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Abstract. Code-based signature has been believed to be a useful au-
thentication tool for post-quantum cryptography. There have been some
attempts to construct efficient code-based signatures; however, existing
code-based signature schemes suffer from large public-key size, which
has affected their applicability. It has been a challenging research task to
construct efficient code-based signatures with a shorter public-key size.
In this paper, we propose an efficient code-based signature scheme, which
offers a short public key size. Our scheme is an analogue to the Schnorr
signature where we utilize random rank double circulant codes and matrix-
vector product used in the Rank Quasi-Cyclic (RQC) scheme introduced
by Melchor et al. (NIST 2017). We provide the security proof of our signa-
ture scheme by reducing it to the Rank Quasi-Cyclic Syndrome Decoding
(RQCSD) problem. Our work provides an example for the construction
of code-based signatures for the applications which require short public
keys.

Keywords: Post-Quantum Cryptography, Rank Metric Codes, Digital
Signatures

1 Introduction

Many digital signature schemes such as the Digital Signature Algorithm (D-
SA) and the Elliptic Curve Digital Signature Algorithm (ECDSA) are used in
practice. The security of such schemes relies on the hardness of the discrete loga-
rithm problem either in the multiplicative group of a such field or in a subgroup
of points of an elliptic curve over a finite field. However, these computational
assumptions could be broken [46] in a quantum setting by Peter Shor’s algorith-
m. Therefore, quantum-attack-resistant signature has become an urgent need.
Code-based cryptosystems are promising candidates to resist quantum attacks.
They stem from the McEliece cryptosystem [37] and the Niederreiter cryptosys-
tem [41]. The McEliece and Niederreiter cryptosystems have been proved to be
equivalent [32]. Their security is based on the conjectured intractability prob-
lems in coding theory, such as the syndrome decoding problem, which has been
proven to be NP-complete by Berlekamp, McEliece, and Van Tilborg [6].

? Corresponding Author



The McEliece and Niederreiter schemes are not invertible; therefore it is not
easy to apply them to signature schemes. This problem remained open until
2001, when Courtois, Finiasz, and Sendrier (CFS) showed how to achieve a
code-based signature scheme [9]. Moreover, the security proof [10] of the CFS
scheme relies only on two complexity assumptions, namely (i) decoding a generic
linear code and (ii) distinguishing a Goppa code from a random linear code
with the same parameters. To prevent Bleichenbacher’s attack [17], a significant
increase of parameters was required along with a slight modification [16] of the
scheme. However, this modified scheme is not able to solve the weaknesses of the
CFS scheme. There is tradeoff between the signature computation time and the
strength of security, since it is necessary to significantly increase the key size in
order to increase the complexity of attack.

There are some improvements of the CFS scheme [9] by exploiting other
code families, such as LDGM codes [3], i.e., codes with a Low Density Generator
Matrix, and convolutional codes [34]. However, the signature scheme based on
LDGM codes has been broken [43] due to some bits of the signatures are corre-
lated in this scheme. It remains unknown how to choose the parameters of the
McEliece cryptosystem based on convolutional codes [34] in order to avoid the
attack [31] which works by looking for low-weight codewords in the public code
and using them to unravel the convolutional part.

In 1997, Kabatianskii, Krouk, and Smeets proposed a signature scheme [29]
based on two random error-correcting codes, i.e., the KKS signature scheme.
There are some variants in the literature [4,25]. However, they have been con-
sidered to be one-time signature schemes according to the attack given in [8],
and all parameters proposed in [29,4,30] have been broken [42] by Otmani and
Tillich. The attacker could define a code from the available public data and
the support of many codewords is concentrated in a rather small subset, which
could efficiently recover the private key of all schemes by the Stern algorithm.
The users should avoid choosing parameters which make the rates of the couple
of random codes used too close.

A complete picture of code-based signature schemes is to use the Fiat-Shamir
heuristic [15] to transform a Stern identification scheme [47] into a signature
scheme. The prover in the Stern identification scheme has the cheating proba-
bility of 2/3 in each round. As a result, this approach leads to large signature
sizes (one or few hundred kilobytes).

The code families used in the signature scheme discussed above are based on
the Hamming metric. The rank metric [23] has demonstrated a strong advantage
over the Hamming metric due to the fact that the generic decoding problems for
the rank metric are inherently more difficult than those for the Hamming metric.
In 2014, the RankSign scheme [24] based on the Low Rank Parity Check (LRPC)
code [21] was introduced by Gaborit et al. This signature scheme is a hash-
and-sign signature scheme and the difference with the CFS scheme is that the
RankSign scheme can invert a random syndrome. Unfortunately, the improved
version [1] of the RankSign scheme for the NIST competition was totally broken
by Debris-Alazard and Tillich [12]. All the parameters proposed in [1] can be
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broken by an algebraic attack that exploits the fact that the augmented LRPC
codes have very low weight codewords.

