ppSS)

(m∗, σSS∗, pkSSsan
∗)←r ASignSS(skSSsig,·,·,·),Proof

SS(skSSsig,·,·,·,·)(pkSSsig)

for i = 1, 2, . . . , q let (pkSSsan,i,mi,ASS
i )

index the queries to SignSS

return 1, if VerifySS(pkSSsig, pk
SS
san
∗,m∗, σSS∗) = 1 ∧

∀i ∈ [1..q] : (pkSSsan
∗ 6= pkSSsan,i ∨

m∗ /∈ {M(mi) | M with MSS(ASS
i ) = 1})

return 0

Fig. 9: SS Immutability

ExpPrivacy
A,SS (λ)

ppSS ←r PPGen
SS(1λ)

(skSSsig, pk
SS
sig)←r KG

SS
sig(ppSS)

(skSSsan, pk
SS
san)←r KG

SS
san(ppSS)

b←r {0, 1}

a←r A
SignSS(skSSsig,·,·,·),Sanit

SS(skSSsan,·,·,·,·)
ProofSS(skSSsig,·,·,·,·),LoRSan(·,·,·,·,·,sk

SS
sig,sk

SS
san,b)

(pkSSsig, pk
SS
san)

where LoRSan(m0,m1,MSS
0 ,MSS

1 ,ASS, skSSsig, sk
SS
san, b):

return ⊥, if MSS
0 ⊀ (m0,ASS) ∨ MSS

1 ⊀ (m1,ASS) ∨
MSS

0 (m0) 6= MSS
1 (m1) ∨ ASS ⊀ m0 ∨ ASS ⊀ m1

σSS ←r Sign
SS(skSSsig, pk

SS
san,mb,ASS)

return (m′, σSS′)←r Sanit
SS(skSSsan, pk

SS
sig,mb, σ

SS,MSS
b )

return 1, if a = b
return 0

Fig. 10: SS Privacy

Privacy This definition prohibits that an adversary A can learn anything about sanitized parts. This is similar
to the definition of standard encryption schemes.

Definition 12 (Privacy). An SS is private, if for any PPT adversary A there exists a negligible function
ν such that ∣∣∣Pr[ExpPrivacy

A,SS (λ)]− 1/2
∣∣∣ ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 10.

Transparency This definition prohibits that an adversary A does not learn whether a signature σSS was
generated through SignSS or SanitSS. We stress that the adversary cannot query signatures obtained by the
Sign/Sanit-oracle to the ProofSS′-oracle to avoid trivial attacks.

Definition 13 (Transparency). An SS is transparent, if for any PPT adversary A there exists a negligible
function ν such that ∣∣∣Pr[ExpTransparency

A,SS (λ)]− 1/2
∣∣∣ ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 11.

Signer-Accountability Signer-accountability prohibits that an adversary can generate a bogus proof that
makes JudgeSS decide that the sanitizer is responsible for a given signature/message pair (m∗, σSS∗), but the
sanitizer has never generated this pair. This is even true, if the adversary can generate the signer’s key pair.



ExpTransparency
A,SS (λ)

ppSS ←r PPGen
SS(1λ)

(skSSsig, pk
SS
sig)←r KG

SS
sig(ppSS)

(skSSsan, pk
SS
san)←r KG

SS
san(ppSS)

b←r {0, 1}
Q ← ∅

a←r A
SignSS(skSSsig,·,·,·),Sanit

SS(skSSsan,·,·,·,·)
ProofSS′(skSSsig,·,·,·,·),Sign/Sanit(·,·,·,sk

SS
sig,sk

SS
san,b)

(pkSSsig, pk
SS
san)

where ProofSS′(skSSsig,m, σ
SS, {(mi, σ

SS
i ) | i ∈ N}):

return ⊥, if pkSSsan
′ = pkSSsan ∧

((m,σSS) ∈ Q ∨ Q ∩ {(mi, σ
SS
i )} 6= ∅)

return ProofSS(skSSsig, pk
SS
san
′,m, σSS, {(mi, σ

SS
i )})

where Sign/Sanit(m,MSS,ASS, skSSsig, sk
SS
san):

σSS ←r Sign
SS(skSSsig, pk

SS
san,m,A

SS)

(m′, σSS′)←r Sanit
SS(skSSsan, pk

SS
sig,m, σ

SS,MSS)
if b = 1:

σSS′ ←r Sign
SS(skSSsig, pk

SS
san,m

′,ASS)

If σSS′ 6= ⊥, set Q ← Q∪ {(m′, σSS′)}
return (m′, σSS′)

return 1, if a = b
return 0

Fig. 11: SS Transparency

ExpSigAccountability
A,SS (λ)

ppSS ←r PPGen
SS(1λ)

(skSSsan, pk
SS
san)←r KG

SS
san(ppSS)

(pkSSsig
∗, πSS∗,m∗, σSS∗)←r ASanitSS(skSSsan,·,·,·,·)(pkSSsan)

for i = 1, 2, . . . , q let (m′i, σ
SS
i
′) and (mi,MSS

i , σ
SS
i , pk

SS
sig,i)

index the answers/queries from/to SanitSS

return 1, if VerifySS(pkSSsig
∗, pkSSsan,m

∗, σSS∗) = 1 ∧
∀i ∈ [1..q] : (pkSSsig

∗,m∗, σSS∗) 6= (pksig,i,m
′
i, σ

SS
i
′) ∧

JudgeSS(pkSSsig
∗, pkSSsan,m

∗, σSS∗, πSS∗) = SanSS

return 0

Fig. 12: SS Signer-Accountability

Definition 14 (Signer-Accountability). An SS is signer-accountable, if for any PPT adversary A there
exists a negligible function ν such that

Pr[ExpSigAccountability
A,SS (λ) = 1] ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 12.

Sanitizer-Accountability Sanitizer-accountability prohibits that an adversary can generate a bogus signa-
ture/message pair (m∗, σSS∗) that makes ProofSS outputs a (honestly generated) generated proof πSS which
points to the signer, but (m∗, σSS∗) has never been generated by the signer. This is even true, if the adversary
can generate the sanitizer’s key pair.

Definition 15 (Sanitizer-Accountability). An SS is sanitizer-accountable, if for any PPT adversary A
there exists a negligible function ν such that

Pr[ExpSanAccountability
A,SS (λ) = 1] ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 13.



ExpSanAccountability
A,SS (λ)

ppSS ←r PPGen
SS(1λ)

(skSSsig, pk
SS
sig)←r KG

SS
sig(ppSS)

(m∗, σSS∗, pkSSsan
∗)←r ASignSS(skSSsig,·,·,·),Proof

SS(skSSsig,·,·,·,·)(pkSSsig)

for i = 1, 2, . . . , q let (pkSSsan,i,mi,ASS
i ) and σSS

i

index the queries/answers to/from SignSS

πSS ←r Proof
SS(sksig, pk

SS
san
∗,m∗, σSS∗, {(mi, σ

SS
i ) | 0 < i ≤ q})

return 1, if VerifySS(pkSSsig, pk
SS
san
∗,m∗, σSS∗) = 1 ∧

∀i ∈ [1..q] : (pkSSsan
∗,m∗, σSS∗) 6= (pkSSsan,i,mi, σ

SS
i ) ∧

JudgeSS(pkSSsig, pk
SS
san
∗,m∗, σSS∗, πSS) = SigSS

return 0

Fig. 13: SS Sanitizer-Accountability

ExpInvisibility
A,SS (λ)

ppSS ←r PPGen
SS(1λ)

(skSSsig, pk
SS
sig)←r KG

SS
sig(ppSS)

(skSSsan, pk
SS
san)←r KG

SS
san(ppSS)

b←r {0, 1}
Q ← ∅
a←r ASanitSS′(skSSsan,·,·,·,·),Proof

SS′(skSSsig,·,·,·,·),LoRADM(skSSsig,·,·,·,·,b)(pkSSsig, pk
SS
san)

where LoRADM(sksig, pk
SS
san
′,m,ASS

0 ,ASS
1 , b):

return ⊥, if ASS
0 6≺ m ∧ ASS

1 6≺ m
return ⊥, if pkSSsan 6= pkSSsan

′ ∧ ASS
0 6= ASS

1

σSS ←r Sign
SS(skSSsig, pk

SS
san
′,m,ASS

b )

if pkSSsan
′ = pkSSsan, let Q ← Q∪ {(m,σSS,ASS

0 ∩ ASS
1 )}

return σSS

where SanitSS′(pkSSsig
′, skSSsan,m,MSS, σSS):

return ⊥, if pkSSsig
′ = pkSSsig ∧ ∃(m,σSS,ASS) ∈ Q : MSS 6≺ (m,ASS)

(m′, σSS′)←r Sanit
SS(pkSSsig

′, skSSsan,m,MSS, σSS)

if pkSSsig
′ = pkSSsig ∧ ∃(m,σSS,ASS′) ∈ Q : MSS ≺ (m,ASS′),

Q ← Q∪ {(m′, σSS′,ASS′)}
return (m′, σSS′)

return 1, if a = b
return 0

Fig. 14: SS Invisibility

Invisibility Depending on the context, an additional privacy guarantee may be required. In particular, invisi-
bility prohibits that an outsider holding no secret keys can decide which parts of a message m are sanitizable.
Note, the signing oracle can be simulated using the LoRADM oracle and setting ASS

0 = ASS
1 . The notation

ASS
0 ∩ ASS

1 means that only those indices are admissible which are admissible in ASS
0 and ASS

1 .

We stress, however, that we introduce a slightly stronger variant than discussed in prior work [3]; Namely,
we allow that the adversary can query any signature to SanitSS′, and not only the ones generated honestly. In
particular, now only if the signature was created by one of the oracles, we enforce the restriction ASS

0 ∩ ASS
1 .

We stress, however, that all strongly invisible constructions proposed so far are also unforgeable, and thus
such a signature can never be generated by the adversary.

Definition 16 (Invisibility). An SS is invisible, if for any PPT adversary A there exists a negligible func-
tion ν such that ∣∣∣Pr[ExpInvisibility

A,SS (λ)]− 1/2
∣∣∣ ≤ ν(λ) ,



Signer Redacter Verifier

skRSsig , pkRSsan, m, ARS = ({2, 3}) pkRSsig , skRSsan, MRS = {2, 3} pkRSsig , pkRSsan

Signer Input Redactor Input Verifier Input

Output: σRS Output: (σRS′,m′) Output: d ∈ {0, 1}

Fig. 15: Example workflow of a designated redactor RS. The message m is set to (I, do, not, like, crypto).
After redacting, m′ is (I, like, crypto). As we only consider private RSs, the redacted parts are not visible.

where the corresponding experiment is defined in Figure 14.

3 Invisible Redactable Signatures

We now introduce the new notion of invisible redactable signatures. In contrast to standard RSs [25], such
schemes hide which parts of a message can be redacted from outsiders. As in standard RSs anyone can redact
— and one can thus trivially decide which blocks are redactable — we need to introduce a “designated
redactor”, which is the only party able to decide this question. Thus, the designated redactor is the sanitizer
in an RS. This is related to already existing definitions, but in a different context [24,48]. However, before we
start defining and constructing our invisible RS, we need to settle some additional notation.

Additional Notation In the following, let m = (m1,m2, . . . ,m`) be some message, while ARS ⊆ [1..`] denotes
the admissible redactions, i.e., if i ∈ ARS, then mi can be redacted by the designated redactor. The variable
MRS ⊆ [1..`] denotes how a message m is to be modified, i.e., each block mi, i ∈MRS, is removed from m to
form the redacted message m′. In comparison to Derler et al. [25], however, we already define how those data-
structures look like for preciseness. Additionally, as done for SSs, we use the shorthand notation m′ ←MRS(m)
to denote such a redaction. The notation MRS ≺ (m,ARS) means that MRS is a valid modification instruction
w.r.t. m and ARS. Likewise, we use ARS ≺ m to denote that ARS is valid description of the admissible blocks
w.r.t. m.

An example workflow is depicted in Figure 15, derived from the work done by Bilzhause et al. [6].

3.1 Framework

The following definitions for RSs are derived from Derler et al. [25], merged with the ideas given by Pöhls and
Samelin [48], while also supporting parameter generation. Moreover, we do not consider additional “redaction
information” REDRS, as given by Derler et al. [25], as we have a designated redactor anyway.

Definition 17 (Invisible Redactable Signatures). An invisible redactable signature RS consists of the
following six algorithms, i.e., {PPGenRS,KGRS

sig ,KG
RS
san, Sign

RS,VerifyRS,RedRS}, such that:

PPGenRS. The algorithm PPGenRS generates the public parameters:

ppRS ←r PPGen
RS(1λ)

We assume that ppRS is implicitly input to all other algorithms.

