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Abstract. We introduce a new technique for compressing the public
keys of the UOV signature scheme that makes use of block-anti-circulant
matrices. These matrices admit a compact representation as for every
block, the remaining elements can be inferred from the first row. This
space saving translates to the public key, which as a result of this tech-
nique can be shrunk by a small integer factor. We propose parameters
sets that take into account several important attacks.
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1 Introduction

Unbalanced Oil and Vinegar (UOV) is one of the longest-standing multivariate
quadratic (MQ) signature schemes [9]. While the signatures are rather small, the
public keys tend to be huge — they scale with the cube of the security parameter.
Two notable improvements address this drawback in part.

First, the compression technique due to Petzoldt et al. allows most of the
public key to be set arbitrarily; the remaining part is then computed with the
secret key [13]. Since the arbitrary first part can be the output of a pseudo-
random generator, the public key can be compressed to a short seed and the
uncompressible second part.

Second, the field lifting technique due to Beullens and Preneel defines the
public key over F2 but solves the signature equation and produces a signature
over an extension thereof [1]. As a result, the direct attack is more complex
as it must be performed over a larger field; this allows a smaller number of
equations for the same security level. At the same time, however, the public key
admits a representation of just one bit for every polynomial coefficient as it was
constructed that way.

We propose a third compression technique, relying on structured matrices to
compactly represent objects of large size. In particular, the remaining rows of
an anti-circulant matrix can be inferred from the first. Moreover, these matrices
guarantee that BTAB is anti-circulant if A and B are; this property lends nat-
urally to constructions of MQ public keys, where the matrix representation of
the ith component’s quadratic form can be presented as STFiS. As a result, the
public key consists of block-anti-circulant matrices if the matrices of the secret



key are block-anti-circulant. It can therefore be represented compactly by the
list of first rows of each component block.

The obvious question raised by this design concerns its impact on security.
We analyze empirically the complexity of a direct algebraic attack. With respect
to the UOV Reconciliation Attack [4], our analysis assumes pessimistically that
a successful attack need only consider each block to be its own variable. Build-
ing on the insights gleaned from this empiricism and pessimistic analysis, we
propose parameters for various security levels. Despite the conservative param-
eter choices, our compression technique achieves a notable size reduction of the
public key.

2 Preliminaries

We use pythonic notation to slice submatrices from matrices: A[i:j,k:l] represents
the (j − i) × (l − k) block of A whose upper left element has index (i, j), with
indices starting as they should at zero. Furthermore we denote by 0[0:v,0:v] the
v × v zero matrix.

A square matrix A is anti-cirulant, and a square matrix B is circulant, if they
are fully determined by their first rows (a0, a1, . . . , a`−1) and (b0, b1, . . . , b`−1)
via

A =


a0 a1 · · · a`−2 a`−1
a1 a2 · · · a`−1 a0
...

...
...

...
a`−2 a`−1 · · · a`−4 a`−3
a`−1 a0 · · · a`−3 a`−2

 and B =


b0 b1 · · · b`−2 b`−1
b`−1 b0 · · · b`−3 b`−2

...
...

...
...

b2 b3 · · · b0 b1
b1 b2 · · · b`−1 b0

 . (1)

Circulant matrices are multiplication matrices of elements of the quotient ring
R[x]/〈x`−1〉, where R is the base ring of the matrix. Denote by J the 90◦ degree
rotation of the identity matrix, i.e., with the ones on the perpendicular diagonal.
Then left or right multiplication by J makes a circulant matrix anti-circulant
and vice versa. We make use of the following lemmata.

Lemma 1. Let A,B be anti-circulant matrices. Then AB is circulant.

Proof. There must be elements a, b ∈ R[x]/〈x`−1〉 with multiplication matrices
Ma and Mb such that MaJ = A and JMb = B. Then AB = MaJJMb =
MaMb = Mab is the multiplication matrix of the element ab ∈ R[x]/〈x`−1〉 and
thus circulant. ut

Lemma 2. Let A be circulant and B anti-circulant. Then AB and BA are anti-
circulant.