To sum up, the CFS signature scheme [9], its improvements [34,3], and the
RankSign scheme [24,1] can be regarded as the same type of signature schemes.
They embed the parity-check matrix of specific code families into the Syndrome
Decoding (SD) [6] or Rank Syndrome Decoding (RSD) [26] problem. That is to
say, they replace the matrix H of the SD or RSD problem with the approach
or method of hiding the code structure. This method is constructed in order
to take advantage of fast decoding algorithms. However, two complex problems
are restricted by the structure of codes which is helpful to attack the complex
problems. In other words, well-structured code classes would lead to a successful
attack on this construction. This shortcoming can be remedied by using random
codes, i.e., no need to hide the code structure, which is also the reason why the
Stern identification scheme [47] is a promising candidate. In this paper, we find
a new method to construct signature scheme with random codes. Our signature
scheme has shorter signature sizes than the signature scheme from the Stern
Identification scheme.

1.1 Motivation

The Rank Quasi-Cyclic (RQC) scheme is an efficient encryption scheme based
on coding theory from [38,39]. Recently, the RQC team once again supported
the security of the RQC scheme in [7]. The RQC scheme uses two types of codes:
the decodable code that can correct certain errors through an efficient decoding
algorithm and a random double circulant [2n, n]qm code which is generated by
using parity-check matrix [In | rot(h)]. They are both public information. This
system can be seen as a noisy adaptation of the ElGamal cryptosystem and
possesses several desirable properties:

1. The RQC scheme is based on the computational complexity of decoding
linear codes for rank metric that has been an open question for almost 27
years since the first work [18] on the rank-based cryptography in 1991. A
probabilistic reduction to the Hamming setting was given by Gaborit and
Zémor [26]. On a practical complexity point of view, the complexity of prac-
tical attacks grows faster than the Hamming metric. We refer the reader to
Section 4 for more details on best known attacks.

2. The RQC scheme uses quasi-cyclic codes [36] which are very useful in cryp-
tography, since their compact description allows to decrease considerably the
size of the keys. Therefore, the RQC scheme features attractive parameters.

3. In contrast to the existing code-based cryptosystems, the assumption that
the family of codes being used is indistinguishable among random codes is
no longer required. That is, the RQC scheme does not use the method of
hiding structure of the decodable code. To some extent, this reduces a part
of the computational cost in encryption and decryption.

So far, only the KKS signature scheme [29] and the signature scheme from
the Stern identification scheme [47] use random codes. However, the former has
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been considered to be a one-time signature scheme and the latter surfers from
large signature sizes. Inspired by the RQC scheme, we propose a digital signa-
ture scheme that is an analogue to the Schnorr signature. We only use random
rank double circulant [2n, n]qm codes generated by using parity-check matrix
[In | rot(h)] and matrix-vector product without considering a decodable code.
Our construction enjoys some nice features: reduction to the Rank Quasi-Cyclic
Syndrome Decoding (RQCSD) problem by some conservative assumptions, and
a reduced public key size.

1.2 Our Contributions

We propose a novel digital signature scheme which is an analogue to the Schnorr
signature. Our scheme is based on the RQCSD problem and the technique used
in the RQC scheme [38,39]. However, it is infeasible to directly convert it to a
signature scheme like the Schnorr signature scheme, because operational prop-
erties and rank weight need to be considered carefully due to the particularity
of the RQCSD problem. We find that matrix-vector product could satisfy the
operation with random rank double circulant codes. Furthermore, we must make
a series of restrictions on the rank weight of random vectors. We assume that the
maximum value of these weights does not exceed the Rank Gilbert-Varshamov
(RGV) bound (see Section 4). From the point of view of decoding, it is difficult
to forge a certain rank weight signature. Therefore, when verifying the signature,
we also need to verify the rank weight of the signature.

Our signature scheme has several attractive properties:

1. The security of our scheme can be reduced to the RQCSD problem. In the
proof, we use a weak assumption where some elements in the ring R =
Fqm [X]/(Xn − 1) are invertible. This assumption indicates that our scheme
is more reliable.

2. In contrast to the existing code-based cryptosystems, our scheme does not
use the method of hiding structure of the decodable code. We only use the
random rank quasi-cyclic code. Therefore it reduces the computational cost
in generating and verifying signatures.