KGRS
sig . The algorithm KGRS

sig generates a key pair:

(skRSsig , pk
RS
sig)←r KG

RS
sig(ppRS)



KGRS
san. The algorithm KGRS generates a key pair:

(skRSsan, pk
RS
san)←r KG

RS
san(ppRS)

SignRS. The algorithm SignRS outputs a signature σRS and some redaction information REDRS on input of
skRSsig , pkRSsan, ARS and a message m ∈MS:

σRS ←r Sign
RS(skRSsig , pk

RS
san,m,ARS)

Note, it is assumed that ARS can always be derived.
VerifyRS. The deterministic algorithm VerifyRS verifies a signature σRS, i.e., outputs a decision d ∈ {0, 1}

w.r.t. pkRSsig , pkRSsan, and a message m:

d← VerifyRS(pkRSsig , pk
RS
san,m, σ

RS)

RedRS. The algorithm RedRS outputs a derived signature σRS′ and a derived message m′, along with the new
admissible blocks ARS′, on input of skRSsan, pkRSsig , a signature σRS, some modification instruction MRS and

some redaction information REDRS:

(σRS′,m′,ARS′)←r Red
RS(skRSsan, pk

RS
sig ,m, σ

RS,MRS)

Correctness We also require that an RS is correct. We call an RS correct, if for all λ ∈ N, for all ppRS ←r

PPGenRS(1λ), for all (skRSsig , pk
RS
sig), for all (skRSsan, pk

RS
san), for all m ∈ MS, for all ARS ∈ {ARS′ | ARS′ ≺ m},

for all σRS ←r SignRS(skRSsig , pk
RS
san,m,ARS) we have that VerifyRS(pkRSsig , pk

RS
san,m, σ

RS) = 1 and also for all

MRS ∈ {MRS′ | MRS′ ≺ (m,ARS)}, for all (σRS′,m′,ARS′) ←r RedRS(skRSsan, pk
RS
sig ,m, σ

RS,MRS) we have that

VerifyRS(pkRSsig , pk
RS
san,m

′, σRS′) = 1.

3.2 Security Requirements

We now introduce our security model for RSs. This is an extended version derived from Derler et al. [25],
which is, in turn, derived from Brzuska et al. [10]. Note, moreover, that we do not need accountability, as in
our construction accountability is given by the SS, much like Pöhls and Samelin [48] and Bilzhause et al. [5].

Unforgeability This definition requires that an adversary A cannot derive a message which is not derivable
from any signed messages. We stress that, even though the set

⋃q
i=1{MRS(mi) |MRS ≺ (mi,ARS

i )} may grow
exponentially, membership is trivially to decide, i.e., in polynomial time.

Definition 18 (Unforgeability). An RS is unforgeable, if for any PPT adversary A there exists a negligible
function ν such that:

Pr[ExpUnforgeability
A,RS (λ) = 1] ≤ ν(λ)

where the corresponding experiment is defined in Figure 16.

Immutability This definition requires that an adversary A, which even can generate skRSsan, cannot derive a
message which is not derivable from any signed messages. We stress that, even though the set

⋃q
i=1{MRS(mi) |

MRS ≺ (mi,ARS
i )} may grow exponentially, membership is trivially to decide, i.e., in polynomial time.

Definition 19 (Immutability). An RS is immutable, if for any PPT adversary A there exists a negligible
function ν such that:

Pr[ExpImmutability
A,RS (λ) = 1] ≤ ν(λ)

where the corresponding experiment is defined in Figure 17.



ExpUnforgeability
A,RS (λ)

ppRS ←r PPGen
RS(1λ)

(skRSsig , pk
RS
sig)←r KG

RS
sig(ppRS)

(skRSsan, pk
RS
san)←r KG

RS
san(ppRS)

Q ← ∅
(m∗, σRS∗)←r ASignRS

′
(skRSsig ,·,·,·),Red

RS′(·,skRSsan,·,·,·)(pkRSsig , pk
RS
san)

where SignRS
′
(skRSsig , pk

RS
san

′
,m,ARS):

σRS ←r Sign
RS(skRSsig , pk

RS
san

′
,m,ARS)

if pkRSsan
′

= pkRSsan, let Q ← Q∪ {(σRS,m)}
return σRS

and RedRS
′
(pkRSsig

′
, skRSsan,m, σ

RS,MRS):

(σRS′,m′)←r Red
RS(skRSsan, pk

RS
sig

′
,m, σRS,MRS)

if pkRSsig
′

= pkRSsig ∧ σRS′ 6= ⊥, let Q ← Q∪ {(σRS′,m′)}
return σ′

return 1, if VerifyRS(pkRSsig , pk
RS
san,m

∗, σRS∗) = 1 ∧ (σRS∗,m∗) /∈ Q
return 0

Fig. 16: RS Unforgeability

ExpImmutability
A,RS (λ)

ppRS ←r PPGen
RS(1λ)

Q ← ∅
(skRSsig , pk

RS
sig)←r KG

RS(ppRS)

(m∗, σRS∗, pk∗)←r ASignRS(skRSsig ,·,·,·)(pkRSsig)

where SignRS(pkRSsan,m,A
RS)

Q[pkRSsan]← Q[pkRSsan] ∪ {MRS(m) | MRS ≺ (m,ARS)}
return 1, if VerifyRS(pkRSsig , pk

∗,m∗, σRS∗) = 1 ∧
m∗ /∈ Q[pk∗]

return 0

Fig. 17: RS Immutability

ExpPrivacy
A,RS (λ)

ppRS ←r PPGen
RS(1λ)

(skRSsig , pk
RS
sig)←r KG

RS(ppRS)

(skRSsan, pk
RS
san)←r KG

RS
san(ppRS)

b←r {0, 1}
a←r ASignRS(skRSsig ,·,·),Red

RS′(·,skRSsan,·,·,·),LoRRed(sk
RS
sig ,sk

RS
san,·,·,·,·,·,·,b)(pkRSsig , pk

RS
san)

where LoRRed(m0,m1,MRS
0 ,MRS

1 ,ARS
0 ,ARS

1 , b)

σRS
0 ←r Sign

RS(skRSsig , pk
RS
san,m0,ARS

0 )

σRS
1 ←r Sign

RS(skRSsig , pk
RS
san,m1,ARS

1 )

(σRS
0
′,m′0,ARS

0
′)←r Red

RS(skRSsan, pk
RS
sig ,m0, σ

RS
0 ,MRS

0 )

(σRS
1
′,m′1,ARS

1
′)←r Red

RS(skRSsan, pk
RS
sig ,m1, σ

RS
1 ,MRS

1 )

return ⊥, if m′0 6= m′1 ∨ ARS
0
′ 6= ARS

1
′

return (m′b, σ
RS
b
′)

return 1, if a = b
return 0

Fig. 18: RS Privacy

Privacy This definition prohibits that an adversary A can learn anything about redacted parts. This is similar
to the definition for SSs.



ExpTransparency
A,RS (λ)

ppRS ←r PPGen
RS(1λ)

(skRSsig , pk
RS
sig)←r KG

RS
sig(ppRS)

(skRSsan, pk
RS
san)←r KG

RS
san(ppRS)

b←r {0, 1}
a←r ASignRS(skRSsig ,·,·),Red

RS′(·,skRSsan,·,·,·),Sign/Red(·,·,·,sk
RS
sig ,b)(pkRSsig)

where Sign/Red(m,MRS,ARS, b):

σRS ←r Sign
RS(skRSsig , pk

RS
san,m,A

RS)

(m′, σRS′,ARS′)←r Red
RS(skRSsan, pk

RS
sig ,m, σ

RS,MRS)
if b = 1:

σRS′ ←r Sign
RS(skRSsig , pk

RS
san,m

′,ARS′)

return σRS′

return 1, if a = b
return 0

Fig. 19: RS Transparency

Definition 20 (Privacy). An RS is private, if for any PPT adversary A there exists a negligible function
ν such that: ∣∣∣Pr[ExpPrivacy

A,RS (λ)]− 1/2
∣∣∣ ≤ ν(λ)

where the corresponding experiment is defined in Figure 18.

Transparency This definition prohibits that an adversary A can decide whether a signature was generated
through SignRS or RedRS.

Definition 21 (Transparency). An RS is transparent, if for any PPT adversary A there exists a negligible
function ν such that: ∣∣∣Pr[ExpTransparency

A,RS (λ)]− 1/2
∣∣∣ ≤ ν(λ)

where the corresponding experiment is defined in Figure 19.

3.3 Invisibility of RSs

The new notion of invisibility prohibits that an adversary can decide which blocks of a message m are
redactable. This is formalized in the same fashion as done for SSs. Namely, the adversary gains access to
a LoRADM-oracle which either signs using ARS

0 or ARS
1 . To avoid trivial attacks, the adversary is limited to

redaction of ARS
0 ∩ ARS

1 .

Definition 22 (Invisibility). An RS is invisible, if for any PPT adversary A there exists a negligible func-
tion ν such that: ∣∣∣Pr[ExpInvisibility

A,RS (λ)]− 1/2
∣∣∣ ≤ ν(λ)

where the corresponding experiment is defined in Figure 20.

Construction Our construction burrows several ideas from existing ones [10,45,52]. In a nutshell, the main
idea is to sign each block (bound by some overall tag and some block-specific tag) and the relation between
each block (as they are symmetric, a “left-of-relation” is sufficient).

In more detail, the signer holds a long-term key-pair for a Σ, while the sanitizer holds a key-pair for
Π. For signing, the signer generates random tags for each block, and one additional random overall tag to
bind all signatures to a specific message. It then generates an ephemeral signature key pair. The next step is



ExpInvisibility
A,RS (λ)

ppRS ←r PPGen
RS(1λ)

(skRSsig , pk
RS
sig)←r KG

RS(ppRS)

(skRSsan, pk
RS
san)←r KG

RS
san(ppRS)

b←r {0, 1}
Q ← ∅
a←r ARedRS′(skRSsan,·,·,·,·),LoRADM(skSSsig,·,·,·,·,b)(pkRSsig , pk

RS
san)

where LoRADM(skRSsig , pk
RS
san
′,m,ARS

0 ,ARS
1 , b):

return ⊥, if ARS
0 6≺ m ∧ ARS

1 6≺ m
return ⊥, if pkRSsan 6= pkRSsan

′ ∧ ARS
0 6= ARS

1

σRS ←r Sign
RS(skRSsig , pk

RS
san
′,m,ARS

b )

if pkRSsan
′ = pkRSsan, let Q ← Q∪ {(m,σRS,ARS

0 ∩ ARS
1 )}

return σRS

where RedRS′(pkSSsig
′, skRSsan,m,MRS, σRS):

return ⊥, if pkRSsig
′ = pkRSsig ∧ ∃(m,σRS,ARS) ∈ Q : MSS 6≺ (m,ASS)

(m′, σRS′,ARS′)←r Red
RS(pkRSsig

′, skRSsan,m,MRS, σRS)

if pkRSsig
′ = pkRSsig ∧ ∃(m,σRS,ARS′) ∈ Q : MRS ≺ (m,ARS′),

Q ← Q∪ {(m′, σRS′,ARS′)}
return (m′, σRS′)

return 1, if a = b
return 0

Fig. 20: RS Invisibility

m1 m2 m3
m1||m2 m2||m3

m1||m3

Fig. 21: Visualization of the “left-of” relation.

generating a signature on the overall tag and all public keys using the long-term key. Then, the signer has to
generate a signature on each “left-of”-relation (See Figure 21 for a graphical explanation) of each block using
the overall tag and the two block-specific tags, again using the long-term keys. The ephemeral secret key and
each signature which should be redactable are then encrypted for the designated redactor. To avoid leaking
how many blocks are redactable, the plaintext is padded accordingly. Namely, at most ` + `(`−1)

2 signatures
are given to the adversary. Moreover, to prohibit tampering with the ciphertext, it is signed along with
the overall tag and all public keys using the ephemeral secret signing key. Finally, all generated signatures
are aggregated. Verification simply checks the aggregate signature on the values received. For redaction, the
designated redactor decrypts the ciphertext, re-generates the signature on the ciphertext and de-aggregates it.
For every block to be redacted, the designated redactor simply de-aggregates all related signatures. Finally,
it generates a new ciphertext with the remaining signatures, once more padded accordingly, signs it and
aggregates it.

The proof of the following theorem is given in Appendix A.

Theorem 1. If Π is correct and IND-CCA2 secure, while Σ is correct, unforgeable, unique and non-extractable,
then the construction of an RS, given in Construction 1, is correct, unforgeable, immutable, private, trans-
parent, and invisible.



PPGenRS(1λ). Generate ppΠ ←r PPGen
Π(1λ) and ppΣ ←r PPGenΣ(1λ). Return (ppΠ , ppΣ).

KGRS
sig(ppRS). Generate (skΣ , pkΣ)←r KGenΣ(ppΣ). Return (skΣ , pkΣ).

KGRS
san(ppRS). Generate (skΠ , pkΠ)←r KGen

Π(ppΠ). Return (skΠ , pkΠ).

SignRS(skRSsig , pk
RS
san,m,A

RS). The algorithm proceeds as follows:
– Draw `+ 1 tags τi ←r {0, 1}λ and generate a new signature key pair (skΣ

′, pkΣ
′)←r KGenΣ(ppΣ).

– For each i, let m′i be the augmented block (mi, τ0, τi, pk
RS
sig , pk

RS
san, pkΣ

′).

– Sign τ0 and all public keys, i.e., let σ0 ← SignΣ(skΣ , (τ0, pk
RS
sig , pk

RS
san, pkΣ

′)), and sign each augmented block, i.e., let

σi ← SignΣ(skΣ ,m
′i). Finally, sign each “left-of” relation, i.e., for all i ∈ [1..`], for all j < i let σi,j ← SignΣ(skΣ , (m

′i, τj)).
– Encrypt the ephemeral secret key, all signatures related to the redactable blocks and some fake values to make the length

of the encryption constant. In particular, generate c ←r EncΠ(pkΠ , (skΣ
′, {σi}i∈ARS , {σi,j}i∈ARS , t), (pkRSsig , pk

RS
san, pkΣ

′)),

where t is a random string of length ` + `(`−1)
2
− |({σi}i∈ARS ∪ {σi,j}i∈ARS | times the size of a single signature. This

essentially makes the ciphertext always the same size, regardless of ARS.
– Sign c using the ephemeral signature key, i.e., let σc ← SignΣ(skΣ

′, (c, τ0, pk
RS
sig , pk

RS
san, pkΣ

′)).
– Aggregate all signatures generated, i.e., let σa ← AggΣ(S1 ∪S2 ∪S3 ∪S4), where S1 = {{(pkΣ , τ0}, σ0)}, S2 =

⋃
{{(pkΣ ,

m′i}, σi)}i∈[1..`], S3 =
⋃
{{(pkΣ , (m′i, τj)}, σi,j)}i∈[1..`],j∈[1..`],i<j , and S4 = {{(pkΣ ′, (c, τ0, pkRSsig , pkRSsan, pkΣ ′)}, σc)}.