Proof. There must be elements a, b, b′ ∈ R[x]/〈x` − 1〉 with multiplication ma-
trices Ma, Mb and Mb′ such that A = Ma and B = MbJ = JMb′ . Then
AB = MaMbJ = MabJ and BA = JMb′Ma = JMb′a are anti-circulant. ut
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Lemma 3. The sum of circulant matrices is circulant. The sum of anti-circulant
matrices is anti-circulant.

Proof. The sum of circulant matrices
∑

iBi corresponds to the sum of ele-
ments bi ∈ R[x]/〈x`− 1〉 and thus results in the multiplication matrix M∑

i bi
=∑

iMbi , which is circulant as well. The sum of anti-circulant matrices
∑

iAi =∑
i JMai

= J
∑

iMai
= JM∑

i ai
. ut

3 Multivariate Quadratic Signature Schemes

The public key in a hash-and-sign multivariate signature scheme is given by a
list of m quadratic polynomials P ∈ (Fq[x0, . . . , xn−1]≤2)m in n variables over
a finite field Fq. To verify a signature s ∈ Fn

q on a document d ∈ {0, 1}∗, the
user evaluates P(s) and tests if it is equal to the hash H(d) ∈ Fm

q . To generate a
signature, the signer uses the secret decomposition of the public key P = T ◦F◦S
where T and S are affine and where F is also quadratic but easy to invert.
With this decomposition, the signer can compute sequentially h = H(d) and
y = T−1h, followed by sampling an inverse x under F (as there may be many),
and finally s = S−1x. The key challenge for the design of multivariate quadratic
(MQ) schemes is how to find a quadratic map F that simultaneously admits
efficient inverse sampling and is also hard to recover from P = T ◦ F ◦ S for
random and unknown affine transforms T, S.

3.1 Unbalanced Oil and Vinegar

The Unbalanced Oil and Vinegar (UOV) scheme answers this question by parti-
tioning the variables of F into two sets: the vinegar variables x0, . . . , xv−1 which
are multiplied with each other and all other variables, and the oil variables
xv, . . . , xv+o−1 which do not mix with other oil variables. Phrased differently,
every term that is quadratic in the oil variables has coefficient equal to zero.
This gives rise to quadratic forms with the following matrix silhouette:

F (i) =


 . (2)

The black coefficients are chosen at random; the white coefficients are zero. The
shape (2) anticipates the descriptor “unbalanced”, as the number of vinegar
variables is typically larger than the number of oil variables.

Since all the quadratic forms of F have the same silhouette, the transform T
hides nothing and therefore it is set to the identity transform. For the present
description we will drop linear and constant terms so that F can be described

as F(x) = (xTF (i)x)m−1i=0 and S
$←− GLn(Fq) with n = o+ v and m = o. Here and

elsewhere we use the shorthand xT = (x0, . . . , xn−1).
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To sign a document d ∈ {0, 1}∗, the signer computes the hash h = H(d) and

selects a random assignment to the vinegar variables x[0:v]
$←− Fv

q . This produces
a system of m equations of the form

xT
[0:v]

(
F

(i)
[0:v,v:(v+o)] + F

(i)T
[v:(v+o),0:v]

)
x[v:(v+o)] = hi − xT

[0:v]F
(i)
[0:v,0:v]x[0:v] , (3)

which is linear in the o = m oil variables x[v:(v+o)]. Solving this system completes
x and from this inverse the user computes the signature s = S−1x straightfor-
wardly.

