
NIST Post-Quantum Cryptography-
A Hardware Evaluation Study

Kanad Basu1, Deepraj Soni1, Mohammed Nabeel2 and Ramesh Karri1

1 New York University, kb150,dss545,rkarri@nyu.edu
2 New York University, Abu Dhabi mohammed.nabeel@nyu.edu

Abstract. Experts forecast that quantum computers can break classical cryptographic
algorithms. Scientists are developing post-quantum cryptographic (PQC) algorithms,
that are invulnerable to quantum computer attacks. The National Institute of
Standards and Technology (NIST) started a public evaluation process to standardize
quantum-resistant public key algorithms. The objective of our study is to provide
a hardware comparison of the NIST PQC competition candidates. For this, we use
a High-Level Synthesis (HLS) hardware design methodology to map high-level C
specifications of selected PQC candidates into both FPGA and ASIC implementations.

Keywords: Post-quantum Cryptography, Hardware Evaluation

1 Introduction
We live in an age of Internet-of-things (IoT), where all electronic devices around us are
connected to the internet, and hence, are vulnerable to security threats. Over the past few
decades, public key cryptography has become fundamental security protocol for all forms
of digital communication, wired or wireless. Public key cryptography is composed of three
main cryptographic functions, namely (a) public key encryption, (b) digital signatures,
and key exchange [1]. Current deployed schemes (RSA or Elliptic Curve Cryptography
algorithms) provide security guarantees based on the difficulty of solving the integer
factorization and discrete logarithm problems.

Peter Shor from Bell Labs was the first to show that quantum computers can factorize
integers in linear time. This renders traditional public key cryptography algorithms
ineffective [2]. To counter these challenges faced by current generation of public key
cryptography algorithms on quantum computers, researchers are investigating other robust
alternatives such as lattice and code cryptography algorithms. In this paper, we present a
hardware assessment of post-quantum cryptographic (PQC) algorithms that were submitted
to the NIST PQC assessment.

In 1997, NIST sought guidance from the public to identify a replacement for the
Data Encryption Standard (DES), Advanced Encryption Standard (AES)[3]. Since then,
open cryptographic competitions have become a way of choosing cryptographic standards.
NESSIE (2000-2002), eSTREAM (2004-2008), CRYPTREC (2000-2002), SHA-3 (2007-
2012) and CAESAR (2013-) embraced this competition approach. In all these contests,
security was the principal yardstick. Performance in software, performance in application
specific integrated circuits (ASIC), and feasibility of implementation using limited resources
(small microprocessors and low-power hardware) are the secondary criteria. One can pick
competitors that offer sufficient security and superior performance. In the AES competition,
Rijndael had the fastest ASIC implementation and the second fastest FPGA implementation
relative to its adversaries with identical security guarantees.

mailto:kb150, dss545, rkarri@nyu.edu
mailto:mohammed.nabeel@nyu.edu

The objective of this work is to prepare an extensive hardware comparison between the
leading NIST PQC candidates. The main contributions of this study are:

1. Developed systematic FPGA and ASIC design flows for PQC evaluation starting
from a C specification. For this, we transform the C PQC specifications to make
them implementable in hardware.

2. Studied the performance vs area trade-offs for 13 PQC encryption and decryption
algorithms, including KEM- and Signature algorithms that are lattice, code, hash,
and multivariate.

3. Optimized PQC implementations to increase latency using loop unrolling and loop
pipelining.

4. Explored improvement of latency using algorithm → FPGA and ASIC hardware
design flows.

The rest of the paper is organized as follows. Section 2 gives a background on Post-
Quantum Cryptography. Section 3 describes the design flow and Section 4 presents
experimental results. Section 5 presents two case studies and Section 6 presents key
takeaways.

2 Post-Quantum Cryptography
Researchers have started developing new cryptographic algorithms to resist attacks by
classical and quantum computers. The major classes of post quantum cryptography are:
• Lattice cryptography algorithms offer the best performance results, but are the

least conservative among all (i.e., have been studied the least) [4]. The robustness of
lattice cryptography builds on the hardness of the shortest vector problem (SVP).
SVP entails approximating the minimal Euclidian length of a lattice vector. Even
with a quantum computer, the problem is polynomial in n [1]. Several lattice
cryptography algorithms are based on Short Integer Solutions (SIS), which is an
average case problems. These problems are secure in the average case if the SVP is
hard in the worst-case [5].

• Code cryptography uses error correcting codes. It offers the most conservative
approach for public-key encryption/key encapsulation, as it is based on this well-
studied problem that has been around for 40 years [6]. This class of algorithms use
large keys and some attempts at reducing they key size have made these algorithms
vulnerable to attacks [7]. However, recently, researchers proposed several techniques
to reduce the key size, without compromising on the security strengths [8, 9].

• Multivariate polynomial cryptography relies on the difficulty of solving the
multivariate polynomial algorithm over finite fields. Solutions of multivariate polyno-
mial problems are NP-hard over any field and NP-complete even if all the equations
are quadratic and the field is GF (2) [10]. Multivariate schemes are preferred as
signature schemes, since they offer the shortest signatures. Although multivariate
schemes have been proposed, a few of them have been broken [11].

• Hash digital signatures resist quantum-computer attacks. These schemes are
based on the security properties of the underlying cryptograhic hash functions
(collision resistance or second pre-image resistance).
• Other cryptographic methods: include evaluating isogenies on super singular
elliptic curves. Shor’ algorithm is ineffective against evaluating isogenies [12].

2.1 Digital signature generation and key encapsulation methods
The NIST PQC standardization process is ongoing consolidating invulnerable candidates
after each successive round. Each candidate in the NIST PQC contest realizes one of three

2

Table 1: NIST PQC round 1: A distribution of the digital signature and key encapsulation
submissions and the underlying hard mathematical problem.

PQC Hard math problem Sign KEM Total
Lattice Find shortest vector, closest vector 5 23 28
Code Decode random linear code 3 17 20
Multivariate Solve multivariate quadratic equations 8 2 10
Hash second pre-image resistance of hash function 3 0 3
Isogeny Find isogeny map btwn elliptic curves with same # of points 0 1 1
Other - 2 5 7
Total - 21 48 69

functions: public-key encryption, digital signatures, and key encapsulation mechanism
(KEM). Based on mathematical complexity, PQC algorithms can be classified as: Lattice,
Code, Multivariate, Hash and Isogeny. Table 1 shows the number of PQC round 1
submissions based on the functionality and mathematical complexity.

NIST has stated that they intend to standardize more than one algorithm in order
to provide different trade-offs depending on the application (speed vs memory, etc). The
direct comparison of security of the candidate PQC algorithms is challenging for lack of
a standard quantum computing platform, differences in the mathematical functions that
underlie the algorithms, and the sophisticated algorithm specifications compared to prior
cryptographic contests. In this section, we will discuss PQC digital signatures and key
encapsulation methods.

2.1.1 Digital signatures

The PQC digital signatures work on the principle that the sender signs the message with a
private key and the receiver verifies the signature using the senders public key. The PQC
digital signature algorithms use three functions.

1. crypto_sign_keypair generates the public key pk and the secret key sk.
2. crypto_sign takes in sk and the message m plus its length mlen and outputs the

signature sm appended to the message.
3. crypto_sign_open takes in pk, sm and length smlen, and outputs message m.

Popular PQC digital signature algorithms that we considered in this hardware assess-
ment are: SPHINCS+ (Haraka), MQDSS, RLIZARD and Crystals-Dilithium.

2.1.2 Key Encapsulation

Traditional encryption-decryption protocols encrypt a message using the public key of the
sender which is then decrypted by the receiver using his private key. Popular asymmetric
cryptographic algorithms based on ECC and RSA work on this principle. However, these
classical asymmetric cryptographic algorithms are vulnerable to quantum attacks. A
solution to counter this problem is to encrypt and decrypt a message m using a symmetric
key M . The symmetric key is encrypted by the sender and sent to the receiver along with
the encrypted message. The receiver decrypts and recovers the symmetric key M first
and then decrypts the message m using M . The first challenge with this approach is that
an attacker can easily reconstruct a small M . Hence, the sender has to make M large.
Second, if the attacker somehow derives M , he/she can easily obtain m. KEM schemes
counter these two challenges.