– Return (σa, c, pkΣ
′, (τi)i∈[0..`]).

VerifyRS(pkRSsig , pk
RS
san,m, σ

RS). Parse σRS as (σa, c, pkΣ
′, (τi)i∈[0..`]). Let m′i be the augmented block (mi, τ0, τi, pk

RS
sig , pk

RS
san, pkΣ

′).

Return AVerfΣ(S1 ∪ S2 ∪ S3 ∪ S4, σa), where S1 = {(pkΣ , (τ0, pkRSsig , pkRSsan, pkΣ ′))}, S2 = {(pkΣ ′, (c, τ0, pkRSsig , pkRSsan, pkΣ ′))},
S3 = {(pkΣ ,m′i)}i∈[1..`], S4 = {(pkΣ , (m′i, τj))}i∈[1..`],j∈[1..`],i<j .

RedRS(skRSsan, pk
RS
sig ,m, σ

RS,MRS). Parse σRS as (σa, c, pkΣ
′, (τi)i∈[0..`m]) and proceed as follows:

– If VerifyRS(pkRSsig , pk
RS
san,m, σ

RS) 6= 1, return false. Let m′′ ← MRS(m).

– Let (skΣ
′, {σi}i∈ARS , {σi,j}i∈ARS , t)← DecΠ(skRSsan, c, (pk

RS
sig , pk

RS
san, pkΣ

′)).

– For each i, let m′i be the augmented block (mi, τ0, τi, pk
RS
sig , pk

RS
san, pkΣ

′). Likewise, for each i, let m′′′i be the augmented

block (m′′i, τ0, τi, pk
RS
sig , pk

RS
san, pkΣ

′).

– Let σc ← SignΣ(skΣ
′, (c, τ0, pk

RS
sig , pk

RS
san, pkΣ

′)).

– Update ARS to ARS′ by removing all indices in MRS
2 and adjusting the remaining indices by reducing each i in ARS by

|{j ∈ MRS : j < i}|.
– De-aggregate the signatures for the cipher and the messages (and relations) to be removed, i.e., compute σ′a ←

DAggΣ((S1 ∪ S2 ∪ S3), (S4 ∪ S5 ∪ S6 ∪ S7), σa), where S1 =
⋃
{{(pkRSsig ,m′i)}, σi}i∈MRS , S2 = {{(pkΣ ′, (c, τ0, pkRSsig , pkRSsan,

pkΣ
′)}, σc)}, S3 =

⋃
{{(pkΣ , (m′i, τj)}, σi,j)}i∈MRS∨j∈MRS , S4 = {(pkΣ , (τ0, pkRSsig , pkRSsan, pkΣ ′))}, S5 = {((pkΣ ′), (c, τ0, pkRSsig ,

pkRSsan, pkΣ
′))}, S6 =

⋃
{((pkΣ),m′i)}i∈[1..`m], S7 =

⋃
{((pkΣ), (m′i, τj))}i∈[1..`m],j∈[1..`m],i<j .

– Generate c′ ←r EncΠ(pkRSsan, (skΣ
′, {σi}i∈ARS′ , {σi,j}i∈ARS′ , t′), (pkRSsig , pk

RS
san, pkΣ

′)), where t′ is a random string of length

`m′′ +
`m′′ (`m′′−1)

2
− |({σi}i∈ARS′ ∪ {σi,j}i∈ARS′)| times the size of a single signature.

– Sign c′, i.e., let σ′c ← SignΣ(skΣ
′, (c′, τ0, pk

RS
sig , pk

RS
san, pkΣ

′)).

– Aggregate σ′c onto σ′a by calculating σ′′a ← AggΣ(S1∪{S2∪S3}, σ′a}), where m′′ = MRS(m) is of length `m′′ , S1 = {{(pkΣ ′,
(c, τ0, pk

RS
sig , pk

RS
san, pkΣ

′)}, σ′c)}, S2 =
⋃
{(pkRSsig ,m′′′i )}i∈[1..`m′′ ], and S3 =

⋃
{(pkRSsig , (m′′′i, τj))}i∈[1..`m′′ ],j∈[1..`m′′ ],i<j .

– Return ((σ′′a , c
′, pkΣ

′, (τi)i∈[0..`m′′ ]),m
′′,ARS′).

Construction 1: Construction of an invisible RS

4 Non-Accountable Invisible SS

In our construction of fully invisible PS (See Section 5), we use non-accountable, yet invisible, SS. As ac-
countability is one of the main concerns of SSs [2], this notion has, for obvious reasons, not been considered
before [40]. However, as we show, in certain contexts such a notion has its merits.

Background In a nutshell, a non-accountable invisible SS, from now on denoted by SS′, behaves as a standard
SS, but the algorithms ProofSS and JudgeSS are simply set to ⊥, i.e., effectively all algorithms related to
accountability are dropped, clearly also affecting the correctness definition [11]. This also means that an SS′

may still achieve all security notions, but sanitizer-accountability and signer-accountability. This is exactly
what our construction, given in Construction 2, achieves.



The reason for doing so is that accountability of the signatures can result from a different mechanism,
what is exactly what we do in our final construction using an accountable SS.

Construction Our construction is given in Construction 2. The basic idea is that each block is signed using a
fresh ephemeral signature key. If a block is admissible, the corresponding secret key is given to the sanitizer.
This paradigm follows already existing ideas [27]. However, their scheme does not achieve transparency, while
ours is not accountable.

In more detail, the signer holds a long-term key-pair for a Σ, while the sanitizer holds a key-pair for
Π. At signing, the signer generates a fresh ephemeral key-pair for each block in the message m to sign. If
a block is admissible, the randomness used to generate those key-pairs is derived from a PRF to achieve a
smaller signature size. If a block is not admissible, fresh random coins are drawn. The secret key x for the
PRF is encrypted to the sanitizer. All ephemeral public keys and the resulting ciphertext are signed using the
long-term keys. For sanitizing, the sanitizer reconstructs the secret key x for the PRF and with it the signing
keys for each admissible block, and then simply signs the blocks to be sanitized.

It is easy to see that this construction is invisible and does not provide any form of accountability, while
we stress that we cannot avoid the encryption due to recent results [27]. Moreover, strictly speaking, our
construction is even transparent in the sense of Brzuska et al. [11], i.e., the proof-restriction is not necessary.

PPGenSS(1λ). Generate ppΠ ←r PPGen
Π(1λ) and ppΣ ←r PPGenΣ(1λ). Return (ppΠ , ppΣ).

KGSS
sig(ppSS). Generate (skΣ , pkΣ)←r KGenΣ(ppΣ). Return (skΣ , pkΣ).

KGSS
san(ppSS). Generate (skΠ , pkΠ)←r KGen

Π(ppΠ). Return (skΠ , pkΠ).

SignSS(skSSsig, pk
SS
san,m,A

SS). The algorithm proceeds as follows:
– If ASS ≺ m does not hold, return ⊥.
– Draw x←r KGenPRF(1λ).
– For i ∈ [1..`], if i ∈ ASS.1, let ri ← EvalPRF(x, i) and ri ←r {0, 1}λ otherwise. Set (ski, pki)←r KGenΣ(ppΣ ; ri).
– Encrypt the seed and ASS, i.e., let c←r Enc

Π(pkSSsan, (x,A
SS), (pkSSsig, pk

SS
san, (pki)[1..`])).

– Sign the public keys, and the ciphertext, i.e., let σs ← SignΣ(skΣ , (pk
SS
sig, pk

SS
san, (pki)[1..`], c)).

– Sign each randomized block using each ski, i.e., let σi ← SignΣ(ski, ((pki,m
i)[1..`], c, σs, pk

SS
sig, pk

SS
san)).

– Return (c, σs, (pki, σi)i∈[1..`]).

VerifySS(pkSSsig, pk
SS
san,m, σ

SS). Parse σSS as (c, σs, (pki, σi)i∈[1..`]). If VerfΣ(pkSSsig, (pk
SS
sig, pk

SS
san, (pki)[1..`], c), σs) = 0, return 0. If, for

all i ∈ [1..`], we have that VerfΣ(pki, ((pki,m
i), c, σs, pk

SS
sig, pk

SS
san)), σi) = 1, return 1. Otherwise, return 0.

SanitSS(skSSsan, pk
SS
sig,m, σ

SS,MSS). The algorithm parses σSS as (c, σs, (pki, σi)i∈[1..`]) and proceeds as follows:

– If VerifySS(pkSSsig, pk
SS
san,m, σ

SS) 6= 1, return ⊥.

– Let (x,ASS)← DecΠ(skSSsan, c, (pk
SS
sig, pk

SS
san, (pki)[1..`])). If decryption fails, return ⊥.

– For each i ∈ ASS.1, let (sk′i, pk
′
i)←r KGenΣ(ppΣ ;EvalPRF(x, i)).

– If MSS \ ASS.1 6= ∅, return ⊥.
– For each (i,mi′) ∈ MSS, let σ′i ← SignΣ(sk′i, ((pki,m

′i)[1..`], c, σs, pk
SS
sig, pk

SS
san)).

– Return (MSS(m), (c, σs, (pki, σ
′
i)i∈[1..`])).

Construction 2: Construction of a non-accountable invisible SS′

We stress that we could also aggregate all signatures generated. However, to keep the description short,
we opted for not doing this.

The proof of the following theorem is found in Appendix B.

Theorem 2. If Π is correct and IND-CCA2 secure, PRF pseudorandom and correct, while Σ is correct and
unforgeable, the construction of a SS′, given in Construction 2, is correct, unforgeable, immutable, private,
transparent, and invisible.



Signer Sanitizer Verifier

skPSsig , pkPSsan, m,
APS = ({1, 3, 4}, {5})

skPSsan, pk
PS
sig , m,

MPS = ({(1, B), (3, E), (4, R)}, {(5)})}
pkPSsig , pkPSsan

Signer Input Sanitizer Input Verifier Input

Output: σPS Output: (σPS′,m′) Output: d ∈ {0, 1}

Fig. 22: Example workflow of a PS. The message m is set to (H,E,L, L,O) and is modified to (B,E,E,R).

Signer Judge

skPSsig , pkPSsan, m, σPS, {(mi, σ
PS
i )} pkPSsig , pkPSsan, m, σPS

Proof-Generation Input Judge Input

Output: πPS Output: d ∈ {SigSS, SanSS,⊥}

Fig. 23: Proof-generation and JudgePS

5 Fully Invisible Protean Signatures

We now present our framework for PSs, which is taken from Krenn et al. [40].

To recap, a PS allows to remove and alter signer-chosen parts of a signed message by a semi-trusted third
party, i.e., the sanitizer. The sanitizer can also be held accountable, if it chose to edit a signed message. For
the framework, we settle some additional notation, which is derived from the ones used for RSs and SSs, to
ease understanding.

5.1 Framework

For the framework, we use the following notation. The variable APS is a list containing the set of indices of
the editable blocks, as well as the blocks which can be redacted. For example, let APS = ({1, 2}, {4}). Then,
the first and second block are editable, while only the fourth block can be redacted. The variable MPS is a
list containing a set of pairs (i,mi′) for those blocks that are modified, meaning that mi is replaced by mi′

and a set of indices to be redacted. In more detail, if MPS = ({(1, b), (2, b)}, {3}) means that the first two
blocks are altered to contain a b, while the third block is redacted.

We use the shorthand notation m′ ← MPS(m) to denote the result of this replacement, while MPS ≺
(m,APS) means that MPS is a valid modification instruction w.r.t. m and APS. Likewise, we use APS ≺ m to
denote that APS is valid description of the admissible blocks w.r.t. m.

An example workflow is depicted in Figure 22 and Figure 23. To ease understanding and the description
of our construction, we define that the replacements are done first and the redactions afterwards.

Definition 23 (Protean Signatures). A protean signature scheme PS consists of the following eight PPT
algorithms (PPGenPS,KGPS

sig ,KG
PS
san, Sign

PS,VerifyPS,EditPS,ProofPS, JudgePS) such that:

PPGenPS. The algorithm PPGenPS generates the public parameters:

ppPS ←r PPGen
PS(1λ)

We assume that ppPS is implicitly input to all other algorithms.



KGPS
sig . The algorithm KGPS

sig generates the key pair of the signer:

(skPSsig , pk
PS
sig)←r KG

PS
sig(ppPS)

KGPS
san. The algorithm KGSS

san generates the key pair of the sanitizer:

(skPSsan, pk
PS
san)←r KG

PS
san(ppPS)

SignPS. The algorithm SignPS generates a signature σPS on input of the public key pkPSsan, APS, a message m,
and skPSsig :

σPS ←r Sign
PS(skPSsig , pk

PS
san,m,APS)

It is assumed that APS can be derived from any verifying signature σPS, if skPSsan is known.