3.2 Petzoldt’s Compression Technique

Petzoldt’s compression technique [13] rests on the observation that the composi-

tion with S is a linear action on the quadratic forms F (i). In particular, let
−−→
F (i)

denote the row-vector of all n(n+ 1)/2 coefficients in accordance with any stan-

dard monomial order; then
−−→
P (i) =

−−→
F (i)A for some matrix A ∈ F

n(n+1)
2 ×n(n+1)

2
q

whose coefficients are given by

A[mo(i,j),mo(r,s)] =

{
S[r,i]S[s,j] + S[r,j]S[s,i] if i 6= j
S[r,i]S[s,i] otherwise ,

(4)

where mo : N2 → N sends the pair (i, j) to the index of the monomial xixj in
the given monomial order.

As the o(o + 1)/2 oil coefficients are zero, the
−−→
F (i) must live in a subspace

of Fn(n+1)/2
q of dimension n(n + 1)/2 − o(o + 1)/2. As a result, the

−−→
P (i) must

lie in a subspace of the same dimension. In particular, this means that the first

v(v + 1)/2 + ov coefficients of every
−−→
P (i) can be set arbitrarily, after which the

remaining o(o+ 1)/2 coefficients are fixed as a function of S.

The public key, represented as a Macaulay matrix whose rows are
−−→
P (i), is thus

divisible into two blocks, of dimensions m×(v(v+1)/2+vo), and m×o(o+1)/2,
respectively. The first block can be generated by a peudorandom generator, after
which point the user can find the second only if he knows S. The public key can
therefore be reduced to a short seed and the second block. Note that this size is
independent of the number of vinegar variables.

(−−→
P (i)

)m−1

i=0

=

( )v(v + 1)/2 + vo o(o + 1)/2 set by PRG

computed
with S

Fig. 1. Petzoldt’s compression technique.
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3.3 Field Lifting

Field lifting is another method of compressing the public key, although in this
case it comes at the cost of a larger signature [1]. The secret and public keys
are defined over a small base field, typically F2. However, the hash function
H : {0, 1}∗ → Fm

2r maps to a vector of extension field elements, and the signature
is generated —and verified— using arithmetic over the extension field.

This distinction allows the designer to ignore direct algebraic attacks per-
formed over the base field. The number of equations needs only be large enough
to guarantee the targeted level of security against a direct algebraic attack over
the extension field. This number can be smaller as a result, which in turn leads to
a much smaller public key. However, the base field must be taken into account
for the UOV Reconciliation Attack [4], which solves an system of polynomial
equations in order to recover the secret key from the public key. The complexity
of this attack is accounted for by the increased number of vinegar variables. Since
the field lifting technique is compatible with Petzoldt’s technique, this increase
does not affect the size of the public key. However, the signature size does grow
as n is larger and as each component takes r bits to represent.

3.4 Irredundant S

It is always possible to find an equivalent secret key (F, S) for a given UOV
public key, where S has the shape

S =


 , (5)

where the white spaces are zero, the diagonal contains ones, and the nonzero
block has dimensions v×o. To see this, consider that only the rightmost o columns
of S−1 —which has the same shape, just negate the rectangle— are capable of

making the oil-oil coefficients of S−1
T
P (i)S−1 equal to zero. Moreover, within

the equivalence class of matrices S−1 with this property, it is always possible to
choose one where the bottom right o× o block is the identity matrix.

The UOV Reconciliation Attack is a search for a matrix S of form (5) re-
gardless of whether the public key was actually constructed with such an S.
Therefore, one might as well choose S of this form from the onset. This has the
benefit of accelerating key pair and signature generation [3].

4 Compression with Block-Anti-Circulant Matrices

Let ` ∈ N denote the height (and width) of the blocks on block matrices; from
now on we refer to this parameter as the degree of circulancy. A matrix is block-
anti-circulant if every `× ` block represents an anti-circulant matrix. Our com-
pression technique arises from the following observation.

5



Theorem 1. Let A,B,C be block-anti-circulant matrices with square blocks of
height (and width) `. Then ABC is block-anti-circulant for blocks of the same
size.

