
1

NIST Post-Quantum Cryptography-
A Hardware Evaluation Study

Kanad Basu, Deepraj Soni, Mohammed Nabeel, and Ramesh Karri

Abstract—Experts forecast that quantum computers can break
classical cryptographic algorithms. Scientists are developing post-
quantum cryptographic (PQC) algorithms, that are invulnerable
to quantum computer attacks. The National Institute of Stan-
dards and Technology (NIST) started a public evaluation process
to standardize quantum-resistant public key algorithms. The
objective of our study is to provide a hardware-based comparison
of the NIST PQC candidates. For this, we use a High-Level
Synthesis (HLS)-based hardware design methodology to map
high-level C specifications of round 2 PQC candidates into both
FPGA and ASIC implementations.

I. INTRODUCTION

Public key cryptography is a fundamental security protocol
for all forms of digital communication, wired or wireless. Pub-
lic key cryptography has three main cryptographic functions,
namely (a) public key encryption, (b) digital signatures, and
(c) key exchange [1]. RSA and Elliptic Curve-based public
key cryptography algorithms provide security guarantees based
on the difficulty of solving the integer factorization and dis-
crete logarithm problems. Peter Shor from Bell Labs showed
that quantum computers can factorize integers in polynomial
time rendering traditional public key cryptography algorithms
ineffective [2]. Hence, researchers are investigating robust
alternatives such as lattice and code cryptography algorithms.

We conduct a hardware assessment of post-quantum cryp-
tographic (PQC) algorithms that were submitted to the NIST
evaluation. As a historical perspective, in 1997 NIST sought
guidance from the public to identify a replacement for the
Data Encryption Standard (DES), Advanced Encryption Stan-
dard (AES) [3]. Since then, open cryptographic assessments
have become the way to selecting cryptographic standards.
For example, NESSIE (2000-2002), eSTREAM (2004-2008),
CRYPTREC (2000-2002), SHA-3 (2007-2012) and CAESAR
(2013-2019) embraced this approach. In these assessments,
security was the principal yardstick. Performance in software,
performance in application specific integrated circuits (ASIC),
performance in FPGA, and feasibility of implementation using
limited resources (small microprocessors and low-power hard-
ware) are secondary criteria. In the AES competition, Rijndael
had the fastest ASIC and the second fastest FPGA implemen-
tation with identical security guarantees as its competitors [4].

We report a hardware-implementation comparison of NIST
round 2 PQC candidates. The contributions of this study are:
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1) Developed systematic FPGA and ASIC design flows for
PQC evaluation starting from a C specification.

2) Studied performance vs area trade-offs for 11 PQC al-
gorithms, including lattice, code, hash, and multivariate
based KEM and Signature algorithms.

3) Improved the latency of PQC implementations using
optimizations such as loop unrolling and loop pipelining.

4) Performed a detailed study of three signature algorithms
to explore area vs performance vs security trade-offs.

The paper is organized as follows. Section II gives a back-
ground on Post-Quantum Cryptography. Section III describes
the design flow and Section IV presents experimental results.
Section V describes case studies using three signature-based
algorithms and Section VI enumerates the key takeaways.

II. POST-QUANTUM CRYPTOGRAPHY

Researchers are developing cryptographic algorithms to
resist attacks by classical and quantum computers. The major
classes of post quantum cryptography algorithms are:

• Lattice-based cryptography algorithms offer the best
performance, but are the least conservative among all [5].
Lattice cryptography builds on the hardness of the short-
est vector problem (SVP) which entails approximating the
minimal Euclidian length of a lattice vector. Even with
a quantum computer SVP is shown to be polynomial in
n [1]. Other lattice cryptography algorithms are based
on Short Integer Solutions (SIS). These are secure in the
average case if the SVP is hard in the worst-case [6].

• Code-based cryptography uses error correcting codes
and offers a conservative approach for public key encryp-
tion/key encapsulation, as it is based on a well-studied
problem for over 4 decades [7]. This class of algorithms
use large keys and some attempts at reducing their key
size have made these algorithms vulnerable to attacks [8].
Researchers proposed techniques to reduce the key size
without compromising the security [9], [10].

• Multivariate polynomial cryptography relies on the
difficulty of solving the multivariate polynomial (MVP)
algorithm over finite fields. Solutions of MVP problems
are NP-hard over any field and NP-complete even if
all equations are quadratic over GF (2) [11]. MVPs are
preferred as signature schemes as they offer the shortest
signatures. However, some schemes are broken [12].

• Hash-based digital signatures resist quantum-computer
attacks. These schemes are based on the security prop-
erties of the underlying cryptographic hash functions
(collision resistance and second pre-image resistance).
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• Other cryptographic methods include evaluating isoge-
nies on super singular elliptic curves. Shor’s algorithm is
ineffective against evaluating isogenies [13].

PQC The hard problem Sign KEM Total
Lattice Find shortest vector, 5 (3) 23 (9) 28 (12)

closest vector
Code Decode random linear code 3 (0) 17 (7) 20 (7)
Multivariate Solve multivariate 8 (4) 2 (0) 10 (4)

quadratic equations
Hash Second pre-image resistance 3 (2) 0 (0) 3 (2)

of hash function
Isogeny Find isogeny map btwn 0 (0) 1 (1) 1 (1)

elliptic curves with
same number of points

Other - 2 (0) 5 (0) 7 (0)
Total - 21 (9) 48 (17) 69 (26)

TABLE I: A summary of PQC digital signature and key en-
capsulation submissions and the underlying hard mathematical
problems. We show the number of algorithms for Round 1 and
Round 2 (within braces) NIST PQC evaluation.

A. Digital signatures and key encapsulation

The ongoing NIST PQC standardization process is consoli-
dating the invulnerable candidates after each successive round.
Each candidate in the NIST PQC contest realizes one of three
functions: public key encryption, digital signature, and key
encapsulation mechanism (KEM). Table I shows the number of
PQC round 2 submissions and summarizes their functionality
and mathematical complexity.

NIST expects to standardize more than one algorithm in
order to provide different trade-offs depending on the applica-
tion (speed vs memory vs power consumption etc.). A direct
comparison of the security guarantees provided by the candi-
date PQC algorithms is challenging absent a standard quantum
computing platform, differences in the mathematical functions
that underlie the algorithms, and the sophisticated algorithm
specifications compared to prior cryptographic contests.

1) Digital signatures: The PQC digital signatures work on
the principle that the sender signs the message with a private
key and the receiver verifies the signature using the sender’s
public key. These algorithms use three functions.

1) crypto sign keypair generates the public key pk and
the secret key sk.

2) crypto sign takes in sk and the message m plus its
length mlen and outputs the signature sm appended to
the message.

3) crypto sign open takes in pk, sm and length smlen,
and outputs message m.

Popular PQC digital signature algorithms that we considered
are: qTESLA, MQDSS and Crystals-Dilithium.