In KEM, the sender generates a random number rn and then generates a symmetric
key M = KDF (rn), using a Key Derivation Function (KDF). A cryptographic hash is an
example KDF and addresses the two challenges as follows: (i) KEM obviates padding and

3

this way reduces the key size.(ii) Since KDF is one-way, the attacker can not generate rn,
even if she recovers M . KEM algorithms use three functions:

1. crypto_kem_keypair is used to generate the public and private keys pk and sk.
2. crypto_kem_enc takes in public key pk and outputs key k and encrypted key ck.
3. crypto_kem_dec takes in secret key sk and encrypted key ck and outputs key k.

We consider the following KEM PQC algorithms: BIG Quake, Newhope, Frodokem,
Crystals-KYBER, NTSKEM, NTRU-HRSS, Classic McEliece, LIMA, Saber 1.

2.2 Security classification of PQC algorithms
NIST specified five security strength categories. Security level 1 =⇒ equivalent to AES-
128 key search. Security level 2 =⇒ equivalent to SHA-256/SHA3-256 collision search.
Security level 3 =⇒ AES-192 key search. Security level 4 =⇒ SHA-384/SHA3-384
collision search. Security level 5 =⇒ AES-256 key search. For all these categories, the
minimum complexity threshold is used for the complexity of all the attacks against a given
PQC candidate variant. The security strengths of the algorithms are presented in Table 2.

3 High-Level Synthesis of PQC Hardware
Dedicated PQC hardware accelerators are vital for their use in practical applications.
These accelerators can be either low area and low power crypto cores used in small
IoT devices or low latency implementations to be used in servers [13]. There are very
few hardware implementations of PQC algorithms. Existing cryptographic co-processors
were re-purposed for KYBER KEM [14]. An FPGA implementation of Niederreiter
Cryptosystem was reported [13]. A hardware-software co-design scheme for the hash PQC
algorithm XMSS was developed [15]. In contrast, this paper is an early study of hardware
implementations of 13 PQCs employing a uniform hardware implementation flow.

We use High-Level Synthesis (HLS) hardware generation and design space exploration.
HLS starts from a software specification (e.g., C, C++, and SystemC) and generates a
Register Transfer Level (RTL) description (in Verilog or VHDL) ready for the rest of the
design flow (i.e., logic synthesis and physical design). HLS-based design and design space
exploration is popular for two reasons:

1. Easy verification: A high-level testbench written in C or C++ can be re-used to
verify/validate the RTL. There is no need to synthesize verilog/VHDL testbenches.

2. Extensive design-space exploration: The C/C++ code can be re-used to explore
multiple design points guided by the constraints such as area and latency.

Leading electronic design automation tool vendors like Mentor Graphics, and Cadence,
and FPGA vendors like Xilinx [16] and Intel [17] offer HLS tools and designs flows.

HLS organizes components in a hierarchical organization, according to the sub-function
organization of the C specification, to cut down the design complexity. Each hardware
unit adopts the classical Finite State Machine with Data (FSMD) model [18] with two
components: controller and data path. The controller orchestrate the operations in each
clock cycle. The finite state machine (FSM) representing the control flow signals the data
path resources based on a set of conditions. The data path includes the functional units

1Why these thirteen?: We concentrated on the round 1 PQC algorithms most expected to make it
further through the competition. We surveyed a few PQC investigators and their comments informed this
shortlist. Our surveys concerned both KEM and Signature algorithms to have a heterogeneous case study.
We expected NIST to declare the round 2 algorithms on January 10, 2019 to hone this list. However, this
notice is pending.

4

Figure 1: HLS design flow.

and registers to hold temporary values during the computation. Multiplexers drive the
values based on the control flow.

HLS hardware design can be divided into three parts, as shown in Figure 1: The compiler
phase (1) investigates the input C description and applies compiler-level transformations.
The HLS phase (2) determines the microarchitecture. The back end (3) generates the
Verilog/VHDL description and the RTL test benches. RTL simulation is performed on
a set of pre-defined inputs to determine if the generated results match the golden ones
obtained from the software execution.

3.1 C compiler optimizations

A typical HLS flow uses GCC or LLVM compilers to parse the input C code, applies
compiler optimizations, and generates an intermediate representation (IR). HLS uses the
Single Static Assignment (SSA) form so that the IR can be manipulated and turned
into register transfer level (RTL) hardware by successive HLS steps. One can apply
optimizations such as loop unrolling, constant propagation, and function inlining to permit
downstream HLS optimizations such as extraction of instruction-level parallelism. The call
graph describes the relationships between the functions and determines the components
and the hierarchical interconnections between them.

3.2 HLS

Each function in the IR is transformed into an RTL hardware module. During the HLS
allocation step, resources are selected. Next, the HLS scheduling step determines the
operations to be executed in each clock cycle and this determines the latency of the
circuit. The HLS scheduling step also generates the finite-state machine (FSM) controller,
which implements the control-flow management of the accelerator. Operations scheduled
in different clock cycles reuse the same resources. In the HLS binding step, scheduled
operations are bound to functional units and temporary values crossing the clock boundaries
are stored in registers. Next, the functional units and registers are interconnected using
multiplexers. The controller synthesis step creates the FSM. Based on the operations to
execute on the microarchitecture, the FSM generates signals that route the data in the
data path through the multiplexers in each clock cycle. We use Xilinx Vivado HLS as it
supports C design [16]. HLS PQC hardware design flow can also use Mentor Catapult
HLS [19], LegUp HLS [20], and Intel HLS [17].

5

C Design Modified
C Design

Synthesized RTL

Critical
Modules/Loops

Optimization
Possible? Final RTL

HLS
tunings

Yes

No

HLS
C/RTL

Co-Simulation

Directives
for Optimization

Figure 2: High-Level Synthesis design exploration of PQC algorithms.

3.3 Backend
The RTL Verilog/VHDL description is generated, together with the library components
(e.g., custom operators or memory interfaces) used in the design as outputs of HLS. HLS
produces the hardware test bench or an interface for co-simulation with the software test
bench. A pre-defined set of inputs is used to generate the golden output values, which
are then matched with the simulation results. We used an FPGA back-end flow (Xilinx
FPGA synthesis tools) [16] and the ASIC back-end flow (Synopsys Design Compiler [21]).

4 Experimental Evaluation
4.1 HLS experimental evaluation methodology
Figure 2 shows the HLS design exploration method for PQC algorithms. We modify the
original C specification to make it HLS-suitable (e.g., change pointers to fixed dimension
arrays, remove recursions). Next, we perform HLS on the synthesizable C code to generate
RTL using Xilinx Vivado HLS. Vivado provides a detailed synthesis report indicating
which modules/loops in the design are the cause of the longest latency. If there are loops,
we optimize them using loop unrolling and pipelining2 .

4.2 PQC algorithms used in this study
We evaluated thirteen NIST PQC implementations. The PQC algorithms and their
implementation and security characteristics are summarized in Table 2. In this paper, we
focused on PQC encryption and decryption algorithms and synthesis of keypair generation
as an important next step.

4.3 Performance metrics
The considered performance indicators are: latency, area and latency-area product. Latency
is the time required by system to produce the output from the time the input is provided.
Throughput is the maximum speed at which the outputs can be provided. The minimum
number of clock cycles between two successive inputs is the initiation interval (II) and is a
measure of throughput. A lower II indicates higher throughput. Figure 3 shows a system
with 3 modules. The latency of the system is 10 clock cycles as the whole computation
should be completed in each module one after the other. The most time consuming module
1 consumes 5 clock cycles and is the bottleneck. After 5 clock cycles, the next input is given

2Since there are numerous tables and graphs in this section of the study, the position of the tables may
not be close to the text that discusses them. Hence, we made their captions self-contained.

6

to module A. Therefore, the system II is 5 clock cycles. In this paper, latency and II are
used interchangeably. Therefore, a design with lower latency indicates better throughput.