VerifyPS. The algorithm VerifyPS verifies a signature σPS, i.e., outputs a decision d ∈ {0, 1} w.r.t. pkPSsan, pkPSsig ,
and a message m:

d← VerifyPS(pkPSsig , pk
PS
san,m, σ

PS)

EditPS. The algorithm EditPS generates a sanitized signature σPS′ and updated APS′, given inputs skPSsan, APS,
a message m, a signature σ, and pkPSsig :

(m′, σPS′,APS′)←r Edit
PS(skPSsan, pk

PS
sig , σ,m,MPS)

ProofPS. The algorithm ProofPS outputs a proof πPS on input m, σPS, skPSsig , pkPSsan, and a set of polynomially

many additional signature/message pairs {(σPSi ,mi)}. The proof πPS is used by the next algorithm to
pinpoint the accountable party for a given signature:

πPS ←r Proof
PS(skPSsig , pk

PS
san,m, σ

PS, {(σPSi ,mi)})

JudgePS. The algorithm JudgePS outputs a decision d ∈ {SigPS, SanPS,⊥} indicating whether the message/signature
pair has been created by the signer, or the sanitizer:

d← JudgePS(pkPSsig , pk
PS
san,m, σ

PS, πPS)

5.2 PSs Security Definitions

We now introduce the security properties for PSs. Clearly, the goals are similar to the ones for SSs and RSs.
However, due to the extended capabilities, the semantic is quite different, while we need to take extra care
for changed indices after redactions.

Unforgeability This definition requires that an adversary A not having any secret keys is not able to
produce any valid signature σPS∗ on a message m∗ which it has never not seen, even if A has full oracle
access, i.e., this captures “strong unforgeability” [41].

Definition 24 (Unforgeability). A PS is unforgeable, if for any PPT adversary A there exists a negligible
function ν such that

Pr[ExpUnforgeability
A,PS (λ) = 1] ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 24.



ExpUnforgeability
A,PS (λ)

ppPS ←r PPGen
PS(1λ)

(skPSsig , pk
PS
sig)←r KG

PS
sig(ppPS)

(skPSsan, pk
PS
san)←r KG

PS
san(ppPS)

(m∗, σPS∗)←r ASignPS(skPSsig ,·,·,·),Edit
PS(skPSsan,·,·,·,·),Proof

PS(skPSsig ,·,·,·,·)(pkPSsig , pk
PS
san)

for i = 1, 2, . . . , q let (pkPSsan,i,mi,APS
i ) and σPS

i

index the queries/answers to/from SignPS

for j = 1, 2, . . . , q′ let (pkPSsig ,j ,mj , σ
PS
j ,Mj) and (m′j , σ

PS
j
′,APS′

j)

index the queries/answers to/from EditPS

return 1, if VerifyPS(pkPSsig , pk
PS
san,m

∗, σPS∗) = 1 ∧
∀i ∈ [1..q] : (pkPSsan,m

∗, σPS∗) 6= (pkPSsan,i,mi, σ
PS
i ) ∧

∀j ∈ [1..q′] : (pkPSsig ,m
∗, σPS∗) 6= (pkPSsig ,j ,m

′
j , σ

PS
j
′)

return 0

Fig. 24: PS Unforgeability

ExpImmutability
A,PS (λ)

ppPS ←r PPGen
PS(1λ)

(skPSsig , pk
PS
sig)←r KG

PS
sig(ppPS)

(m∗, σPS∗, pkPSsan
∗)←r ASignPS(skPSsig ,·,·,·),Proof

PS(skPSsig ,·,·,·,·)(pkPSsig)

for i = 1, 2, . . . , q let (pkPSsan,i,mi,APS
i )

index the queries to SignPS

return 1, if VerifyPS(pkPSsig , pk
PS
san
∗,m∗, σPS∗) = 1 ∧

∀i ∈ [1..q] : (pkPSsan
∗ 6= pkPSsan,i ∨

m∗ /∈ {M(mi) | M with M ≺ (mi,APS
i )})

return 0

Fig. 25: PS Immutability

Immutability This definition prohibits that an adversary A can generate a verifying signature σPS∗ for a
message m∗ not derivable from the signatures given by an honest signer, even if it can generate the sanitizer’s
key pair.

Definition 25 (Immutability). A PS is immutable, if for any PPT adversary A there exists a negligible
function ν such that

Pr[ExpImmutability
A,PS (λ) = 1] ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 25.

Privacy This definition prohibits that an adversaryA can learn anything about edited (redacted or sanitized)
parts.

Definition 26 (Privacy). A PS is private, if for any PPT adversary A there exists a negligible function ν
such that ∣∣∣Pr[ExpImmutability

A,PS (λ)]− 1/2
∣∣∣ ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 26.

Transparency This definition requires that an adversary A does not learn whether a signature σPS was
generated through SignPS or EditPS.



ExpPrivacy
A,PS (λ)

ppPS ←r PPGen
PS(1λ)

(skPSsig , pk
PS
sig)←r KG

PS
sig(ppPS)

(skPSsan, pk
PS
san)←r KG

PS
san(ppPS)

b←r {0, 1}

a←r A
SignPS(skPSsig ,·,·,·),Edit

PS(skPSsan,·,·,·,·)
ProofPS(skPSsig ,·,·,·,·),LoREdit(·,·,·,·,·,sk

PS
sig ,sk

PS
san,b)

(pkPSsig , pk
PS
san)

where LoREdit(m0,m1,MPS
0 ,MPS

1 ,APS
0 ,APS

1 , sk
PS
sig , sk

PS
san, b)

σPS
i ←r Sign

PS(skPSsig , pk
PS
san,mi,APS

i ) for i ∈ {0, 1}
(m′i, σ

PS
i
′,APS

i
′)←r Edit

PS(skPSsan, pk
PS
sig ,mi, σ

PS
i ,MPS

i ) for i ∈ {0, 1}
return ⊥, if m′0 6= m′1 ∨ APS

0
′ 6= APS

1
′

return (m′b, σ
PS
b
′,APS

b
′)

return 1, if a = b
return 0

Fig. 26: PS Privacy

ExpTransparency
A,PS (λ)

ppPS ←r PPGen
PS(1λ)

(skPSsig , pk
PS
sig)←r KG

PS
sig(ppPS)

(skPSsan, pk
PS
san)←r KG

PS
san(ppPS)

b←r {0, 1}
Q ← ∅

a←r A
SignPS(skPSsig ,·,·,·),Edit

PS(skPSsan,·,·,·,·)
ProofPS′(skPSsig ,·,·,·,·),Sign/Edit(·,·,·,sk

PS
sig ,sk

PS
san,b)

(pkPSsig , pk
PS
san)

where ProofPS′(skPSsig ,m, σ
PS, {(mi, σ

PS
i ) | i ∈ N}):

return ⊥, if pkPSsan
′ = pkPSsan ∧ ((m,σPS) ∈ Q ∨ Q ∩ {(mi, σ

PS
i )} 6= ∅)

return ProofPS(skPSsig , pk
PS
san
′,m, σPS, {(mi, σ

PS
i )})

where Sign/Edit(m,MPS,APS, skPSsig , sk
PS
san, b):

σPS ←r Sign
PS(skPSsig , pk

PS
san,m,A

PS)

(m′, σPS′,APS′)←r Edit
PS(skPSsan, pk

PS
sig ,m, σ

PS,MPS)
if b = 1:

σPS′ ←r Sign
PS(skPSsig , pk

PS
san,m

′,APS′)

if σPS′ 6= ⊥, set Q ← Q∪ {(m′, σPS′)}
return (m′, σPS′)

return 1, if a = b
return 0

Fig. 27: PS Transparency

Definition 27 (Transparency). A PS is transparent, if for any PPT adversary A there exists a negligible
function ν such that ∣∣∣Pr[ExpTransparency

A,PS (λ)]− 1/2
∣∣∣ ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 27.

Signer-Accountability Signer-accountability prohibits that an adversary can generate a bogus proof that
makes JudgePS decide that the sanitizer is responsible for a given signature/message pair (m∗, σPS∗), but the
sanitizer has never generated this pair. This is even true, if the adversary can generate the signer’s key pair.

Definition 28 (Signer-Accountability). A PS is signer-accountable, if for any PPT adversary A there
exists a negligible function ν such that



ExpSigAccountability
A,PS (λ)

ppPS ←r PPGen
PS(1λ)

(skPSsan, pk
PS
san)←r KG

PS
san(ppPS)

(pkPSsig
∗, πPS∗,m∗, σPS∗)←r AEditPS(skPSsan,·,·,·,·)(pkPSsan)

for i = 1, 2, . . . , q let (m′i, σ
PS
i
′,APS′

j) and (mi,MPS
i , σ

PS
i , pk

PS
sig ,i)

index the answers/queries from/to EditPS

return 1, if VerifyPS(pkPSsig
∗, pkPSsan,m

∗, σPS∗) = 1 ∧
∀i ∈ [1..q] : (pkPSsig

∗,m∗, σPS∗) 6= (pksig
PS
,i,m

′
i, σ

PS
i
′) ∧

JudgePS(pkPSsig
∗, pkPSsan,m

∗, σPS∗, πPS∗) = SanPS

return 0

Fig. 28: PS Signer-Accountability

ExpSanAccountability
A,PS (λ)

ppPS ←r PPGen
PS(1λ)

(skPSsig , pk
PS
sig)←r KG

PS
sig(ppPS)

(m∗, σPS∗, pkPSsan
∗)←r ASignPS(skPSsig ,·,·,·),Proof

PS(skPSsig ,·,·,·,·)(pkPSsig)

for i = 1, 2, . . . , q let (pkPSsan,i,mi,APS
i ) and σPS

i

index the queries/answers to/from SignPS

πPS ←r Proof
PS(sksig, pk

PS
san
∗,m∗, σPS∗, {(mi, σ

PS
i ) | 0 < i ≤ q})

return 1, if VerifyPS(pkPSsig , pk
PS
san
∗,m∗, σPS∗) = 1 ∧

∀i ∈ [1..q] : (pkPSsan
∗,m∗, σPS∗) 6= (pkPSsan,i,mi, σ

PS
i ) ∧

JudgePS(pkPSsig , pk
PS
san
∗,m∗, σPS∗, πPS) = SigPS

return 0

Fig. 29: PS Sanitizer-Accountability

Pr[ExpSigAccountability
A,PS (λ) = 1] ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 28.

Sanitizer-Accountability Sanitizer-accountability prohibits that an adversary can generate a bogus sig-
nature/message pair (m∗, σPS∗) that makes ProofSS output an honestly generated proof πPS which points to
the signer, but (m∗, σPS∗) has never been generated by the signer. This is even true, if the adversary can
generate the sanitizer’s key pair.

Definition 29 (Sanitizer-Accountability). A PS is sanitizer-accountable, if for any PPT adversary A
there exists a negligible function ν such that

Pr[ExpSanAccountability
A,PS (λ) = 1] ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 29.

5.3 (Full) Invisibility

Invisibility prohibits that an outsider can decide which blocks can be edited and also which blocks can be
redacted. Note, the signing oracle can be simulated by using the same APS in the LoRADM oracle. Moreover,
as done for SSs (See Section 2), we define a slightly stronger variant than defined by Krenn et al. [40]: the
adversary A can now query arbitrary signature to the LoRADM-oracle.



ExpInvisibility
A,PS (λ)

ppPS ←r PPGen
PS(1λ)

(skPSsig , pk
PS
sig)←r KG

PS
sig(ppPS)

(skPSsan, pk
PS
san)←r KG

PS
san(ppPS)

b←r {0, 1}
Q ← ∅
a←r AEditPS′(skPSsan,·,·,·,·),Proof

PS(skPSsig ,·,·,·,·),LoRADM(skPSsig ,·,·,·,·,b)(pkPSsig , pk
PS
san)

where LoRADM(sksig, pk
PS
san
′,m,APS

0 ,APS
1 , b):

return ⊥, if APS
0 6≺ m ∧ APS

1 6≺ m
return ⊥, if pkPSsan 6= pkPSsan

′ ∧ APS
0 6= APS

1

σPS ←r Sign
PS(skPSsig , pk

PS
san
′,m,APS

b )

if pkPSsan
′ = pkPSsan

Q ← Q∪ {(m,σPS, (APS
0 .1 ∩ APS

1 .1,APS
0 .2 ∩ APS

1 .2))}
return σPS

where EditPS′(pkPSsig
′, skPSsan, σ

PS,m,MPS):

return ⊥, if pkPSsig
′ = pkPSsig ∧ ∃(m,σPS,A) ∈ Q : MPS 6≺ (m,A)

(m′, σPS′,APS′′)←r Edit
PS(pkPSsig

′, skPSsan,m,MPS, σPS)

if pkPSsig
′ = pkPSsig ∧ ∃(m,σPS,APS′) ∈ Q : MPS ≺ (m,APS′),

Q ← Q∪ {(m′, σPS′,APS′′)}
return (m′, σPS′)

return 1, if a = b
return 0

Fig. 30: PS Invisibility

Definition 30 (Invisibility). A PS is (fully) invisible, if for any PPT adversary A there exists a negligible
function ν such that ∣∣∣Pr[ExpInvisibility

A,PS (λ)]− 1/2
∣∣∣ ≤ ν(λ) ,

where the corresponding experiment is defined in Figure 30.

5.4 Construction

We now present our construction of a PS. It is essentially the same as given by Krenn et al. [40], but with
some minor, yet very important, quirks.

The basic idea is to combine RSs and SSs by bridging them using unique tags. In more detail, each block
mi ∈ m is signed using an invisible non-accountable SS′, while an additional (non-admissible) tag τ is used
to identify the “overall” message m the block mi belongs to. Moreover, each block mi is also assigned a (non-
admissible) additional tag τi, along with all public keys, used by an invisible RS to allow for redactions. Thus,
there are `m σSSi , where each signature protects (mi, τ, τi, pk

PS
sig , pk

PS
san). If a block mi is sanitizable, it is marked

as admissible within ASS
i . This allows to sanitize the block mi. Then, each tag τi is put into an RS to allow

for transparent redactions, additionally bound to the non-redactable “overall” tag τ and all (non-redactable)
public keys. If a block mi is non-redactable, this is marked in ARS. Thus, σRS protects (τ1, . . . , τ`m , τ, pk

PS
sig ,

pkPSsan). Finally, to achieve accountability, all tags, all signatures generated so far, the resulting values are
signed again using an additional, non-invisible but accountable, SS, while in this outer SS everything, but the
public keys and the tag τ are admissible. To maintain transparency, the overall message m is a single block
in the outer SS.