3. We also give a general table to compare public key size, signature size, and
signature time with different code-based signature schemes. Our signature
scheme features small public key size in comparison to other code-based
signature schemes.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we present some
preliminaries required in the paper. Section 3 presents our signature scheme and
the proof of security. In Section 4, we describe security parameters of our scheme
and compare with several existing code-based signature schemes. We conclude
this paper in Section 5.
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2 Preliminaries

2.1 Notations

We denote by N and R+ the set of the natural numbers and the non-negative real
numbers respectively, Z the ring of integers and for m, q ∈ Z, q prime, Fqm an
extension of degree m of the finite field of q elements, and R = Fqm [X]/(Xn −
1) the quotient ring of polynomials modulo Xn − 1 whose coefficients lie in
finite field Fqm . Elements of R are considered as row vectors or polynomials.
Vectors/Polynomials (resp. matrices) are represented by lower-case (resp. upper-
case) bold letters. We denote by ‖ ·‖ the rank weight of a vector. We say that an
algorithm is a PPT algorithm if it is a probabilistic polynomial-time algorithm.
We say that a function f : N → R+ ∪ {0} is a negligible function if for any
polynomial p(·) there exists k0 ∈ N such that for all k > k0 it holds that

f(k) < 1/p(k). If X is a finite set, x
$← X denotes that x is chosen uniformly

from set X . All logarithm are of base 2.

2.2 Vector-Matrix Product

For x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ R, their product [38] in R
is defined by x · y = z ∈ R with

zk =
∑

i+j≡k mod n

xiyi, k ∈ {0, 1, . . . , n− 1}.

Definition 1 (Circulant Matrix). Let x = (x0, x1, . . . , xn−1) ∈ R. The cir-
culant matrix induced by x is defined and denoted as follows

rot(x) =


x0 xn−1 · · · x1
x1 x0 · · · x2
...

...
. . .

...
xn−1 xn−2 · · · x0

 ∈ Fn×nqm .

As a consequence, it is easy to see that the product of any two elements
x,y ∈ R can be expressed as vector-matrix (or matrix-vector) product using
the rot(·) operator, i.e.,

x · y = x× rot(y)T = (rot(x)× yT)T = y × rot(x)T = y · x.

Note that the operation × indicates a matrix multiplication.

2.3 Rank Metric Codes

In this section, we mainly revisit some basic definitions and properties about rank
metric codes for elaborating our construction.We refer the reader to [33,38,1,36]
for more details.
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Definition 2 (Rank Metric over Fnqm). Let x = (x1, x2, . . . , xn) ∈ Fnqm and
(β1, β2, . . . , βm) ∈ Fmqm a basis of Fqm viewed as an m-dimensional vector space
over Fq. Each coordinate xj is associated to a vector of Fmq in this basis: xj =
Σm
i=1aijβi. The m× n matrix associated x is given by A(x) = (aij)1≤i≤m

1≤j≤n
.

The rank weight ‖x‖ of x is defined as

‖x‖ = Rank A(x).

Definition 3 (Fqm-Linear codes). An Fqm-linear code C of length n and di-
mension k is a subspace of dimension k of Fnqm embedded with the rank matric.
It is denoted by [n, k]qm .

Given an [n, k]qm code C, we say that G ∈ Fn×kqm is a generator matrix if

C = {mG|m ∈ Fkqm}, and H ∈ F(n−k)×k
qm is a parity-check matrix for code C if

C = {x ∈ Fnqm |HxT = 0}. The G (resp. H) is under systematic form if and only
if it is of the form (Ik | P) (resp. (In−k | Q)).

Definition 4 (Rank Gilbert-Varshamov (RGV) bound[33,1]). Let C be
an [n, k]qm . The rank Gilbert-Varshamov bound RGV(n,k,m,q) for C is the s-
mallest integer r such that the volume V(n,m, q, r) of a ball of radius r is larger
than the number q(n−k)m of syndromes of C.

By definition, V(n,m, q, r) =
∑r
i=0 S(n,m, q, i) where S(n,m, q, i) is the car-

dinal of the a sphere of radius i of Fnqm , which is equal to the number of matrices
m× n of rank i with coefficients in Fq.

S(n,m, q, i) =

i−1∏
j=0

(qm − qj)(qn − qj)
qi − qj

.

In the general case, we have RGV (n, k,m, q) ∼ m+n−
√

(m−n)2+4km

2 and in

the case m = n, we have RGV (n,k,m,q)
n ∼ 1 −

√
k
n . The RGV bound provides a

theoretical limit value for the minimal rank weight of an [n, k]qm random codes.

Definition 5 (Double Circulant codes [36]). A [2n, n]qm linear code is said
double circulant if it has a generator matrix of the form [A | B] where A and B
are two circulant matrics of size n.