We will use latency to measure the performance of the designs. We will use Flip-Flops,
LUTs, and Multiplexers for FPGA implementations and chip area for ASIC implementa-
tions. There is a trade-off between speed and area. Reduction in latency often increases
the total area. Hence, Latency-area product (LAP) is used to check the efficiency and
resource utilization of the design. A lower LAP corresponds to a superior implementation.

4.4 Baseline hardware implementations
Tables 3 and 4 report the hardware and timing overhead for implementing the PQC
encryption, decryption and keypair generation algorithms, respectively when synthesized
without any additional constraints (latency). Figure 4 shows how the KEM and Signature
encryption algorithms can be ordered when ranked on the basis of least latency.

Table 2: PQC algorithms used in this study: A high-level analysis of the 13 NIST
PQC algorithm implementations. Of these, nine are KEM primitives and four are signature
primitives. Of the KEM primitives, three are code and the remaining six are Lattice .
Two of the PQC signature primitives are lattice , one is hash and one is multivariate
. Algorithms not supporting a particular security level are indicated with a ‘-’. Classic
McEliece has two implementations, both of which are of security level 5. LIMA has two
implementations of security level 3 and two of security level 5. The security levels of each
algorithm used in this paper are shown in bold. Among these, nine are of security level 1,
one is of security level 2, two are of security level 3 and two are of the highest security
level 5. Algorithms across various security levels are chosen for two purposes. First, many
algorithms do not support some security levels. Furthermore, we wanted to perform a
heterogeneous case study across various security levels.

Algorithm Basis PQC Supported Security Level (public key size in bytes)
hard problem Primitive 1 2 3 4 5

Big Quake [22] Code KEM 1624896 - 5384448 - 9576000
Classic McEliece [23] Code KEM - - - - 1047319

1357824
NTS-KEM [24] Code KEM 319488 - 929760 - 1419704
LIMA [25] Lattice KEM 6109 - 6145 10449 12289

14577 16497
Saber [26] Lattice KEM 672 - 992 - 1312
Crystals-KYBER[27] Lattice KEM 736 - 1088 - 1440
NewHope [28] Lattice KEM 928 - - - 1824
FrodoKEM [29] Lattice KEM 9616 - 15632 - -
NTRU-HRSS-KEM [30] lattice KEM 9100 - - - -
RLIZARD [31] Lattice Signature 4096 - 4096 - 8192

8192
Crystals-Dilithim [32] Lattice Signature 1184 1472 1760 - -
SPHINCS+ [33] Hash Signature 32 - 48 - 64
MQDSS [34] Multivariate Signature - 62 - 88 -
qTESLA Lattice Signature 4128 - 8224 - 8224
LEDAcrypt [35] LAttice KEM 27779 57557 57557 99053 99053

Figure 3: Illustration of Latency and Throughput metrics.

7

Table 3: Description: Security versus area versus the timing of PQC encryption algo-
rithms, without optimizations (i.e., baseline). Analysis: Among the security level 1 KEM
algorithms, NTRU-HRSS-KEM has a latency of over 1 million cycles and NTS-KEM is the
fastest. LIMA has low-latency and the strongest security level 5. Among the security level
1 signature algorithms, RLIZARD and CRYSTALS-Dilithium have latencies fewer than a
million cycles. Takeaway: MQDSS (for signature generation), and LIMA (for KEM) are
good candidates for IoT devices. LIMA offers level 5 security and is the second fastest and
the second smallest. MQDSS signature generation algorithm has security level 2 and is
the third fastest and the third smallest.

Algorithm Security FF LUT MUX Clock (ns) Latency
KEM algorithms

CRYSTALS-Kyber 1 40720 230540 1217 15 56345
Newhope 1 26257 135689 1538 15 681191
FrodoKEM 1 14516 82265 1014 10 469217
NTSKEM 1 68154 823172 15 10 3952
NTRU-HRSS-KEM 1 6633 33845 341 15 1496914
Big_Quake 3 6138 19932 909 10 8925800
Saber 3 38495 214764 1496 15 499812
Classic McEliece 5 60264 840384 898 10 5128978
LIMA 5 44678 58323 3 10 8252
LEDACrypt 1 8774 90308 533 10 37832

Signature algorithms
RLIZARD 1 1503 3757 2426 10 623730
CRYSTALS-Dilithium 1 25926 133461 3002 10 609828
SPHINCS+ 1 8641 31147 897 10 628778326
qTELSA 1 62765 320842 5018 10 16571091
MQDSS 2 35263 193320 3853 15 49365597

Table 4: Description: Security versus area versus the timing of PQC decryption algo-
rithms, without optimizations (i.e., baseline). Analysis: Among the KEM algorithms,
NTRU-HRSS-KEM (security level 1), BIG_QUAKE (security level 3), LIMA and Classic
McEliece (security level 5) have latency of more than 1 million cycles. NTSKEM is the
fastest among those in security level 1. Among the Signature algorithms, RLIZARD and
CRYSTALS-Dilithium have a latency less than a million cycles. CRYSTALS-Dilithium is
the fastest among signature algorithms. Takeaway: RLIZARD (for Signature generation)
and BIG_Quake (for KEM) are good candidates for IoT devices. None of the level 5
security decryption algorithms considered in this study have low latency and hence are
not appropriate for servers. All the low latency algorithms only have level 1 security –
NTSKEM (KEM) and CRYSTALS-Dilithium (Signature).

Algorithm Security Level FF LUT MUX Clock (ns) Latency
KEM- algorithms

CRYSTALS-Kyber 1 33030 186244 953 15 53553
Newhope 1 19635 92250 1123 15 723027
FrodoKEM 1 14461 82307 1027 10 220344
NTSKEM 1 13904 83250 278 10 43425
NTRU-HRSS-KEM 1 5292 29532 440 15 1003222
Big_Quake 3 5221 10123 314 10 946887
Saber 3 33751 189597 1106 15 89392
Classic McEliece 5 70112 847949 914 10 146126996
LIMA 5 54064 66404 612 10 5376651
LEDACrypt 1 1891 5631 179 10 45964

Signature algorithms
RLIZARD 1 1728 5141 3041 10 621236
CRYSTALS-Dilithium 1 20865 108878 1737 10 5380
SPHINCS+ 1 3335 11438 433 10 937975
qTELSA 1 39177 184931 3357 10 18555063
MQDSS 2 26423 147359 2568 15 25124450

8

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

N
T
SK

E
M

C
ry

st
al

s-
K
yb

e
r

F
ro

d
o
K
E
M

N
e
w

H
o
p
e

N
T
R
U

-H
R
S
S

S
ab

e
r

B
ig

_
Q

u
a
ke

LI
M

A

C
la

ss
ic

M

cE
lie

ce

C
ry

st
al

s-
D
il
it
h
iu

m

R
LI

ZA
R
D

S
P
H
IN

C
S

M
Q

D
SS

L
a

te
n

c
y
 i

n
 n

u
m

b
e

r
o

f
c
y
c
le

s

Figure 4: We sorted the PQC encryption algorithms by latency, normalized for a clock
cycle of 10 ns for each security level. The KEM algorithms are in blue, orange and green,
corresponding to security levels 1, 3, and 5. The Signature algorithms are in red and
gray, corresponding to security levels 1 and 2. Among the KEM algorithms, three have
latency less than 100,000 cycles and two more have latency less than a million cycles. Four
KEM algorithms have latency more than a million cycles. Two of them have the security
level 1, one has the security level 3 and one has the security level 5. Among the signature
algorithms, two security level 1 have a latency less than a million cycles and one algorithm
of security level 1 has more than a million cycles latency. The one security level 2 signature
algorithm has more than a million cycles latency.

4.5 Critical Functions
In this section, we will examine the critical functions as well as the loops in them that
result in high latency for the PQC encryption algorithms. The results are obtained from
the HLS reports and shown in Table 5. The critical functions are optimized using loop
unrolling and loop pipelining as explained in Section 5.1.1 and Section 4.7, respectively.