2) Key Encapsulation: Traditional encryption-decryption
protocols encrypt a message using the public key of the sender,
which is then decrypted by the receiver using his private key.
Classic public-key cryptographic algorithms based on ECC
and RSA work on this principle. However, they have been
shown to be vulnerable to quantum attacks [2]. One way to
counter this problem is to encrypt and decrypt a message m

using a symmetric key M . The symmetric key is encrypted by
the sender and sent to the receiver along with the encrypted
message. The receiver decrypts and recovers the symmetric
key M first and then decrypts the message m using M .
The first challenge with this approach is that an attacker can
reconstruct a small M . Hence, the sender needs to make M
large. Second, if the attacker derives M , she can recover m.
KEM schemes counter these two challenges. In KEM, the
sender first generates a random number rn and then generates
a symmetric key M = KDF (rn) using the Key Derivation
Function (KDF). A cryptographic hash is an example KDF.
KEM obviates padding and this way reduces the key size.
Since KDF is one-way, the attacker can not generate rn, even
if she recovers M . KEMs use three functions:

1) crypto kem keypair is used to generate the public and
private keys pk and sk.

2) crypto kem enc takes in public key pk and outputs key
k and encapsulated key ck.

3) crypto kem dec takes in secret key sk and encapsu-
lated key ck and outputs key k.

Initially, we consider six KEM PQC algorithms:
Newhope, Frodokem, Crystals-KYBER, NTRU-HRSS,
Classic McEliece, and Saber1.

B. Security classification of PQC algorithms

NIST specified five security strength categories. Security
level 1 =⇒ equivalent to AES-128 key search. Security level
2 =⇒ equivalent to SHA-256/SHA3-256 collision search.
Security level 3 =⇒ AES-192 key search. Security level 4
=⇒ SHA-384/SHA3-384 collision search. Security level 5
=⇒ AES-256 key search. The security strengths of the NIST
round 2 PQC algorithms are in Table II.

C. Hardware Implementations

There has been sporadic hardware implementations for PQC
algorithms. [14], [15] provide a detailed survey on hardware
implementations of various PQC algorithms. For example,
Stratix V FPGA implementation of Classic McEliece was
presented in [16]. The PQC algorithm Saber was implemented
on an ARM Cortex-M micro-controllers in [17] (they used a
Cortex-M4 micro-controller to implement a speed-optimized
version of Saber and a Cortex-M0 micro-controller to im-
plement an area-optimized version). The Signature algorithm
SPHINCS+ was implemented on an ARM CORTEX-M3
processor [18]. Existing cryptographic co-processors were re-
purposed for KYBER KEM in [19]. Design-space exploration
of hardware accelerators for NewHope and BLISS-BI (which
is not selected in NIST PQC Round 2) have been performed by
[20]. The other algorithms (see Table II) do not have hardware
implementations. This is the first hardware benchmarking
and uses a common evaluation framework to study area
vs performance vs security trade-offs.

1Why these algorithms?: We started our evaluation with round 1 PQC
algorithms based on an informal survey of a few PQC investigators and
their comments informed this shortlist. We considered KEM and Signature
algorithms to have a heterogeneous case study. Our initial study had 14
algorithms. After Round 2 winners were declared, we pared down four more.
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Fig. 1: High-Level Synthesis (HLS) design flow.

III. C-BASED SYNTHESIS OF (PQC) ACCELERATORS

Dedicated PQC accelerators have vital practical applica-
tions. These accelerators can be either low-area and low-power
crypto cores used in small IoT devices or low-latency imple-
mentations used in servers [16]. As described in Section II-C,
there are no hardware implementations of PQC algorithms.
This paper is an early study of hardware implementations of
11 PQCs employing a uniform hardware implementation flow.

We use HLS-based design space exploration. HLS starts
from a software specification (e.g., C, C++, and SystemC)
and generates a Register Transfer Level (RTL) description (in
Verilog or VHDL) ready for the backend design flow (i.e.,
logic synthesis and physical design). HLS-based design space
exploration is popular for two reasons:

1) Easy verification: A high-level testbench written in C
or C++ can be re-used to verify/validate the RTL. There
is no need to synthesize verilog/VHDL testbenches.

2) Extensive design-space exploration: The C/C++ code
can be re-used to explore multiple design points guided
by the constraints such as area and latency.

Leading electronic design automation vendors like Mentor
Graphics, and Cadence, and FPGA vendors like Xilinx [21]
and Intel [22] offer HLS tools and designs flows. HLS
organizes components hierarchically according to the sub-
function organization in the C specification to manage design
complexity. Each hardware unit adopts the classical Finite
State Machine with Data path (FSMD) model [23] with
two components: controller and data path. The controller
orchestrates the operations in each clock cycle. The finite state
machine (FSM) represents the control flow signals the data
path resources based on a set of conditions. The data path
includes the functional units and registers to hold temporary
values. Multiplexers drive the values based on the control flow.

HLS-based accelerator design has three parts, as shown
in Figure 1: The compiler phase investigates the input C
description and applies compiler-level transformations. The
HLS phase determines the microarchitecture. The back end
generates the Verilog/VHDL RTL and test benches. RTL
simulation is performed on a set of pre-defined inputs to
determine if the results match the golden ones obtained from
software execution.

A. C compiler optimizations

A typical HLS flow uses GCC or LLVM compilers to parse
the input C code, apply compiler optimizations, and generate
an intermediate representation (IR). HLS uses the Single Static

Assignment form so that the IR can be easily manipulated and
turned into RTL hardware by the HLS steps. One can apply
optimizations such as loop unrolling, constant propagation,
and function inlining on the IR to permit downstream HLS
optimizations. The call graph representation of the algorithms
describes the relationships between the functions in the algo-
rithms and aids the HLS determine the components and the
hierarchical interconnections between them.

B. HLS

Each function in the IR is transformed into an RTL hardware
module. During HLS allocation step, resources are selected.
The HLS scheduling step determines the operations to be
executed in each clock cycle and this determines the latency
of the circuit. The HLS scheduling step generates the finite-
state machine (FSM) controller, which implements the control-
flow management of the accelerator. Operations scheduled in
different clock cycles reuse the same resources. In the HLS
binding step, scheduled operations are bound to functional
units and temporary values crossing the clock boundaries are
stored in registers. Next, the functional units and registers
are interconnected using multiplexers. The controller synthesis
step creates the controller from the FSM. Based on the
operations to execute on the microarchitecture, the controller
generates signals that route the data in the accelerator data path
through the multiplexers in each clock cycle. We use Xilinx
Vivado HLS as it supports C design [21]. The HLS hardware
design flow can also use Mentor Catapult HLS [24], LegUp
HLS [25], and Intel HLS [22].

C. Backend

The RTL Verilog/VHDL description is generated, together
with the library components (e.g., custom operators or memory
interfaces) used in the design as outputs of HLS. HLS pro-
duces the hardware test bench or an interface for co-simulation
with the software test bench. A pre-defined set of inputs can
be used to generate the golden output values, which are then
matched with the simulation results. We used an FPGA back-
end flow (Xilinx FPGA synthesis tools) [21] and the ASIC
back-end flow (Synopsys Design Compiler [26]).

IV. PQC HARDWARE ASSESSMENT

A. HLS-based Assessment Methodology

Figure 2 shows the HLS design exploration flow for PQC
algorithms. We modify the original C specification to make
it HLS-suitable (e.g., change pointers to fixed dimension
arrays and remove recursions). Next, we perform HLS on the
synthesizable C code to generate RTL using Xilinx Vivado
HLS. Vivado provides a detailed synthesis report identifying
which modules/loops in the design are the cause of the longest
latency. If there are loops, we optimize them using loop
unrolling and pipelining2.