Proof. The ` × ` blocks of BC represent the sum of products of anti-circulant
matrices. Via lemmata 1 and 3 one observes that these blocks are circulant. The
` × ` blocks of A(BC) represent the sum of products of anti-circulant matrices
with circulant ones. Via lemmata 2 and 3, one observes that these blocks are
anti-circulant. The matrix ABC is thus block-anti-circulant. ut

4.1 Description

Let v = V × `, o = O× ` and N = O+V . Observe that when S is chosen in the
shape (5), it is not block-anti-ciculant; to remedy this, choose S in the following
`× ` block-anti-circulant shape:

S =


 . (6)

Then choose ` × ` block-anti-circulant matrices F (i) in the shape of (2). One
observes that the matrices P (i) are block-anti-circulant as well. These matrices
can be represented by only the first row of every block. This requires only N2`
elements per matrix as opposed to the highly redundant n2 = N2`2 elements
associated with an explicit representation.

Matrices that represent quadratic forms, such as F (i) and P (i), are invariant
under addition of skew-symmetric matrices. Over odd-characteristic fields1 one
can therefore always choose F (i) and P (i) to be symmetric, even when they are
block-anti-circulant (but not necessarily when they are (block-)circulant). This
reduces the storage requirement to N(N+1)`/2 field elements, down from n(n+
1)/2. For fields of even characteristic, upper-triangular matrix representatives
of the quadratic forms are preferred, and in this case the same compression
argument applies. However, this means that the ` × ` blocks on the diagonal
must be either identity or zero matrices.

We depart from the Macaulay matrix representation of the public key P or of
the secret map F traditionally used in Petzoldt’s compression technique. Instead,
both P and F are represented as lists of symmetric block-anti-circulant matrices.
Nevertheless, Petzoldt’s compression technique still applies. The pseudorandom
generator is used to generate the first row of every ` × ` block in the upper-
triangular part, except for the bottom-most O × (O + 1)/2 blocks which are
computed using S. Figure 2 elaborates.

1 We restrict focus to odd-characteristic fields because the use of even-characteristic
fields induces a security degradation, as shown in Sect. 4.2.
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P (i) =





V × ` O × `
first row set by PRG; other rows

inferred from anti-circulancy

first row computed using S;

other rows inferred from anti-circulancy

inferred from symmetry

Fig. 2. Petzoldt’s compression technique with `× ` block-anti-circulant matrices.

More explicitly, let J⊕o and J⊕v represent the o×o and v×v matrices that are
zero everywhere except for the `× ` blocks on the diagonals which are exactly J .

Then form (6) is equivalent to S =

(
J⊕v S′

0[0:o,0:v] J
⊕
o

)
for some block-anti-circulant

v × o matrix S′. The bottom right o× o block of P (i) is given by

P
(i)
[v:n,v:n] = S′

T
F

(i)
[0:v,0:v]S

′ + J⊕o F
(i)
[v:n,0:v]S

′ + S′
T
F

(i)
[0:v,v:n]J

⊕
o . (7)

The nonzero blocks of F (i) are given by

F
(i)
[0:v,0:v] = J⊕v P

(i)
[0:v,0:v]J

⊕
v (8)

F
(i)
[0:v,v:n] = −J⊕v P

(i)
[0:v,0:v]J

⊕
v S
′J⊕o + J⊕v P

(i)
[0:v,v:n]J

⊕
o (9)

F
(i)
[v:n,0:v] = −J⊕o S′

T
J⊕v P

(i)
[0:v,0:v]J

⊕
v + J⊕o P

(i)
[v:n,0:v]J

⊕
v . (10)

Altogether, if Petzoldt’s technique is used in conjunction with our block-
anti-circulant compression, then the public key is given by m`O(O + 1)/2 field
elements and a short seed.

4.2 Security

This section evaluates to which extent the additional structure in the public
key facilitates attacks; based on this analysis, we propose parameters later on.
The following attacks are considered: Direct Algebraic Attack, Kipnis-Shamir
Attack, and UOV Reconciliation Attack.