4.6 Optimization 1: Loop unrolling
The latency of the design depends upon the functions and loops. The loops are executed
one iteration at a time (rolled). Thus, rolled loops increase latency. Fully unrolling a can
minimize the latency. However, this uses more resources. Figure 5 explains loop unrolling.

Table 5: Critical functions of the PQC encryption algorithms.
Algorithm Critical Functions # Loops

KEM algorithms
Big_Quake m2error 1
NTRU-HRSS-KEM poly_Rq_mul 2
Saber vectormul 2
CRYSTALS-Kyber gen_matrix 3
Newhope poly_uniform 2
FrodoKEM frodo_sample_n, frodo_mul_add 1,1
Classic McEliece syndrome 1
LIMA DecodePK 1
NTSKEM hash 1
LEDACrypt KeccakF1600_StatePermute 3

Signature algorithms
RLIZARD crypto_encrypt 1
CRYSTALS-Dilithium expand_mat 2
MQDSS crypto_sign 2
SPHINCS+ treehash 5

9

Figure 5: Loop unrolling for a for loop of count 3.

Vivado HLS provides the option to partially unroll the loop to balance the performance
and area. We use loop unrolling for encryption and decryption and report the results in
Table 6 and Table 7 respectively.

Table 6: Description: Security versus area versus the timing of PQC encryption algo-
rithms, after loop unrolling. Analysis: Compared to Table 3, virtually all algorithms
(except NTSKEM) have an improvement in latency, with an ensuing increase in area.
CRYSTALS-KYBER incurs the most area among KEM algorithms and CRYSTALS-
Dilithium among the Signature algorithms. Among Signature PQC algorithms, loop
unrolling doesn’t reduce the latency of MQDSS. BIG_QUAKE has the most speedup in
terms of latency (66× reduction in latency compared to baseline (in Table 3). Takeaway:
Loop unrolling reduces the latency of all PQC encryption algorithms. However, it also
results in an increase in area. LIMA is still an ideal candidate for application in servers,
since it provides high security (level 5) and has low latency. Apart from LIMA, among
the other high security algorithms, MQDSS (Signature , security level 2) can be used for
IoT devices, since it provides relatively low hardware overhead. Among the lower security
(level 1) algorithms, NTRU-HRSS-KEM (KEM), RLIZARD and SPHINCS+ (Signature)
can be used for IoT devices, since the area overhead is low. NTSKEM (KEM , security
level 1) can be used in servers owing to its low latency.

Algorithm Security Level FF LUT MUX Clock (ns) Latency
KEM algorithms

CRYSTALS-Kyber 1 237182 2414748 1358 15 42823
Newhope 1 26257 135689 1538 15 680150
FrodoKEM 1 44284 136998 12422 10 366609
NTSKEM 1 68154 823172 15 10 3952
NTRU-HRSS-KEM 1 9035 65356 2263 15 22594
Big_Quake 3 249798 743560 913 10 286355
Saber 3 93234 376313 1233 15 236812
Classic McEliece 5 69795 934492 909 10 2373772
LIMA 5 79101 93217 59 10 5751
LEDACrypt 1 288530 783651 13408 10 6660

Signature algorithms
RLIZARD 1 1503 3757 2426 10 268056
CRYSTALS-Dilithium 1 158313 584742 4880 10 18525
SPHINCS+ 1 8931 42604 975 10 464961626
MQDSS 2 45135 230273 25958 15 49365597

The ranking of the encryption functions after loop unrolling is shown in Figure 7 (a).
Among the high security algorithms, LIMA (KEM , security level 5) has the lowest latency.
Among the low security algorithms, NTSKEM is the fastest among the KEM algorithms
and Crystals-Dilithium is the fastest among the Signature algorithms.

4.7 Optimization 2: Loop Pipelining
Loop pipelining can be used to improve latency. Figure 6 explains loop pipelining. This
optimizes both hardware and latency. We synthesize the algorithms by adding a directive
to pipeline the longer loops. The results for encryption is presented in Table 8.

10

Table 7: Description: Security versus area versus the timing of PQC decryption algo-
rithms, after loop unrolling. Analysis: Loop unrolling provides significant reduction in
latency. Except for Classic McEliece and MQDSS, none of them have a latency of over
1 Million cycles. The maximum reduction in latency of 45× is for NTRU-HRSS-KEM.
Takeaway: Similar to encryption, loop unrolling reduces latency for PQC decryptions.
This comes with extra hardware. For Saber, the increase in hardware overhead is 12×, in
of LUTs. If an IoT device requires high security (security level 5), Classic McEliece and
LIMA (KEM) can be used, since the area overhead is low. For IoT devices where high level
of security is not required, security level 1 algorithms with low area overhead like RLIZARD
and SPHINCS+ (Signature) can be used. On the other hand, CRYSTALS-Dilithium
(Signature), providing security of level 1, can be used in servers, owing to its low latency.

Algorithm Security Level FF LUT MUX Clock (ns) Latency
KEM algorithms

CRYSTALS-Kyber 1 194126 1977896 1028 15 43018
Newhope 1 28999 164937 1123 15 721986
FrodoKEM 1 97355 128031 741 10 117736
NTSKEM 1 99417 951249 15 10 49719
NTRU-HRSS-KEM 1 11514 97791 2439 15 21996
Big_Quake 3 247036 734805 995 10 237847
Saber 3 231549 2350000 998 15 365015
Classic McEliece 5 79962 870908 914 10 10659024
LIMA 5 46934 53176 3 10 76748
LEDACrypt 1 164230 406135 179 10 18079

Signature algorithms
RLIZARD 1 1728 5141 3041 10 267854
CRYSTALS-Dilithium 1 108154 388991 15309 10 5380
SPHINCS+ 1 3335 11438 433 10 937975
MQDSS 2 93945 323734 48534 15 25084906

Iteration-1 Iteration-2

 3 CC 3 CC

Before Pipelining (18CC)

Iteration-1 Iteration-2

Iteration-1 Iteration-2

Clock Cycle

 3 CC 3 CC

After Pipelining (12CC)

Iteration-1 Iteration-2

Iteration-1 Iteration-2

for(j=0;j<3;j++) {
// Process to implement.
//The process would be divided into
//clock cycle depending upon the
//combinational logic needed for that.
}

Iteration-1 Iteration-2

Figure 6: Example of loop pipelining.

The ranking of the encryption functions after pipelining is shown in Figure 7 (b). Similar
to Figure 7 (a), LIMA provides the best latency among the high security algorithms. Among
the algorithms with security level 1, NTSKEM is the fastest among the KEM algorithms
and Crystals-Dilithium is the fastest among the Signature algorithms.

4.8 Latency-area product Comparisons
In this section, we compare the latency-area product (LAP) for the encryption algorithms
for both the baseline and the optimization techniques. Similar to [36], we consider the
area as the number of FPGA LUTs required to synthesize the design. The results are
shown in Table 9. A lower LAP corresponds to better performance in terms of latency. As
can be seen in Table 9, the number of algorithms for which the lowest LAP is obtained

11

Table 8: Description: Security versus area versus the timing of PQC encryption algo-
rithms, after loop pipelining. Analysis: Similar to loop unrolling, pipelining also reduces
the overall latency for the PQC encryption algorithms. Among the KEM algorithms,
only Classic McEliece has a latency of more than 1 million cycles. The major difference
with Table 6 is with respect to the signature algorithm, MQDSS. While loop unrolling
could not modify its latency, pipelining can reduce the latency by 50%. Takeaway: Loop
pipelining reduces the latency of PQC encryption algorithms, with an increase of hardware
area. The improvement in latency compared to loop unrolling is not consistent. After
pipelining, LIMA (KEM, security level 5) emerges as an ideal candidate for both IoT
devices and servers, with low area and low latency. For low security IoT devices, security
level 1 algorithms with low area overhead like NTRU-HRSS-KEM (KEM) and RLIZARD
(Signature) may be used. None of the Signature algorithms provide low latency after
pipelining. Among the KEM algorithms, BIG_QUAKE provides high security (level 3)
as well as low latency. Hence it is ideal for server applications. CRYSTALS-Kyber also
provides low latency; however, its security level is only 1. Among the KEM algorithms,
pipelining generates a faster design compared to loop unrolling for only three of the 10
algorithms. On the other hand, for signature algorithms, pipelining provides better latency
for two of the four algorithms compared to unrolling.

