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Abstract

We study the rate of so-called continuously non-malleable codes, which allow to encode
a message in such a way that (possibly adaptive) continuous tampering attacks on the
codeword yield a decoded value that is unrelated to the original message. Our results are
as follows:

• For the case of bit-wise independent tampering, we establish the existence of rate-
one continuously non-malleable codes with information-theoretic security, in the plain
model.

• For the case of split-state tampering, we establish the existence of rate-one continuously
non-malleable codes with computational security, in the (non-programmable) random
oracle model. We further exhibit a rate-1/2 code and a rate-one code in the common
reference string model, but the latter only withstands non-adaptive tampering. It
is well known that computational security is inherent for achieving continuous non-
malleability in the split-state model (even in the presence of non-adaptive tampering).

Continuously non-malleable codes are useful for protecting arbitrary cryptographic prim-
itives against related-key attacks, as well as for constructing non-malleable public-key en-
cryption schemes. Our results directly improve the efficiency of these applications.
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1 Introduction

1.1 Background

The beautiful concept of non-malleable codes [28] has recently emerged at the intersection
between cryptography and information theory. Given a function family F , such codes allow to
encode a k-bit value s into an n-bit codeword c, such that, for each f ∈ F , it is unlikely that
f(c) encodes a value s̃ that is related to s. On the theoretical side, being a weaker guarantee
than error correction/detection, non-malleability is achievable for very rich families F ; on the
practical side, non-malleable codes have interesting applications to cryptography.

Continuous non-malleability. In the original definition of non-malleable codes, the prop-
erty of non-malleability is guaranteed as long as a single, possibly adversarial, function f ∈ F
is applied to a target codeword. All bets are off, instead, if an adversary can tamper mul-
tiple times with the same codeword. While “one-time” non-malleability is already sufficient
in some cases, it comes with some shortcomings, among which, for instance, the fact that in
applications, after a decoding takes place, we always need to re-encode the message using fresh
randomness; the latter might be problematic, as such a re-encoding procedure needs to take
place in a tamper-proof environment.

Motivated by these limitations, Faust et al. [33] introduced a natural extension of non-
malleable codes where the adversary is allowed to tamper a target codeword by specifying
polynomially-many functions fj ∈ F ; in case the functions can be chosen adaptively, depending
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on the outcome of previous queries, we speak of adaptive tampering, and otherwise we say
that tampering is non-adaptive. As argued in [33], such continuously non-malleable codes
allow to overcome several limitations of one-time non-malleable codes, and further led to new
applications where continuous non-malleability is essential [33, 34, 21, 20].

Bit-wise and split-state tampering. Since non-malleable codes do not involve secret keys,
it is impossible to achieve (even one-time) non-malleability against all efficient families of func-
tions F . (In fact, whenever the encoding and decoding algorithms belong to F , it is always
possible to decode the target codeword, obtain the message, and encode a related value.) For this
reason, research on non-malleable codes has focused on obtaining (continuous) non-malleability
for limited, yet interesting, particular families. Two prominent examples, which are also the
focus of this work, are described below:

• Bit-wise independent tampering: Here, each function f ∈ Fnbit is specified as a tuple
f := (f1, . . . , fn), where each fi is an arbitrary map determining whether the i-th bit
of the codeword should be kept, flipped, set to zero, or set to one. Continuously non-
malleable codes for bit-wise independent tampering, with information-theoretic security,
were constructed in [21], in the plain model (i.e., without assuming a trusted setup).
• Split-state tampering: Here, each function f ∈ Fn0,n1

split is specified as a pair f := (f0, f1),
where n = n0 + n1, and f0 and f1 are arbitrary functions to be applied, respectively, to
the first n0 bits and to the last n1 bits of the codeword. Continuously non-malleable codes
for split-state tampering, with computational security, were constructed in [33, 30] in the
common reference string (CRS) model (i.e., assuming a trusted setup), and very recently
in [48] in the plain model, assuming injective one-way functions.

It is well known that continuous non-malleability is impossible in the split-state model with
information-theoretic security, even for non-adaptive tampering [33]. Furthermore, non-adaptive
continuous non-malleability for both the above families requires a special “self-destruct” capa-
bility that instructs the decoding algorithm to always output the symbol ⊥ (meaning “decoding
error”) after the first invalid codeword is decoded, otherwise generic attacks are possible [36, 33].

An important parameter of non-malleable codes is their rate, defined as the asymptotic ratio
between the length of the message to the length of its encoding, as the message length goes to
infinity. The optimal rate is one, whereas a code has rate zero if the length of the codeword is
super-linear in the length of the message. Non-malleable codes with optimal rate for bit-wise
independent tampering [8] (with information-theoretic security) and split-state tampering [1]
(with computational security), were recently constructed. To the best of our knowledge, how-
ever, the achievable rate for continuously non-malleable codes for the same families is poorly
understood.

1.2 Our Contributions

In this paper, we make significant progress towards characterizing the achievable rate for con-
tinuously non-malleable codes in the bit-wise independent and split-state tampering model.

Split-state tampering. In §3, we give three constructions of continuously non-malleable
codes in the split-state model, with a natural trade-off in terms of efficiency, security, and
assumptions. In particular, we show:

Theorem 1 (Informal). There exists a continuously non-malleable code in the split-state model
in the following settings:
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(i) With rate 1 and with security against non-adaptive tampering in the common refer-
ence string model, assuming collision-resistant hash functions and non-interactive zero-
knowledge proofs.

(ii) With rate 1/2 and with computational security against adaptive tampering in the common
reference string model, assuming collision-resistant hash functions and non-interactive
zero-knowledge proofs.

(iii) With rate 1 and with computational security against adaptive tampering in the non-
programmable random oracle model.

Recall that computational security is inherent for continuous non-adaptive non-malleability
in the split-state model, even in the random oracle model.

Bit-wise independent tampering. In §4, we show a similar result for the case of bit-wise
independent tampering, although under minimal assumptions:

Theorem 2 (Informal). There exists a rate-one continuously non-malleable code against bit-
wise independent tampering, achieving information-theoretic security against adaptive tampering
in the plain model.

From a technical perspective, the above theorems are proved by exhibiting so-called rate
compilers. A rate compiler is a black-box transformation from a rate-zero non-malleable code Σ
for some family F into a non-malleable code Σ′ for the same family and with improved rate. In
fact, we show that the rate compilers constructed in [8, 1] already work, with some tweaks, in
the continuous case. We stress, however, that while the constructions we analyze are similar to
previous work, our security proofs differ significantly from the non-continuous case, and require
several new ideas. We refer the reader directly to §3 and §4 for an overview of the main technical
challenges we had to overcome.

1.3 Related Work

Several constructions of non-malleable codes for bit-wise [28, 7, 8, 21, 20, 4] and split-state [28,
27, 3, 18, 5, 2, 14, 6, 44, 45, 33, 22, 1, 44, 29, 30, 48] tampering appear in the literature; out of
those only [33, 21, 41, 6, 20, 30, 48] achieve continuous non-malleability.1 Non-malleable codes
also exist for a plethora of alternative models, including bit-wise tampering composed with
permutations [18, 7, 8], circuits of polynomial size [28, 17, 35], constant-state tampering [16,
4, 42], block-wise tampering [13], functions with few fixed points and high entropy [41], space-
bounded algorithms [32, 10], and bounded-depth circuits [9, 15].

The capacity (i.e., the best achievable rate) of information-theoretic non-malleable coding
was first studied by Cheraghchi and Guruswami [17], who established that 1−α is the maximum
rate for function families which are only allowed to tamper the first αn bits of the codeword.
This translates into a lower bound of 1/2 for the case of split-state tampering, and we also know
that computational assumptions, in particular one-way functions, are necessary to go beyond
the 1/2 barrier [1].

Non-malleable codes find applications to cryptography, in particular for protecting arbitrary
cryptographic primitives against related-key attacks [28]. In this context, continuous non-
malleability is a plus [33, 34]. Additional applications include constructions of non-malleable
commitments [37], and domain extenders for public-key non-malleable encryption [21, 46, 20]
and commitments [7].

1Strictly speaking, [6] only achieves continuous non-malleability for the weaker case of persistent tampering
(where each tampering function is applied to the output of the previous tampering function).
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2 Preliminaries

2.1 Notation

For a string x, we denote respectively its length by |x| and the i-th bit by xi; if X is a set, |X |
represents the number of elements in X . When x is chosen randomly in X , we write x←$ X .
When A is an algorithm, we write y ← A(x) to denote a run of A on input x and output y; if
A is randomized, then y is a random variable and A(x; r) denotes a run of A on input x and
randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and
for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial number of
steps (in the size of the input). Given two strings x, y ∈ {0, 1}n we define the Hamming distance
∆(x, y) :=

∑
i∈[n](xi + yi mod 2), where the sum is over the integers.

Negligible functions. We denote with λ ∈ N the security parameter. A function ν : N →
[0, 1] is negligible in the security parameter (or simply negligible) if it vanishes faster than the
inverse of any polynomial in λ.

Random variables. For a random variable X, we write P [X = x] for the probability that X
takes on a particular value x ∈ X (with X being the set where X is defined). The statistical
distance between two random variables X and X′ defined over the same set X is defined as
SD (X; X′) = 1

2

∑
x∈X |P [X = x] − P [X′ = x] |. Given two ensembles X = {Xλ}λ∈N and Y =

{Yλ}λ∈N, we write X ≡ Y to denote that they are identically distributed, and X ≈c Y to denote
that they are computationally indistinguishable

2.2 Non-Malleable Codes

We start by recalling the standard notion of a coding scheme in the common reference string
(CRS) model.2

Definition 1 (Coding scheme). Let k(λ) = k ∈ N and n(λ) = n ∈ N be functions of the
security parameter λ ∈ N. A (k, n)-code is a tuple of algorithms Σ = (Init,Enc,Dec) specified
as follows: (1) The randomized algorithm Init takes as input the security parameter λ ∈ N, and
outputs a CRS ω ∈ {0, 1}p(λ), where p(λ) ∈ poly(λ); (2) The randomized algorithm Enc takes
as input a value s ∈ {0, 1}k, and outputs a codeword c ∈ {0, 1}n; (3) The deterministic decoding
algorithm Dec takes as input a codeword c ∈ {0, 1}n, and outputs a value s ∈ {0, 1}k ∪ {⊥}
(where ⊥ denotes an invalid codeword).

We say that Σ satisfies correctness if for all ω ∈ {0, 1}p(λ) as output by Init(1λ), and for all
values s ∈ {0, 1}k the following holds: P[Dec(ω,Enc(ω, s)) = s] = 1.