2Since there are numerous tables and graphs in this study, the position of
the tables may not be close to the text that discusses them. Hence, we made
their captions self-contained.
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Algorithm Basis PQC Supported Security Level (public key size in bytes)
hard problem Primitive 1 2 3 4 5

Classic McEliece [27] Code KEM - - - - 1047319
1357824

LEDAcrypt [28] Code KEM 27779 57557 57557 99053 99053
Saber [29] Lattice KEM 672 - 992 - 1312
Crystals-KYBER[30] Lattice KEM 736 - 1088 - 1440
NewHope [31] Lattice KEM 928 - - - 1824
FrodoKEM [32] Lattice KEM 9616 - 15632 - -
NTRU-HRSS [33] Lattice KEM 9100 - - - -
Crystals-Dilithim [34] Lattice Signature 1184 1472 1760 - -
SPHINCS+ [35] Hash Signature 32 - 48 - 64
MQDSS [36] Multivariate Signature - 62 - 88 -
qTESLA [37] Lattice Signature 1504 - 3104 - -

14880 2976
39712

TABLE II: PQC algorithms used in this study: A high-level analysis of 11 NIST PQC implementations. Of these, seven
are KEM primitives and four are signature primitives. Of the KEM primitives, two are code and the remaining six are Lattice.
Two of the PQC signature primitives are lattice, one is hash and one is multivariate . Algorithms not supporting a particular
security level are indicated with a ‘-’. Classic McEliece has two implementations, both of which are of security level 5. The
security level of each algorithm used in this paper are shown in bold. Among these, eight are at security level 1, one is ar
security level 2, one is at security level 3 and one is at the highest security level 5. Algorithms across various security levels
are chosen for two purposes. First, many algorithms do not support some security levels. Furthermore, we wanted to perform
a heterogeneous case study across various security levels.

C Design Modified  
C Design 

Synthesized RTL

Critical 
Modules/Loops

Optimization
Possible? Final RTL

HLS  
tunings 

Yes

No

HLS
C/RTL 

Co-Simulation 

Directives 
for Optimization 

Fig. 2: HLS-based design exploration of PQC algorithms.

B. PQC Algorithms in this Study

We evaluated eleven NIST PQC implementations. The PQC
algorithms and their implementation and security character-
istics are summarized in Table II. In this paper, we focused
on PQC encapsulation/signature and decapsulation/verification
components of these algorithms. Synthesis of keypair genera-
tion is left as a future exercise. We used Xilinx Virtex-7 FPGA
as target device for our synthesis3

C. Performance metrics

The considered performance indicators are: latency, area and
latency-area product. Latency is the time required by system
to produce the output from the time the input is provided.
Throughput is the maximum speed at which the outputs can
be provided. The minimum number of clock cycles between
two successive inputs is the initiation interval (II) and is a
measure of throughput. A lower II indicates higher throughput.
Figure 3 shows a system with 3 modules. The latency of the
system is 10 clock cycles as the whole computation should

3We started this study before NIST announced Artix-7 as the target
platform. Our experiments in Section V use Artix-7 board.

be completed in each module one after the other. The most
time consuming module 1 consumes 5 clock cycles and is the
bottleneck. After 5 clock cycles, the next input is given to
module A. Therefore, the system II is 5 clock cycles. In this
paper, latency and II are used interchangeably. Therefore, a
design with lower latency indicates better throughput.

We will use latency to measure the performance of the
designs. We will use Flip-Flops and LUTs for FPGA im-
plementations and chip area for ASIC implementationsThere
is a trade-off between speed and area. Reduction in latency
increases the total area. Hence, the Latency-area product
(LAP) is used to check the efficiency and resource utilization.
A lower LAP corresponds to a superior implementation.

Fig. 3: Illustration of Latency and Throughput metrics.
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Algorithm Sec. FF LUT Clock Latency
Level (nsec)

KEM algorithms
CRYSTALS 1 40720 230540 15 56345
Kyber
Newhope 1 26257 135689 15 681191
FrodoKEM 1 14516 82265 10 469217
NTRU-HRSS 1 6633 33845 15 1496914
LEDACrypt 1 8774 90308 10 37832
Saber 3 38495 214764 15 499812
Classic 5 60264 840384 10 5128978
McEliece

Signature algorithms
CRYSTALS 1 25926 133461 10 609828
Dilithium
SPHINCS+ 1 8641 31147 10 628778326
qTELSA 1 41978 232582 10 125374
MQDSS 2 35263 193320 15 49365597

TABLE III: Description: Security versus area versus the tim-
ing of PQC encapsulation algorithms, without optimizations
(i.e., baseline). Analysis: Among the security level 1 KEM
algorithms, NTRU-HRSS has a latency of over 1 million
cycles and NTS-KEM is the fastest. LIMA has low-latency
and the strongest security level 5. Among the security level 1
signature algorithms, CRYSTALS-Dilithium and qTESLA has
latencies fewer than a million cycles. Takeaway: CRYSTALS-
Dilithium (for signature generation), and FrodoKEM (for
KEM) are good candidates for IoT devices. CRYSTALS-
Dilithium signature generation algorithm has security level 1
and is the second fastest and the second smallest among the
Signature algorithms.

D. Baseline hardware implementations

Tables III and IV report the hardware and timing overhead
for implementing the PQC encapsulation, decapsulation and
keypair generation algorithms, respectively when synthesized
without any additional constraints (latency). Figure 4 shows
how the KEM and Signature encapsulation algorithms can be
ordered when ranked on the basis of least latency.

E. Critical Functions

In this section, we will examine the critical functions and
loops in them that result in high latency for the PQC KEMs.
The results are shown in Table V.

F. Performance Optimizations

We use loop unrolling for encapsulation/signature and de-
capsulation/verification and report the results in Table VI
and Table VII respectively. The ranking of the encapsu-
lation/signature functions after loop unrolling is shown in
Figure 5(a). NTRU-HRSS is the fastest KEM and Crystals-
Dilithium is the fastest Signature.

The results for encapsulation/signature, using loop pipelin-
ing, are presented in Table VIII. The ranking of the encryption
functions after pipelining is shown in Figure 5(b). Among
the algorithms with security level 1, CRYSTALS-Kyber is the
fastest KEM and Crystals-Dilithium is the fastest Signature.

Fig. 4: We sorted the PQC encapsulation algorithms by latency,
normalized for a clock cycle of 10 ns for each security
level. The KEM algorithms are in blue, orange and sky blue,
corresponding to security levels 1, 3, and 5. The Signature
algorithms are in red and gray, corresponding to security levels
1 and 2. Among the KEM algorithms, two have latency less
than 100,000 cycles and two more have latency less than
a million cycles. Two KEM algorithms have latency more
than a million cycles. Among the signature algorithms, one
security level 1 has a latency less than a million cycles and
one algorithm of security level 1 has more than a million cycles
latency. The one security level 2 signature algorithm has more
than a million cycles latency.