Algorithm Security Level FF LUT MUX Clock (ns) Latency
KEM algorithms

CRYSTALS-Kyber 1 11699 1307815 1076 15 31669
Newhope 1 25639 136457 1552 15 307847
FrodoKEM 1 105875 179290 1495 10 335891
NTSKEM 1 68154 823172 15 10 3952
NTRU-HRSS-KEM 1 12225 75141 341 15 100208
Big_Quake 3 78567 540165 290 10 42366
Saber 3 40824 234171 1394 15 367099
Classic McEliece 5 60270 840430 898 10 3787729
LIMA 5 29464 48016 59 10 8259
LEDACrypt 1 13157 102496 661 10 11075

Signature algorithms
RLIZARD 1 881 4253 2256 10 267386
CRYSTALS-Dilithium 1 146076 1327355 2274 10 155166
SPHINCS+ 1 20628 66750 930 10 468789803
MQDSS 2 47441 270713 3882 15 25825918

using unrolling is almost similar to that of pipelining. This is because of the many loop
dependencies in some algorithms like CRYSTALS-Dilithium, which restricts the speedup
due to pipelining. The PQC algorithms are ranked in terms of LAP in Figure 8.

4.9 Security level vs hardware tradeoffs
The PQC algorithms have different implementations depending on the intended security
strength (i.e. the implementations vary in key sizes). In this section, we examine how
the hardware overhead varies with security strength. We run experiments on a baseline
implementation, i.e., with no optimizations. Figure 9 plots the hardware overhead of PQC
algorithms in number of flip-flops and LUTs. Figure 10 reports the hardware overhead
in terms of the number of flip-flops and LUTs, for the PQC decryption algorithms. The
number of multiplexers don’t change for the different implementations.

4.10 ASIC Implementation of PQC decryption algorithms.
In this section, we report the ASIC implementations of PQC decryption algorithms. All
the designs are synthesized with a 5ns clock period, 65 nm GF LPE library and 2-stage
compilation using Synopsys DC ASIC synthesis tool. The synthesis results, indicating the
maximum operational frequency, the area and power are shown in Table 10. The ASIC
synthesis flow accepts the RTL generated by the HLS tool with some RTL changes done
manually before Synopsys DC is able to synthesize them.

12

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

N
T
SK

E
M

N
T
R
U
-H

R
SS

C
ry

st
a
ls
-K

yb
e
r

Fr
o
d
o
K
EM

N
e
w

H
o
p
e

B
ig

_
Q

u
a
ke

Sa
b
e
r

LI
M

A

C
la

ss
ic

 M
cE

li
e
ce

C
ry

st
a
ls
-D

il
it
h
iu

m

R
LI
Z
A
R
D

SP
H
IN

C
S

M
Q
D
S
S

L
a

te
n

c
y
 i
n

 n
u

m
b

e
r
 o

f
c
y
c
le

s

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

N
T
SK

E
M

C
ry

st
a
ls
-K

yb
e
r

N
T
R
U
-H

R
SS

Fr
o
d
o
K
EM

N
e
w

H
o
p
e

B
ig

_
Q

u
a
ke

Sa
b
e
r

LI
M

A

C
la

ss
ic

 M
cE

li
e
ce

C
ry

st
a
ls
-D

il
it
h
iu

m

R
LI
Z
A
R
D

SP
H
IN

C
S

M
Q
D
S
S

L
a

te
n

c
y
 i
n

 n
u

m
b

e
r
 o

f
c
y
c
le

s

Figure 7: Description: PQC encryption algorithms sorted by latency, normalized for the
clock cycle of 10 ns. The KEM algorithms are in blue, orange, and green, corresponding to
security levels 1, 3, and 5. The signature algorithms are in red and gray, corresponding to
security levels 1 and 2. Analysis: (a) Loop unrolling: Five KEM algorithms have latency
fewer than 100,000 cycles – three have security level 1 and one has security level 5. Three
KEM algorithms have latency less than a million cycles (one has security level 1 and two
have security level 3) and two KEM algorithms have latency over a million cycles (one has
security level 1 and the other has security level 5). Two signature algorithms have latency
fewer than a million cycles (both have security level 1) and two have latency higher than
a million cycles (one has security level 1 and the other has security level 2). (b) Loop
pipelining: Four KEMs have latency less than 100,000 cycles (three have security level
1, one has security level 3 and one has security level 5). Four KEMs have latency less
than a million cycles (three have security level 1 and one has security level 3). Only one
security level 5 KEM has latency more than a million cycles. For signature algorithms,
two have latency fewer than a million cycles (both have security level 1) and two higher
than a million cycles (one has security level 1 and the other has security level 2.)

Table 9: Description: Security vs. latency-area product (LAP) for various optimizations
on the PQC encryption algorithms. The minimum values for each algorithm are written
in bold. Analysis: For most KEM algorithms, pipelining produces the best latency-area
product. Only for two (NTRU-HRSS-KEM and Classic McEliece), loop unrolling provides
the best LAP. For FrodoKEM and SPHINCS+, the baseline implementation has the best
LAP, i.e., optimizations actually deteriorate the results. Takeaway: LIMA (KEM) has a
low LAP value along with high security (level 5). Among the low security alternatives
(level 1), NTSKEM (KEM) and RLIZARD (Signature) have low LAPs.

Algorithm Security Level Baseline Loop Unrolling Loop Pipeline
KEM algorithms

CRYSTALS-Kyber 1 12989776300 103406753604 41417193235
Newhope 1 92430125599 92288873350 42007878079
FrodoKEM 1 38600136505 50224699782 60221897390
NTSKEM 1 3253175744 3253175744 3253175744
NTRU-HRSS-KEM 1 50663054330 1476653464 7529729328
Big_Quake 3 177909045600 21291840600 22884630390
Saber 3 107341624368 89115434156 85963939929
Classic McEliece 5 10071094989153 2218270943824 3183321083470
LIMA 5 481281396 4081151648 3965641443
LEDACrypt 1 3416532256 5219115660 1135143200

Signature algorithms
RLIZARD 1 2343353610 1382786392 1137192658
CRYSTALS-Dilithium 1 81388254708 1067154150 205960365930
SPHINCS+ 1 19584558519922 19809225114104 31291719350250
MQDSS 2 9543357212040 11367564117981 6991411739534

13

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1E+12

1E+13

1E+14

NTRU-H
RSS

NTSK
EM

FrodoKEM

Crys
tal

s-K
yb

er

NewHope

Big_Quake
Sab

er
LIM

A

Classi
c

McE
lie

ce

Crys
tal

s-D
ilit

hium

RLIZ
ARD

SPHIN
CS

MQDSS

La
te

nc
y

Ar
ea

 P
ro

du
ct

Figure 8: PQC encryption algorithms sorted by LAP, normalized for clock cycle of 10ns.
The KEM algorithms are in blue, orange and green, corresponding to security levels 1, 3,
and 5. Signature algorithms are in red and gray, corresponding to security levels 1 and 2.
Among the KEM algorithms, three have a LAP of less than 1010 – three of security level 1
and one of security level 5. Five are in the range 1010 −−1012, three of security level 1
and two of security level 3. One security level 5 algorithm has a LAP of over 1012. Among
signature algorithms, two have LAP < 1010 – both are of security level 1. Two others –
one security level 1 and another of security level 2 have LAP > 1012.