A systematic double circulant [2n, n]qm code is a code with a parity-check
matrix of the form [In | Q] where In is an identity matrix and Q is a circulant
matrix of size n.

The reason we exploit double circulant codes is that it decreases considerably
the size of the key [19] and its systematic parity-check matrix can satisfy some
vector-matrix operations. Double circulant codes have been used for almost 10
years in cryptography [20,40].
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2.4 Complex Problems For Rank-based Cryptography

Rank-based cryptography originates from [18], and generally depends on the
hardness of syndrome decoding problem for rank metric. In this section, we
describe two difficult problems for rank-based cryptography.

Definition 6 (Rank Syndrome Decoding (RSD) Problem). Let H be a
full-rank (n− k)× n matrix over Fqm with k ≤ n, s ∈ Fn−kqm , and w an integer.

The problem is to find x ∈ Fnqm such that ‖x‖ = w and HxT = sT.

The RSD problem has recently been proven to be hard in [26] with a prob-
abilistic reduction to the Hamming setting. We refer the reader to Section 4 for
more details on best known attacks.

In the following, we will give an explicit description of the RSD problem
in the double circulant configuration due to the use of double circulant codes
in our construction. We still call it the Rank Quasi-Cyclic Syndrome Decoding
(RQCSD) problem, because double circulant codes are a particular case of
quasi-cyclic codes.

Definition 7 (RQCSD Problem). Let H = [In | rot(h)], h ∈ R, be a parity-
check matrix of a systematic double circulant [2n, n]qm code C, s ∈ Fnqm , and w
an integer. The problem is to find x = (x1,x2) ∈ F2n

qm such that x1 + h · x2 = s

and ‖x1‖ = ‖x2‖ = w, where HxT = (x1 + h · x2)T.

Although there exist general attacks [45,28] which use the cyclic structure
of the code, these attacks have only limited impact on the practical complex-
ity of the problem. Therefore, decoding these codes is considered hard by the
community.

It would be more natural to choose the parity-check matrix H that consists
of independent uniformly random circulant submatrices, rather than with the
special systematic form. However, the results in [39,38] have indirectly demon-
strated that systematic double circulant codes would not hurt the generality of
the decoding problem for double circulant codes.

2.5 Digital Signature Schemes

Here, the algorithm that the sender applies to a message is denoted Sign, and the
output of this algorithm is called a signature. The algorithm that the receiver
applies to a message and a signature in order to verify the validity of the signature
is denoted by Vrfy.

Definition 8. A digital signature scheme consists of three polynomial-time al-
gorithms (Gen,Sign,Vrfy) such that:

– Gen: Taking as input a security parameter 1λ, it outputs a public key pk and
a private key sk.

– Sign: Taking as input a private key sk and a message m from some message
space, it outputs a signature σ.
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– Vrfy: Taking as input a public key pk, a message m, and a signature σ, it
outputs a bit b, where b = 1 indicates “valid” and b = 0 indicates “invalid”.

It is required that except with negligible probability over (pk, sk) output by
Gen(1λ), it must hold that Vrfypk(m,Signsk(m)) = 1 for every (legal) message
m. We call σ a valid signature on a message m if Vrfypk(m,σ) = 1.

The security of signature schemes. For a fixed public key pk generated
by a signer S, a forgery is a message m along with a valid signature σ, where m
was not previously signed by S. The security of a signature scheme means that
an adversary should be unable to output a forgery even if it obtains signatures
on many other messages of its choice. We now present the formal definition of
security.

Let Π = (Gen,Sign,Vrfy) be a signature scheme. We consider the following
experiment for an adversary A and parameter λ:

The signature experiment Sig-forgeA,Π(λ):

1. Gen(1λ) is run to obtain keys (pk, sk).
2. Adversary A is given pk and has access to the oracle Signsk(·). The adversary

then outputs (m,σ). Let Q denote the set of all queries A has made to the
oracle.

3. A succeeds if and only if (1) Vrfy(m,σ) = 1 and (2) m /∈ Q. In this case the
output of the experiment is defined to be 1.

Definition 9. A signature scheme Π = (Gen,Sign,Vrfy) is existentially unforge-
able under an adaptive chosen-message attack (EUF-CMA), or just secure, if for
all probabilistic polynomial-time adversaries A, there is a negligible function negl
such that:

Pr[Sig-forgeA,Π(λ) = 1] ≤ negl(λ).