An important parameter of a coding scheme is its rate, i.e. the asymptotic ratio of the length
of a message to the length of its encoding (in bits), as the message length increases to infinity.
The best rate possible is 1; if the length of the encoding is super-linear in the length of the
message, the rate is 0. More formally, ρ(Σ) := infλ∈N limk→∞

k(λ)
n(λ) .

Non-malleability. Let F be a family of functions F := {f : {0, 1}n → {0, 1}n}. The notion of
F-non-malleability—as originally defined by Dziembowski, Pietrzak, and Wichs [28]—captures
the intuition that any modification of a given target encoding via functions f ∈ F yields a

2Such codes are sometimes also called non-explicit. Explicit codes are obtained by enforcing algorithm Init to
output the empty string.

4



RealΣ,A,F (λ):

ω←$ Init(1λ)
(s, α0)←$ A0(ω)
c←$ Enc(ω, s)

α1←$ A
Omaul(ω,c,·)
1 (α0)

Return α1

Oracle Omaul(ω, c, ·):
Upon f ∈ F :
c̃ = f(c)
s̃ = Dec(ω, c̃)
If s̃ = ⊥, self-destruct
Return s̃

SimuS,A,F (λ):

(ω, σ)←$ S0(1λ)
(s, α0)←$ A0(ω)

α1←$ A
Osim(S1,σ,s,·)
1 (α0)

Return α1

Oracle Osim(S1, σ, s, ·):
Upon f ∈ F :

s̃←$ S1(σ, f)
If (s̃ = �), then s̃← s
If s̃ = ⊥, self-destruct
Return s̃

Figure 1: Experiments defining continuously non-malleable codes. The self-destruct command
causes the tamper oracles Omaul and Osim to return ⊥ on all subsequent queries.

codeword that either decodes to the same message as the original codeword, or to a completely
unrelated value.

The definition below formalizes the above intuition in a more general setting where non-
malleability is required to hold against (fully adaptive) adversaries that can maul the original
encoding several times. This is often referred to as continuous non-malleability [33]. Roughly
speaking, security is defined by comparing two experiments (cf. Fig. 1). In the “real experi-
ment”, the adversary tampers continuously with a target encoding of a chosen message (possibly
dependent on the CRS);3 for each tampering attempt, represented by a function f ∈ F , the
adversary learns the outcome corresponding to the decoding of the modified codeword. In the
“simulated experiment”, the view of the adversary is faked by a simulator which is completely
oblivious of the message being encoded; importantly, the simulator is allowed to return a special
symbol � meaning that (it believes) the tampering function yields a modified codeword which
decodes to the original message. Both experiments self-destruct upon the first occurrence of ⊥,
i.e., they answer all subsequent queries by ⊥.

Definition 2 (Continuous non-malleability). Let Σ = (Init,Enc,Dec) be a (k, n)-code in the
CRS model. We say that Σ is continuously F-non-malleable if for all PPT adversaries A :=
(A0,A1) there exists a simulator S := (S0,S1) such that

RealΣ,A,F (λ) ≈c SimuS,A,F (λ),

where the experiments RealΣ,A,F (λ) and SimuS,A,F (λ) are defined in Fig. 1.

Remark 1 (Non-adaptive tampering). We model non-adaptive tampering by allowing the ad-
versary A1 to submit a single query (fj)j∈[q] to the oracle Omaul, for some polynomial q(λ) ∈
poly(λ). Upon input such a query, the oracle computes c̃j = fj(c), and returns s̃j = Dec(ω, c̃j)
for all j ∈ [q] (up to self-destruct). In this case, we say that Σ is non-adaptively continuously
F-non-malleable.

Tampering families. We are particularly interested in the following tampering families.

3Importantly, each tampering function is applied to the original coding; this setting is sometimes known as
non-persistent tampering.

5



Gind
Π,A(λ, b):

κ←$ {0, 1}d
(µ0, µ1, α)←$ A0(1λ)
γ←$ AEnc(κ, µb)
Return A1(γ, α)

Gauth
Π,A (λ):

κ←$ {0, 1}d
(µ, α)←$ A0(1λ)
γ←$ AEnc(κ, µ)
γ′←$ A1(γ, α)
Return 1 iff:

(i) γ′ 6= γ; and
(ii) ADec(κ, γ′) 6= ⊥.

Figure 2: Experiments defining security of SKE.

• Split-state tampering: This is the family of functions Fn0,n1

split := {(f0, f1) : f0 :
{0, 1}n0 → {0, 1}n0 , f1 : {0, 1}n1 → {0, 1}n1}, for some fixed n0(λ) = n0 ∈ N and
n1(λ) = n1 ∈ N such that n0 + n1 = n. Given an input codeword c = (c0, c1), tampering
with a function (f0, f1) ∈ Fn0,n1

split results in a modified codeword c̃ = (f0(c0), f1(c1)), where
c0 (resp., c1) consists of the first n0 (resp., the last n1) bits of c.
• Bit-wise independent tampering: This is the family of functions Fnbit := {(f1, . . . , fn) :
∀i ∈ [n], fi : {0, 1} → {0, 1}}. Given an input codeword c = (c1, . . . , cn), tampering with
a function f ∈ Fnbit results in a modified codeword c̃ = (f1(c1), . . . , fn(cn)), where each
fi is any of the following functions: (i) fi(x) = x (keep); (ii) fi(x) = 1 ⊕ x (flip); (iii)
fi(x) = 0 (zero); (iv) fi(x) = 1 (one).

2.3 Authenticated Encryption

A secret-key encryption (SKE) scheme is a tuple of algorithms Π := (KGen,AEnc,ADec) spec-
ified as follows: (1) The randomized algorithm KGen takes as input the security parameter
λ ∈ N, and outputs a uniform key κ←$ {0, 1}d; (2) The randomized algorithm AEnc takes as
input a key κ ∈ {0, 1}d, a message µ ∈ {0, 1}k, and outputs a ciphertext γ ∈ {0, 1}m; (3)
The deterministic algorithm ADec takes as input a key κ ∈ {0, 1}d, a ciphertext γ ∈ {0, 1}m,
and outputs a value µ ∈ {0, 1}k ∪ {⊥} (where ⊥ denotes an invalid ciphertext). The values
d(λ), k(λ),m(λ) are all polynomials in the security parameter λ ∈ N, and sometimes we call Π
an (d, k,m)-SKE scheme.

We say that Π meets correctness if for all κ ∈ {0, 1}d, all messages µ ∈ {0, 1}k, we have
that P [ADec(κ,AEnc(κ, µ)) = µ] = 1 (the probability is taken over the randomness of AEnc).
As for security, an SKE scheme should satisfy two properties (see below for formal definitions).
The first property, usually known as indistinguishable encryption (IND-security), says that it
is hard to distinguish the encryptions of any two (adversarially chosen) messages. The second
property, usually called authenticity, says that, without knowing the secret key, it is hard to
produce a valid ciphertext (i.e., a ciphertext that does not decrypt to ⊥).

Definition 3 (Security of SKE). Let Π = (KGen,AEnc,ADec) be a SKE scheme. We say that
Π is secure if the following holds for the games defined in Fig. 2.

• For all PPT adversaries A there exists a negligible function ν : N→ [0, 1] such that

P
[
Gauth

Π,A (λ) = 1
]
≤ ν(λ).

• For all PPT adversaries A there exists a negligible function ν : N→ [0, 1] such that∣∣∣P [Gind
Π,A(λ, 0) = 1

]
− P

[
Gind

Π,A(λ, 1) = 1
]∣∣∣ ≤ ν(λ).
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Note that since both authenticity and indistinguishable encryption are one-time properties,
in principle, information-theoretic constructions with such properties are possible when d ≤ k.
However, we are interested in constructions where k > d, for which the existence of one-way
functions is a necessary assumption.

2.4 Concentration Bound

Lemma 1 ([19]). Let δ ∈ (0, 1
2) be a constant, m,n ∈ N and m ∈ [δn, (1 − δ)n]. Let X be a

random variable distributed uniformly over all n-bit strings with exactly m 1s. Then, for every
T ⊆ [n] of size t, and any ε > 0,

P

[∑
i∈T

Xi 6= t
(
m
n ± ε

)]
≤ 2e−ε

2t/3 .

2.5 Error-Correcting Sharing Schemes

We recall the notion of error-correcting sharing schemes.

Definition 4. A (k, n, T,D) error correcting sharing scheme (ECSS) is a triple of algorithms
(Enc,Dec,ECorr), where Enc : {0, 1}k → {0, 1}n is probabilistic, Dec : {0, 1}n → {0, 1}k, and
ECorr : {0, 1}n → {0, 1}n ∪ {⊥}, with the following properties:

• Correctness: For all s ∈ {0, 1}k, Dec(Enc(s)) = 1 with probability 1 (over the random-
ness of Enc).
• Privacy: For all s ∈ {0, 1}k, any subset of up to T bits of Enc(s) are distributed uniformly

and independently (over the randomness of Enc).
• Distance: Any two codewords in the range of Enc have Hamming distance at least D.
• Error correction: For any codeword c in the range of Enc and any c̃ ∈ {0, 1}n, ECorr(c̃) =
c if their Hamming distance is less than D/2, and ECorr(c̃) = ⊥ otherwise.

3 Split-State Tampering

In this section, we study several rate-optimizing compilers for continuously non-malleable codes
in the split-state setting. As a starting point, in §3.1, we prove that, under certain assumptions
on the initial rate-zero code, the compiler of Aggarwal et al. [1] actually achieves continuous
security against non-adaptive tampering. Unfortunately, as we show via an explicit adaptive
attack, the limitation of non-adaptive security is inherent for this particular construction.

Motivated by this limitation, we propose two variants of the rate compiler from [1] that
guarantee continuous security in the presence of adaptive tampering attacks. The first variant,
which is described in §3.2, achieves rate 1/2. The second variant, which is described in §3.3,
achieves rate one in the (non-programmable) random oracle model.

3.1 Rate-One Compiler (Non-Adaptive Tampering)

Let Σ = (Init,Enc,Dec) be a rate-zero (d, n)-code, and Π = (KGen,AEnc,ADec) be a (d, k,m)-
SKE scheme. Consider the following construction of a (k, n′)-code Σ′ = (Init′,Enc′,Dec′), where
n′ := m+ n.