Direct Attack. A direct algebraic attack involves deploying Gröbner basis type
algorithms [6,5,10,11] in order to solve for s ∈ Fq the system of multivariate

quadratic polynomial equations given by
(
sTP (i)s

)m−1
i=0

= h, where h = H(d) ∈
Fm
q is the hash of a target document. The question is whether the introduction

of the blockwise anti-circulant structure in order to compress the public key
decreases the complexity of such an attack. We implemented the scheme with and

7



without block-anti-circulant compression in Magma in order to test empirically
whether this is the case.

In particular, we instantiate two systems of polynomials:

1. m equations in n variables without block-anti-circulant compression; this
corresponds to ` = 1.

2. m equations in n = N × ` variables with block-anti-circulant compression;
this corresponds to ` > 1.

In both cases, the first n −m variables were assigned random values that still
guarantee that a solution exists. Figure 3 shows the running time of these attacks
as a function of `, for various values of (q,m), as performed by Magma’s imple-
mentation of F4 on an eight core 2.9 GHz machine. The plots suggest that over
fields of even characteristic, block-anti-circulant matrices come with a security
degradation proportional to the degree of circulancy. In contrast, the security of
the same construction but over fields of odd characteristic seems largely unaf-
fected by the degree of circulancy.

Given the correspondence between anti-circulant matrices and the ring
Fq [x]
〈x`−1〉 ,

another natural question is whether arithmetic in this ring can help mount a

direct attack. Solutions might be found in each component term of
Fq [x]
〈x`−1〉

∼=
Fq [x]
〈x−1〉 ⊕

Fq [x]
〈(x`−1)/(x−1)〉 before being joined together using the Chinese Remainder

Theorem. However, finding even one such solution still requires solving a system
of m equations in N variables; as a result the complexity of this task is already
captured by Fig. 3.

Kipnis-Shamir Attack. The present proposal is not the first time circulant
matrices have been considered in conjunction with UOV. Peng and Tang re-
cently proposed choosing the secret quadratic forms F (i) to have a specific
structure such that during signature generation, the coefficient matrix becomes
circulant [12]. This embedded structure not only shrinks the secret key, but it
also speeds up signature generation. However, Hashimoto shows that this scheme
is vulnerable to a Kipnis-Shamir attack, despite the numbers of vinegar and oil
variables being unbalanced [8].

The circulancy in the scheme of Peng and Tang arises as a result of recycling
oil-vinegar coefficients across the quadratic forms F (i). The algebraic relation
that describes this recycling, is exactly the algebraic property that gives rise to
the attack. If the F (i) are chosen independently, the required relation does not
hold and the attack fails — or rather, the attack works only with the exponential
complexity O(qv−o) of regular unbalanced oil and vinegar.

The F (i) in our construction do have structure, but do not have algebraic
properties relating F (i) for various i. The coefficient matrix obtained while gen-
erating a signature does not have a circulant or block-anti-circulant structure.
The attack can conceivably be performed over Fq[x]/〈x` − 1〉 and even over the
constituent terms of this ring. The number V of vinegar blocks must be chosen
accordingly, i.e., such that the targeted security level is reached by qV−O, or

8



−2 0 2 4 6 8 10 12
−10

−5

0

5

10

15

q = 7,m = 4

q = 7,m = 6

q = 7,m = 9

q = 7,m = 12

q = 251,m = 3

q = 251,m = 4

q = 31,m = 4

q = 31,m = 6

q = 31,m = 8

degree of circulancy `

lo
g
a
ri

th
m

b
a
se

2
o
f

so
lv

in
g

ti
m

e
(s

ec
o
n
d
s)

−2 0 2 4 6 8 10 12
−10

−5

0

5

10

15

q = 256,m = 12

q = 256,m = 18

q = 256,m = 24

q = 256,m = 27

q = 256,m = 35

q = 2,m = 12

q = 2,m = 15

q = 2,m = 18

q = 2,m = 22

q = 2,m = 24

q = 16,m = 8

q = 16,m = 10

q = 16,m = 15

q = 16,m = 16

q = 16,m = 18

q = 16,m = 21

degree of circulancy `

lo
g
a
ri

th
m

b
a
se

2
o
f

so
lv

in
g

ti
m

e
(s

ec
o
n
d
s)

Fig. 3. Running time of direct algebraic attack for odd and even characteristic.

preferably by q(V−O)/2 to account for a speedup on quantum computers due to
Grover’s algorithm [7].