2.6 The RQC Scheme

Our signature scheme is constructed through exploiting the spirit of the Rank
Quasi-Cyclic (RQC) scheme from [38,39]. Therefore, we simply recall the RQC
scheme. The RQC scheme uses two types of codes: the decodable [n, k] code
C generated by G ∈ Fk×n2m which can correct at least µ errors through an effi-
cient algorithm C.Decode(.) and a random double circulant [2n, n] code which
is generated by using parity-check matrix [In | rot(h)]. They are both public
information. The difference with the RQC scheme is that we only use the ran-
dom rank double circulant [2n, n] codes and vector-matrix product. We revisit
the encryption scheme by Melchor et al. [38,39].

The private key is (x,y) ∈ R2 such that ‖x‖ = ‖y‖ = w. The public key is
(h, s = x + h · y). To encrypt a message m ∈ Fk2m , it firstly chooses a uniform
r = (r1, r2) ∈ R2 such that ‖r1‖ = ‖r2‖ = wr, and computes syndrome r1+h·r2.
Then, it encodes m through the generator matrix G, and adds an error s ·r2 +e,
‖e‖ = we. The ciphertext is (c1, c2) = (r1 + h · r2,mG + s · r2 + e). Using the
private key sk = (x,y) and an efficient algorithm C.Decode(.), the plaintext m
can be obtained from a ciphertext (c1, c2), i.e., m = C.Decode(c2 − c1 · y).
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3 Our scheme

3.1 The RQC Signature Scheme

We found that with random rank double circulant codes, matrix-vector products
are suitable for constructing Schnorr signatures. The only difference is that we
must make a series of restrictions on the rank weight of random vectors due
to the particularity of the RQCSD problem. In other words, if weight is not
taken into account, our scheme will be similar to the Schnorr signature scheme.
However, it is not easy to perform the operations which meet the requirements of
the Schnorr signature scheme in code-based cryptography because the operation
of general SD and RSD problem could not satisfy the requirements.

We construct a Rank Quasi-Cyclic Signature (RQCS) scheme based on the
RQCSD problem. Let RQCS.Setup be a PPT algorithm that takes the security
parameter 1λ as input and outputs the public parameters param = (n,w,wr, wg)
such that w, wr, and wwg+wr are chosen slightly below the RGV bound defined
by Definition 4 for a higher level of security.

Let

Swr = {e1 + h · e2 | e = (e1, e2) ∈ R2 s.t. ‖e1‖ = ‖e2‖ = wr}.
Rwg = {e ∈ R | ‖e‖ = wg}.

LetH: Swr×{0, 1}∗ → Rwg be a collision-resistant hash function. To generate
its keys, the signer chooses a uniform h ∈ R and (x,y) ∈ R2 such that ‖x‖ =
‖y‖ = w, and sets s = x + h · y. The public key pk is (h, s) and the private
key sk is (x,y). To sign a message m ∈ {0, 1}∗, the signer chooses a uniform
r = (r1, r2) ∈ R2 such that ‖r1‖ = ‖r2‖ = wr and computes I = r1 + h · r2.
Then, the signer derives g = H(I,m) and u = (x,y) · g + r = (u1,u2). The
signature on m is (g,u). The verifier computes u1+h ·u2−s ·g = I, and accepts
if and only if H(I,m)=g, ‖u1‖ ≤ wwg + wr, and ‖u2‖ ≤ wwg + wr.

We need to explain the following three points:

1. If x,y,g ∈ R, then (x,y) · g = (x · g,y · g) = g · (x,y).
2. If ‖g‖ = wg, ‖r1‖ = ‖r2‖ = wr, ‖x‖ = ‖y‖ = w, then ‖u1‖ ≤ wwg +wr and
‖u2‖ ≤ wwg+wr. In fact, x,g, and r1 corresponds to subspaces of dimension
w,wg, and wr respectively. Since u1 = x ·g+r1, ‖u1‖ ≤ wwg+wr. Similarly,
we have ‖u2‖ ≤ wwg + wr.
We assume that ε is an integer such that ε = wwg+wr. Let R2

ε = {(e1, e2) ∈
R2 | ‖e1‖ = ‖e2‖ ≤ ε}.

3. In an honest transcript (I,g,u), I is a uniform element of Swr and g is an
independent uniform element of Rwg . Then u is almost uniquely deter-
mined through the equation u1 + h · u2 = s · g + I. Uniqueness stems from
‖u1‖ ≤ wwg + wr, ‖u2‖ ≤ wwg + wr and wwg + wr is slightly below the
RGV bound. It clearly belongs to the RSD problem. In fact,

s · g + I = (x + h · y) · g + r1 + h · r2
= (x · g + r1) + h · (y · g + r2)

= u1 + h · u2.
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Since ‖x · g + r1‖ ≤ wwg + wr and ‖y · g + r2‖ ≤ wwg + wr. If there are
u = (u1,u2) and u′ = (u′1,u

′
2) such that u1+h·u2 = u′1+h·u′2 = s·g+I and

‖ui‖ = ‖u′i‖ ≤ wwg +wr, i = 1, 2, then u = u′. Note that ‖u‖ = ‖(u1,u2)‖
is also a fixed value, and can achieve slightly below the RGV bound by
choosing appropriately security parameters.