G. Latency-area product Comparisons

In this section, we compare the latency-area product (LAP)
for the encapsulation algorithms for both the baseline and

Algorithm Sec. FF LUT Clock Latency
Level (nsec)

KEM- algorithms
CRYSTALS 1 33030 186244 15 53553
Kyber
Newhope 1 19635 92250 15 723027
FrodoKEM 1 14461 82307 10 220344
NTRU-HRSS 1 5292 29532 15 1003222
LEDACrypt 1 1891 5631 10 45964
Saber 3 33751 189597 15 89392
Classic 5 70112 847949 10 146126996
McEliece

Signature algorithms
CRYSTALS- 1 20865 108878 10 5380
Dilithium
SPHINCS+ 1 3335 11438 10 937975
qTELSA 1 29875 168570 10 71223
MQDSS 2 26423 147359 15 25124450

TABLE IV: Description: Security versus area versus the
timing of PQC decapsulation algorithms, without optimiza-
tions (i.e., baseline). Analysis: Among the KEM algo-
rithms, NTRU-HRSS (security level 1) and Classic McEliece
(security level 5) have latency of more than 1 million
cycles. Among the Signature algorithms, qTESLA and
CRYSTALS-Dilithium have a latency less than a million
cycles. CRYSTALS-Dilithium is the fastest among signature
algorithms. Takeaway: SPHINCS+ (for Signature generation)
and LEDACRYPT (for KEM) are good candidates for IoT
devices. None of the level 5 security decapsulations in this
study have low latency and hence are not appropriate for
servers. All the low latency algorithms have level 1 security –
LEDACRYPT (KEM) and CRYSTALS-Dilithium (Signature).
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(a) (b)

Fig. 5: Description: PQC encapsulation algorithms sorted by
latency, normalized for the clock cycle of 10 ns, when (a)
loop unrolling (b) loop pipelining are performed. The KEM
algorithms are in blue, orange, and sky blue, corresponding to
security levels 1, 3, and 5. The signature algorithms are in red
and gray, corresponding to security levels 1 and 2. Analysis:
(a) Loop unrolling: Five KEM algorithms have latency fewer
than 100,000 cycles – three have security level 1 and one has
security level 5. Three KEM algorithms have latency less than
a million cycles (one of level 1 and two of level 3) and two
KEM algorithms have latency over a million cycles (one of
level 1 and the other of level 5). Two signature algorithms
have latency fewer than a million cycles (both are of level
1) and two have latency higher than a million cycles (one
each of levels 1 and 2). (b) Loop pipelining: Four KEMs have
latency less than 100,000 cycles (three of level 1, one of level
3 and one of level 5). Four KEMs have latency less than a
million cycles (three of level 1 and one of level 3). Only one
security level 5 KEM has latency more than a million cycles.
For signature algorithms, two have latency fewer than a million
cycles (both of level 1) and two higher than a million cycles
(one of level 1 and the other of level 2.)

the optimization techniques. Similar to [38], we consider the
area as the number of FPGA LUTs required to synthesize
the design. The results are shown in Table IX. A lower LAP
corresponds to better performance in terms of latency. From
Table IX, the number of algorithms for which the lowest
LAP is obtained using unrolling is about similar to that of
pipelining. This is because of the many loop dependencies in
some algorithms like CRYSTALS-Dilithium, which restricts
the speedup due to pipelining. The PQC algorithms are ranked
in terms of LAP in Figure 6.

Algorithm Critical Functions # Loops
KEM algorithms

NTRU-HRSS poly_Rq_mul 2
Saber vectormul 2
CRYSTALS-Kyber gen_matrix 3
Newhope poly_uniform 2
FrodoKEM frodo_sample_n, frodo_mul_add 1,1
Classic McEliece syndrome 1
LEDACrypt KeccakF1600_StatePermute 3

Signature algorithms
CRYSTALS-Dilithium expand_mat 2
MQDSS crypto_sign 2
qTESLA sparse_mul16 1
SPHINCS+ treehash 5

TABLE V: Critical functions of the PQC KEMs.

Algorithm Sec. FF LUT Clock Latency
Level (nsec)

KEM algorithms
CRYSTALS 1 237182 2414748 15 42823
Kyber
Newhope 1 26257 135689 15 680150
FrodoKEM 1 44284 136998 10 366609
NTRU-HRSS 1 9035 65356 15 22594
LEDACrypt 1 288530 783651 10 6660
Saber 3 93234 376313 15 236812
Classic 5 69795 934492 10 2373772
McEliece

Signature algorithms
CRYSTALS 1 158313 584742 10 18525
Dilithium
SPHINCS+ 1 8931 42604 10 464961626
qTESLA 1 97235 328106 10 59854
MQDSS 2 45135 230273 15 49365597

TABLE VI: Description: Security versus area versus the
timing of PQC encapsulation algorithms, after loop unrolling.
Analysis: Compared to Table III, virtually all algorithms
have an improvement in latency, with an ensuing increase in
area. CRYSTALS-KYBER incurs the most area among KEM
algorithms and CRYSTALS-Dilithium among the Signature
algorithms. Among Signature PQC algorithms, loop unrolling
doesn’t reduce the latency of MQDSS. NTRU-HRSS has the
most speedup in terms of latency 66× reduction in latency
compared to baseline (in Table III). Takeaway: Loop unrolling
reduces the latency of all PQC encapsulation algorithms.
However, it also results in an increase in area. Among the
other high security algorithms, MQDSS (Signature, security
level 2) can be used for IoT devices, since it provides relatively
low hardware overhead. Among the lower security (level 1)
algorithms, NTRU-HRSS (KEM) and SPHINCS+ (Signature)
can be used for IoT devices, since the area overhead is low.

Fig. 6: PQC KEMs sorted by LAP, normalized for clock
cycle of 10ns. The KEMs are in blue, orange and sky blue,
corresponding to security levels 1, 3, 5. Signature algorithms
are red and gray, corresponding to security levels 1 and 2.
Among the KEMs, one has a LAP of less than 1010, of
security level 1. Four are in the range 1010 − −1012, three
of security level 1 and one of security level 3. One security
level 5 algorithm has a LAP of over 1012. Among signatures,
one has LAP < 1010 – of security level 1. Two – one security
level 1 and another of security level 2 have LAP > 1012.

H. Security level vs hardware tradeoffs
The PQC algorithms have different implementations de-

pending on the security strength (i.e. the implementations
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Algorithm Sec. FF LUT Clock Latency
Level (nsec)

KEM algorithms
CRYSTALS 1 194126 1977896 15 43018
Kyber
Newhope 1 28999 164937 15 721986
FrodoKEM 1 97355 128031 10 117736
NTRU-HRSS 1 11514 97791 15 21996
LEDACrypt 1 164230 406135 10 18079
Saber 3 231549 2350000 15 365015
Classic 5 79962 870908 10 10659024
McEliece

Signature algorithms
CRYSTALS 1 108154 388991 10 5380
Dilithium
SPHINCS+ 1 3335 11438 10 937975
qTESLA 1 77567 247726 10 36423
MQDSS 2 93945 323734 15 25084906

TABLE VII: Description: Security versus area versus the
timing of PQC decapsulation algorithms, after loop unrolling.
Analysis: Loop unrolling provides significant reduction in
latency. Except for Classic McEliece and MQDSS, none of
them have a latency of over 1 Million cycles. The maximum
reduction in latency of 45× is for NTRU-HRSS. Takeaway:
Similar to encapsulation, loop unrolling reduces latency for
PQC decapsulations. This comes with extra hardware. For
Saber, the increase in hardware overhead is 12×, in # of
LUTs. If an IoT device requires high security (security level
5), Classic McEliece can be used, since the area overhead
is low. For IoT devices where high level of security is not
required, security level 1 algorithm with low area overhead
like SPHINCS+ (Signature) can be used. On the other hand,
CRYSTALS-Dilithium (Signature ), providing security of level
1, can be used in servers, owing to its low latency.