UOV Reconciliation Attack. The UOV Reconciliation Attack [4] is an alge-
braic key recovery attack that mounts a search for the matrix S by treating its
elements as variables and solving the system of equations obtained by equating(
S−1

T
P (i)S−1

)
[v:n,v:n]

= 0[0:o,0:o] for all i ∈ {0, . . . ,m − 1}. Ding et al. argue

that the search can be decomposed into a series of steps of which the first dom-

9



inates the complexity of the entire procedure [4]. This first step requires solving
a system of m quadratic equations in v variables, originating from the number
of polynomials, i.e., m, and the number of unknowns in the rightmost column
of S, i.e., v. In the case of UOV where v > m it is tempting to use a result by
Thomae and Wolf showing how to reduce solving a system of m quadratic equa-
tions in n = αm variables to solving one of m − bαc + 1 equations in as many
variables [14]. However, Beullens and Preneel argue that this reduction does
not apply to this first step of the UOV Reconciliation Attack because it finds
an arbitrary solution and not necessarily one that is consistent with the other
steps [1]. Instead, Beullens and Preneel estimate the complexity of this attack
as strictly larger than that of solving a system of v equations in v variables.

With respect to our construction, we assume optimistically from the point
of view of the attacker that an attack over the simplest constituent term of

the ring
Fq [x]
〈x`−1〉 =

Fq [x]
〈x−1〉 ⊕ · · · suffices to break the scheme. In this case the

attack represents a search for the V × O unknown ring elements of the matrix
S. In particular, the last column of S has only V = v/` unknowns. However,
the number of equations m remains unaffected by this ring switch. Therefore,
as long as V ≥ m, the introduction of block-anti-circulant structure incurs no
security degradation.

4.3 Parameters and Comparison

We advise against using fields of even characteristic in light of the poor resilience
of our block-anti-circulant compression against direct algebraic attacks, as shown
in Fig. 3. However, we note that using odd characteristic fields does not preclude
using the field lifting technique of Beullens and Preneel, although it does make
it less effective. Denote by r the extension degree, i.e., the signature equation is
defined over Fqr instead of Fq.

We estimate the complexity of algebraic system solving using the Wiedemann
method [11] along with Groverized fixing of variables [2,1]. This makes for a
complexity of

Cm,n,k = O

(
qk/2 ·

(
n− k + 2

2

)(
dreg(k) + n− k

n− k

)2
)

, (11)

where k is the number of variables that are quantumly guessed, and the degree of
regularity dreg is given by the degree of the first non-positive term in the formal
power series expansion of

HS(z) =
(1− z2)m

1− zn
. (12)

To obtain one concrete number, we take the minimum of Cm,n,k over all k and
pretend as though the constant hidden by the Landau notation is equal to 1.

Table 1 presents a selection of parameter sets designed to meet various target
levels of post-quantum security, measured in terms of the base 2 logarithm of
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the best attack’s complexity. For convenience, it also offers comparisons with
variants of UOV, namely:

– LUOV — UOV with Petzoldt’s compression technique and field lifting [1].
– PCT — UOV with Petzoldt’s compression technique [13].
– Plain — Plain UOV with no compression [9].

Table 1. Proposed parameter sets and comparison to other variants of UOV.

scheme parameters |pk | |sig | sec. lvl.