Formally, a RQCS scheme consists of four algorithms: a setup algorithm
(RQCS.Setup), a key generation algorithm (RQCS.Gen), a signing algorithm
(RQCS.Sign), and a deterministic verification algorithm (RQCS.Vrfy), defined
as follows:

– RQCS.Setup: Taking the security parameter 1λ as input, it generates the
public parameters param = (n,w,wr, wg).

– RQCS.Gen: Taking param as input, it chooses a uniform h ∈ R and
(x,y) ∈ R2 such that ‖x‖ = ‖y‖ = w. It computes s = x + h · y and
outputs a pair of keys (pk, sk). The public key pk is (h, s) and the private
key sk is (x,y).

– RQCS.Sign: Taking a private key sk = (x,y) and a message m as input,
it chooses a uniform r = (r1, r2) ∈ R2 such that ‖r1‖ = ‖r2‖ = wr. It
computes I = r1 +h ·r2 and g = H(I,m), followed by u = (x,y) ·g+r.
Then outputs the signature (g,u).

– RQCS.Vrfy: Taking a private key pk = (h, s), a message m, and a sig-
nature (g,u) as input. It computes I = u1 + h · u2 − s · g, and outputs
1 if and only if H(I,m)=g, ‖u1‖ ≤ wwg + wr, and ‖u2‖ ≤ wwg + wr.

Correctness: It is easy to see that the verification of a legitimately generated
signature is always successful since

u1 + h · u2 − s · g = (x · g + r1) + h · (y · g + r2)− (x + h · y) · g
= (x · g + h · y · g) + r1 + h · r2 − (x + h · y) · g
= r1 + h · r2 = I.

The verifier then checks whether H(I,m)=g, ‖u1‖ ≤ wwg +wr, and ‖u2‖ ≤
wwg + wr. If they hold, (g,u) is then a valid signature on the message m.

3.2 Proof of Security

In this section, we prove the security of our signature scheme by a weak assump-
tion where some elements in the ring R = Fqm [X]/(Xn − 1) are invertible.

Theorem 1. If the Rank Quasi-Cyclic Syndrome Decoding (RQCSD) problem
is hard and H is modeled as a random oracle, then the Rank Quasi-Cyclic Signa-
ture (RQCS) scheme is existentially unforgeable under adaptive chosen-message
attacks.
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Proof. Let Π be the RQCS scheme, and let A be a PPT adversary attacking
the scheme. Let q(λ) be a polynomial upper bound on the number of queries A
makes to H on security parameter λ; we assume without loss of generality that
A makes exactly q(λ) distinct queries to H. We make a number of simplifying
assumptions without loss of generality. First, we assume that A makes any given
query to H only once. We also assume that after being given a signature (g,u) on
a message m with u1+h ·u2−s ·g = I, ‖u1‖ ≤ wwg+wr, and ‖u2‖ ≤ wwg+wr,
the adversary A never queries H(I,m) (since it knows the answer will be g).
Finally, we assume that A forges signatures on the message m.

We construct an efficient algorithm A′ that uses A as a subroutine and to
solve the RQCSD problem:

Algorithm A′:
The algorithm is given an instance G = (h, s, w) of the RQCSD problem as

input. We assume s is invertible in R.

1. Chooses uniform j ∈ {1, 2, . . . , q}.
2. A′ sets public key pk = (h, s) and sends pk to A. A′ stores triples (·, ·, ·)

in a table, initially empty. An entry (I(i),m(i), (g(i),u(i))) indicates that

H(I(i),m(i)) = g(i), s · g(i) = I(i) + u
(i)
1 + h · u(i)

2 , ‖u(i)
1 ‖ ≤ wwg + wr, and

‖u(i)
2 ‖ ≤ wwg +wr. Note that w,wg, and wr are fixed constants. A′ answers

A’s queries as follows:
3. When A makes the i-th random-oracle query H(I(i),m(i)):

– If i = j, A′ outputs I(j) ∈ Swr and g(j) ∈ Rwg , and returns g(j) to A as
the answer to its query.

– If i 6= j, A′ chooses a uniform u(i) ∈ R2
ε and I(i) ∈ Swr , computes

g(i) = (I(i) + u
(i)
1 + h · u(i)

2 ) · s−1, returns g(i) to A as the answer to its
query, and stores (I(i),m(i), (g(i),u(i))) in the table.