Fig. 7: Hardware overhead in terms of number of LUTs
and FFs for various implementations of PQC encapsulation
algorithms. FFs are shown in solid colors and LUTs as
hashed patterns. Implementations of the same algorithm are
marked with the same color for ease of comparison. KYBER
encapsulation is the largest and has the maximum variation
in area relative to security levels. KYBER-768 requires 40%
more hardware over KYBER-512.

vary in key sizes). We examine how the hardware overhead
varies with security strength. We run experiments on a baseline
implementation, i.e., with no optimizations. Figure 7 plots the
hardware overhead of PQC algorithms as flip-flops and LUTs.

Algorithm Sec. FF LUT Clock Latency
Level (nsec)

KEM algorithms
CRYSTALS 1 11699 1307815 15 31669
Kyber
Newhope 1 25639 136457 15 307847
FrodoKEM 1 105875 179290 10 335891
NTRU-HRSS 1 12225 75141 15 100208
LEDACrypt 1 13157 102496 10 11075
Saber 3 40824 234171 15 367099
Classic 5 60270 840430 10 3787729
McEliece

Signature algorithms
CRYSTALS 1 146076 1327355 10 155166
Dilithium
SPHINCS+ 1 20628 66750 10 468789803
qTESLA 1 112657 346020 10 63736
MQDSS 2 47441 270713 15 25825918

TABLE VIII: Description: Security versus area versus the
timing of PQC encapsulation algorithms, after loop pipelining.
Analysis: Similar to loop unrolling, pipelining also reduces
the overall latency for the PQC encapsulation algorithms.
Among the KEM algorithms, only Classic McEliece has a
latency of more than 1 million cycles. The major difference
with Table VI is with respect to the signature algorithm,
MQDSS. While loop unrolling could not modify its latency,
pipelining can reduce the latency by 50%. Takeaway: Loop
pipelining reduces the latency of PQC encapsulation algo-
rithms, with an increase of hardware area. The improvement
in latency compared to loop unrolling is not consistent. After
pipelining, LIMA (KEM, security level 5) emerges as an
ideal candidate for both IoT devices and servers, with low
area and low latency. For low security IoT devices, security
level 1 algorithms with low area overhead like NTRU-HRSS
(KEM) and RLIZARD (Signature) may be used. None of
the Signature algorithms provide low latency after pipelining.
Among the KEM algorithms, BIG QUAKE provides high
security (level 3) as well as low latency. Hence it is ideal
for server applications. CRYSTALS-Kyber also provides low
latency; however, its security level is only 1. Among the KEM
algorithms, pipelining generates a faster design compared to
loop unrolling for only 3-of-11 algorithms. On the other hand,
for signature algorithms, pipelining provides better latency for
2-of-4 algorithms compared to unrolling.

Figure 8 reports the hardware overhead in terms of the number
of flip-flops and LUTs, for the PQC decapsulation algorithms.

I. ASIC Implementation of PQC decapsulation algorithms.

In this section, we report the ASIC implementations of
PQC decapsulation algorithms. All the designs are synthesized
with a 5ns clock period, 65 nm GF LPE library and 2-
stage compilation using Synopsys DC ASIC synthesis tool.
The synthesis results, indicating the maximum operational
frequency, the area and power are shown in Table X. The
ASIC synthesis flow accepts the RTL generated by the HLS
tool with some RTL changes done manually before Synopsys
DC is able to synthesize them.
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V. DEEP DIVE USING THREE SIGNATURE PQCS

In this section, we will look into three Signature-based
PQC algorithms and analyze the hardware implementations
across various security levels. Furthermore, we will explore
the impacts of various design optimizations, for both signature
and verification. In this section, all implementations have
been performed on a Xilinx Artix-7 FPGA board. This is
the platform that NIST is considering as the comparison plat-
form. The three algorithms are qTESLA, Crystals-Dilithium,
and MQDSS. Each has been verified using KATs in NIST
submissions.

Algorithm Sec. Baseline Loop Loop
Level Unrolling Pipeline

KEM algorithms
CRYSTALS 1 1.3 × 1011 1.0 × 1011 4.1 × 1010

Kyber
Newhope 1 9.2 × 1010 9.2 × 1010 4.2 × 1010

FrodoKEM 1 3.9 × 1010 5 × 1010 6 × 1010

NTRU-HRSS 1 5.1 × 1010 1.5 × 109 7.5 × 109

LEDACrypt 1 3.4 × 109 5.2 × 109 1.1 × 109

Saber 3 1.1 × 1011 8.9 × 1010 8.6 × 1010

Classic 5 1.0 × 1013 2.2 × 1012 3.2 × 1012

McEliece
Signature algorithms

CRYSTALS 1 8.1 × 1010 1.1 × 109 2.1 × 1011

Dilithium
SPHINCS+ 1 2.0 × 1013 2.0 × 1013 3.1 × 1013

qTESLA 1 2.9 × 1010 2.0 × 1010 2.2 × 1010

MQDSS 2 9.5 × 1012 1.1 × 1013 7.0 × 1012

TABLE IX: Description: Security vs. LAP for optimizations
on PQC encapsulations. The minimum values for each al-
gorithm are in bold. Analysis: For most KEM algorithms,
pipelining produces the best latency-area product. Only for two
(NTRU-HRSS and Classic McEliece) loop unrolling provides
the best LAP. For FrodoKEM and SPHINCS+, the baseline
implementation has the best LAP, i.e., optimizations actually
deteriorate the results. Takeaway: LEDACRYPT (KEM) and
CRYSTALS-Dilithium (Signature) have low LAPs.

Fig. 8: # of flip-flops (FF) and LUTs used by PQC decapsu-
lation algorithms. FFs are shown in solid colors, while LUTs
as hashed patterns. Implementations of the same algorithm
have the same color. Except FRODO-KEM, none of the
decapsulations have noticeable difference in FF/LUT count.
The variation in LUT and FFs for the two security levels of
Frodo-KEM is 4̃0%. Saber uses the most LUTs and FFs.

A. Comparison across security level 1

We will compare the area and performance of the three
algorithms for security level 1. The parameters we analyze
are number of FFs, number of LUTs, the latency and the LAP.
The comparisons for the signature and verification parts are
shown in Table XI and XII.

Algorithm Sec. Clock Area K Gates Power
Level (MHz) (µm2) (mW)

KEM algorithms
CRYSTALS-Kyber 1 200 3378515 1340.68 39.21
Newhope 1 168.6 3208999 1273 38.02
FrodoKEM 1 200 10721 4.25 0.14
NTRU-HRSS 1 169.5 1246869 495 14.3
Saber 3 137.75 4774529 1895 54.49

Signature algorithms
CRYSTALS-Dilithium 1 157.7 4774529 1602.6 51.24
SPHINCS+ 1 200 19477.8 7.73 0.28
MQDSS 2 100 9341007 3706 120

TABLE X: Description: ASIC synthesis of some of the
studied PQC decapsulation algorithms. Analysis: FrodoKEM
(security level 1, KEM) and SPHINCS+ (security level 1,
Signature) have small decapsulation modules which consume
the least power and hence can be used in small IoT devices.
Takeaway: Big QUAKE (security level 3) is a good compro-
mise of security, performance, and power for use in servers.