Init′(1λ): Upon input λ ∈ N, return the same as Init(1λ).
Enc′(ω, s): Upon input ω and a value s ∈ {0, 1}k, sample κ←$ {0, 1}d, compute c←$ Enc(ω, κ)

and γ←$ AEnc(κ, s); return c′ := c||γ.
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Real+
Σ,A,Fn0,n1split

(λ, n0, n1):

ω←$ Init(1λ)
(s, α0)←$ A0(ω)
c←$ Enc(ω, s)
c1 ← (c[n0 + 1], . . . , c[n])

α1←$ A
Omaul(ω,c,·)
1 (α0)

α2←$ A2(α1, c1)
Return α2

Oracle Omaul(ω, c, ·):
Upon (f0, f1) ∈ Fn0,n1

split :

c̃ = (f0(c0), f1(c1))
s̃ = Dec(ω, c̃)
Return s̃

Simu+
S,A,Fn0,n1split

(λ, n0, n1):

(ω, σ, ĉ1)←$ S0(1λ)
(s, α0)←$ A0(ω)

α1←$ A
Osim(S1,σ,ĉ1,s,·)
1 (α0)

α2←$ A2(α1, ĉ1)
Return α2

Oracle Osim(S1, σ, ĉ1, s, ·):
Upon (f0, f1) ∈ Fn0,n1

split :

s̃←$ S1(σ, (f0, f1), ĉ1)
If (s̃ = �), then s̃← s
Return s̃

Figure 3: Experiments defining augmented continuously non-malleable codes.

Dec′(ω, c′): Parse c′ := c||γ, and let κ̃ = Dec(ω, c). If κ̃ = ⊥, return ⊥ and self-destruct; else
let s̃ = ADec(κ̃, γ). If s̃ = ⊥, return ⊥ and self-destruct; else return µ̃.

Roughly speaking, the compiler uses the underlying (rate-zero) code to encode a uniform
key for the authenticated encryption scheme; such a key is then used to encrypt the message,
and the resulting ciphertext is appended to the encoding of the key. The decoding algorithm,
naturally decodes the encoding of the key, and hence uses the resulting key to decrypt the
ciphertext.

3.1.1 Augmented Continuous Non-Malleability

Assume that Σ is non-malleable in the split-state setting, where the encoding c is split in two
halves c0 and c1 (consisting of n0 and n1 bits, respectively) that can be modified arbitrarily
(yet independently). Intuitively, we would like to show that Σ′ is continuously non-malleable
against the class of split-state functions that modifies c′0 := c0 and c′1 := (c1, γ) independently.

The difficulty, originally observed in [1], is that, although (c0, c1) is a non-malleable en-
coding of κ (as long as c0 and c1 are mauled independently), the adversary could attempt to
(independently) modify c′1 and c′0 yielding shares c̃′1 := (c̃1, γ̃) and c̃′0 such that (c̃0, c̃1) decodes
to a key κ̃ which is unrelated to κ̃, yet decrypting γ̃ with κ̃ results in a message s̃ that is related
to s.

A similar difficulty, of course, appears in the continuous setting. In order to overcome this
obstacle, inspired by the approach taken in [1], we define a notion of augmented continuous
non-malleability. Such a notion is a stronger form of continuous non-malleability where, in the
“real experiment” after A is done with tampering queries, it is additionally given one share of
the original encoding (say, c0). In turn, the “ideal experiment” features a sort of “canonical”
simulator S+ that at the beginning of the simulation computes an encoding ĉ := (ĉ0, ĉ1) of, say,
the all-zero string; hence, the dummy encoding ĉ is used to answer tampering queries from A,
and, after the adversary is done with tampering queries, the simulator returns ĉ0 to A. The
formal definition appears below.

Definition 5 (Augmented continuous non-malleability). Let Σ = (Init,Enc,Dec) be a (k, n)-
code in the CRS model, and let n0(λ) = n0 ∈ N and n1(λ) = n1 ∈ N be such that n = n0 + n1.
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We say that Σ is augmented continuously Fn0,n1

split -non-malleable if for all PPT adversaries A :=
(A0,A1,A2) there exists a simulator S := (S0,S1) such that

Real+
Σ,A,Fn0,n1split

(λ, n0, n1) ≈c Simu+
S,A,Fn0,n1split

(λ, n0, n1),

where the experiments Real+
Σ,A,Fn0,n1split

and Simu+
S,A,Fn0,n1split

are defined in Fig. 3.

3.1.2 Security Analysis

We establish the following result.

Theorem 3. Assume that Σ is an augmented continuously Fn0,n1

split -non-malleable (d, n)-code,
and that Π is a secure (d, k,m)-SKE scheme. Then Σ′ as defined in §3.1 is a non-adaptively
continuously Fn0,n1+m

split -non-malleable (k,m+ n)-code.

Remark 2. Similarly to [1], the analysis actually shows that the code Σ′ also preserves aug-
mented continuous non-malleability (and not just continuous non-malleability). However, since
our goal is to construct continuously non-malleable codes (in the standard sense), we do not
give the proof for the augmented case.

We also stress that it suffices to start from an augmented code Σ′ that is non-adaptively
continuously non-malleable. However, we rely on the stronger assumption of full adaptivity in
order to simplify the exposition, and because, looking ahead, our instantiation from §5.1 achieves
this property.

Proof intuition. We sketch the main ideas behind the security proof. We need to describe
a simulator S′ that can emulate arbitrary non-adaptive split-state tampering with a target
encoding c′ := (c0, (c1, γ)) of a message s, without knowing s. Roughly, S′ does the following.

• At the beginning, run the simulator S+
0 of the underlying augmented non-malleable code,

obtaining a fake CRS ω and a simulated right share ĉ1.
• Sample a key κ for the authenticated encryption scheme, and define γ as an encryption

of 0k under the sampled key.
• Upon receiving a sequence of non-adaptive tampering queries (f ′0,j , f

′
1,j)j∈[q] behave as

follows for each j ∈ [q]:

– Invoke the simulator S+
1 of the underlying augmented non-malleable code upon

(f ′0,j , f
′
1,j , ĉ1), obtaining a simulated decoded key κ̃j ∈ {�,⊥} ∪ {0, 1}d.

– Compute the mauled ciphertext γ̃j by applying f ′1,j on (ĉ1, γ).

• For each key κ̃j :

– If κ̃j = ⊥ set s̃j := ⊥.
– Else if κ̃j = �, set s̃j := ⊥ in case γ̃j is different from the original ciphertext γ, and

otherwise set s̃ := �.
– Else set s̃j as the decryption of γ̃j under κ̃j .
– Simulate a self-destruct by taking the minimum index j∗ such that either κ̃j∗ = ⊥

or s̃j∗ = ⊥, and overwrite all values s̃j∗+1, . . . , s̃q with ⊥.

• Return s̃1, . . . , s̃q.

In order to prove that the above simulation is indeed correct, we define a sequence of hybrid
experiments starting with the real experiment (where the adversary A′ tampers non-adaptively
with a target encoding computed using Σ′) and ending with the ideal experiment (where the
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above simulator is used to answer A′’s tampering queries). In the first hybrid, we change the way
a non-adaptive tampering query (f ′0,j , f

′
1,j)j∈[q] is answered. In particular, given each (f ′0,j , f

′
1,j),

we run the augmented simulator S+
1 upon (f0,j , f1,j), where f0,j is identical to f ′0,j , whereas

f1,j is obtained by hard-wiring the ciphertext γ (encrypting the real message s) into f ′1,j . This
allows us to get a mauled key κ̃j that is then used to decrypt the ciphertext γ̃j defined by
applying the function f ′1,j on (ĉ1, γ), where ĉ1 is the right share of an encoding produced at the

beginning of the experiment by running the augmented simulator S+
0 .

The most interesting part of the proof is to show that the real experiment and the above
hybrid are computationally indistinguishable; here, the augmented non-malleability of the un-
derlying code Σ plays a crucial role. For the purpose of this proof sketch, we only focus on this
particular step of the proof, and refer the reader to the full proof for the analysis of the other
hybrids. The main challenge is to reduce the attacker A′ against Σ′ to an attacker A against
Σ. In fact, the attacker A′ expects to attack a target encoding of the form (c0, (c1, γ)), whereas
the attacker A can only tamper with (c0, c1). This issue is resolved by having A encrypt the
value s chosen by A′ under a uniformly random key κ for the authenticated encryption, and by
mapping each pair of tampering functions (f ′0,j , f

′
1,j) into a pair (f0,j , f1,j) such that f0,j := f ′0,j

and f1,j(·) := f ′1,j(·, γ) (i.e., the ciphertext γ is hard-wired into the right tampering function).

The above trick allows the reduction to obtain a mauled key κ̃j ∈ {�,⊥} ∪ {0, 1}d that is
either distributed as in the real experiment (where decoding takes place) or as in the hybrid
experiment (where the augmented simulator S+

1 is used). Unfortunately, this information alone
is not sufficient to complete the simulation; in fact, the reduction would need to use the key κ̃j
to decrypt the mauled ciphertext γ̃j which is obtained by applying the function f ′1,j upon input
the ciphertext γ and either the real share c1 (in the real experiment) or the simulated share ĉ1

(in the hybrid experiment). Now, if A′ were fully adaptive, the reduction would get to know
the right share of the encoding only after the last tampering query, which makes it difficult
to complete the reduction. Here is where we rely on the fact that we only aim at showing
non-adaptive security, as in this case A′ specifies all functions (f ′0,j , f

′
1,j)j∈[q] in one go, which in

turn allows A to specify (f0,j , f1,j)j∈[q] as defined above, obtain all values (κ̃j)j∈[q] together with
the right share (i.e., either c1 or ĉ1), compute the ciphertexts (γ̃j)j∈[q], and finally complete the
simulation.

Proof of Theorem 3. For simplicity, let us write F := Fn0,n1

split and F ′ := Fn0,n1+m
split . We must

describe a simulator S′ = (S′0, S
′
1) such that for all adversaries A′ = (A′0,A

′
1) we have:

RealΣ′,A′,F ′(λ) ≈c SimuS′,A′,F ′(λ),

where the real/ideal experiments are defined in Fig. 1.
The proof proceeds by introducing a sequence of hybrid experiments, formally described in

Fig. 4, that ease the description of the simulator. The experiments are informally described
below.

Hybrid H0(λ): The first hybrid experiment is identical to RealΣ′,A′,F (λ), where Σ′ is the
transformed coding scheme described in §3.1.