When A requests a signature on message m(i):
– If i = j, then A′ aborts.
– If i 6= j, then there is an entry (I(i),m(i), (g(i),u(i))) in the table. A′

returns (g(i),u(i)) as the answer to the query.
4. At the end of A’s execution, it outputs (m, (g,u)). If m = m(j), u1 + h ·

u2 + s · g = I, H(I,m) = g, ‖u1‖ ≤ wwg +wr, and ‖u2‖ ≤ wwg +wr, then
A outputs (g,u) as a forged signature on m.

5. A′ runs A a second time by using the same randomness I to forge a signature
on the same message m. A outputs (g′,u′), if m = m(j), u′1+h·u′2+s·g′ = I,
H(I,m) = g′, ‖u′1‖ ≤ wwg + wr, and ‖u′2‖ ≤ wwg + wr.

6. If u1+h·u2+s·g = I, u′1+h·u′2+s·g′ = I, and H(I,m) = g 6= g′ = H(I,m),
and then outputs ((u1 − u′1) · (g − g′)−1, (u2 − u′2) · (g − g′)−1) as long as
‖(u1 − u′1) · (g− g′)−1‖ = ‖(u2 − u′2) · (g− g′)−1‖ = w. Otherwise, A′ runs
A again. According to the Forking Lemma [44], this condition can hold with
non-negligible probability τ .

Obviously,A′ runs in polynomial time. Let the experiment Sig-forge′A,Π(λ) be

a modification of the experiment Sig-forgeA,Π(λ). In the experiment Sig-forge′A,Π
(λ), a guess is made at outset as to which message (from among the q messages

11



that A queries to H) will correspond to the eventual forgery. The probability
that m = m(j) is at least 1/q(λ). The experiment Sig-forge′A,Π(λ) is aborted if

A ever requests a signature m(j). This does not change the probability that the
output of the experiment is 1, since if A once requests a signature on m(j), and
then it cannot possibly output a forgery on m(j). The crucial observation is that
the view of A when runs as a subroutine by A′ is identical to the view of A in
experiment Sig-forge′A,Π(λ) during the process of running A every time.

Finally, observe that whenever experiment Sig-forge′A,Π(λ) outputs 1, A′ out-

puts a correct solution to its given RQCSD instance. Sig-forge′A,Π(λ) = 1 implies

that a forged signature (g,u) on m satisfies m = m(j), u1 + h · u2 + s · g = I,
H(I,m) = g, ‖u1‖ ≤ wwg+wr, and ‖u2‖ ≤ wwg+wr. Similarly, another forged
signature (g′,u′) on m satisfies m = m(j), u′1 + h ·u′2 + s ·g′ = I, H(I,m) = g′,
‖u′1‖ ≤ wwg + wr, and ‖u′2‖ ≤ wwg + wr. Since g 6= g′, we assume that
(g − g′) is invertible in R. Thus we have

u1 + h · u2 + s · g = I = u′1 + h · u′2 + s · g′

(u1 − u′1) + h · (u2 − u′2) = s · (g − g′)

(u1 − u′1) · (g − g′)−1 + h · (u2 − u′2) · (g − g′)−1 = s.

Thus ((u1−u′1) · (g−g′)−1, (u2−u′2) · (g−g′)−1) is the desired solution as long
as ‖(u1 − u′1) · (g − g′)−1‖ = ‖(u2 − u′2) · (g − g′)−1‖ = w. We have

Pr[RQCSDA′,G(λ) = 1] = Pr[Sig-forge′A,Π(λ) = 1]

=
τ

q(λ)
Pr[Sig-forgeA,Π(λ) = 1]. (1)

According to the assumption, Pr[Sig-forgeA,Π(λ) = 1] is non-negligible. S-
ince q(λ) is a polynomial and τ is a non-negligible probability, we conclude that
Pr[RQCSDA′,G(λ) = 1] is also non-negligible from Equation 1. This is in contra-
diction with the hardness of the RQCSD problem.

4 Security Parameters

In this section, we choose sets of parameters of the RQCS scheme, briefly describe
computational cost, and compare our signature scheme with other existing code-
based signature schemes.