Algorithm FF LUT Clock (ns) Latency LAP
qTESLA 26299 126732 12.65 537092 6.8 × 1010

CRYSTALS- 27132 123655 8.738 485963 6.0 × 1010

Dilithium
MQDSS 21841 106035 17.05 34502428 3.6 × 1012

TABLE XI: Description: Analysis of hardware implementa-
tions of “crypto sign” components of Signature-based PQC
algorithms. Analysis: While area overheads are more or less
the same (MQDSS occupying 83% less area than the oth-
ers), the overall latency and LAP for MQDSS is extremely
high. MQDSS takes 71 × more latency and 61 ×more
LAP compared to CRYSTALS-Dilithium. Takeaway: At se-
curity level 1, CRYSTALS-Dilithium is the best algorithm for
“crypto sign”, since it occupies the least LAP.

Algorithm FF LUT Clock (ns) Latency LAP
qTESLA 17780 87067 12.58 80422 7.0 × 109

CRYSTALS- 14712 63863 8.738 149950 9.5 × 109

Dilithium
MQDSS 23072 117097 17.045 25686731 3.0 × 1012

TABLE XII: Description: Analysis of hardware implementa-
tions of “crypto sign open” components of Signature-based
PQC algorithms. Analysis: CRYSTALS-Dilithium has the
least area, while qTESLA has the least latency shows sig-
nificantly better performance. Takeaway: At security level 1,
qTesla is the best algorithm for “crypto sign open”, since it
occupies the least LAP.
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B. Comparison across security level 3

In this section, we compare the hardware implemen-
tation cost and performance for both “crypto sign” and
“crypto sign open” for the three Signature-based algorithms
at security level 3. The results for signature and verification
are shown in Table XIII and XIV respectively.

C. Comparison across various security levels

In this section, we will compare the area overhead and
performance for the algorithms across various security lev-
els. Section V-C1 and Section V-C2 compare the results
for “crypto sign” and “crypto sign open” components of the
algorithms.

1) Signature: In this section, we compare the area (in
terms of FF and LUT), performance (in terms of latency)
and LAP for implementing “crypto sign” portion of the three
algorithms for security levels 1 and 3. The results are shown
in Figure 9. For qTESLA and CRYSTALS-Dilithium, the
area overhead at security levels 1 and 3 are similar. For
MQDSS, the are overhead is 13-16% more in security level
3 compared to security level 1. For qTESLA, the latency
reduces at security level 3, compared to level 1. For the
other two algorithms, the latency increases drastically at higher
security level. Comparing both area and performance, we can
observe that only qTESLA has lower LAPs at security level
3 compared to level 1. qTESLA at security level 3 has the
lowest LAP and provides the highest security among all the

Algorithm FF LUT Clock (ns) Latency LAP
qTESLA 26011 126311 12.65 347655 4.3 × 1010

CRYSTALS- 27308 123933 8.738 826832 1.0 × 1011

Dilithium
MQDSS 24748 123170 16.378 119353597 1.4 × 1013

TABLE XIII: Description: Analysis of hardware implemen-
tations of “crypto sign” components of Signature-based PQC
algorithms at security level 3 Analysis: While area overheads
are more or less the same for all algorithms, similar to Ta-
ble XI, the overall latency and LAP for MQDSS is extremely
high. Takeaway: At security level 3, qTESLA is the best
algorithm for “crypto sign”, since it occupies the least LAP.

Algorithm FF LUT Clock (ns) Latency LAP
qTESLA 17754 86142 12.65 201027 1.7 × 1010

CRYSTALS- 14783 63980 8.738 297592 1.9 × 1010

Dilithium
MQDSS 23149 117574 17.045 87861777 1.0 × 1013

TABLE XIV: Description: Analysis of hardware implemen-
tations of “crypto sign open” components of Signature-based
PQC algorithms. Analysis: CRYSTALS-Dilithium has the
least area, while qTESLA has the least latency. Takeaway:
At security level 3, qTESLA is the best algorithm for
“crypto sign open”, since it occupies the least LAP. On the
other hand, MQDSS has the worst LAPs.

alternatives discussed in this section. Therefore, we suggest it
as the best algorithm to use among these three.

2) Signature Verification: In this section, we compare the
area, performance and LAPs for the signature verification, i.e.,
“crypto sign open” component of the three algorithms across
the two security levels. The results are shown in Figure 10. For
all the algorithms, the area overhead remains similar for the
two security levels. On the other hand, consistently, the latency
and LAP is higher at security level 3 compared to security level
1. qTESLA has the least LAP at both the security levels.

D. Optimization

In this section, we will analyze how the various optimization
techniques (Loop unrolling and Loop pipelining) help to
reduce the overall latency of the PQC algorithms. We will
compare the same parameters we used in Section V-C for three
types of implementations – baseline, loop unrolling and loop
pipelining, at security level 1. The results for implementation
of “crypto sign” and “crypto sign open” are shown in Fig-
ure 11 and Figure 12, respectively.

E. Implications of hardware-optimized keccak

keccak is a family of sponge functions used by the
three algorithms and by many NIST round 2 PQCs. Over
the years, researchers developed hardware-optimized variants
of keccak. In this section, we study the effect of one of
these and observe how the area and performance overhead
changes.We use keccak implementation from [39]. They de-
veloped a KeccakF1600 StatePermute function implemen-
tation, with separate functions used for internal operations
like θ, ρ, π, χ and ι. Figure 13 compares the parameters for
implementation of “crypto sign”, while Figure 14 compares
“crypto sign open”. For consistency, all implementations are
for security level 1. In Figures 15, 16, we compare overheads
with loop unrolling. For fair comparison, we use the same
directives for both implementations. Similar comparison for
loop pipelining are shown in Figures 17, 18.
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(a) (b) (c) (d)

Fig. 9: Comparison of (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement the “crypto sign” component of the three
PQC algorithms across different security levels. (a) For qTESLA and CRYSTALS-Dilithium, the difference in FF count is not
significant, while for MQDSS, there is a 13% increase in number of FFs for implementing at security level 3 compared to
security level 1. (b) Similar to FFs, for qTESLA and CRYSTALS-Dilithium, the difference in LUT count is not significant,
while for MQDSS, there is a 16% increase in number of FFs for implementing at security level 3 compared to security level
1. (c) Since the latency of MQDSS is two orders of magnitude more than either qTESLA or CRYSTALS-Dilithium, this graph
is plotted in the logarithmic scale. qTESLA at security level 3 and CRYSTALS-Dilithium at security level 1 have the least
latency. (d) qTESLA at security level 3 has best LAP and MQDSS at both security levels have worst LAP.

(a) (b) (c) (d)

Fig. 10: Comparison of (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement the “crypto sign open” component of
the three PQC algorithms across different security levels. (a) Compared to signature, the difference in FF count is not
significant for any algorithm. While in Figure 9, CRYSTALS-Dilithium occupies the highest number of FFs, when implementing
“crypto sign open”, it requires the least number of FFs. (b) Compared to Figure 9, the difference in LUT count is not significant
for any algorithm. (c) qTESLA at security level 1 requires the least latency. MQDSS requires the highest latency for both
“crypto sign” and “crypto sign open”. (d) qTESLA at security level 1 has best LAP and MQDSS at both security levels have
worst LAP.