Hybrid H1(λ): We change the way tampering queries are handled. In particular, at the begin-
ning of the experiment we sample the CRS by running the algorithm S+

0 of the underlying
code Σ. Furthermore, the answer to each tampering query is now computed by first ob-
taining the tampered key κ̃ via algorithm S+

1 , and then decrypting the mauled ciphertext
γ̃. Here is where we rely on the fact that the simulator S+ is able to fake the distribution
of the right share of an encoding, which allows to simulate the tampered ciphertext.
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H0(λ):

ω←$ Init(1λ)
(s, α′0)←$ A′0(ω)
κ←$ {0, 1}d
(c0, c1)←$ Enc(ω, κ)
γ←$ AEnc(κ, s)
(c′0, c

′
1) := (c0, (c1, γ))

α′1←$ A′1
O0(ω,(c′0,c

′
1),·)(α′0)

Return α1

Oracle O0(ω, (c′0, c
′
1), ·):

Upon (f ′0, f
′
1) ∈ F ′:

c̃0 = f ′0(c0)
(c̃1, γ̃) = f ′1(c1, γ)
κ̃ = Dec(ω, c̃0, c̃1)
If (κ̃ = ⊥)
Return ⊥

Else
Return ADec(κ̃, γ̃)

H1(λ):

(ω, σ, ĉ1)←$ S+
0 (1λ)

(s, α′0)←$ A′0(ω)
κ←$ {0, 1}d
γ←$ AEnc(κ, s)
(c′0, c

′
1) := (c0, (c1, γ))

α′1←$ A′1
O1(S+

1 ,σ,ĉ1,γ,κ,·)(α′0)
Return α1

Oracle O1(S+
1 , σ, ĉ1, γ, κ, ·):

Upon (f ′0, f
′
1) ∈ F ′:

f0 := f ′0; f1 := f ′1(·, γ)
κ̃ = S+

1 (σ, (f0, f1), ĉ1)
(c̃1, γ̃) = f ′1(ĉ1, γ)
If (κ̃ = ⊥)

Return ⊥
Else If (κ̃ = �)

Return ADec(κ, γ̃)
Else

Return ADec(κ̃, γ̃)

H2(λ) H3(λ) :

(ω, σ, ĉ1)←$ S+
0 (1λ)

(s, α′0)←$ A′0(ω)
κ←$ {0, 1}d
γ←$ AEnc(κ, s)

γ←$ AEnc(κ, 0k)

(c′0, c
′
1) := (c0, (c1, γ))

α′1←$ A′1
O2(S+

1 ,σ,ĉ1,γ,s,·)(α′0)
Return α1

Oracle O2(S+
1 , σ, ĉ1, γ, s, ·):

Upon (f ′0, f
′
1) ∈ F ′:

f0 := f ′0; f1 := f ′1(·, γ)
κ̃ = S+

1 (σ, (f0, f1), ĉ1)
(c̃1, γ̃) = f ′1(ĉ1, γ)
If (κ̃ = ⊥)

Return ⊥
If (κ̃ = �) ∧ (γ̃ 6= γ)

Return ⊥
If (κ̃ = �) ∧ (γ̃ = γ)

Return s
Else

Return ADec(κ̃, γ̃)

Figure 4: Hybrid experiments in the proof of Theorem 3.

Hybrid H2(λ): We change the way tampering queries are handled. Namely, whenever the
simulator S+ returns �, we force the output of the tampering query to be either ⊥ (in case
γ̃ 6= γ) or the original message s (in case γ̃ = γ).

Hybrid H3(λ): We change the distribution of the target encoding. In particular, we compute
the ciphertext γ by encrypting the all-zero string 0k.

We emphasize that the above experiments are further parameterized by the adversary A′

and the function family F , but we omit writing those for simplifying notation.

Hybrids’ indistinguishability. Next, we proceed to show indistinguishability of the above
defined hybrids.

Lemma 2. For all PPT adversaries A′ there exists a function ν0,1(λ) ∈ negl(λ) such that for
all PPT distinguishers D′ we have:∣∣P [D′(H0(λ)) = 1

]
− P

[
D′(H1(λ)) = 1

]∣∣ ≤ ν0,1(λ).

Proof. The proof is down to the augmented continuous non-malleability of the underlying code
Σ. By contradiction, assume that there exists a PPT adversary A′, a polynomial p0,1(λ) ∈
poly(λ), and a PPT distinguisher D′ such that for infinitely many values of λ ∈ N:∣∣P [D′(H0(λ)) = 1

]
− P

[
D′(H1(λ)) = 1

]∣∣ ≥ 1/p0,1(λ).
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We construct a PPT adversary A and a PPT distinguisher D such that for infinitely many values
of λ ∈ N:∣∣∣P [D(Real+Σ,A,F (λ, n0, n1)) = 1

]
− P

[
D(Simu+

S+,A,F (λ, n0, n1)) = 1
]∣∣∣ ≥ 1/p0,1(λ),

where the experiments Real+Σ,A,F and Simu+
S+,A,F are depicted in Fig. 3, and with S+ being

the (augmented) simulator guaranteed by Definition 5. Adversary A proceeds as follows:

• Upon receiving ω, run A′0(ω) obtaining a pair (s, α′0).
• Sample κ←$ {0, 1}d and compute γ←$ AEnc(κ, s).
• Run A1(α′0), obtaining a sequence of tampering functions f ′1, . . . , f

′
q, where q(λ) ∈ poly(λ)).

• For each j ∈ [q], define f0,j = f ′0,j and f1,j = f ′1,j(·, γ) and query (f0,j , f1,j) to the target
tampering oracle, obtaining a response κ̃j .
• Upon receiving the share c1, output α2 := (α′0, κ, γ, (κ̃j)j∈[q], (f0,j , f1,j)j∈[q], c1).

Given the final state α2 as computed by A above, distinguisher D proceeds as follows:

• Parse α2 := (α′0, κ, γ, (κ̃j)j∈[q], (f0,j , f1,j)j∈[q], c1).
• Let j∗ ∈ [q] be the smallest index such that κ̃j∗ = ⊥; set s̃j∗ , . . . , s̃q := ⊥.
• For each j ≤ j∗ − 1:

– If κ̃j = �, set s̃j := ADec(κ, γ̃j) where (c̃j , γ̃j) := f1,j(c1, γ).
– Else, set s̃j := ADec(κ̃j , γ̃j) where (c̃j , γ̃j) := f1,j(c1, γ).
– In case s̃j = ⊥, define s̃j+1 := · := s̃j∗−1 := ⊥ and stop.

• Run A1(α′0, s̃1, . . . , s̃q), obtaining state information α′1, and return the same as D′(α′1).

We observe that depending on A’s target oracle being either Omaul or Osim, the simulation
of the answers corresponding to A′’s tampering queries is identical to either that of O0 or to
that of O1. Hence, (A,D) retain the same advantage as that of (A′,D′). The lemma follows.

Lemma 3. For all PPT adversaries A′ there exists a function ν1,2(λ) ∈ negl(λ) such that for
all PPT distinguishers D′ we have:∣∣P [D′(H1(λ)) = 1

]
− P

[
D′(H2(λ)) = 1

]∣∣ ≤ ν1,2(λ).

Proof. Consider the following event W , defined over the probability space of H1(λ): The event
becomes true if during a run of the experiment adversary A′1 returns a sequence of tampering
functions (f ′0,j , f

′
1,j)j∈[q] such that for some index j∗ we have κ̃j∗ = �, γ̃j∗ 6= γ, where (c̃1,j∗ , γ̃j∗) =

f ′1,j∗(c, γ), and ADec(κ, γ̃j∗) 6= ⊥. Notice that conditioning on event W not happening, the
answer to A′1’s tampering queries is identical in H1(λ) and H2(λ), and thus it suffices to upper
bound the probability of event W happening.

Suppose that there exists a PPT adversary A′ = (A′0,A
′
1) that provokes event W with

probability at least 1/p1,2(λ), for some p1,2(λ) ∈ poly(λ) and infinitely many values of λ ∈ N.
We build a PPT adversary A that violates the ciphertexts unforgeability property of the SKE
scheme. A description of A follows:

• Sample (ω, σ, ĉ0)←$ S+
0 (1λ), and run A′0(ω) obtaining a pair (s, α′0) which is given to the

challenger.
• Run A′1(α′0), obtaining a sequence of tampering functions (f ′0,j , f

′
1,j)j∈[q]; for each (f ′0,j , f

′
1,j),

let κ̃j ←$ S+
1 (σ, (f0,j , f1,j), ĉ1) where f0,j := f ′0,j and f1,j := f ′1,j(·, γ).

• Upon receiving the challenge ciphertext γ, pick a random ĵ←$ [q], compute (c̃1, γ̃) =
f ′

1,ĵ
(ĉ1, γ), and output γ̃.
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The view of (A′0,A
′
1) when run as a sub-routine of A is identical to that in experiment H1(λ).

It follows that A′1 will thus provoke event W with probability at least 1/p1,2(λ). Observe that,
whenever W happens, and as long as ĵ = j∗, adversary A wins the unforgeability game, because
the ciphertext γ̃ is different from the challenge ciphertext γ, but ADec(κ, γ̃) 6= ⊥. Hence, the
reduction succeeds with probability at least 1/q · 1/p1,2(λ), which is non-negligible.

Lemma 4. For all PPT adversaries A′ there exists a function ν2,3(λ) ∈ negl(λ) such that for
all PPT distinguishers D′ we have:∣∣P [D′(H2(λ)) = 1

]
− P

[
D′(H3(λ)) = 1

]∣∣ ≤ ν2,3(λ).

Proof. The proof is down to the indistinguishable encryption of the authenticated encryption
scheme. By contradiction, assume that there exists a PPT adversary A′, a polynomial p2,3(λ),
and a PPT distinguisher D′ such that for infinitely many values of λ ∈ N:∣∣P [D′(H2(λ)) = 1

]
− P

[
D′(H3(λ)) = 1

]∣∣ ≥ 1/p2,3(λ).

We construct a PPT adversary A such that for infinitely many values of λ ∈ N:∣∣∣P [Gind
Π,A(λ, 0) = 1

]
− P

[
Gind

Π,A(λ, 1) = 1
]∣∣∣ ≥ 1/p2,3(λ).

A description of A follows.

• Sample (ω, σ, ĉ0)←$ S+
0 (1λ), and run A′0(ω) obtaining a pair (s, α′0).

• Forward (µ0 := s, µ1 := 0k) to the challenger, obtaining a challenge ciphertext γ.
• Run A′1(α′0), obtaining a sequence of tampering functions (f ′0,j , f

′
1,j)j∈[q]; for each (f ′0,j ,

f ′1,j), let κ̃j ←$ S+
1 (σ, (f0,j , f1,j), ĉ1) where f0,j := f ′0,j and f1,j := f ′1,j(·, γ).

• Let j∗ ∈ [q] be the smallest index such that κ̃j∗ = ⊥; set s̃j∗ , . . . , s̃q := ⊥.
• For each j ≤ j∗ − 1 let (c̃j , γ̃j) := f ′1,j(c1, γ) and:

– If κ̃j = � and γ̃j 6= γ, set s̃j := ⊥.
– Else if κ̃j = � and γ̃j = γ, set s̃j := s.
– Else set s̃j := ADec(κ̃j , γ̃j).
– In case s̃j = ⊥, define s̃j+1 := · := s̃j∗−1 := ⊥ and stop.

• Run A1(α′0, s̃1, . . . , s̃q), obtaining state information α′1, and return the same as D′(α′1).

We observe that depending on the challenge ciphertext being either an encryption of s or an
encryption of 0k, the simulation of the answers corresponding to A′’s tampering queries is
identical to either that of H2(λ) or to that of H3(λ). Hence, A retains the same advantage as
that of (A′,D′). The lemma follows.