There exist two types of generic attacks on the RSD problem:

1. Combinatorial attacks: The goal is to find the support of the error or of
the codeword. These attacks are usually the best ones for small q (typically
q = 2). Combinatorial attacks will take effect as q increases, when n and k
are large. For an [n, k] rank code C over Fqm , the best combinatorial attack

to find an error of weight w is O((n − k)3m3qwd
(k+1)m

n e−m), which depends
mainly on the value of n and m. This attack is proposed in [2], and is an
improvement of an attack described in [22].
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2. Algebraic attacks: This method tries to solve an algebraic system by
Groebner basis [5]. The complexity of these attacks is largely independent of
the value of q, and may be largely independent of m in some cases. These at-
tacks mainly depend on the number of unknowns with respect to the number
of equations. These attacks are usually the most efficient when q increases.
In this paper, we consider q = 2, and the complexity is greater than the cost
of combinatorial attacks [14,5,22,13].

Choice of parameters. Firstly, we recall q,m and the public parameters
param = (n,w,wr, wg):

– q,m: the cardinality of the basis field and the degree of the extension field.
Let q be 2.

– n: the dimension of the double circulant code, and the lenght of the double
circulant code is 2n.

– w: the fixed rank weight of random word.
– wr: the rank weight of r1 and r2 for r = (r1, r2) ∈ F2n

qm .
– wg: the rank weight of g ∈ Fnqm .

We recommend that w, wr, and wwg+wr be chosen below the RGV bound de-
fined by Definition 4 for a higher level of security. We assume δ = RGV (2n, n,m,

q) =
m+2n−

√
(m−2n)2+4nm

2 . We recommend that security parameters for the se-
curity of λ bits be chosen below

O(n3m3qtd
(n+1)m

2n e−m) ≥ 2λ, t = w,wr

wwg + wr ≤ δ.

We assume wr = wg = w, then wwg + wr = (w + 1)w ≤ δ. In practice,
wg ≤ wr ≤ w. To avoid attacks [27,35,45], n should be a prime. Let λ be
128, 192, and 256. We then obtain three sets of parameters of our scheme in
Table 1.

Table 1. Sets of parameters for the RQCS scheme in bits.

Instance q n m w (w + 1)w δ Public key size Signature size Security

RQCS-1 2 67 89 5 30 31 11,926 17,889 128

RQCS-2 2 97 121 6 42 43 23,474 35,211 192

RQCS-3 2 101 139 6 42 48 28,078 42,117 256

In Table 1, the public key is composed of (h, s) and has size 2mn bits. The
signature is consist of (u,g) and has size 3mn bits. This shows the relationship
of the security strength, public key sizes and the signature sizes.

Computational Cost. The most costly operations are matrix-vector product
over Fqm . Each multiplication cost is O(m log(m) log(log(m)). Hence, RQCS.Gen
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has total complexity ofO(n2m log(m) log(log(m)). The total complexity of RQCS.
Sign and RQCS.Vrfy isO(3n2m log(m) log(log(m)) andO(2n2m log(m) log(log(m))
respectively. The total cost is in O(n2m log(m) log(log(m)).

Comparison with existing code-based signature schemes. We compare
our signature scheme with KKS, CFS, Stern, and (U |U + V )Sign. The first
three signature schemes have been described in previously Introduction. Recently
another code-based signature scheme whose security relies on (U |U + V ) codes
has been proposed [11].

Table 2. Comparison with existing code-based signature schemes in bits.

Scheme Public key size Signature size Signature time Security

Our RQCS 11,926 17,889 O(n2m log(m)) 128

KKS [8] 176,900 615 O(n2 log(n)) 80

CFS [9] 9,437,184 81 O(t!t2m3) 83

Stern [20] 347 122,880 O(n2 log(n)) 83

(U |U + V )Sign [11] 14,680,064 7870 O(n3) 128

Table 2 shows that at the cost of larger signature size our scheme has advan-
tages in terms of the size of the public key, but the size of the signature is the
second largest. While the scheme in [20] has the shortest public key than others,
the signature is significantly larger than others. Moreover, the signing time is
also acceptable because m and n are relatively small in our signature scheme.

5 Conclusions

In this paper, we present a new post-quantum signature scheme whose security
can be reduced to the hardness of the rank quasi-cyclic syndrome decoding
(RQCSD) problem. We show that it is EUF-CMA in the random oracle model.
In the process of proof, we use a weak assumption where some elements in the
ring R = Fqm [X]/(Xn − 1) are invertible. This assumption indicates that our
scheme is more reliable. The proposed scheme only uses random rank double
circulant codes rather than restricted families for which a decoding algorithm is
known. The public key is shorter than existing code-based signature schemes.

The size of the signature in the proposed scheme is relatively larger than
other code-based signature schemes. In addition, our scheme requires that all
operations must be performed on a large field Fqm as other rank-based met-
ric cryptosystems. Constructing a practical collision-resistant hash function H:
Swr×{0, 1}∗ → Rwg is crucial to our signature scheme. It is also worth exploring
the possibility to reduce the signature size. We leave them as open problems for
further research.
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