(a) (b) (c) (d)

Fig. 11: (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement the “crypto sign” of the three PQC algorithms at security
level 1 for different optimizations. (a) Loop pipelining yields the least number of FFs across, while loop unrolling requires
the maximum number of FFs. (b) Loop pipelining yields the least number of LUTs for all designs. Except for CRYSTALS-
Dilithium, the number of LUTs increases with loop unrolling. (c) Loop unrolling and pipelining reduce the latency compared
to the baseline. (d) CRYSTALS-Dilithium and qTESLA have least LAP when loop pipelined. For MQDSS, the least LAP is
obtained when loops are unrolled.
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(a) (b) (c) (d)

Fig. 12: Comparison of (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement the “crypto sign open” component of the
three PQC algorithms at security level 1 for different optimizations. Optimization with loop pipelines occupy the least number
of FFs and LUTs across all designs, while loop unrolling requires the maximum number of FFs and LUTs. Optimization
with loop unrolling and pipelines reduce the latency compared to baseline implementation. Except for MQDSS, the other two
algorithms have least LAP when loop pipelining is performed. For MQDSS, the least LAP is obtained when loops are unrolled.

(a) (b) (c) (d)

Fig. 13: Comparison of (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement the “crypto sign” component of the three
PQC algorithms at security level 1 for two versions of keccak. The number of FFs and LUTs reduce considerably compared to
the original keccak. CRYSTALS-Dilithium has 54% reduction in FF count and 73% reduction in LUTs. On the other hand, the
latency increases with the modified keccak. The worst affected is qTESLA, which has a 5.8× increase in latency, while MQDSS
incurs only 1.7× increase in latency. The LAP value, on the other hand, decreases for MQDSS and CRYSTALS-Dilithium
and increase only for qTESLA. For MQDSS, the LAP is reduced by 21%.

(a) (b) (c) (d)

Fig. 14: Comparison of (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement“crypto sign open” component of the three
algorithms at security level 1 for different versions of keccak. Similar to Figure 13, the number of FFs and LUTs reduce
considerably compared to the original keccak. MQDSS has a maximum of 56% reduction in FF count and CRYSTALS-
Dilithium has about 96% reduction in LUTs. The latency increases with the modified keccak. The worst affected is again
qTESLA, which has a 7× increase in latency while MQDSS has 1.7× increase in latency. The LAP decreases considerably
for all algorithms except qTESLA. CRYSTALS-Dilithium has 82% reduction in LAP compared to original keccak.

(a) (b) (c) (d)

Fig. 15: Comparison of (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement the “crypto sign” component of the three
PQC algorithms at security level 1 for different versions of keccak, after loop unrolling. The number of FFs and LUTs reduce
considerably compared to the original keccak version. qTESLA has about 48% reduction in FF count and 64% reduction in
number of LUTs. On the other hand, the latency increases with the modified keccak implementation. The worst affected is
qTESLA, which has a 7.15 × increase in latency. In contrast to Figure 13, the LAP values consistently increase for all three
algorithms. For MQDSS, the increase in LAP is minimum – 20%.
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(a) (b) (c) (d)

Fig. 16: Comparison of (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement “crypto sign open” component of the three
PQC algorithms at security level 1 for different keccak after loop unrolling. The number of FFs and LUTs reduce considerably
compared to the original keccak. MQDSS has about 52% reduction in FF count and 61% reduction in number of LUTs. On
the other hand, the latency increases with the modified keccak. The worst affected is qTESLA, which has a 8.4× increase.
The LAP increases for qTESLA and CRYSTALS-Dilithium but reduces by 28% for MQDSS.

(a) (b) (c) (d)

Fig. 17: Comparison of (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement “crypto sign” component of the three PQC
algorithms at security level 1 for different versions of keccak, after loop pipelining. The number of FFs and LUTs reduce
considerably compared to the original keccak. qTESLA has a 50% reduction in FF count and 65% reduction in number of
LUTs. On the other hand the latency increases with the modified keccak implementation. The worst affected is qTESLA,
which has a 7.7 × increase in latency. The LAP values increase for qTESLA and CRYSTALS-Dilithium, but reduce by 5%
for MQDSS. Overall, the relative increase in LAPs is less than when loop unrolling in Figure 15.
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(a) (b) (c) (d)

Fig. 18: Comparison of (a) FFs, (b) LUTs, (c) Latency and (d) LAP to implement “crypto sign open” of the three algorithms
at security level 1 using different versions of keccak, after loop pipelining. The number of FFs and LUTs reduce considerably
compared to the baseline keccak. MQDSS has 56% reduction in FF count and 70% reduction in number of LUTs. Although
the latency of MQDSS increases by 67% with the modified keccak, the overall LAP value reduces by 52%.

VI. TAKEAWAYS OF SYSTEMATIZATION OF KNOWLEDGE

In this systematization of knowledge (SOK) study, we im-
plemented PQC algorithms using a common design framework
and a common target FPGA platform. This is an ongoing
SOK study. In the end, we expect to assess the hardware
implementations of all 26 NIST PQC Competition Round
2 KEM and Signature algorithms. Key takeaways of this
preliminary SOK study are:

1) Among the KEM algorithms of security level 1, NTRU-
HRSS is superior in terms of latency and LAP.

2) Among the Signature algorithms of security level 1,
CRYSTALS-Dilithium is superior for Signature and
qTesla is superior for Signature verification. SPHINCS+
is the costliest in terms of latency and LAP.

3) This study has only two implementations each of se-
curity levels 3 and 5. We will continue analyzing the
area-performance trade-offs for more high-security al-
gorithms. Saber is ideal for high (level 3) security with
low latency for server applications.

4) In low-power IoT devices, one needs low-area, compact
designs. For example, without optimizations, NTRU-
HRSS and SPHINCS+ FPGAs are ideal for IoT with
security level 1. Low-latency Crystals-KYBER FPGA
designs are good for servers with security level 1.

5) FrodoKEM and SPHINCS+ ASICs have small decapsu-
lation modules which consume low power and useful in
IoT devices, if security level 1 suffices. NTRU-HRSS
and NewHope (security level 1) are the fastest ASICs
and good for servers.

6) For KEM algorithms with high security level (3 and 5),
loop unrolling is more effective in reducing latency. For
Signature algorithms, loop pipelining is more effective,
for algorithms of security level 1. We experimented on
one signature algorithm of security level 2 for which,
loop unrolling was more practical.

7) For low-security (level 1) KEMs, latency rankings
change when optimized. When loop unrolling is per-
formed, NTRU-HRSS is the fastest. However, pipelining
directives render CRYSTALS-Kyber the fastest KEM.

8) We performed specific case studies using three Sig-

nature algorithms – qTESLA, CRYSTALS-Dilithium
and MQDSS in Section V. We noted the area and
performance overhead when hardware implementations
of these algorithms are performed for various security
levels as well as for various optimizations like loop
unrolling and pipelining.

9) In our deep dive case study, qTESLA and CRYSTALS-
Dilithium had the least LAP when loop pipelined, while
MQDSS had the least LAP when loop unrolled. A
future exercise will understand which optimization is
appropriate for which algorithm.