In more detail, the outer signature σSS0 protects (m,σRS, (τi, σ
SS
i )i, τ, pk

PS
sig , pk

PS
san). Thus, changing the

message or any signature requires changing σSS0 , implying accountability. Upon sanitization of a block mi,
σSSi is sanitized, while the outer signature σSS0 needs to be adjusted as well. For redaction of a block mi, σRS is
adjusted and the corresponding signature is no longer given out. This also means that σSS0 must be adjusted.



The resulting construction is depicted in Construction 3. To give a graphical overview of the construction
idea, see Figure 31 (before editing) and Figure 32 (after editing). Moreover, we do not consider unlinka-
bility [13], as it seems to be very hard to achieve with the underlying construction paradigm, especially
considering that there are no SSs yet which are unlinkable and invisible at the same time.
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sig , p̂k
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san) (m̂3, τ̂ , τ̂3, p̂k
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sig , p̂k

PS
san)

σSS
1 σSS

2 σSS
3

(τ̂1, τ̂2, τ̃3, τ̂ , p̂k
PS
sig , p̂k

PS
san)

σRS

( ˜(m1,m2,m3), σ̃RS, ˜(τ1, τ2, τ3, σSS
1 , σ

SS
2 , σ

SS
3 ), τ̂ , p̂kPSsig , p̂k

PS
san)

σSS
0

Fig. 31: Our main construction idea. Let APS = ({2}, {3}) and m = (m1,m2,m3) for preciseness, i.e., only
the second block of m is sanitizable, while only the last block of m is redactable. Redactable elements for the
RS (or sanitizable for the SS) are marked with a tilde, i.e., ·̃. Blocks which are not redactable (or sanitizable
resp.) are marked with a hat, i.e., ·̂.
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( ˜(m1,m2′), σ̃RS′, ˜(τ1, τ2, σSS
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SS
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′), τ̂ , p̂kPSsig , p̂k

PS
san)

σSS
0
′

Fig. 32: State after sanitization. Here, block m3 was redacted and m2 was changed to m2′. Block m1 must
stay the same.

The proof of the following Theorem is found in Appendix C.

Theorem 3. If SS is unforgeable, immutable, private, transparent, signer-accountable, and sanitizer-accountable,
RS is correct, unforgeable, immutable, private, transparent, and invisible, while SS′ is unforgeable, immutable,
private, transparent, and invisible, then the construction of a PS, given in Construction 3, is correct, unforge-
able, private, transparent, immutable, signer-accountable, sanitizer-accountable, and (fully) invisible.

5.5 Implementation

To show that the construction really is practical, we provide an evaluation of our implementation. To main-
tain comparability with existing measurements [40], we have chosen to use the same parameters (as far as
possible). Namely, our implementation is done in Java 10 and measured on an Intel i5-2400@3.10GHz with
16GiB of RAM. As the (aggregate) signature scheme, we implemented BGLS [8], while for Π we chose
CS-encryption [21]. As the underlying groups we chose IAIK’s ECCelerate pairings library5. In particular,
the underlying pairing curves are “SNARK 2” (Π uses only the first group). As the outer SS, we use the
construction given by Gong et al. [32], but altered using the results given by Krenn et al. [39] and Beck et
al. [3] to meet the stronger security definitions. Namely, we use the unique chameleon-hash [38] by Krenn
et al. [39], with 2’048 Bit moduli, also hash the nonce, encrypt the original signature to the signer, and use

5 https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate

https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate


PPGenPS(1λ). Let ppSS ←r SS.PPGen
SS(1λ), ppSS

′ ←r SS
′.PPGenSS(1λ), and ppRS ←r PPGen

RS(1λ).
Return ppPS = (ppSS, ppSS

′, ppRS).

KGPS
sig(ppPS). Let (skSSsig, pk

SS
sig)←r SS.KG

SS
sig(ppSS), (skSSsig

′, pkSSsig
′)←r SS

′.KGSS
sig(ppSS

′), and (skRSsig , pk
RS
sig)←r KG

RS
sig(ppRS).

Return (skPSsig , pk
PS
sig) = ((skSSsig, sk

SS
sig
′, skRSsig), (pkSSsig, pk

SS
sig
′, pkRSsig)).

KGPS
san(ppPS). Let (skSSsan, pk

SS
san)←r SS.KG

SS
san(ppSS), (skSSsan

′, pkSSsan
′)←r SS

′.KGSS
san(ppSS), and (skRSsan, pk

RS
san)←r KG

RS
san(ppRS).

Return (skPSsan, pk
PS
san) = ((skSSsan, sk

SS
san
′, skRSsan), (pk

SS
san, pk

SS
san
′, pkRSsan)).

SignPS(skPSsig , pk
PS
san,m,A

PS). The algorithm proceeds as follows:
– If APS ≺ m = (m1,m2, . . . ,m`) does not hold, return ⊥, otherwise parse APS = (APS

1 ,APS
2 ).

– Draw τ ←r {0, 1}λ.
– For all i ∈ [1..`m], let σSS

i ←r SS′.SignSS(skSSsig
′, pkSSsan, (m

i, τ, τi, pk
PS
sig , pk

PS
san),A

SS
i ), where each τi ←r {0, 1}λ. Furthermore,

if i ∈ APS
1 , let ASS

i = ({1}, 5) and ASS
i = (∅, 5) otherwise.

– Let σRS ←r Sign
RS(skRSsig , pk

RS
san,m

′,ARS), where ARS = APS
2 and the message m′ = (τ1, . . . , τ`, τ, pk

PS
sig , pk

PS
san).

– Generate σSS
0 ←r SS.Sign

SS(skSSsig, pk
SS
san, (m,σ

RS, (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san),A

SS
0 ), where ASS

0 = ({1, 2, 3}, 6).

– Return ((σSS
i )0≤i≤`m , σ

RS, τ, (τi)1≤i≤`m).

VerifyPS(pkPSsig , pk
PS
san,m, σ

PS). If VerifySS(pkSSsig, pk
SS
san, (m,σ

RS, τ, (τi, σ
SS
i )1≤i≤`m , pk

PS
sig , pk

PS
san), σ

SS
0 ) = 0, return 0. If VerifyRS(pkRSsig , (τ1,

. . . , τ`, τ, pk
PS
sig , pk

PS
san), σ

RS) = 0, return 0. If for any i ∈ [1..`m] : SS′.VerifySS(pkSSsig
′, pkSSsan, (m

i, τ, τi, pk
PS
sig , pk

PS
san), σ

SS
i ) = 0, return

0. Return 1.

EditPS(skPSsan, pk
PS
sig , σ

PS,m,MPS). The algorithm proceeds as follows:

– If VerifyPS(pkPSsig , pk
PS
san,m, σ

PS) = 0, return ⊥, otherwise parse MPS = (MPS
1 ,MPS

2 ) and continue.

– For all (i,mi′) ∈ MPS
1 , let (mi′, σSS

i
′)←r SS

′.SanitSS(skSSsan
′, pkSSsig, (m

i, τ, τi, pk
PS
sig , pk

PS
san), σ

SS
i , {(0,mi′)}). Return ⊥ if σSS

i
′ =

⊥, otherwise set σSS
i ← σSS

i
′.

– Generate (σRS′, ·, ·)←r Red
RS(pkRSsig ,m

′′, σRS,MPS
2 ,RED

RS), where m′′ = (τ1, . . . , τ`, τ, pk
PS
sig , pk

PS
san). If σRS′ = ⊥, return ⊥.

– Let (m′0, σ
SS′

0) ←r SS.SanitSS(skSSsan, pk
SS
sig, (m,σ

RS, (τi, σ
SS
i )i∈[1..`], τ, pk

PS
sig , pk

PS
san), σ

SS
0 , {(1,m′), (2, σRS′), (3, (τi,

σSS′
i)i∈[1..`]\MPS

2
)}). If σSS′

0 = ⊥, return ⊥.

– Update APS to APS′ by removing all indices in MPS
2 and adjusting the remaining indices by reducing each i in APS by

|{j ∈ MPS
2 : j < i}|.

– Return (MPS(m), ((σSS
i )i∈[1..`]\MPS

2
, σRS′, τ, (τi)i∈[1..`]\MPS

2
),APS′).

ProofPS(skPSsig , pk
PS
san,m, σ

PS, {(σPS
i ,m

i)}). If for any (σPS
i ,mi), VerifyPS(pkPSsig , pk

PS
san,mi, σ

PS
i ) = 0, return ⊥. If

VerifyPS(pkPSsig , pk
PS
san,m, σ

PS) = 0, return ⊥. Return SS.ProofSS(skSSsig, pk
SS
san,m

′, σSS, {(σSS
i ,m

′
i)}), where m′ = (m,σRS,

(τi)1≤i≤`m , τ, pk
PS
sig , pk

PS
san) and each m′i = (mi, σ

RS
i , (τi,j)1≤j≤`mi , τi, pk

PS
sig , pk

PS
san).

JudgePS(pkPSsig , pk
PS
san,m, σ

PS, πPS). If VerifyPS(pkPSsig , pk
PS
san,m, σ

PS) = 0, return ⊥. Return SS.JudgeSS(pkSSsig, pk
SS
san,m

′, σSS, πPS), where

m′ = (m,σRS, (τi)1≤i≤`m , τ, pk
PS
sig , pk

PS
san).

Construction 3: Our fully invisible PS scheme

unique signatures as done by Beck et al. [3], to achieve the stronger unforgeability, privacy and accountability
definitions (but invisibility).

We did not implement any particular optimizations with the following exceptions: BGLS signatures allow
a significant performance gain at verification, if the aggregate contains many signatures signed under the same
public key [8]. As this is the case for the used RS, we chose to implement this optimization. An additional
optimization we have implemented is that the signatures σSSi for the invisible SS′ are signed again using
the outer SS, and thus are not required to be unique in this context — and can be replaced by standard
unforgeable signatures.

As Krenn et al. [40], we evaluated our implementation with 32 blocks, whereas 25% were marked as
admissible, and an additional 25% as redactable. For editing, 50% of the admissible blocks were sanitized
and redacted. We omit proof generation and the judge, as they are simple database look-ups, and parameter
generation as it is a one-time setup. The overall results are depicted in Figure 33a, Figure 33b, and Table 33c.
They are based on 1’000 runs, while verification was measured after sanitization. Note, however, that we have



measured EditPS without verifying each signature to see the actual runtime of the editing part, and not the
verification one.
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25th PCTL: 4 128 902 369 359

Median: 4 191 917 385 367
75th PCTL: 4 274 939 422 380
90th PCTL: 5 365 972 499 400
95th PCTL: 5 425 991 571 412

Max.: 5 482 1’057 828 454

Average: 4 211 925 416 372
SD: 0.40 103.51 34.07 75.79 18.99

(c) Percentiles for our implementation in ms

Fig. 33: Performance Evaluation Results

As it can easily be seen, even our not entirely optimized implementation is a order of magnitude faster than
the original construction, and even offers stronger security guarantees. Interestingly enough, our construction
is even faster than the invisible SS introduced by Beck et al. [3], while, as already clarified by Krenn et al. [40],
a PS can simply mimic a SS by prohibiting redactions.

6 Conclusion

We have strengthened the state-of-the-art definition of invisibility for Protean Signatures (PS) to also account
for the redactable parts. In particular, using our new notion an outsider can neither decide which parts are
redactable nor which parts are editable. To achieve this, we introduced the new notions of invisible redactable
signatures (RS), non-accountable invisible sanitizable signature schemes (SS), and a novel framework for ag-
gregate signatures which explicitly allow for de-aggregation of signatures. Using those primitives, our resulting
provably secure construction becomes practically efficient, proven by our prototypical implementation.
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14. C. Brzuska, H. C. Pöhls, and K. Samelin. Non-interactive public accountability for sanitizable signatures. In EuroPKI, pages
178–193, 2012.
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A Proof of Theorem 1

We now provide the proof of security for Construction 1.

Proof. Correctness follows from inspection. Each security property is proven on its own. However, we already
keep all queries and answers to and from the oracle. This does not change the view of the adversary.

Unforgeability To prove that our scheme is unforgeable, we use a sequence of games:

Game 0: The original unforgeability game.
Game 1: We now abort, if we draw a tag twice.
Transition - Game 0 → Game 1: Due to the birthday paradox, this can only happen with negligible proba-

bility. |Pr[S0] − Pr[S1]| ≤ q2s
2λ

follows, where qs is the number of tags drawn. Note, this also means that

no message under pkRSsig is signed twice.

Game 2: We now abort, if the adversary was able to generate a signature for pkRSsig which protects a message
not signed by the signer.