Simulator’s description. We are now ready to describe the simulator S′ = (S′0,S
′
1).
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S′0(1λ):

• Run (ω, σ, ĉ0)←$ S+
0 (1λ).

• Output σ′ := (σ, ĉ0).

S′1(σ′, (f ′0,j , f
′
1,j)j∈[q]):

• Parse σ′ := (σ, ĉ0).
• Sample κ←$ {0, 1}d, and let γ←$ AEnc(κ, 0k).
• For each (f ′0,j , f

′
1,j), let κ̃j ←$ S+

1 (σ, (f0,j , f1,j),
ĉ1) where f0,j := f ′0,j and f1,j := f ′1,j(·, γ).
• Let j∗ ∈ [q] be the smallest index such that
κ̃j∗ = ⊥; set s̃j∗ , . . . , s̃q := ⊥.
• For each j ≤ j∗ − 1:

– If κ̃j = � and γ̃j 6= γ, set s̃j := ⊥.
– Else if κ̃j = � and γ̃j = γ, set s̃j := �.
– Else set s̃j := ADec(κ̃j , γ̃j).
– In case s̃j = ⊥, define s̃j+1 := · :=
s̃j∗−1 := ⊥ and stop.

• Return s̃1, . . . , s̃q.

The theorem then follows by combining the above lemmas, and by observing that H3(λ) is
identically distributed to SimuS′,A′,F ′(λ).

3.1.3 An Adaptive Attack

We describe an adaptive attack against the above code construction. The attack makes dn′/ke
non-adaptive tampering queries followed by a final adaptive tampering query. Let (c0, c1‖γ) be
the target encoding of some message s ∈ {0, 1}k. Since the code has rate one, we can assume
w.l.o.g. that the right part of the codeword c1‖γ can be parsed as two strings δ1, δ2 of size k. Let
κ̃ ∈ {0, 1}λ be a key for the authenticated encryption scheme, and let (c̃0, c̃1) be an encoding of
κ̃ under the underlying rate-zero non-malleable code. The attack proceeds as described below:

1. Let (f0,1, f1,1) be such that f0,1(c0) outputs c̃0, whereas f1,1(c1‖γ) outputs c̃1‖AEnc(κ̃, δ1);
2. Let (f0,2, f1,2) be such that f0,2(c0) outputs c̃0, whereas f1,2(c1‖γ) outputs c̃1‖AEnc(κ̃, δ2).

Now, the attacker queries the tampering oracle with (f0,1, f1,1) and (f0,2, f1,2), which yields
δ1‖δ2 = c1‖γ. The next tampering query, which is adaptive, hard-codes the value c1‖γ into its
description:

3. Let (f0,3, f1,3) be such that:

• f0,3(c0) computes Dec(c0, c1‖γ) and outputs 0n0 if the first bit of the decoded message
is 0, and else it outputs c̃0;
• f1,3(c1‖γ) simply outputs c̃1‖AEnc(κ̃, 0k).

In case the first bit of the target message s is zero, the third query triggers a self-destruct, else
it causes the output to be 0k. This is a clear breach of non-malleability, and thus completes the
attack description.

The above attack shows that the assumption of augmented non-malleability is not an artifact
of our proof, as the adversary might eventually retrieve one half of the codeword via non-adaptive
tampering. The latter also explains the reason why the above rate compiler fails to achieve
security against adaptive attacks: the attacker can use the ciphertext γ as a side channel, in
order to leak information about the target codeword without incurring the risk of self-destruct.
In the next subsections we show how to disable such a side channel by storing the ciphertext γ
on both sides of the target codeword.
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3.2 Rate-1/2 Compiler (Adaptive Tampering)

In §B of the appendix, we explain how to slightly modify the compiler from §3.1 in order to
get adaptive security, at the price or reducing the rate of the compiled code to 1/2. The main
difference is that the authenticated ciphertext γ is stored in both halves of the target codeword,
i.e. a codeword is now a tuple (c0||γ0, c1||γ1) where γ0 = γ1 := γ, and the decoding algorithm
additionally checks that, indeed, the two ciphertexts γ0, γ1 are the same.

Intuitively, an adaptive adversary cannot store useful information about the inner encoding
c1 in the part of the codeword that stores γ1. The idea is that in such a case, the same
information must be guessed on the other side and overwritten in γ̃1, as otherwise the decoding
algorithm would output ⊥ with consequent self-destruct; but then the adversary could have
guessed this information directly, even without the need of a tampering oracle.

Note that the adversary might still be able to learn some partial information about the
inner encoding, however, we show that this is not a problem as long as the underlying rate-0
continuously non-malleable code satisfies the additional property of being leakage resilient [45,
5, 33]. (Augmented non-malleability is not required here.)

3.3 Rate-One Compiler (Adaptive Tampering)

We give yet another twist of the rate-optimizing compiler from §3.1, in order to achieve optimal
rate in the (non-programmable) random oracle model. The main idea is to store the ciphertext
γ on one share of the codeword, say the right share, as before, and to add the hash of γ on
the left share. Specifically, a codeword is now a tuple (c0‖h, c1‖γ) where h = H(γ), and the
decoding additionally checks that indeed the value h is equal to H(γ). The intuition is that
having H(γ) in one share is equivalent to having γ itself, as in the random oracle model the
value H(γ) can be seen as a “handle” for the value γ.

Non-malleability in the random oracle model. We start by explaining what it means to
construct a continuously non-malleable code in the (non-programmable) random oracle model.
First, the construction itself might make use of the random oracle, so that a code is now a tuple
Σ = (InitH ,EncH ,DecH) where the encoding and decoding algorithms can additionally make
random-oracle queries (as in the code sketched above). Second, the adversary A is allowed to
make random-oracle queries, and to specify split-state tampering functions of the form f :=
(f0, f1), such that f0 and f1 can additionally query the random oracle.

When defining non-malleability in the random oracle model, we also assume that the sim-
ulator can query the random oracle. We restrict to simulators that simply observe the random
oracle queries made by the tampering functions, but do not program them, i.e. the so-called
non-programmable random oracle model.

Proof intuition. We now give an informal argument for the security of the above construc-
tion. We do so by showing a reduction to the continuous non-malleability of the code from
§3.2; in order to simplify the exposition, we sketch the analysis in the programmable random
oracle model, where the reduction/simulator is further allowed to program the random oracle.
In §C of the appendix, we give a (slightly more complicated) direct proof where random-oracle
programming is not required.

Let A be an adaptive adversary against the security of the rate-one code; we build an
adversary B against the security of the rate-1/2 code. Adversary B simply emulates A, keeping
a list QH,A of all the random-oracle queries made by A. Upon input a split-state tampering
query (f0, f1) from A, adversary B specifies its own tampering function (f ′0, f

′
1) as follows:
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Tampering function f ′0(c0‖γ0):

• Compute h = H(γ), then execute f0(c0‖h).
• Keep a list QH,f of all the queries made by f0 to the random oracle.
• Whenever f0 outputs (c̃0‖h̃), try to find a value γ̃ ∈ QH,A ∪ QH,f such that
H(γ̃) = h̃; if no such value is found output ⊥.

Tampering function f ′1(c1‖γ1):

• Run f1(c1‖γ1).

One can show that B simulates almost perfectly the tampering experiment with A. In fact,
the only bad event is when the hash of γ̃ as computed by f1 is equal to h̃, but γ̃ has never
been queried to H. However, if the adversary A or the tampering function f0 do not query the
random oracle with γ̃, then the bad event happens only with probability 2−λ.

In the above description, we did not specify how the reduction treats random-oracle queries
asked by the tampering functions f0 and f1. The latter can be done by replacing the random
oracle H with the evaluation of a pseudorandom function F (with random key κ′ sampled by
the reduction) which we can hard-code in the description of (f ′0, f

′
1). This allows to simulate

random-oracle queries consistently, but requires to program the random oracle.

4 Bit-Wise Tampering

The compiler from §3 automatically implies a rate-compiler for continuously non-malleable codes
tolerating bit-wise independent tampering (as Fnbit ⊂ F

n0,n1,n
split ) in the computational setting.

However, since continuously non-malleable codes for bit-wise tampering also exist uncondition-
ally [21], it might be possible to obtain such codes with optimal rate in the information-theoretic
setting. This section shows that this is indeed possible, by extending the analysis of the compiler
from Agrawal et al. [8] to the continuous case.

4.1 Description of the Compiler

The compiler combines a low-rate continuously non-malleable code (CNMC) Σ′ against Fnbit

with an error-correcting secret-sharing scheme (ECSS) Π with high rate (cf. §2.5). The main
idea of the compiler is to carefully introduce random errors into an encoding of a message s
under Π and record these errors in a tag τ , which is encoded with Σ′.

Specifically, let Π = (Enc,Dec,ECorr) be an (k, n, T,D)-ECSS and Σ′ = (Init′,Enc′,Dec′)
be a continuously Fn′bit-non-malleable (k′, n′)-code. Let E ≤ n be a parameter to be set later.
Consider the following construction4 of a (k, n′′)-code Σ′′ = (Init′′,Enc′′,Dec′′), where n′′ :=
n+ n′.

Init′′(1λ): Upon input λ ∈ N, return Init′(1λ).

Enc′′(ω, s): Upon input ω and a message s ∈ {0, 1}k:
(a) Choose a set I = {i1, . . . , iE} ⊆ [n] of cardinality E and a string ξ = (ξi1 , . . . , ξiE ) ∈
{0, 1}E uniformly at random and let τ = (I, ξ).5

4While we describe the compiler in the CRS model, our instantiation in §5.2 does not require any trusted
setup.

5Note that the bits of ξ are indexed by the elements of I.
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(b) Compute a← Enc(s) and, for i ∈ [n], let

c
(1)
i =

{
ξi if i ∈ I,

ai otherwise.

(c) Compute c(2) ← Enc′(ω, τ) and return c = (c(1), c(2)).

Dec′′(ω, c̃): Upon input ω and c̃ = (c̃(1), c̃(2)),

(a) Compute τ∗ ← Dec′(ω, c̃(2)). If τ∗ = ⊥, return ⊥.
(b) Let a∗ = ECorr(c̃(1)). If a∗ = ⊥, return ⊥.
(c) Let τ∗ = (I∗, ξ∗) with I∗ = {i1, . . . , iE} and ξ∗ = (ξ∗i1 , . . . , ξ

∗
iE

). Define c∗ =
(c∗1, . . . , c

∗
n) as

c∗i =

{
ξ∗i if i ∈ I,

a∗i otherwise.

If c∗ 6= c̃(1), output ⊥.
(d) Return Dec(a∗).

4.2 Security Analysis

We establish the following result.