0

50000

100000

150000

200000

250000

300000

350000

Big
_Q
ua
ke
_1

Big
_Q
ua
ke
_3

Big
_Q
ua
ke
_5

Sa
be
r

re
co
n_
Sa
be
r

fir
e_
Sa
be
r

KY
BE
R-
51
2

KY
BE
R-
76
8

KY
BE
R-
10
24

Di
lit
hiu
m
-R
ec
om
me
nd
ed

Di
lit
hiu
m
-M
ed
ium

Di
lit
hiu
m
-W
ea
k

Di
lit
hiu
m
-V
er
y_
Hi
gh

M
QD
SS
-4
8

M
QD
SS
-6
4

Ne
wh
op
e-
51
2C
CA

Ne
wH
op
e-
51
2C
PA

Ne
wH
op
e-
10
24
CC
A

Ne
wH
op
e-
10
24
CC
A

SP
HI
NC
S-
ha
ra
ka
-1
28
f

SP
HI
NC
S-
ha
ra
ka
-1
28
s

SP
HI
NC
S-
ha
ra
ka
-1
92
f

SP
HI
NC
S-
ha
ra
ka
-1
92
s

SP
HI
NC
S-
ha
ra
ka
-2
56
f

SP
HI
NC
S-
ha
ra
ka
-2
56
s

FR
OD
OK
EM
-64
0

FR
OD
OK
EM
-97
6

Figure 9: Hardware overhead in terms of number of LUTs and FFs for various implemen-
tations of PQC encryption algorithms. FFs are shown in solid colors and LUTs as hashed
patterns. Implementations of the same algorithm are marked with the same color for ease
of comparison. KYBER encryption is the largest and has the maximum variation in area
relative to security levels. KYBER-768 requires 40% more hardware over KYBER-512.

14

5 Two PQC design exploration case studies

We will study two cases to explain the design space exploration. This entails analyzing
functions which determine the minimum achievable latency used in PQC encryption
algorithms. Then we will show that loop unrolling and pipelining can improve latency.

0

50000

100000

150000

200000

250000

sa
be
r

re
co
n_
Sa
be
r

fir
e_
Sa
be
r

KY
BE
R-
51
2

KY
BE
R-
76
8

KY
BE
R-
10
24

Di
lit
hiu
m
-R
ec
om
me
nd
ed

Di
lit
hiu
m
-M
ed
ium

Di
lit
hiu
m
-W
ea
k

Di
lit
hiu
m
-V
er
y_
Hi
gh

M
QD
SS
-4
8

M
QD
SS
-6
4

Ne
wh
op
e-
51
2C
CA

Ne
wH
op
e-
51
2C
PA

Ne
wH
op
e-
10
24
CC
A

Ne
wH
op
e-
10
24
CC
A

SP
HI
NC
S-
ha
ra
ka
-1
28
f

SP
HI
NC
S-
ha
ra
ka
-1
28
s

SP
HI
NC
S-
ha
ra
ka
-1
92
f

SP
HI
NC
S-
ha
ra
ka
-1
92
s

SP
HI
NC
S-
ha
ra
ka
-2
56
f

SP
HI
NC
S-
ha
ra
ka
-2
56
s

FR
OD
OK
EM
-64
0

FR
OD
OK
EM
-97
6

Figure 10: # of flip-flops (FF) and LUTs used by implementations of PQC decryption
algorithms. FFs are shown in solid colors, while LUTs as hashed patterns. Implementations
of the same algorithm have the same color. Except FRODO-KEM, none of the decryption
algorithms have noticeable difference in FF/LUT count. The variation in LUT and FFs
for the two security levels of Frodo-KEM is 4̃0%. Saber uses the most LUTs and FFs.

Table 10: Description: ASIC synthesis of some of the studied PQC decryption algorithms.
Analysis: FrodoKEM (security level 1, KEM) and SPHINCS+ (security level 1, Signature)
have small decryption modules which consume the least power and hence can be used in
small IoT devices. Takeaway: Big_QUAKE (security level 3) is a good compromise of
security, performance, and power for use in servers.

Algorithm Security Level Clock (MHz) Area (µm2) K Gates Power (mW)
KEM algorithms

CRYSTALS-Kyber 1 200 3378515 1340.68 39.21
Newhope 1 168.6 3208999 1273 38.02
FrodoKEM 1 200 10721 4.25 0.14
NTS-KEM 1 156 3163206 1255 15.29
NTRU-HRSS-KEM 1 169.5 1246869 495 14.3
Big_Quake 3 200 40543 16 28.2
Saber 3 137.75 4774529 1895 54.49
LIMA 5 123.45 1474598 585.158 105.17

Signature algorithms
RLIZARD 1 129.7 1701653 675.259 23.22
CRYSTALS-Dilithium 1 157.7 4774529 1602.6 51.24
SPHINCS+ 1 200 19477.8 7.73 0.28
MQDSS 2 100 9341007 3706 120

15

5.1 Case study 1: Design exploration of the BIG_QUAKE
Consider BIG_QUAKE code encryption algorithm. An analysis of BIG_QUAKE’s
encryption function crypto_kem_enc() reveals that the function m2error() (in file m2e.c)
limits the latency as follows:

The latency for BIG_QUAKE encryption (crypto_kem_enc()) without optimization
is 8925800 cycles of which m2error() contributed 8733488 cycles. Table 11 summarizes
the latencies of the functions in crypto_kem_enc() and the important loops in m2error().
Function m2error() has three loops. Loop 1 and Loop 3 are simple, single-line loops that
repeat a single operation without invoking any functions. Loop 2, on the other hand, invokes
four functions, uniform_m2e, swap_m2e, memcpy, and init_hash. In turn, uniform_m2e
calls hash_trunc and ucharToInt. swap_m2e has no loops and function invocations.
init_hash calls Keccak hash function, which calls KeccakF1600_StatePermute which
has eight independent loops that do not call other functions. Overall, the call graph for
m2error() is shown in Figure 11 and the latency of each loop is shown in Table 11.

int m2error(IN unsigned char *m, OUT int * error) {
int i, j, s = 3, permutation[LENGTH];
unsigned char * aux = malloc(HASH_SIZE*sizeof(unsigned char));
for (i = 0; i < LENGTH; ++i) /* Loop 1 */

permutation[i] = i;
init_hash(m);
for(i = 0; i < NB_ERRORS; i++) { /* Loop 2 */

j = uniform_m2e(s, LENGTH - i-1);
swap_m2e(permutation, i, i + j);
memcpy(aux, buff, HASH_SIZE);
init_hash(aux);

}
for (i = 0; i < NB_ERRORS; ++i) /* Loop 3 */

error[i] = permutation[i];
free(aux);
return SUCCESS;

}

In order to apply loop unrolling, we modified the code to resolve the “if” conditions
with the bottleneck in this case being hash_trunc. buff_size is a global variable set to
HASH_SIZE (=32) by init_hash. Every call to hash_trunc reduces it by s (=3). Since

m2error

Loop1

Loop 2

Loop 3

init_hash

swap_m2e

uniform_m2e

Keccak

Loop1

Loop 2 KeccakF1600_StatePermute

hash_trunc

ucharToInt
8 Loops

Figure 11: Call graph of m2error().

16

init_hash is conditionally called by hash_trunc, the connection between the two is
shown by a dotted line in the call graph. Therefore, in order to reduce the latency due to
m2error(), it is necessary to optimize these loops.

unsigned char * hash_trunc(int s) {
unsigned char* aux = malloc(HASH_SIZE*sizeof(unsigned char));
buff_size -= s;
if (buff_size < 0) {

memcpy(aux, buff, HASH_SIZE);
init_hash(aux);
buff_size -= s;
return realloc(aux, s*sizeof(unsigned char));

}
memcpy(aux, buff + buff_size - 1, s*sizeof(unsigned char));
return aux;
}

5.1.1 Loop Unrolling

We unroll the three loops in m2error(), the two loops in Keccak and the eight loops in
KeccakF1600_StatePermute. We set the unrolling factor to 1 to direct HLS to do all
operations in a single cycle. We inline function calls and replace memcpy by loops3.

5.1.2 Loop Pipelining

We pipeline the three loops of m2error() and set the target II as 1. We also partition
the variable state in KeccakF1600_StatePermute to obtain minimum latency. The results
for all experiments are shown in Table 12. We synthesized the function m2error().
The last column in Table 12 indicates the speedup obtained compared to the baseline
implementation. Loop unrolling and loop pipelining yield significant speedups. Further,
loop pipelining offers a 11× speedup and 27% less hardware compared to loop unrolling.