Transition - Game 1 → Game 2: In this case, A returns (m∗, (σa, c, pkΣ
′, (τi)i∈[0..`])) for which σa contains a

signature not explicitly generated by the signer. We can use this forgery to construct an adversary B which
breaks the unforgeability of the underlying Σ. The reduction works as follows. It receives the parameters
and the public pk to forge and directly embeds them into the values given to the adversaryA. Queries to the
signing oracle are answered honestly; all inner signatures to be generated are delegated to B’s own oracle
(with the exception of the ephemeral signature, which can generated honestly). Then, as by assumption



σa protects at least one message which was not signed by the signing oracle, B can return ({S ∪ ({pkΣ ′, (c,
τ0, pk, pk

RS
san, pkΣ

′))},m′∗, σa), where S is the set of all messages checked for the underlying aggregate w.r.t.
to pk as derivable from the construction, but a single forged message m′∗ (which can easily be spotted)
which can be arbitrarily chosen from the set of forged messages. |Pr[S1]− Pr[S2]| ≤ νaggsig-unf(λ) follows,
as, by assumption, at least m′∗ must be fresh. Note, this also covers the case of changes public keys, tags
and “mix-and-match” attacks by merging multiple signatures, as we already ruled out tag-collisions, while
all public keys are always signed as well, and all signed values are bound to τ0.

Game 3: We now abort, if the adversary was able to generate a new signature for pkΣ
′ for the challenge

pkRSsan, which was never generated by the challenger.

Transition - Game 2 → Game 3: In this case, A returns (m∗, (σa, c, pkΣ
′, (τi)i∈[0..`])) for which σa contains

a signature under pkΣ
′ not explicitly generated by the signer. We can use this forgery to construct an

adversary B which breaks the unforgeability of the underlying Σ. The reduction works as follows. It
receives the parameters and the public pk to forge and directly embeds them into the values given to the
adversary A. Queries to the signing oracle are answered honestly; all inner signatures to be generated
are delegated to B’s own oracle (with the exception of the ephemeral signature, which can generated
honestly). Then, as by assumption σa protects at least one message which was not signed by the signing
oracle, B can return ({S∪({pkΣ ′, (c, τ0, pk, pk∗, pkΣ ′))},m′∗, σa), where S is the set of all messages checked
for the underlying aggregate w.r.t. to pk as derivable from the construction, but a single forged message
m′∗ (which can easily be spotted) which can be arbitrarily chosen from the set of forged messages.
|Pr[S2]−Pr[S3]| ≤ qsνaggsig-unf(λ), where qs is the number of signatures generates, follows, as the reduction
B has to guess where the adversary A forges a signature. Note, this also covers the case of changes public
keys, tags and “mix-and-match” attacks by merging multiple signatures, as we already ruled out tag-
collisions, while all public keys are always signed as well, and all signed values are bound to τ0.

Game 3: As Game 2, but we abort, if the adversary was able to redact a non-redactable block.

Transition - Game 2 → Game 3: In this case, the adversary A was able to remove a signature from the
aggregate, which should not be possible. Thus, this means that the adversary A was able to break the
signature scheme. We show this by construction of an adversary B which uses A to break the no-extraction
notion of the used Σ. The reduction works as follows. It receives the parameters and the public pk to
forge. The public parameters are embedded honestly; all other values are generated as in the prior game.
Next, B draws a random index i←r [1..qs], where qs is an upper bound on the number of queries to the
signing oracle. Then, every jth query to the signing oracle, where i 6= j, is answered honestly. On the ith
query, however, B embeds the challenge pk and uses its own signing oracle to generate the signature σc.
The other signatures can be generated honestly. Then, as by assumption σa contains a signature on the
string (c, τ0, pk

RS
sig , pk

RS
san, pkΣ

′), B can use to de-aggregate all other signatures from σa to obtain σc using

its honestly generated skRSsig and return (∅, ∅, (c, τ0, pkRSsig , pkRSsan, pkΣ ′), σc) as its own forgery. In the case
that pkΣ

′ 6= pk, B aborts. Note, we have already ruled out forgeries of never signed messages, while each
messages signed is fresh due to the tags. |Pr[S2]− Pr[S3]| ≤ νaggsig-noExt(λ) follows.

Game 4: As Game 3, but we abort, if the adversary was able to generate a new aggregate σa which protects
a set of messages returned by the challenger.

Transition - Game 3 → Game 4: In this case, the adversary A was able to break the uniqueness of the
underlying signature scheme. The reduction works as follows. B receives the public parameters from its
own challenger and embeds them accordingly. All other values are generated honestly and given to the
adversary A. Then, once the adversary A outputs (m∗, σRS∗), and by assumption, σ∗a was never seen, but
the messages protected by an honestly generated signature σa, B can directly return (S, σa, σ∗a), where S
is the set of public key/messages protected in the aggregate which can be derived as in the construction.
|Pr[S3]− Pr[S4]| ≤ νaggsig-unique(λ) follows.

Game 5: As Game 4, but we abort, if the adversary was able to exchange a signature on (c, τ0, pk
RS
sig , pk

RS
san, pkΣ

′)
on the aggregate from some already seen aggregate.



Transition - Game 4 → Game 5: If an adversary outputs (m∗, σRS∗), where σRS∗ = (σa, c, pkΣ
′, (τi)i∈[0..`]),

meeting the above winning conditions, we can construct an adversary B which breaks the No-Extraction
property of the underlying Σ. It proceeds as follows. It first receives the public parameters. It then queries
its own challenge oracle to obtain a long-term public-key pk. Both are embedded honestly; other values are
generated honestly. For every signing query, B first requests an additional key pk′ if pkRSsan is the challenge
one. If this is not the case, B generates one honestly. It then proceeds as in the signing algorithm, but
requests a full aggregate on all signatures generated under the keys generated. If pkRSsan is not the challenge
one, all signatures which are related to redacting are queried to the challenge oracle and embedded for the
adversary. If pkRSsan is the challenge one, it also gets all signatures, but the one for σ0 and σc. For redaction,
if pkRSsan and pkRSsig are the challenge ones, B requests a complete new aggregate signature on the redacted

message. Then, whenever A outputs σRS∗ meeting the winning requirements, B can simply output (S, σa),
where S is as in the verification algorithm. |Pr[S4]− Pr[S5]| ≤ νaggsig-noExt(λ) follows.

Now, the adversary can no longer win the unforgeability game. Moreover, each hop changes the view of
the adversary only negligibly, concluding the proof.

Immutability To prove that our scheme is immutable, we use a sequence of games:

Game 0: The original immutability game.
Game 1: We now abort, if we draw a tag twice.
Transition - Game 0 → Game 1: Due to the birthday paradox, this can only happen with negligible proba-

bility. |Pr[S0]−Pr[S1]| ≤ q2s
2λ

follows, where qs is the number of key pairs generated. Note, this also means

that no message under pkRSsig is signed twice.

Game 2: We now abort, if the adversary was able to generate a signature for pkRSsig which protects a message
not signed by the signer.

Transition - Game 1 → Game 2: In this case, A returns (m∗, (σa, c, pkΣ
′, (τi)i∈[0..`]), pk

∗) for which σa con-
tains a signature not explicitly generated by the signer. We can use this forgery to construct an adversary
B which breaks the unforgeability of the underlying Σ. The reduction works as follows. It receives the
parameters and the public pk to forge and directly embeds them into the values given to the adversary A.
Queries to the signing oracle are answered honestly; all inner signatures to be generated are delegated to
B’s own oracle (with the exception of the ephemeral signature, which can generated honestly). Then, as by
assumption σa protects at least one message which was not signed by the signing oracle, B can return ({S∪
({pkΣ ′, (c, τ0, pk, pk∗, pkΣ ′))},m′∗, σa), where S is the set of all messages checked for the underlying aggre-
gate w.r.t. to pk as derivable from the construction, but a single forged message m′∗ (which can easily be
spotted) which can be arbitrarily chosen from the set of forged messages. |Pr[S1]−Pr[S2]| ≤ νaggsig-unf(λ)
follows, as, by assumption, at least m′∗ must be fresh. Note, this also covers the case of changed public keys,
tags and “mix-and-match” attacks by merging multiple signatures, as we already ruled out tag-collisions,
while all public keys are always signed as well, and all signed values are bound to τ0.

Game 3: As Game 2, but we abort, if the adversary was able to redact a non-redactable block.
Transition - Game 2 → Game 3: In this case, the adversary A was able to remove a signature from the

aggregate, which should not be possible. Thus, this means that the adversary A was able to break the
signature scheme. We show this by construction of an adversary B which uses A to break the no-extraction
notion of the used Σ. The reduction works as follows. It receives the parameters and the public pk to
forge and directly embeds them into the values given to the adversary A. Queries to the signing oracle
are answered honestly; all inner signatures to be generated are delegated to B’s own oracle as a bulk
(with the exception of the ephemeral signature, which can generated honestly). Then, as by assumption
σa protects less messages as given as aggregate by the signing oracle, B can return (S, σ′a), where S is the
set of all messages checked for the underlying aggregate w.r.t. to pk as derivable from the construction.
The signature σc can be removed using skΣ

′, generating σ′a, as we have already ruled out forgeries of never



signed messages, while each messages signed is fresh due to the tags. |Pr[S2] − Pr[S3]| ≤ νaggsig-noExt(λ)
follows.

Now, the adversary can no longer win the immutability game. Moreover, each hop changes the view of the
adversary only negligibly, concluding the proof.

Privacy To prove that our scheme is private, we use a sequence of games:

Game 0: The original privacy game in the case b = 0.

Game 1: We now switch to b = 1.

Transition - Game 0 → Game 1: As the signatures are distributed exactly the same, our scheme is private
in an information theoretical sense. Thus, |Pr[S0]− Pr[S1]| = 0 follows.

Transparency To prove that our scheme is transparent, we use a sequence of games:

Game 0: The original transparency game in the case b = 0.

Game 1: We now switch to b = 1.

Transition - Game 0 → Game 1: As the signatures are distributed exactly the same, our scheme is transpar-
ent in an information theoretical sense. Thus, |Pr[S0]− Pr[S1]| = 0 follows.

Invisibility To prove that our scheme is invisible, we use a sequence of games:

Game 0: The original invisibility game.

Game 1: We now abort, if the adversary queries some (σRS,m) for the challenge public keys which verifies,
but was never returned by either LoRADM or RedRS′.

Transition - Game 0 → Game 1: Given this adversary A, we can construct an adversary B which breaks the
unforgeability of the RS. The reduction works as follows. First, it draws a random bit b←r {0, 1}. Then,
it receives pkRSsig and pkRSsan (along with the parameters) and then passes those keys to the adversary. Every

redaction query is done using the RedRS
′

provided (imposing the limitation the invisibility game gives).

Likewise, queries to LoRADM are answered by using the SignRS
′

provided, but using ARS
b in the case the

challenge pkRSsan is queried. Then, whenever A queries (σRS,m) for the challenge pkSSsan, B can simply return
(σRS,m) as its own forgery, as, by assumption, (σRS,m) was not seen before. Thus, |Pr[S0] − Pr[S1]| ≤
νrss-unf(λ) follows.

Game 2: We now start replace each ciphertext generated for the challenge pkRSsan with an encryption of 0
(with the appropriate length).

Transition - Game 1 → Game 2: Assume that the adversary can distinguish this replacement with a non-
negligible probability. We can then construct a reduction B which uses A to break the IND-CCA2 security
of the underlying encryption scheme. The reduction works via a series of hybrids. Our reduction B proceeds
as follows. It receives pk and (and the corresponding parameters) from its own challenger and embeds them
correctly. All other values are generated as in Game 1. For the first i ciphertexts generated, encrypt a 0. If,
however, the ith ciphertext is generated, B asks its own challenge oracle to either encrypt 0 or the correct
value. The response is embedded to B’s response to A. All following ciphertexts are generated honestly.
Thus, Game 2.0 is the same as Game 1 while in Game 2.1., however, we make the first replacement. Then,
whatever A outputs in Game 2.i is also output by B. Note, decryption queries for ciphertexts generated
by the adversary can be queried to decryption oracle provided; the content for all other ciphertexts are
known and thus the ciphertexts do not need to be decrypted at all. Thus, |Pr[S1]−Pr[S2]| ≤ qνind-cca2(λ)
follows, where q is the number of ciphertexts generated.

As now the game is independent of the bit b, invisibility is proven.



B Proof of Theorem 2

We now provide the proof of security for Construction 2.

Proof. Correctness follows from inspection. Each security property is proven on its own. However, we already
keep all queries and answers to and from the oracle. This does not change the view of the adversary.

Unforgeability To prove that our scheme is unforgeable, we use a sequence of games:

Game 0: The original unforgeability game.
Game 1: We now abort, if we draw an x twice.
Transition - Game 0 → Game 1: Due to the birthday paradox, this can only happen with negligible proba-

bility. |Pr[S0]− Pr[S1]| ≤ q2s
2λ

follows, where qs is the number of key pairs generated.

Game 2: We now start replace each ciphertext generated for the challenge pkSSsan with an encryption of 0
(with the appropriate length).

Transition - Game 1 → Game 2: Assume that the adversary can distinguish this replacement with a non-
negligible probability. We can then construct a reduction B which uses A to break the IND-CCA2 security
of the underlying encryption scheme. The reduction works via a series of hybrids. Our reduction B proceeds
as follows. It receives pk and (and the corresponding parameters) from its own challenger and embeds them
correctly. All other values are generated as in Game 1. For the first i ciphertexts generated, encrypt a 0. If,
however, the ith ciphertext is generated, B asks its own challenge oracle to either encrypt 0 or the correct
value. The response is embedded to B’s response to A. All following ciphertexts are generated honestly.
Thus, Game 2.0 is the same as Game 1 while in Game 2.1., however, we make the first replacement. Then,
whatever A outputs in Game 2.i is also output by B. Note, decryption queries for ciphertexts generated
by the adversary can be queried to decryption oracle provided; the content for all other ciphertexts are
known and thus the ciphertexts do not need to be decrypted at all. Thus, |Pr[S1]−Pr[S2]| ≤ qνind-cca2(λ)
follows, where q is the number of ciphertexts generated.