Theorem 4. Let Π be a (k, n, T,D)-ECSS with rate ρ = k/n and T = ω(log n), and let Σ′ be
a continuously Fn′bit-non-malleable code with rate ρ′. Then, for any E satisfying

n · ω(log n)

D
= E <

D

4
,

Σ′′ is is a continuously Fn+n′

bit -non-malleable code with rate ρ′′ = k
ρ−1k+2ρ′−1E

.

Proof intuition. Before coming to the formal proof, we discuss some intuition. We start with
the real security experiment for code Σ′′ and considers a series of hybrid experiments H1, . . . ,H3

such that a simulation strategy for the ideal experiment is immediately apparent in H3.
The first hybrid H1 changes the way the tampered tag τ∗ is computed when Omaul answers

a tamper query f: Instead of computing it from a tampered encoding f (2)(c(2)), the simulator
S′1 for the underlying non-malleable code Σ′ is invoked to determine the outcome of applying f.
The indistinguishability of the real experiment and H1 follows directly from the security of Σ′.

Once the switch to H1 has been made, the right part f (2) of a tamper function f = (f (1), f (2))
can have one of three effects on the tag τ∗, which lead to the definition of the second hybrid
H2:

1. τ∗ = ⊥, in which case the outcome of tampering with f is ⊥ as well.
2. τ∗ is equal to the original tag τ . Thus, if the attacker changes too many bits of the

left-hand side encoding c(1), the result will almost surely be ⊥ since the changes are likely
to be inconsistent with the parts of c(1) recorded in the tag and are independent of it.
Correspondingly, H2 is defined to always answer such tamper queries by ⊥. If there are
only few changes on the left-hand side, H2 proceeds as H1.

3. τ∗ is independent of the original tag. Thus, if the attacker overrides too few bits of c(1),
the random errors in c(1) are highly unlikely to match the corresponding bits in τ∗ or not
to be detected by the error correction. Correspondingly, H2 is defined to always answers
such tamper queries by ⊥. If there are many overrides on the left-hand side, H2 proceeds
as H1.
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To show that hybrids H1 and H2 are indistinguishable, one first argues, drawing on an idea
from [20], that for every adaptive strategy, there is an equally good non-adaptive one.6 The
advantage of non-adaptive attackers is bounded by using a simple concentration bound to argue
that it is highly unlikely that the query types described above are not caught by comparing the
left-hand side to the tag or by performing error correction.

Returning to the case distinction above, it remains to consider the two cases where H1 was
not changed:

2. Suppose τ∗ is equal to the original tag τ and the tamper function changes only a few bits
on the left-hand side. In such a case, it can be shown that the result of the tampering is
either the original message s or ⊥. The key observation here is that in order to determine
which is the case, one needs merely to find out whether the tamper function “guesses”
the bits of c(1) it overrides correctly.

3. Suppose τ∗ is independent of the original tag and the tamper function overrides most of
the bits on the left-hand side. In this case, it can be argued that the outcome of the
tampering is either ⊥ or a unique message, stemming from a unique encoding ã. To see
which is the case, one need only determine if the positions that are not overridden by the
tampering function match ã.

This process can be abstracted as a guessing game for a randomly generated encoding a of
s, where the game ends in a self-destruct as soon as an incorrect guess is made. The self-
destruct property allows to argue that the guessing game for a generated as an encoding for
s is indistinguishable from the guessing game for, say, the all-zero message (by privacy of the
ECSS). Correspondingly, hybrid H3 is defined to work as H2, except that it works on an
encoding of the all-zero message. The indistinguishability of the hybrids follows directly from
the indistinguishability of the guessing games. Since hybrid H3 is independent of the originally
encoded message, it is straight-forward to design a simulation strategy.

Proof of Theorem 4. For ease of description, consider the following two algorithms, which cap-
ture parts of the encoding and decoding processes, respectively:

Enc∗(a, τ): Upon input a and τ = (I, ξ) with I = {i1, . . . , iE} and ξ = (ξi1 , ξi2 , . . . , ξiE ), output
c defined by

ci =

{
ξi if i ∈ I,

ai otherwise.

ECorr∗(c, τ∗). Upon input a and τ∗:

1. If τ∗ = ⊥, return ⊥.
2. Compute a∗ = ECorr(c). If a∗ = ⊥, return ⊥.
3. Let c∗ = Enc∗(a∗, τ∗). If c∗ 6= c, return ⊥.
4. Return a∗.

Fix the security parameter λ and an attacker A. The proof proceeds via three hybrid experiments
H1, H2, and H3 such that H3 immediately implies a suitable simulation strategy. For brevity,
set Real := RealΣ′′,A,Fbit

(λ). The following parameter conditions need to be met for E and
additional parameters α and β (introduced merely for readability) for the proof to succeed:

α+ E < D/2, β + 2E < D, 3E < D.

By setting α := β := D/4 and using that, by assumption, E < D/4, all three conditions are
satisfied.

6Recall that a non-adaptive attacker submits all tamper queries at once.
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Hybrid H1. The first hybrid experiment proceeds as the real experiment Real, except that
tag-related tampering is run through the simulator S′ = (S′0, S

′
1) for the underlying CNMC Σ′.

Specifically, the following changes are made to Real:

• The common reference string is computed as (ω, σ)← S′0(1λ).
• Queries f to Omaul(ω, c, ·) are answered as follows:

1. Let f (1) = (f1, . . . fn) and f (2) = (fn+1, . . . fn+n′).
2. Compute c̃(1) = f (1)(c(1)), and run the simulator to get c̃(2) ← S′1(σ, f (2)).
3. If c̃(2) = �, set τ∗ := τ else τ∗ ← Dec′(ω, c̃(2)).
4. Compute a∗ ← ECorr∗(c̃(1), τ∗). If a∗ = ⊥, return ⊥.
5. Return Dec(a∗).

The following lemma follows immediately from the security of CNMC Σ′.

Lemma 5. Real ≈c H1.

Hybrid H2. The second hybrid experiment H2 differs from H1 in that it follows the intuition
laid out in the above proof intuition. Let L = [n] be the indices corresponding to c(1) and define

V (f) := {i ∈ L | fi 6= keep} as well as J(f) := {i ∈ L | fi ∈ {keep, flip}} .

H2 answers tamper queries f to Omaul(ω, c, ·) as H1 does, except for Step 5:

5. Depending on the value of c̃(2), proceed as follows:

(a) If c̃(2) = ⊥, return ⊥.
(b) If c̃(2) = �:

• If |V (f)| > α, return ⊥.

• Else if c̃
(1)
i 6= c

(1)
i for some i, return ⊥.

• Else, return s.

(c) If c̃(2) = τ∗:

• If |J(f)| > β, return ⊥.
• Else, compute a∗ ← ECorr∗(c̃(1), τ∗) and return Dec(a∗).

Lemma 6. H1 ≈c H2.

The proof of Lemma 6 makes use of a lemma for experiments with self-destruct, which was
introduced in [20]. To understand said lemma, consider the notion of a g-oracle with self-
destruct (g-OSD), which is an oracle O that:

• Answers queries x from a set X by values y = g(x, r) from a set Y, where g : X ×R → Y
is an arbitrary function, and r ∈ R is the internal randomness of the oracle;
• “Self-destructs” after the first occurrence of ⊥ ∈ Y, i.e., answers all subsequent queries

by ⊥.

Let D ⊆ X , called dangerous queries. The D-bending O′ of O′ is the g′-OSD with

g′(x, r) :=

{
⊥ if x ∈ D,

g(x, r) otherwise.

The following lemma states that adaptivity does not help in distinguishing an OSD from the
D-bending of it, provided that every non-bent query x /∈ D can only be answered by a unique
value yx or ⊥.
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Lemma 7 ([20]). Let O be a g-OSD and O′ be its D-bending for some D ⊆ X . If for every
x /∈ D there exists yx ∈ Y such that {g(x, r) | r ∈ R} = {yx,⊥}, then, for any attacker A
interacting with O or O′,∣∣∣P [AO = 1

]
− P

[
AO
′

= 1
]∣∣∣ ≤ max

x∈D
P [g(x,R) 6= ⊥] ,

where the probability is over the choice of R.

Proof of Lemma 6. The lemma is proved even conditioned on all randomness in either hybrid
except for the coins r used to generate τ = (I, ξ). In order to apply Lemma 7, it must first be
established that H2 is the D-bending of H1 for some set D. This can be seen via the following
choices:

• Let X := Fnbit, R be the randomness space for generating τ , and Y := {0, 1}k ∪ {⊥}.
• Let g : X ×R → Y correspond to the oracle Omaul(ω, c, ·). Observe that (i) g depends on

the above conditioning, and (ii) the output of Omaul can be determined from f and r ∈ R
alone.
• Let D = D� ∪ Dfix be the set of dangerous queries, where7

– f ∈ D� if S′1(f) = � and |V (f)| > α, or
– f ∈ Dfix if S′1(f) = τ∗ and |J(f)| > β.

Consider a tamper query f /∈ D and the following three cases:

• S′1(f) = ⊥: in this case, g(f, ·) = ⊥.
• S′1(f) = �: by the above definition of D�, this implies that |V (f)| ≤ α, i.e., f changes at

most α positions of the left encoding. Since during the encoding procedure, at most E
errors have been added to a, and because α + E < D/2 the error correction during the
decoding recovers the original a. Hence, tampering with f can lead either to ⊥ or yf := a.
• S′1(f) = τ∗: by the above definition of Dfix, this implies that |J(f)| ≤ β, i.e., f fixes at

least n − β positions of the left encoding. Since during the decoding procedure, at most
E errors are tolerated, and because β + 2E < D, there exists only a single codeword ã
that error correction can possibly find after f has been applied. Hence, tampering with f
can lead either to ⊥ or yf := Dec(ã).

This shows that the preconditions of Lemma 7 are satisfied. In order to finish the proof, one
must determine maxf∈D P [g(f,R) 6= ⊥]. Let ε > 0 and consider first f ∈ D�, assuming f does

not contain any flips. According to Lemma 1, (cf. §2.4),except with probability 2e−ε
2α/3,

|V (f) ∩ I| ≥ α

(
E

n
− ε
)
.

Moreover, the probability that all of the overrides fi (i.e., fi ∈ {zero, one}) for i ∈ V (f) ∩ I
match the corresponding ξi in ξ is at most 2−α(E/n−ε).

Similarly, consider f ∈ Dfix and let τ∗ = (I∗, ξ∗) be the tag output by the simulator.
Lemma 1 implies that except with probability 2e−ε

2β/3,

E ≥ |J(f) ∩ I| ≥ β

(
E

n
− ε
)
.