5.2 Case study 2: Design exploration of CRYSTALS_KYBER
In this section, we will perform design exploration of CRYSTALS_KYBER, an example lat-
tice cryptography algorithm. An analysis of the encryption function (crypto_kem_enc())
reveals that the function indcpa_enc() limits the latency. An analysis of indcpa_enc()
shows that gen_matrix() is the function with the highest latency.

void gen_matrix(polyvec *a, const unsigned char *seed, int transposed) {
unsigned int pos=0, ctr, nblocks=4, i, j;
3Vivado HLS does not efficiently map memcpy into an equivalent hardware structure.

Table 11: Critical functions and loops that limit the BIG_QUAKE latency.
Function/Loop Latency (clock cycles)

Top function: crypto_kem_enc
randombytes_quake_en 39829
m2error 8733488
KeccakF1600_StatePer 28513
encrypt_nied 1294

Top function: m2error
m2error_loop 1 7410
m2error_loop 2 8668864
m2error_loop 3 182

17

Table 12: Area and timing overhead for different implementations of m2error().
Implementation FF LUT MUX Latency Speedup
Baseline 1677 5141 329 8733488 -
Loop Unrolling 244875 732218 2192 93739 93.16 ×
Loop Pipelining 75845 531022 149 8135 1073.57 ×

uint16_t val;
uint8_t buf[SHAKE128_RATE*nblocks];
uint64_t state[25]; // CSHAKE state
unsigned char extseed[KYBER_SYMBYTES+2];
for(i=0;i<KYBER_SYMBYTES;i++) /* Loop 1*/

extseed[i] = seed[i];
for(i=0;i<KYBER_K;i++) { /* Loop 2*/

for(j=0;j<KYBER_K;j++) { /* Loop 3 */
ctr = pos = 0;
if(transposed) {

extseed[KYBER_SYMBYTES] = i;
extseed[KYBER_SYMBYTES+1] = j;

} else {
extseed[KYBER_SYMBYTES] = j;
extseed[KYBER_SYMBYTES+1] = i;

}
shake128_absorb(state,extseed,KYBER_SYMBYTES+2);
shake128_squeezeblocks(buf,nblocks,state);
while(ctr < KYBER_N) { /* Loop 4 */

val = (buf[pos] | ((uint16_t) buf[pos+1] << 8)) & 0x1fff;
if(val < KYBER_Q)

a[i].vec[j].coeffs[ctr++] = val;
pos += 2;
if(pos > SHAKE128_RATE*nblocks-2) {
nblocks = 1;
shake128_squeezeblocks(buf,nblocks,state);
pos = 0;

}
}

}
}

}

Table 13 summarizes latencies of the functions in crypto_kem_enc() and indcpa_enc()
and the loops in the function gen_matrix(). The function gen_matrix() has four loops
of which Loop 1 is a simple loop. Loop 4 is nested within Loop 3, which, in turn, is nested
in Loop 2. Loop 4 calls an external function Keccak_squeezeblocks(), while Loop 3
calls two external functions – keccak_absorb() and keccak_squeezeblocks(). Loop 2
does not call any other functions and just iterates over Loop 3 multiple times. Function
keccak_squeezeblocks() has two loops, the first of which calls functions KeccakF1600_
StatePermute() and the second store64(). The second loop of Keccak_squeezeblocks()
is embedded in the first. Keccak_absorb() has 6 loops, of which loops 1, 4, 5 and 6 are
single-line loops. Loop 3 calls function load64() and is embedded inside Loop 2. Loop
2 invokes function KeccakF1600_StatePermute(). The three functions KeccakF1600_
StatePermute(), store64() and load64() have single loops each. The overall function
call graph for gen_matrix() is shown in Figure 12.

18

Table 13: Critical functions and loops that determine the latency of CRYSTALS-KYBER.
Function/Loop Latency (clock cycles)

Top function: crypto_kem_enc
indcpa_enc 40869
keccak_absorb 8056
randombytes 5895

Top function: indcpa_enc
gen_matrix 10835
poly_getnoise 2595
polyvec_compress 2565

Top function: gen_matrix
gen_matrix_loop 1 64
gen_matrix_loop 2 8419
gen_matrix_loop 3 2637
gen_matrix_loop 4 826

5.2.1 Loop Unrolling

We unroll the loops in the last level functions, store64(), load64() and KeccakF1600_
StatePermute(). We unroll innermost loops in the top level functions, i.e., Loop 2 in
keccak_squeezeblocks() and Loop 4 in gen_matrix(). The unrolling factor is set as 1
and added as a directive before synthesis to inline all function calls in the loops.

5.2.2 Loop Pipelining

We mark the unrolled loops for pipelining. We set the target II for pipelining as 1, except
for the loop in KeccakF1600_StatePermute(). Since KeccakF1600_StatePermute() does
a lot of operations in a single loop, we created the fastest possible pipeline architecture.
The Table 14 shows the results. The last column shows the speedup compared to the
baseline. Reduction in latency provided by loop pipelining is comparable to loop unrolling.
However, loop pipelining yields a design with 4% less area overhead.

gen_matrix

Loop1

Loop 2

Loop 3

Loop 4

keccak_squeezeblocks

keccak_absorb

Loop 1

Loop 2

Loops 1, 4, 5, 6

Loop 2

Loop 3

load64

store64

KeccakF1600_StatePermute

Loop 1

Loop 1

Loop 1

Figure 12: Call graph of gen_matrix().

19

Table 14: Area and timing overhead for different implementations of gen_matrix().
Implementation FF LUT MUX Latency Speedup
Baseline 6685 39357 606 10835 -
Loop Unrolling 5415 43955 454779 9513 1.23 ×
Loop Pipelining 5439 42206 435728 904 1.23 ×

6 Key takeaways from this study
In this paper, we have developed hardware implementations of several PQC algorithms.
The key results from this preliminary study are:

1. Among the KEM algorithms of security level 1, NTSKEM is superior in terms of
latency and LAP.

2. Among the Signature algorithms of security level 1, CRYSTALS-Dilithium is superior
and SPHINCS+ is the costliest in terms of latency and LAP.

3. This study has only two implementations each of security levels 3 and 5. We will
continue analyzing the area-performance trade-offs for more high-security algorithms.
Notwithstanding this, LIMA is a good candidate for high (level 5) security, with low
latency and low LAP and BIG_QUAKE is ideal for high (level 3) security with low
latency for server applications.

4. In low-power IoT devices, one needs low-area, compact designs. For example, without
optimizations, Big_Quake, NTRU-HRSS and RLIZARD FPGAs are ideal for IoT
devices with security level 1. Low-latency NTS-KEM and Crystals-KYBER FPGA
implementations are good for servers with security level 1.

5. FrodoKEM and SPHINCS+ ASICs have small decryption modules which spend the
slightest power and hence helpful in small IoT devices, if a low security level of 1
suffices. NTRU-HRSS-KEM and NewHope (security level 1) are the fastest ASICs
and thus are suitable in servers.

6. For KEM algorithms with high security level (3 and 5), loop unrolling is more effective
in reducing latency. For Signature algorithms, loop pipelining is more effective, for
algorithms of security level 1. We experimented on one signature algorithm of security
level 2 for which, loop unrolling was more practical.

7. For low-security (level 1) KEM algorithms, latency rankings change when optimized.
8. PQC hardware implementations are not optimized for side-channel resistance. PQC

researchers can use these implementations for further hardware security analysis
such as the side-channel analysis.

9. A successful ongoing exercise involves an analysis of energy-area-performance trade-
offs of more NIST PQC algorithms spanning all security levels.

7 Acknowledgements
• Dr. Gerardo Pelosi (Politecnico di Milano), Dr. Debdeep Mukhopadhyay (IIT

Kharagpur) and Dr. Francesco Regazzoni (ALARI Switzerland) helped with picking
the top PQC candidates for this hardware implementation study.

• Dr. Marc Manzano and Dr. Najwa Aaraj of DarkMatter inc. Abu Dhabi, UAE
offered timely and insightful feedback (especially to explore the security-informed
trade-offs) on the early drafts of the report.

• Dr. Alessandro Barenghi (Politecnico di Milano) and Dr. Xianhui Lu answered our
questions while implementing LEDAcrypt and LAC, respectively.