Game 3: We now replace all ri with a purely random value ri ←r {0, 1}λ.
Transition - Game 2 → Game 3: An adversary distinguishing this replacement can be turned into an adver-

sary against the pseudo-randomness of the PRF. We prove this via a series of hybrids. Let Game 3.0 the
same as Game 2. In Game 3.i B uses its Eval′PRF oracle to generate the random coins. All other values are
generated as in prior game. Then, whatever A outputs, is also output by B. |Pr[S2]−Pr[S3]| ≤ qsνprf-pr(λ)
follows, where qs is the number of calls to the signature-generation oracle.

Game 4: We now abort, if we draw some random coins twice.
Transition - Game 3 → Game 4: Due to the birthday paradox, this can only happen with negligible proba-

bility. |Pr[S3]− Pr[S4]| ≤ q2s
2λ

follows, where qs is the number of key pairs generated.
Game 5: We now abort, if the adversary was able to generate a signature on a string of public keys and

ciphertexts not signed.
Transition - Game 4 → Game 5: In this case, the adversary A was able to generate a signature σs (contained

in σSS∗) on (pkSSsig, pk
SS
san, (pki)[1..`], c) which was never generated by the signer. We can use this to construct

a reduction B which forges a signature of the underlying Σ. The reduction works as follows. It receives the
pk (and the corresponding parameters) to forge, and embeds it accordingly into the parameters/public key.
Everything else is generated honestly. For every signature generated, B queries its signature-generation
oracle; this signature is then embedded in the response. Finally, once A outputs its forgery, B can return
(∅, ∅, (pkSSsig, pkSSsan, (pki)[1..`], c), σs) as its own forgery. |Pr[S4]− Pr[S5]| ≤ νaggsig-unf(λ) follows.

Game 6: We now abort, if the adversary was able to generate a new signature σ′s on a string of public keys
already signed.

Transition - Game 5 → Game 6: In this case, the adversary A was able to generate a new signature σ′s
(contained in σSS∗) on (pkSSsig, pk

SS
san, (pki)[1..`], c) which was never generated by the signer, but σs was. We



can use this to construct a reduction B which breaks the uniqueness of the underlying Σ. The reduction
works as follows. It receives the corresponding parameters of the Σ to forge, and embeds it accordingly
into the parameters. Everything else is generated honestly. Finally, once A outputs its forgery, B can
return ({(pkSSsig, (pkSSsig, pkSSsan, (pki)[1..`], c))}, σs, σ′s) as its own forgery. |Pr[S5] − Pr[S6]| ≤ νaggsig-unique(λ)
follows.

Game 7: We now abort, if the adversary was able to generate a new inner signature σ′i on a string signed
before.

Transition - Game 6 → Game 7: In this case, the adversary A was able to generate a new signature σ′i
(contained in σSS∗) on on some string ((pki,m

i)[1..`], c, σs, pk
SS
sig, pk

SS
san) which was signed before, but σi 6= σ′i

holds. but σs was. We can use this to construct a reduction B which breaks the uniqueness of the underlying
Σ. The reduction works as follows. It receives the corresponding parameters of the Σ to forge, and embeds
it accordingly into the parameters. Everything else is generated honestly. Finally, once A outputs its
forgery, B can return ({(pki, ((pki,mi)[1..`], c, σs, pk

SS
sig, pk

SS
san))}, σi, σ′i) as its own forgery, where pki is the

corresponding public key. |Pr[S6]− Pr[S7]| ≤ νaggsig-unique(λ) follows.

Game 8: We now abort, if the adversary outputs a validating (m∗, σSS∗), where σSS∗ = (c, σs, (pki, σi)i∈[1..`]),
where m∗ was never returned from any query to the signing or sanitization oracle.

Transition - Game 7 → Game 8: In this case, there must be a block mi∗ which was changed, but the adver-
sary never saw a signature for that block. We can use this to break the unforgeability of the underlying
signature scheme. Our reduction B works as follows. Let qs be an upper bound on the number of signature
key pairs created. First, B randomly selects an index i←r [1..qs]. It receives the pk (and the corresponding
parameters) to forge. The parameters are embedded honestly. Everything else is generated honestly. Then,
once the ith inner signature is generated, B embeds pk and uses its own signature-generation oracle to
receive the corresponding signature. The result is embedded honestly. The same is true for sanitization: for
every change, B queries the signature-generation oracle to obtain a new signature. As, by assumption, at
least one block must be fresh, but B needs to guess where this happens, |Pr[S7]−Pr[S8]| ≤ qsνaggsig-unf(λ)
follows.

Now, the adversary can no longer win the unforgeability game. Moreover, each hop changes the view of
the adversary only negligibly, concluding the proof.

Immutability To prove that our scheme is immutable, we use a sequence of games:

Game 0: The original immutability game.

Game 1: We now abort, if an ephemeral public key (for which the corresponding secret keys are not given
to the sanitizer) was drawn twice.

Transition - Game 0 → Game 1: Due to the birthday paradox, this can only happen with negligible proba-

bility. |Pr[S0]− Pr[S1]| ≤ q2s
2λ

follows, where qs is the number of key pairs generated.

Game 2: We now abort, if the adversary outputs a validating (m∗, σSS∗, pkSSsan
∗), for which the ephemeral

public keys or c have not been signed in that particular order.

Transition - Game 1 → Game 2: In this case, the adversary A was able to generate a signature σs (contained
in σSS∗) on (pkSSsig, pk

∗, (pki)[1..`], c) which was never generated by the signer. We can use this to construct
a reduction B which forges a signature of the underlying Σ. The reduction works as follows. It receives the
pk (and the corresponding parameters) to forge, and embeds it accordingly into the parameters/public key.
Everything else is generated honestly. For every signature generated, B queries its signature-generation
oracle; this signature is then embedded in the response. Finally, once A outputs its forgery, B can return
(∅, ∅, (pkSSsig, pk∗, (pki)[1..`], c), σs) as its own forgery. |Pr[S1]− Pr[S2]| ≤ νaggsig-unf(λ) follows.

Game 3: We now abort, if the adversary outputs a validating (m∗, σSS∗, pkSSsan
∗), where σSS∗ = (c, σs,

(pki, σi)i∈[1..`]), where m∗ was never derivable from any query to the signing oracle.



Transition - Game 2 → Game 3: In this case, there must be a block mi∗ which was changed, but the adver-
sary does not have the corresponding secret key. Our reduction B works as follows. Let qs be an upper
bound on the number of signature key pairs created for which the sanitizer does not receive the secret
key, breaking the unforgeability of the underlying Σ. First, B randomly selects an index i ←r [1..qs].
It receives the pk (and the corresponding parameters) to forge. The parameters are embedded honestly.
Everything else is generated honestly. Then, once the ith inner signature, for which the sanitizer does not
receive the secret key, is generated, B embeds pk and uses its own signature-generation oracle to receive
the corresponding signature. The result is embedded honestly. As, by assumption, at least one block must
be fresh, but B needs to guess where this happens, |Pr[S2]− Pr[S3]| ≤ qsνaggsig-unf(λ) follows.

Now, the adversary can no longer win the immutability game. Moreover, each hop changes the view of
the adversary only negligibly, concluding the proof.

Privacy To prove that our scheme is private, we use a sequence of games:

Game 0: The original privacy game in the case b = 0.
Game 1: We now switch to b = 1.
Transition - Game 0 → Game 1: As the signatures are distributed exactly the same, our scheme is private

in an information theoretical sense. Thus, |Pr[S0]− Pr[S1]| = 0 follows.

Transparency To prove that our scheme is transparent, we use a sequence of games:

Game 0: The original transparency game in the case b = 0.
Game 1: We now switch to b = 1.
Transition - Game 0 → Game 1: As the signatures are distributed exactly the same, our scheme is transpar-

ent in an information theoretical sense. Thus, |Pr[S0]− Pr[S1]| = 0 follows.

Invisibility To prove that our scheme is invisible, we use a sequence of games:

Game 0: The original invisibility game.
Game 1: We now abort, if the adversary queries some (σSS,m) for the challenge public keys which verifies,

but was never returned by either LoRADM or SanitSS′.
Transition - Game 0 → Game 1: Given this adversary A, we can construct an adversary B which breaks the

unforgeability of the SS. The reduction works as follows. First, it draws a random bit b←r {0, 1}. Then,
it receives pkSSsig and pkSSsan and then passes those keys to the adversary. Every redaction query is done using

the SanitSS
′

provided (imposing the limitation the invisibility game gives). Likewise, queries to LoRADM

are answered by using the SignSS
′
provided, but using ASS

b in the case the challenge pkSSsan is queried. Then,
whenever A queries (σSS,m) for the challenge pkSSsan, B can simply return (σSS,m) as its own forgery, as,
by assumption, (σSS,m) was not seen before. Thus, |Pr[S0]− Pr[S1]| ≤ νsss-unf(λ) follows.

Game 2: We now abort, if we draw an x twice.
Transition - Game 0 → Game 1: Due to the birthday paradox, this can only happen with negligible proba-

bility. |Pr[S1]− Pr[S2]| ≤ q2s
2λ

follows, where qs is the number of key pairs generated.

Game 3: We now start replace each ciphertext generated for the challenge pkSSsan with an encryption of 0
(with the appropriate length).

Transition - Game 2 → Game 3: Assume that the adversary can distinguish this replacement with a non-
negligible probability. We can then construct a reduction B which uses A to break the IND-CCA2 security
of the underlying encryption scheme. The reduction works via a series of hybrids. Our reduction B proceeds
as follows. It receives pk and (and the corresponding parameters) from its own challenger and embeds them
correctly. All other values are generated as in Game 2. For the first i ciphertexts generated, encrypt a 0. If,
however, the ith ciphertext is generated, B asks its own challenge oracle to either encrypt 0 or the correct



value. The response is embedded to B’s response to A. All following ciphertexts are generated honestly.
Thus, Game 3.0 is the same as Game 2 while in Game 3.1., however, we make the first replacement. Then,
whatever A outputs in Game 3.i is also output by B. Note, decryption queries for ciphertexts generated
by the adversary can be queried to decryption oracle provided; the content for all other ciphertexts are
known and thus the ciphertexts do not need to be decrypted at all. Thus, |Pr[S2]−Pr[S3]| ≤ qνind-cca2(λ)
follows, where q is the number of ciphertexts generated.

Game 4: We now replace all ri with a purely random value ri ←r {0, 1}λ.

Transition - Game 3 → Game 4: An adversary distinguishing this replacement can be turned into an adver-
sary against the pseudorandomness of the PRF. We prove this via a series of hybrids. Let Game 4.0 the
same as Game 3. In Game 4.i B uses its Eval′PRF oracle to generate the random coins. All other values are
generated as in prior game. Then, whatever A outputs, is also output by B. |Pr[S3]−Pr[S4]| ≤ qsνprf-pr(λ)
follows, where qs is the number of calls to the signature-generation oracle.

Game 5: We now abort, if we draw an ri twice.

Transition - Game 4 → Game 5: Due to the birthday paradox, this can only happen with negligible proba-

bility. |Pr[S4]− Pr[S5]| ≤ q2s
2λ

follows, where qs is the number of random coins drawn.

As now the game is independent of the bit b, invisibility is proven.

C Proof of Theorem 3

We now provide the proof of security for Construction 3.

Proof. Correctness follows from inspection. Each security property is proven on its own. However, we already
keep all queries and answers to and from the oracle. This does not change the view of the adversary. We
also directly generate any keys required, but not received by the reduction’s own challenger, honestly, also
embedding them, without mentioning it, to shorten the proof.

Unforgeability To prove that our scheme is unforgeable, we use a sequence of games:

Game 0: The original unforgeability game.

Game 1: We now abort, if the adversary outputs (m,σPS), where σPS = ((σSSi )0≤i≤`m , σ
RS, c, τ, (τi)1≤i≤`m),

where any (m,σRS, c, (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), protected by σSS0 , has never been returned by the

challenger.

Transition - Game 0 → Game 1: In this case, ((m,σRS, c, (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSS0 ) is a valid forgery

of the outer SS. A reduction is simple. Namely, the reduction B receives the challenge keys pkSSsig
′ and

pkSSsan
′ from its own challenger, and embeds them into pkPSsig and pkPSsan. Every underlying signing and san-

itization request for the SSs is performed by the reduction’s oracles. As, by assumption, the message
protected by σSS0 must be fresh, it thus breaks the unforgeability of the underlying SS in any case. Thus,
|Pr[S0]− Pr[S1]| ≤ νsss-unf(λ) follows.

Game 2: We now abort, if the adversary outputs (m,σPS), where σPS = ((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m),

where any ((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m) protected by σSS0 was returned by the challenger, but σSS0 was

never created by the challenger.

Transition - Game 1 → Game 2: In this case, (((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m), σSS0 ) is a valid forgery of the

outer SS. The reduction works as in the prior hop. As, by assumption, the message protected by σSS0 must
be fresh, it thus breaks the unforgeability of the underlying SS in any case. Thus, |Pr[S1] − Pr[S2]| ≤
νsss-unf(λ) follows.

Now, the adversary can no longer win the unforgeability game, as also each public key is bound to a tag.
Moreover, each hop changes the view of the adversary only negligibly, concluding the proof.



Immutability To prove that our scheme is immutable, we use a sequence of games:

Game 0: The original immutability game.

Game 1: We now abort, if the challenger draws a tag twice.

Transition - Game 0 → Game 1: The probability that this event happens is bounded by the birthday para-
dox. |Pr[S0]− Pr[S1]| ≤ q2t /2λ follows, where qt is the number of drawn tags.

Game 2: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m),

but pkPSsan was never signed by the signing oracle w.r.t. to τ .