10) Different components of the algorithms can be optimized
for low-area by rewriting the code and running HLS. As
shown in Section V-E, using a different implementation
of KeccakF1600 StatePermute (from [39]) reduces
the area.

11) Even when the same optimization directives are applied
with the two different keccak versions, the modified
keccak function (from [39]) reduces the overall area
overhead. However, in this case, the LAPs don’t decrease
as much (in fact, the LAP increases in most cases),
compared to the baseline (without optimization). The
reduction in LAP is more for loop pipelining compared
to loop unrolling.

12) PQC hardware implementations are not optimized for
side-channel resistance. PQC researchers can use our
implementations for further hardware-security analysis
such as timing, power, and fault-attack side-channel
analysis. This study is ongoing with collaborators.

13) Further optimizations can be done on these designs
obtained using HLS. The RTL obtained in this study
are directly from Xilinx Vivado HLS without any hand-
tailored optimizations to reduce area/latency.

14) In this study, we used the same board (either Virtex or
Artix) for implementing both low area and low latency
variants of the PQC algorithms. As a future exercise,
we will investigate which FPGA architectures are ideal
for low area/low latency implementations. This will be
similar to [17] that implemented a low area version on
Cortex-M0 and a faster version on Cortex-M4.
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APPENDIX

A. Two Performance Optimizations

Fig. 19: Loop unrolling for a for loop of count 3.

1) Loop unrolling: The latency of a design depends upon
the functions and loops. The loops are executed one iteration
at a time (rolled). Thus, rolled loops increase latency. Fully
unrolling a loop can minimize the latency, while using more
hardware resources. Figure 19 explains loop unrolling. Vivado
HLS provides the option to partially unroll the loop to balance
the performance and area.

2) Loop Pipelining: Loop pipelining can be used to im-
prove latency. Figure 20 explains loop pipelining. This opti-
mizes both hardware and latency. We synthesize the algorithms
by adding a directive to pipeline the longer loops.

Iteration-1 Iteration-2

 3 CC   3 CC 

Before Pipelining (18CC)

Iteration-1 Iteration-2

Iteration-1 Iteration-2

Clock Cycle 

 3 CC   3 CC 

After Pipelining (12CC)

Iteration-1 Iteration-2

Iteration-1 Iteration-2

for(j=0;j<3;j++) { 
// Process to implement. 
//The process would be divided into  
//clock cycle depending upon the  
//combinational logic needed for that. 
} 

Iteration-1 Iteration-2

Fig. 20: Example of loop pipelining.

B. Design Space Exploration of CRYSTALS KYBER

The HLS-based framework can aid in design exploration for
each PQC algorithm. Let us consider CRYSTALS KYBER
as an example. An analysis of (crypto_kem_enc()) re-
veals that indcpa_enc() limits its latency and shows that
gen_matrix() has the highest latency.

Table XV summarizes latencies of the functions in
crypto_kem_enc() and indcpa_enc() and the
loops in the function gen_matrix(). The function
gen_matrix() has four loops of which Loop 1 is
a simple loop. Loop 4 is nested within Loop 3, which
is nested in Loop 2. Loop 4 calls an external function
Keccak_squeezeblocks(), while Loop 3 calls
two external functions – keccak_absorb() and
keccak_squeezeblocks(). Loop 2 does not call

any functions and just iterates over Loop 3 multiple
times. Function keccak_squeezeblocks() has two
loops, the first of which calls functions KeccakF1600_
StatePermute() and the second store64(). The
second loop of Keccak_squeezeblocks() is embedded
in the first. Keccak_absorb() has 6 loops, of which
loops 1, 4, 5 and 6 are single-line loops. Loop 3 calls
function load64() and is embedded inside Loop 2. Loop
2 invokes function KeccakF1600_StatePermute().
The three functions KeccakF1600_ StatePermute(),
store64() and load64() have single loops each. The
call graph for gen_matrix() is shown in Figure 21.

void gen_matrix(polyvec *a, const unsigned
char *seed, int transposed) {
unsigned int pos=0, ctr, nblocks=4,
i, j;
uint16_t val;
uint8_t buf[SHAKE128_RATE*nblocks];
uint64_t state[25]; // CSHAKE state
unsigned char extseed[KYBER_SYMBYTES+2];
for(i=0;i<KYBER_SYMBYTES;i++)
/* Loop 1*/
extseed[i] = seed[i];

for(i=0;i<KYBER_K;i++) { /* Loop 2*/
for(j=0;j<KYBER_K;j++) { /* Loop 3 */

ctr = pos = 0;
if(transposed) {
extseed[KYBER_SYMBYTES] = i;
extseed[KYBER_SYMBYTES+1] = j;

} else {
extseed[KYBER_SYMBYTES] = j;
extseed[KYBER_SYMBYTES+1] = i;

}
shake128_absorb(state,extseed,
KYBER_SYMBYTES+2);
shake128_squeezeblocks(buf,nblocks,
state);
while(ctr < KYBER_N) { /* Loop 4 */

val = (buf[pos] | ((uint16_t)
buf[pos+1] << 8)) & 0x1fff;
if(val < KYBER_Q)

a[i].vec[j].coeffs[ctr++] = val;
pos += 2;
if(pos > SHAKE128_RATE*nblocks-2) {
nblocks = 1;
shake128_squeezeblocks(buf,
nblocks,state);
pos = 0;

}
}

}
}

}
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gen_matrix

Loop1

Loop 2

Loop 3

Loop 4

keccak_squeezeblocks

keccak_absorb

Loop 1

Loop 2

Loops  1, 4, 5,  6

Loop 2

Loop 3

load64

store64

KeccakF1600_StatePermute

Loop  1

Loop  1

Loop  1

Fig. 21: Call graph of gen_matrix().

1) Loop Unrolling: We unroll loops in the last-level
functions, store64(), load64() and KeccakF1600_
StatePermute(). We unroll innermost loops in the top
functions, i.e., Loop 2 in keccak_squeezeblocks() and
Loop 4 in gen_matrix(). The unrolling factor is set to 1
and inline function calls.

Function/Loop Latency (clock cycles)
Top function: crypto kem enc

indcpa enc 40869
keccak absorb 8056
randombytes 5895

Top function: indcpa enc
gen matrix 10835
poly getnoise 2595
polyvec compress 2565

Top function: gen matrix
gen matrix loop 1 64
gen matrix loop 2 8419
gen matrix loop 3 2637
gen matrix loop 4 826

TABLE XV: Critical functions and loops that determine the
latency of CRYSTALS-KYBER.

2) Loop Pipelining: We mark unrolled loops for pipelining.
We set the target initiation interval for pipelining to 1, except
for the loop in KeccakF1600_StatePermute(). Since
KeccakF1600_StatePermute() is critical, does a lot of
operations in a single loop, we created the fastest possible
pipeline architecture. The Table XVI shows the results. The
last column shows the speedup compared to the baseline. Re-
duction in latency provided by loop pipelining is comparable
to loop unrolling. However, loop pipelining yields a design
with 4% less area overhead.

Implementation FF LUT MUX Latency Speedup
Baseline 6685 39357 606 10835 -
Loop Unrolling 5415 43955 454779 9513 1.23 ×
Loop Pipelining 5439 42206 435728 904 1.23 ×

TABLE XVI: Area and timing overhead for different imple-
mentations of gen_matrix().