Since everything but τ is fixed, the tampered left-hand-side encodings resulting from the various
choices of τ differ in at most |J(f) ∩ I| ≤ E positions. Since the error correction tolerates at

7Note that, given the above conditioning, membership in D� and Dfix can be decided without knowing r.
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most E errors, using that 3E < D, there exists only a single codeword a∗ that can appear
while decoding the tampered codeword. The probability that the bits in J(f) ∩ I match the
corresponding bits of a∗ or ξ∗ is at most 2−β(E/n−ε). The above shows that for any ε > 0,

SD (H1,H2) ≤ 2e−ε
2α/3 + 2−α(E/n−ε) + 2e−ε

2β/3 + 2−β(E/n−ε) .

By choosing ε := E/(2n) and inserting the choices for α = β = D/4, this bound simplifies to

4e−E
2D/(48n2) + 2 · 2−ED/(8n) ,

which is negligible by assumption.

Hybrid H3. The third hybrid experiment H3 is defined to work exactly as H2, except that
instead of encoding s as specified by the attacker, H3 simply encodes the all-zero message.

Lemma 8. H2 ≈c H3.

Towards showing that H2 and H3 are indistinguishable, fix some message s and consider
the following two guessing oracles, both of which self-destruct, i.e., after returning ⊥ for the
first time, all subsequent queries are answered by ⊥.

• G0: It internally computes a ← Enc(s) and answers guessing queries (i, b) by 1 if ai = b
and by ⊥, otherwise.
• G1: It works as G0 except that a ∈ {0, 1}n is chosen uniformly at random.

The privacy of the ECSS immediately implies the following lemma.

Lemma 9. For any attacker A interacting with G0 or G1:∣∣P [AG0 = 1
]
− P

[
AG1 = 1

]∣∣ ≤ 2−T .

Proof of Lemma 8. The lemma is proved by observing that there exists a wrapper W such
that WG0 and WG1 behave as H2 and H3, respectively. In particular, W internally generates
τ = (I, ξ) and answers queries f to Omaul(ω, c, ·) as follows:

1. Let f (1) = (f1, . . . fn) and f (2) = (fn+1, . . . fn+n′).
2. Compute c̃(1) = f (1)(c(1)), and run the simulator to get c̃(2) ← S′1(σ, f (2)).
3. Depending on the value of c̃(2), do the following:

(a) If c̃(2) = ⊥, return ⊥.
(b) If c̃(2) = �:

• Return ⊥ if

– |V (f)| > α,
– there is even a single fi = flip, or
– there is an i ∈ V (f) indexed by I such that fi fixes the ith position to b, but
ξi 6= b.

• Otherwise, for each i ∈ V (f) \ I, query (i, b) to the oracle, where b is the value
fi fixes the ith position to. If any of the answers from the oracle is ⊥, return ⊥.
Otherwise, return s.

(c) If c̃(2) = τ∗ = (I∗, ξ∗):
• Return ⊥

– if |J(f)| > α, or
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– there is an i ∈ L \ J(f) indexed by I∗ such that fi fixes the ith position to
b, but ξ∗i 6= b.

• If there exists no codeword yf = ã as in the proof of Lemma 6, output ⊥.
• Otherwise, let ã be said codeword. For each i ∈ J(f), query (i, ãi ⊕ b) to the

oracle, where b = 0 for fi = keep and b = 1 for fi = flip. If any of the answers
from the oracle is ⊥, return ⊥. Otherwise, return Dec(ã).

Since, by Lemma 9, the distance between G0 and G1 is at most 2−T , so is the distance between
WG0 and WG1 . The lemma follows.

The theorem now follows by combining the above lemmas.

5 Instantiating the Compilers

5.1 Split-State Model

5.1.1 Rate-One Code (Non-Adaptive Tampering)

In order to instantiate the compiler from §3.1, we need to exhibit an augmented continuously
non-malleable code in the split-state model. Below, we give a short description of such a code,
highlighting the main technical challenges. We assume the reader is familiar with the concept
of zero-knowledge proofs; see §A of the appendix for formal definitions and proofs.

The code. The encoding scheme is a variation of the code from [33]. Given a k-bit string s,
its encoding has the form (c0, c1) = ((c′0, h1, π1), (c′1, h0, π0)), where h0 (resp. h1) is a collision-
resistant hashing of c′0 (resp. c′1), π0 (resp. π1) is a NIZK proof of knowledge of a pre-image of
the hash value h0 (resp. h1), and (c′0, c

′
1) is a leakage-resilient encoding [23] of the input.8 The

decoding algorithm first checks the validity of the proofs locally on the left and right share, and
then it makes sure that h0 (resp. h1) is indeed the hash of c′0 (resp. c′1); if any of the checks fails,
it returns ⊥, and else it decodes (c′0, c

′
1) using the decoding procedure of the leakage-resilient

code.
The security proof differs significantly from that of [33]. In particular, we exploit the fol-

lowing additional properties of the leakage-resilient code: (1) It should tolerate so-called noisy
leakage [47, 24, 31], meaning that the parameter ` is an upper bound on the average min-entropy
gap induced by the leakage (and not its bit-length). (2) Indistinguishability should hold even
if the distinguisher is given one of the two shares of the target codeword, at the end of the
experiment; this property is the one that allows to show augmented non-malleability. (3) For
all messages, the distributions corresponding to the two shares c′0, c

′
1 of an encoding are almost

independent. Properties (2) was already used in [33], whereas properties (1) and (3) are easily
seen to be met by known constructions (cf. §A.1.2 for details).

Simulator. The (augmented) code simulator roughly works as follows. It starts by sampling
a dummy encoding (c′0, c

′
1) of the message 0k under the leakage-resilient code, and hence it

computes the hash values h0, h1 and simulates the zero-knowledge proofs π0, π1; this defines a
simulated codeword (c0, c1) = ((c′0, h1, π1), (c′1, h0, π0)). Thus, given a tampering query (f0, f1),
we design a special simulation strategy that outputs a candidate decoded message acting only
either on (f0, (c

′
0, h1, π1)) or on (f1, (c

′
1, h0, π0)). Let s̃0 and s̃1 be such candidate messages.

8Such an encoding roughly guarantees that ` bits of independent leakage from c′0 and c′1 do not reveal anything
on the encoded message.
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Finally, as long as s̃0 = s̃1 the simulator outputs s̃0, and otherwise it outputs ⊥ and self-
destructs.

Intuitively, we want to make a reduction to the security of the leakage-resilient code in order
to switch the dummy encoding of 0k with an encoding of the real message. In such a reduction,
the values s̃0 and s̃1 are obtained via leakage queries, and thus the main challenge is to argue
that such leakage is allowed. Take for instance the left share. The main observation is that,
as long as s̃0 = s̃1, then the leakage on c′0 reveals no additional information beyond what is
revealed by c′1 and the hash of c′0. In fact, since s̃0 = s̃1, the leakage performed on c′0 could have
been also performed on c′1 (as the leaked values are the same!), and furthermore, by property
(3) above and by the fact that the hash is short, those values do not reduce the min-entropy of
c′0 by too much. On the other hand, if s̃0 6= s̃1, the amount of leakage can be naively9 bounded
by 2k, but notice that this happens only once, since the simulator self-destructs after the first
⊥ is obtained.

Further optimizations. Along the way, we were also able to improve the parameters w.r.t.
the original proof given by [33]. In particular, the leakage parameter we require from the
underlying leakage-resilient code is `′ ∈ O(λ) instead that `′ ∈ Ω(λ log λ) in the original proof.
This improvement also yields better efficiency in terms of computational complexity for the
zero-knowledge proof system (e.g., when using the Groth-Sahai proof system [40, 39]).

Putting it together. Summarizing the above discussion, assuming collision-resistant hash
functions and non-interactive zero-knowledge proofs, we have obtained a rate-optimal continu-
ously non-malleable code with computational security against non-adaptive split-state tamper-
ing in the common reference string model, as stated in item (i) of Theorem 1.

5.1.2 Rate-1/2 Code (Adaptive Tampering)

In order to instantiate the compiler from §3.2, we need a leakage-resilient continuously non-
malleable code in the split-state model. Luckily, as we explain in §B of the appendix, the above
construction inherits leakage resilience from the underlying leakage-resilient code.

Hence, assuming collision-resistant hash functions and non-interactive zero-knowledge proofs,
we have obtained a rate-1/2 continuously non-malleable code with computational security
against adaptive split-state tampering in the common reference string model, as stated in item
(ii) of Theorem 1.

5.1.3 Rate-One Code (Adaptive Tampering)

Finally, as we prove in §C of the appendix, we can instantiate the compiler from §3.3 un-
der the same assumptions of the previous code, i.e. all we need is a leakage-resilient contin-
uously non-malleable code in the split-state model. Here, we can further simplify the above
construction by relying on the random oracle heuristic, and consider codewords of the form
(c0, c1) = ((c′0, h1), (c′1, h0)), where h0 (resp. h1) is computed by hashing c′0 (resp. c′1) via a
random oracle. One can prove that this construction achieves (computational) continuous non-
malleability in the split-state model.

Hence, we have obtained a rate-optimal continuously non-malleable code with computational
security against adaptive split-state tampering in the (non-programmable) random oracle model,
as stated in item (iii) of Theorem 1.

9The leakage parameter can be improved to O(λ) by leaking a hash of the message.
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5.2 Bit-Wise Independent Model

The ECSS for the Fnbit-compiler can be instantiated using share packing, as shown in [8]. This
results in a (k, n, T,D)-ECSS with T = D = Θ̃(n3/4) and n = (1 + o(1))k, which in turn allows
to choose, e.g., E = n1/4+γ for any γ > 0.

The low-rate CNMC Σ′ can be instantiated, e.g., by the codes of [21, 18]. Note that such
codes are in the plain model (i.e., algorithm Init′ returns the empty string), and thus Theo-
rem 4 yields a rate-optimal continuously non-malleable code with information-theoretic secu-
rity against adaptive bit-wise independent tampering, and without trusted setup, as stated in
Theorem 2.

6 Conclusions

We have provided several constructions of rate-optimizing compilers for continuously non-
malleable codes in the bit-wise independent and split-state tampering models. While in the
former case our compiler is optimal both in terms of rate and assumptions (in fact, the result
is unconditional), in the latter case we only get rate-optimal codes for the case of non-adaptive
tampering and assuming trusted setup, and in the random oracle model. Thus, the main
problem left open by our work is whether rate-one continuously non-malleable codes for the
split-state model, with adaptive security and without random oracles, actually exist (with or
without trusted setup).

A first step towards solving this problem would be to instantiate the random oracle using
extractable hash functions [11, 43], or non-malleable hash functions [12]. The difficulty with
using the former is that the complexity of the extractor for the hash function depends on that of
the adversary, which creates an exponential blow-up when using the näıve strategy of running
the extractor to answer each tampering query. The difficulty with using the latter is that non-
malleable hash functions in the plain model can only support a limited class of malleability
attacks which do not seem sufficient in our analysis.