Transition - Game 1 → Game 2: This breaks the immutability property of the outer SS. The reduction pro-
ceeds as follows. It receives pkSSsig

′ from its own challenger and embeds it into pkPSsig . Then, every signing

query is performed by the reduction’s own oracles. Then, after A returned (m,σPS, pkPSsan), (m′, σSS0 , pkSSsan)
with m′ = (m,σRS, (τi, σ

SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) is a valid forgery. |Pr[S1]−Pr[S2]| ≤ νsss-imm(λ) follows.

Game 3: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m),

but τ was never drawn by the challenger.

Transition - Game 2 → Game 3: As τ is non-admissible, the adversary was able to generate a signature not
derivable, breaking the immutability of the outer SS. The reduction works exactly as in the prior game.
|Pr[S2]− Pr[S3]| ≤ νsss-imm(λ) follows.

Game 4: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m),

but some τi was never signed by the challenger w.r.t. τ or the ordering is inconsistent.

Transition - Game 3 → Game 4: As each τi is signed by the RS, the adversary was able to generate a forgery
of the RS. It receives pkRSsig

′ from its own challenger and embeds it into pkPSsig . Then, every signing query

is performed by the reduction’s own oracles. Then, ((τ1, τ2, . . . , τ`, τ, pk
PS
sig , pk

PS
san), σRS) is a valid forgery.

|Pr[S4]− Pr[S5]| ≤ νrss-unf(λ) follows.

Game 5: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m),

but it was able to redact a block not marked as redactable.

Transition - Game 4 → Game 5: Note, we already ruled out tag-collisions, and thus the messages are uniquely
identifiable. The reduction is same as in the prior hop. |Pr[S4]− Pr[S5]| ≤ νrss-unf(λ) follows.

Game 6: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m),

but it was able to sanitize a block with tag τi which was not marked as sanitizable.

Transition - Game 5 → Game 6: Note, we already ruled out tag-collisions and thus the messages are uniquely
identifiable. The reduction is same as in Game 3, but the reduction returns ((mi, τ, τi), σ

SS
i , pkSSsan). |Pr[S5]−

Pr[S6]| ≤ νsss-imm(λ) follows.

Now, the adversary can no longer win the immutability game. Moreover, each hop changes the view of the
adversary only negligibly, concluding the proof.

Privacy To prove that our scheme is private, we use a sequence of games:

Game 0: The original privacy game, where b = 0.

Game 1: Instead of signing (mi
0, τ, τi, pk

SS
sig, pk

SS
san) in the inner SSs and adjusting them to (m′i, τ, τi, pk

SS
sig, pk

SS
san),

sign (mi
1, τ, τi, pk

SS
sig, pk

SS
san) and adjust accordingly.

Transition - Game 1 → Game 2: Assume that the adversary can distinguish these two games. We can then
construct a reduction B which uses the adversary A to break the privacy of the underlying SS′. Namely, B
proceeds as follows. It receives pkSSsig

′ and pkSSsan
′, and embeds them into pkPSsig and pkPSsan. Then, every signing,

editing and proof oracle queries are answered by B’s own oracles. However, for the calls to the LoREdit
oracle, the calls for the SSs are redirected to the LoRSan oracle and the result embedded to the answer.
Clearly, the simulation is perfect. Then, whateverA outputs is also output by B. |Pr[S0]−Pr[S1]| ≤ νsss′-priv
follows.



Game 2: Instead of signing (m0, σ
RS, (τi, σ

SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) in the outer SSs and adjusting them

to (m′, σRS′, (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), sign (m1, σ

RS, (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) and adjust. Note,

the distribution of σRS and the tags are still exactly the same, even if reused, as the redactions are still
performed as in the case b = 0.

Transition - Game 1 → Game 2: Assume that the adversary can distinguish these two games. We can then
construct a reduction B which uses the adversary A to break the privacy of the underlying SS. Namely, B
proceeds as follows. It receives pkSSsig

′ and pkSSsan
′, and embeds them into pkPSsig and pkPSsan. Then, every signing,

editing and proof oracle queries are answered by B’s own oracles. However, for the calls to the LoREdit
oracle, the calls for the SSs are redirected to the LoRSan oracle and the result embedded to the answer.
Clearly, the simulation is perfect. Then, whatever A outputs is also output by B. |Pr[S1]−Pr[S2]| ≤ νsss-priv
follows.

Game 3: Instead of signing (τ1, τ2, . . . , τ`, τ, pk
PS
sig , pk

PS
san) in the RSs from the first message, use the second

message and then redact as required. Note, the distribution of the tags are still exactly the same due to
the uniform distribution.

Transition - Game 2 → Game 3: Assume that the adversary can distinguish these two games. We can then
construct a reduction B which uses the adversary A to break the privacy of the underlying RS. Namely, B
proceeds as follows. It receives pkRSsig

′ and embeds them into pkPSsig . Then, every signing query is answered
by B’s own signing oracle. However, for the calls to the LoREdit oracle, the calls for the RSs are redirected
to the LoRRedact oracle and the result embedded to the answer. Clearly, the simulation is perfect. Then,
whatever A outputs is also output by B. Note, here we no longer need REDRS, as this done via the oracles.
|Pr[S1]− Pr[S2]| ≤ νrss-priv follows.

Now, we are in the case b = 1. As each hop only changes the view of the adversary negligibly, privacy is
proven.

Transparency To prove that our scheme is transparent, we use a sequence of games:

Game 0: The original transparency game, where b = 0.
Game 1: Instead of signing (mi, τ, τi, pk

PS
sig , pk

PS
san) in the inner SS′s and adjusting them to (m′, τ, τi, pk

PS
sig ,

pkPSsan), directly sign (m′i, τ, τi, pk
PS
sig , pk

PS
san). Again, the distribution of σRS and the tags are still exactly the

same, even if reused, as the redactions are still performed as in the case b = 0. Note, the restrictions on
the proof-oracle are still implicitly enforced.

Transition - Game 1 → Game 2: Assume that the adversary can distinguish these two games. We can then
construct a reduction B which uses the adversary A to break the transparency of the underlying SS.
Namely, B proceeds as follows. It receives pkSSsig

′ and pkSSsan
′, and embeds them into pkPSsig and pkPSsan. Then,

every signing, editing and proof oracle queries are answered by B’s own oracles. However, for the calls to the
Sign/Edit oracle, the calls for the SSs are redirected to the Sign/Sanit oracle and the result embedded to the
answer. Clearly, the simulation is perfect. Then, whateverA outputs is also output by B. |Pr[S1]−Pr[S2]| ≤
νsss′-tran follows.

Game 2: Instead of signing (mi, τ, τi, pk
PS
sig , pk

PS
san) in the inner SS′s and adjusting them to (m′, τ, τi, pk

PS
sig ,

pkPSsan), directly sign (m′i, τ, τi, pk
PS
sig , pk

PS
san). Again, the distribution of σRS and the tags are still exactly the

same, even if reused, as the redactions are still performed as in the case b = 0. Note, the restrictions on
the proof-oracle are still implicitly enforced.

Transition - Game 1 → Game 2: Assume that the adversary can distinguish these two games. We can then
construct a reduction B which uses the adversary A to break the transparency of the underlying SS.
Namely, B proceeds as follows. It receives pkSSsig

′ and pkSSsan
′, and embeds them into pkPSsig and pkPSsan. Then,

every signing, editing and proof oracle queries are answered by B’s own oracles. However, for the calls to the
Sign/Edit oracle, the calls for the SSs are redirected to the Sign/Sanit oracle and the result embedded to the
answer. Clearly, the simulation is perfect. Then, whateverA outputs is also output by B. |Pr[S1]−Pr[S2]| ≤
νsss′-tran follows.



Game 3: Instead of signing (τ1, τ2, . . . , τ`, τ, pk
PS
sig , pk

PS
san) in the RSs from the first message and then redacting

it, directly sign the redacted messages. Note, the distribution of the tags are still exactly the same due to
the uniform distribution.

Transition - Game 2 → Game 3: Assume that the adversary can distinguish these two games. We can then
construct a reduction B which uses the adversary A to break the transparency of the underlying RS.
Namely, B proceeds as follows. It receives pkRSsig

′ and embeds them into pkPSsig . Then, every signing query is
answered by B’s own signing oracle. However, for the calls to the Sign/Edit oracle, the calls for the RSs
are redirected to the Sign/Redact oracle and the result embedded to the answer. Clearly, the simulation
is perfect. Then, whatever A outputs is also output by B. Note, here we no longer need REDRS, as this
done via the oracles and are already replaced with a 0. |Pr[S2]− Pr[S3]| ≤ νrss-tran follows.

Now, we are in the case b = 1. As each hop only changes the view of the adversary negligibly, transparency
is proven.

Signer-Accountability To prove that our scheme is signer-accountable, we use a sequence of games:

Game 0: The original signer-accountability game.

Game 1: We now abort, if the adversary outputs (pkPSsig , π
PS,m, σPS), where σPS = ((σSSi )0≤i≤`m , σ

RS, τ,

(τi)1≤i≤`m), where any (m,σRS, (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), protected by σSS0 , has never been returned

by the challenger.

Transition - Game 0 → Game 1: In this case, (pkSSsig, π
PS, (m,σRS, (τi, σ

SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSS0 ) is a valid

forgery of the outer SS. For the reduction, B receives the challenge keys pkSSsan
′ from its own challenger,

and embeds them into pkPSsan. Every underlying sanitization request for the SSs is performed by the reduc-
tion’s oracles. As, by assumption, the proof is wrong for σSS0 , it breaks the signer-accountability of the
underlying SS in any case. Thus, |Pr[S0]− Pr[S1]| ≤ νsss-sigacc(λ) follows.

Game 2: (pkPSsig , π
PS,m, σPS), where σPS = ((σSSi )0≤i≤`m , σ

RS, τ, (τi)1≤i≤`m), where (m,σRS, (τi, σ
SS
i )1≤i≤`m ,

τ, pkPSsig , pk
PS
san) is not new, but σSS0 has never been returned by the challenger.

Transition - Game 1 → Game 2: In this case, (pkSSsig, π
PS, (m,σRS, c, (τi, σ

SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSS0 ) is a

valid forgery of the outer SS. The reduction works as in the prior hop. As, by assumption, the proof is
wrong for σSS0 , it breaks the signer-accountability of the underlying SS in any case. Thus, |Pr[S1]−Pr[S2]| ≤
νsss-sigacc(λ) follows.

Now, the adversary can no longer win the signer-accountability game. Moreover, each hop changes the view
of the adversary only negligibly, concluding the proof.

Sanitizer-Accountability To prove that our scheme is sanitizer-accountable, we use a sequence of games:

Game 0: The original sanitizer-accountability game.

Game 1: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m),

where any (m,σRS, , (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), protected by σSS0 , has never been returned by the chal-

lenger.

Transition - Game 0 → Game 1: Here, ((m,σRS, (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSS0 , pkSSsan) is a valid forgery

of the outer SS. For the reduction, B receives the challenge keys pkSSsig
′ from its own challenger, and

embeds them into pkPSsig . Every underlying signing and proof-generation request for the SSs is performed

by the reduction’s oracles. As, by assumption, the signer outputs a wrong proof for σSS0 , it breaks the
sanitizer-accountability of the underlying SS in any case. Thus, |Pr[S0]− Pr[S1]| ≤ νsss-sanacc(λ) follows.

Game 2: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSi )0≤i≤`m , σ
RS, τ, (τi)1≤i≤`m),

where any (m,σRS, (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) is not new, but σSS0 has never been returned by the chal-

lenger.



Transition - Game 1 → Game 2: Here, ((m,σRS, (τi, σ
SS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSS0 , pkSSsan) is a valid forgery

of the outer SS. The reduction works as in the prior hop. As, by assumption, the signer outputs a wrong
proof for σSS0 , it breaks the sanitizer-accountability of the underlying SS in any case. Thus, |Pr[S1] −
Pr[S2]| ≤ νsss-sanacc(λ) follows.

Now, the adversary can no longer win the sanitizer-accountability game. Moreover, each hop changes the
view of the adversary only negligibly, concluding the proof.

Invisibility To prove that our scheme is invisible, we use a sequence of games:

Game 0: The original invisibility game where b = 0.
Game 1: Instead of using APS

0 .1 use APS
1 .1 as ASS in the SS′.

Transition - Game 0 → Game 1: This does changes the view of the adversary only negligibly due to the
invisibility of the underlying SS′. Namely, assume that an adversary A can distinguish these games with
non-negligible probability. We can then construct an adversary B which breaks the invisibility guarantees
of the used SS′. In particular, B receives pkSSsig

′ and pkSSsan
′, and embeds them into pkPSsig and pkPSsan. For

all oracle queries, B uses its own oracles to answer correctly, but makes block 1 in each underlying
SS admissible or not using its own challenge oracle. Then, whatever A outputs, is also output by B.
|Pr[S0]− Pr[S1]| ≤ νsss′-invis follows.

Game 2: Instead of using APS
0 .2 use APS

1 .2 as ARS in the RS.
Transition - Game 1 → Game 2: This does changes the view of the adversary only negligibly due to the

invisibility of the underlying RS. Namely, assume that an adversary A can distinguish these games with
non-negligible probability. We can then construct an adversary B which breaks the invisibility guarantees
of the used RS. In particular, B receives pkRSsig

′ and pkRSsan
′, and embeds them into pkPSsig and pkPSsan. For all

oracle queries, B uses its own oracles to answer correctly using its own challenge oracle (the last three
blocks are never redactable). Then, whatever A outputs, is also output by B. |Pr[S1]− Pr[S2]| ≤ νrss-invis
follows.

Now, we are in the case b = 1. As each hop only changes the view of the adversary negligibly, invisibility is
proven.
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