Plain q = 256, v = 106,m = o = 53 658.36 kB 159 bytes 128.85
PCT q = 256, v = 106,m = o = 53 74.07 kB 159 bytes 128.85
LUOV q = 2, v = 296,m = o = 40, r = 68 4.00 kB 2.79 kB 128.17
ours q = 7, V = 99, O = 7, ` = 8, r = 7 4.59 kB 2.17 kB 129.13

Plain q = 256, v = 164,m = o = 82 2.38 MB 246 bytes 191.89
PCT q = 256, v = 164,m = o = 82 272.5 kB 246 bytes 191.89
LUOV q = 2, v = 444,m = o = 60, r = 84 13.40 kB 5.16 kB 190.00
ours q = 7, V = 145, O = 6, ` = 16, r = 5 11.81 kB 4.42 kB 192.54

Plain q = 256, v = 224,m = o = 112 6.05 MB 336 bytes 256.50
PCT q = 256, v = 224,m = o = 112 692.13 kB 336 bytes 256.50
LUOV q = 2, v = 600,m = o = 82, r = 90 34.06 kB 7.49 kB 256.13
ours q = 7, V = 198, O = 9, ` = 13, r = 5 25.06 kB 4.93 kB 256.52

4.4 Implementation

A full working proof of concept implementation was developed in Sage. The
direct attack timings were obtained from a Magma implementation that only
generates block-anti-cyclic public keys but does not do compression of any kind.
The security levels are estimated using a Sage script. All source code is available
under the Community Research and Academic Programming License (CRAPL)
from github: https://github.com/aszepieniec/bacuov.

5 Conclusion

We propose to introduce a block-anti-circulant structure into the secret and pri-
vate keys of the UOV signature scheme. While the addition of structure may
accelerate some attacks, we argue that it is possible to either offset this accel-
eration or block it entirely by choosing parameters appropriately. The resulting
public key is smaller than the variant of UOV that uses only Petzoldt’s com-
pression trick by a factor ` which determines the block size. For typical values of
this parameter, i.e. between 6 and 8, the resulting public keys are several tens
of kilobytes in size for all security levels.

With respect the metric |pk | + |sig |, our scheme represents a marginal im-
provement over LUOV for the 128 bit security level. For higher security levels,

11

https://github.com/aszepieniec/bacuov


though, this size difference increases noticeably. This increasing size differece
provides empirical evidence of the improved scaling behavior promised by the
insertion of an anti-circulant structure. Nevertheless, whether this smaller band-
width requirement justifies the computational overhead associated with working
over odd characteristic fields, is a question whose answer likely depends on the
context. At any rate, the present construction provides the protocol designer
with a greater flexibility in his choice of parameters, thus enabling him to better
finetune the cryptosystem to the constraints of his problem.

An important question not answered by the present work, is the degree to
which performance is affected as a consequence of increasing the parameter V
to take into account attacks over the ring Fq[x]/〈x` + 1〉. While the number of
variables n = (V +O)× ` grows quite dramatically, and in turn generates huge
quadratic form matrices F (i) ∈ Fn×n

q , it should be noted that the arithmetic
involving these matrices can in fact be accelerated, just like the attacks can,
by working over Fq[x]/〈x` + 1〉 instead. The effective number of variables there-
fore decreases with respect to the other variants of UOV of the same security
level, although these variables do take values from a larger ring. In contrast,
the parameter o, which determines the complexity signature generation via the
bottleneck of solving the m×o linear system, is increased only marginally. In the
end, the litmus test for assessing performance is a low-level implementation to
facilitate a comparison to competing schemes. We leave such an implementation
to future work.

An interesting question is raised by our empirical results: why is there a
significant security degradation associated with a larger degree of circulancy
specifically for fields of characteristic two? We conjecture that this degrada-
tion is related to the impossibility of representing quadratic forms over an even
characteristic field by symmetric matrices. As a result, a block-anti-circulant
representation of such a quadratic form necessarily contains blocks of zeros on
its diagonal, thus greatly reducing the number of nonzero coefficients.
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