20

References
[1] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and

D. Smith-Tone, Report on post-quantum cryptography. US Department of Commerce,
National Institute of Standards and Technology, 2016.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332, 1999.

[3] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and E. Roback,
“Report on the development of the advanced encryption standard (AES),” 2001.
Accessed 31 December 2018.

[4] D. Micciancio, “Lattice-based cryptography,” in Encyclopedia of Cryptography and
Security, pp. 713–715, Springer, 2011.

[5] R. Cramer, L. Ducas, and B. Wesolowski, “Short stickelberger class relations and
application to ideal-svp,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 324–348, Springer, 2017.

[6] R. J. Mceliece, “A public-key cryptosystem based on algebraic,” Coding Theory,
vol. 4244, pp. 114–116, 1978.

[7] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and defending the McEliece
cryptosystem,” in Workshop on Post-Quantum Cryptography, pp. 31–46, 2008.

[8] A. S. Al Abdouli, M. Al Ali, E. Bellini, F. Caullery, A. Hasikos, M. Manzano, and
V. Mateu, “Drankula: a mceliece-like rank metric based cryptosystem implementation,”
in International Joint Conference on e-Business and Telecommunications, pp. 64–75,
2018.

[9] P. Loidreau, “A new rank metric codes based encryption scheme,” in International
Workshop on Post-Quantum Cryptography, pp. 3–17, Springer, 2017.

[10] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms for solving
overdefined systems of multivariate polynomial equations,” in International Conference
on the Theory and Applications of Cryptographic Techniques, pp. 392–407, 2000.

[11] V. Dubois, P.-A. Fouque, A. Shamir, and J. Stern, “Practical cryptanalysis of sflash,”
in Annual International Cryptology Conference, pp. 1–12, 2007.

[12] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies,” in Workshop on Post-Quantum Cryptography, pp. 19–34,
2011.

[13] W. Wang, J. Szefer, and R. Niederhagen, “FPGA-based niederreiter cryptosystem us-
ing binary goppa codes,” in International Conference on Post-Quantum Cryptography,
pp. 77–98, Springer, 2018.

[14] M. R. Albrecht, C. Hanser, A. Hoeller, T. Pöppelmann, F. Virdia, and A. Wallner,
“Implementing rlwe-based schemes using an rsa co-processor,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 169–208, 2019.

[15] W. Wang, B. Jungk, J. Wälde, S. Deng, N. Gupta, J. Szefer, and R. Niederhagen,
“Xmss and embedded systems - xmss hardware accelerators for risc-v.” Cryptology
ePrint Archive, Report 2018/1225, 2018. https://eprint.iacr.org/2018/1225.

[16] Xilinx Inc., “Vivado Design suite user guide - designing with ip (ug896).” https://www.
xilinx.com/products/design-tools/vivado/integration/esl-design.html.
[Online; accessed 13-January-2019].

[17] R. Domingo, R. Salvador, H. Fabelo, D. Madroñal, S. Ortega, R. Lazcano, E. Juárez,
G. Callicó, and C. Sanz, “High-level design using intel FPGA opencl: A hyper-
spectral imaging spatial-spectral classifier,” in IEEE International Symposium on
Reconfigurable Communication-centric Systems-on-Chip, pp. 1–8, 2017.

[18] J. Zhu and D. Gajski, “A unified formal model of ISA and FSMD,” in Proceedings of
the International Workshop on Hardware/Software Codesign, pp. 121–125, 1999.

[19] “Catapult.” https://www.mentor.com/hls-lp/catapult-high-level-synthesis/.
[Online; accessed 13-January-2019].

21

https://eprint.iacr.org/2018/1225
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

[20] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,
and T. Czajkowski, “Legup: high-level synthesis for fpga-based processor/accelerator
systems,” in Proceedings of ACM/SIGDA international symposium on Field pro-
grammable gate arrays, pp. 33–36, 2011.

[21] “Synopsys DC.” https://www.synopsys.com/support/training/rtl-synthesis/
design-compiler-rtl-synthesis.html. [Online; accessed 13-January-2019].

[22] M. Bardet, E. Barelli, O. Blazy, R. C. Torres, A. Couvreur, P. Gaborit, A. Otmani,
N. Sendrier, and T. Jean-Pierre, “BIG QUAKE binary goppa quasi–cyclic key encap-
sulation.” https://hal.archives-ouvertes.fr/hal-01671866/document, 2017.

[23] E. Berlekamp, R. McEliece, and H. Van Tilborg, “On the inherent intractability of
certain coding problems,” IEEE Transactions on Information Theory, vol. 24, no. 3,
pp. 384–386, 1978.

[24] M. Albrecht, C. Cid, K. G. Paterson, C. J. Tjhai, and M. Tomlinson, “NTS-KEM.”
https://nts-kem.io/, 2018.

[25] N. Smart, M. Albrecht, Y. Lindell, E. Orsini, V. Osheter, K. Peterson, and G. Peer,
“LIMA-1.1 : A PQC encryption scheme.” https://lima-pq.github.io/, 2017.

[26] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber: Module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM,” in International
Conference on Cryptology in Africa, pp. 282–305, 2018.

[27] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
G. Seiler, and D. Stehlé, “CRYSTALS-kyber: a CCA-secure module-lattice-based
KEM,” in IEEE European Symposium on Security and Privacy, pp. 353–367, 2018.

[28] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum key exchange-a
new hope,” in USENIX Security Symposium, 2016.

[29] E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig, V. Nikolaenko,
C. Peikert, A. Raghunathan, D. Stebila, et al., “FrodoKEM–learning with errors key
encapsulation.” https://frodokem.org/, 2017.

[30] A. Hülsing, J. Rijneveld, J. M. Schanck, and P. Schwabe, “NTRU-HRSS-KEM:
algorithm specifications and documentation.” https://ntru-hrss.org/, 2017.

[31] T. Park, H. Seo, J. Kim, H. Park, and H. Kim, “Efficient parallel implementation
of matrix multiplication for lattice-based cryptography on modern arm processor,”
Security and Communication Networks, 2018.

[32] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé, “Crystals–
dilithium: Digital signatures from module lattices.” https://pq-crystals.org/
dilithium/index.shtml, 2018.

[33] S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger, “Haraka v2–efficient short-
input hashing for post-quantum applications,” IACR Transactions on Symmetric
Cryptology, pp. 1–29, 2016.

[34] A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe, “From 5-pass mq-based
identification to mq-based signatures.,” IACR Cryptology ePrint Archive, p. 708, 2016.

[35] G. Pelosi and P. Santini, “Ledakem: A post-quantum key encapsulation mechanism
based on qc-ldpc codes,” in Post-Quantum Cryptography: 9th International Conference,
PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, vol. 10786,
p. 3, Springer, 2018.

[36] E. Homsirikamol and K. Gaj, “Toward a new HLS-based methodology for FPGA
benchmarking of candidates in cryptographic competitions: The CAESAR contest
case study,” in IEEE International Conference on Field Programmable Technology,
pp. 120–127, 2017.

22

https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://hal.archives-ouvertes.fr/hal-01671866/document
https://nts-kem.io/
https://lima-pq.github.io/
https://frodokem.org/
https://ntru-hrss.org/
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml

	Introduction
	Post-Quantum Cryptography
	Digital signature generation and key encapsulation methods
	Security classification of PQC algorithms

	High-Level Synthesis of PQC Hardware
	C compiler optimizations
	HLS
	Backend

	Experimental Evaluation
	HLS experimental evaluation methodology
	PQC algorithms used in this study
	Performance metrics
	Baseline hardware implementations
	Critical Functions
	Optimization 1: Loop unrolling
	Optimization 2: Loop Pipelining
	Latency-area product Comparisons
	Security level vs hardware tradeoffs
	ASIC Implementation of PQC decryption algorithms.

	Two PQC design exploration case studies
	Case study 1: Design exploration of the BIG_QUAKE
	Case study 2: Design exploration of CRYSTALS_KYBER

	Key takeaways from this study
	Acknowledgements