A middle-ground solution would be to consider a slightly weaker tampering model than
fully-fledged split-state tampering, as defined by Dachman-Soled et al. [22] (in the context of
locally decodable and updatable non-malleable codes). Roughly speaking, we could consider
“split-state” tampering functions (f0, f1) such that f1 can be further parsed as f1 = (f0

1 , f
1
1 ),

where f0
1 takes as input the full codeword c1‖γ but outputs only a tampered value c̃1, whereas

f1
1 takes as input γ and outputs a tampered value γ̃. In this simpler case, one can show that

the rate-compiler of §3.1 actually already achieves adaptive security. Intuitively, this is because
the function f1 cannot be exploited to leak information about the value c1 (as γ̃ cannot depend
on c1).
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raphy against continuous memory attacks. In FOCS, pages 511–520, 2010.

[25] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[26] Stefan Dziembowski and Sebastian Faust. Leakage-resilient cryptography from the inner-
product extractor. In ASIACRYPT, 2011.

[27] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from
two-source extractors. In CRYPTO, pages 239–257, 2013.

[28] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In
Innovations in Computer Science, pages 434–452, 2010.

[29] Antonio Faonio and Jesper Buus Nielsen. Non-malleable codes with split-state refresh. In
PKC, pages 279–309, 2017.

[30] Antonio Faonio, Jesper Buus Nielsen, Mark Simkin, and Daniele Venturi. Continuously
non-malleable codes with split-state refresh. In ACNS, pages 121–139, 2018.

[31] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Fully leakage-resilient signatures
revisited: Graceful degradation, noisy leakage, and construction in the bounded-retrieval
model. Theor. Comput. Sci., 660:23–56, 2017.
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A Obtaining Augmented Continuous Non-Malleability

A.1 Ingredients

Here, we introduce the cryptographic building blocks necessary to describe and analyze the
coding scheme from [33].

A.1.1 Conditional Average Min-Entropy

We recall the notions of min-entropy and of conditional average min-entropy. The min-entropy
of a random variable X, defined over a set X , is denoted as H∞(X) := − log maxx∈X P [X = x]
and represents the best chance of guessing X by an unbounded adversary. Conditional average
min-entropy captures how hard it is to guess X on average, given some side information Z ∈ Z
(possibly related to X), and it is denoted as H̃∞(X|Z) := − logEz∈Z maxx∈X P [X = x|Z = z].
We rely on the following standard lemmata [25].

Lemma 10. Let X and Z be possibly correlated random variables, and let g be any (possibly
randomized function). Then, H̃∞(X|g(Z)) ≥ H̃∞(X|Z).
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Lemma 11. Let X,Z1,Z2 be possibly correlated random variables, where Z2 takes at most 2`

values. Then, H̃∞(X|Z1,Z2) ≥ H̃∞(X|Z1)− `.

Lemma 12. Let X,Z be possibly correlated random variables. If H̃∞(X|Z) ≥ H∞(X)− `, then
for any 1 ≥ δ > 0 we have that Pz[H∞(X|Z = z) ≤ H∞(X)− `+ log δ] ≤ δ.

A.1.2 Noisy-Leakage Resilient Codes

Let Σ = (Enc,Dec) be a (k, n)-code. Intuitively, Σ is leakage resilient in the split-state model if
independent leakage from two shares of a codeword c := (c0, c1) does not reveal any information
on the encoded message. This notion was introduced by Dav́ı et al. [23] for the case where the
leakage is arbitrary but of length at most ` bits. Below, we define a generalization where the
bound ` ∈ N is not an upper bound on the length of the leakage, but rather an upper bound
on how much information the leakage reveals on the codeword information theoretically.

Definition 6 (Admissible adversaries). Let Σ be a (k, n)-code, and n0, n1 ∈ N be such that
n0 + n1 = n. Consider the experiment in Fig. 5, with a possibly unbounded adversary A =
(A0,A1,A2) and hidden bit b ∈ {0, 1}. We say that A is `-admissible, if during an execution of
the experiment algorithm A1 outputs a sequence of q ∈ N leakage functions (f0,j , f1,j)j∈[q] such
that for all β ∈ {0, 1}:

H̃∞ (Cβ|f0,1(Cβ), · · · , fβ,q(Cβ)) ≥ H∞(Cβ)− `,

where (C0,C1) is the random variable corresponding to Enc(sb).

Definition 7 (Noisy-leakage-resilient codes). Let Σ = (Enc,Dec) be a (k, n)-code, and n0, n1 ∈
N be such that n = n0 +n1. We say that Σ is an `-noisy-leakage resilient code in the split-state
model if for all unbounded `-admissible adversaries A := (A0,A1,A2) we have that

ExpLeakΣ,A(λ, n0, n1, 0) ≈s ExpLeakΣ,A(λ, n0, n1, 1),

where the experiment ExpLeakΣ,A(λ, n0, n1, b) is defined in Fig. 3.

Let F be a finite field, and t(λ) ∈ N be a parameter. Dziembowski and Faust [26] considered
the following encoding scheme Σ = (Enc,Dec):

• Enc(s) samples c0, c1←$ Fn subject to 〈c0, c1〉 = s.
• Dec(c0, c1) outputs 〈c0, c1〉.

Theorem 5. Let F be a finite field with size |F| ∈ Ω(t) for a parameter t ∈ N. Then, for any
ε(λ) ∈ R+, the above encoding scheme Σ is a (1

4 t log |F| − log ε−1)-noisy-leakage-resilient code,
where the parameter ε is the statistical distance between the two experiments in Def. 7.

ExpLeakΣ,A(λ, n0, n1, b):

(s0, s1, α0)←$ A0(1λ)
c := (c0, c1)←$ Enc(sb)

α1←$ A
Oleak(c,·)
1 (α0)

α2←$ A2(α1, c1)
Return α2

Oracle Oleak(c, ·):
Upon (f0, f1) ∈ Fn0,n1

split :

Parse c = (c0, c1)
Return (f0(c0), f1(c1))

Figure 5: Experiment defining security of leakage-resilient codes.

28



The original proof in [26] shows that the above code Σ is in fact leakage resilient in the
bounded-leakage model, where ` is an upper bound on the total amount of leakage. However,
the proof of Dziembowski and Faust uses the fact that the length of the leakage is at most `
bits only to argue that, for any δ, ` > 0, the following condition is satisfied:

Pz[H∞(Cβ|Leak = z) ≤ H∞(cβ)− `− log(1/δ)] ≤ δ,

where Leak is the random variable corresponding to the leakage performed by the adversary.
(See [26, Lemma 20].) By using Lemma 12, we can reach exactly the same conclusion only
assuming that H̃∞(Cβ|Leak) ≤ H∞(Cβ)− `. The rest of the proof is unchanged.

Another observation is that the original definition of leakage-resilient codes does not allow
the adversary to obtain one of the two shares of the original encoding at the end of the ex-
periment. However, Faust et al. [35] proved that any `-leakage-resilient code according to the
definition of Dziembowski and Faust is also an (` − 1)-leakage-resilient code according to our
definition, and the latter is true even for the case of noisy leakage.
The following lemma will be useful in the sequel.

Lemma 13. Let Σ = (Enc,Dec) be the above defined leakage-resilient code. For any s ∈ F,
define (C0,C1) to be the random variable corresponding to Enc(s). Then, for all β ∈ {0, 1},

H̃∞(Cβ|C1−β) ≥ (t− 1) log |F|.

Proof. Follows readily by the fact that C0,C1 are sampled uniformly at random conditioned
on 〈C0,C1〉 = s. In particular, this can be done by sampling c1

0, . . . , c
t
0, c

1
1, . . . , c

t−1
1 uniformly

at random from F, and finally computing ct1 in such a way that s =
∑t

i=1 c
i
0 · ci1.

A.2 Non-Interactive Zero-Knowledge Proofs

Let R be a relation, corresponding to an NP language L. A non-interactive zero-knowledge
(NIZK) proof system for R is a tuple of efficient algorithms Π = (I,P,V) specified as follows.
(i) The randomized algorithm I takes as input the security parameter and outputs a common
reference string ω; (ii) The randomized algorithm P(ω, φ, (x,w)), given (x,w) ∈ R and a label
φ ∈ {0, 1}∗, outputs a proof π; (iii) The deterministic algorithm Vφ(ω, φ, (x, π)), given an
instance x, a proof π, and a label φ ∈ {0, 1}∗, outputs either 0 (for “reject”) or 1 (for “accept”).
We say that a NIZK for relation R is correct if for every ω←$ Init(1λ), any label φ ∈ {0, 1}∗,
and any (x,w) ∈ R, we have that V(ω, φ, (x,P(ω, φ, (x,w)))) = 1.

We define two properties of a NIZK proof system. The first property says that honest proofs
do not reveal anything beyond the fact that x ∈ L.

Definition 8 (Adaptive multi-theorem zero-knowledge). A NIZK with labels Π for a relation
R satisfies adaptive multi-theorem zero-knowledge if there exists a PPT simulator S := (S0,S1)
such that the following holds:

(i) Simulator S0 outputs ω, a simulation trapdoor τsim and an extraction trapdoor τext.
(ii) For all PPT distinguishers D, we have that∣∣∣P [DP(ω,·,(·,·))(ω) = 1 : ω←$ Init(1λ)

]
− P

[
DOsim-zk(·,·,·)(ω) = 1 : (ω, τsim)←$ S0(1λ)

] ∣∣∣
is negligible in λ, where the oracle Osim-zk(·, ·, ·) takes as input a tuple (φ, x,w) and returns
S1(τsim, φ, x) iff (x,w) ∈ R (and otherwise it returns ⊥).
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Groth [38] introduced the concept of simulation-extractable NIZK, which informally states
that knowledge soundness should hold even if the adversary can see simulated proofs for possibly
false statements of its choice.

Definition 9 (Simulation extractability). Let Π be a NIZK proof systems for a relation R, that
satisfies adaptive multi-theorem zero-knowledge w.r.t. a simulator S := (S0,S1). We say that Π
is simulation extractable if there exists a PPT algorithm Ext such that every PPT adversary A
has a negligible probability of winning in the following game:

• The challenger runs (ω, τsim, τext)←$ S0(1λ), and gives ω to A.
• Adversary A is given access to the oracle O∗sim-zk(·, ·), which upon input a pair (φ, x)

returns S1(τsim, φ, x); this oracle can be queried only once.
• Adversary A outputs a tuple (φ∗, x∗, π∗).
• The challenger runs w←$ Ext(τext, φ

∗, (x∗, π∗)).

We say that A wins iff: (a) (φ∗, x∗) was not queried to the oracleO∗sim-zk(·, ·); (b) V(ω, φ∗, (x∗, π∗)) =
1; (c) (x∗, w) 6∈ R.

A.2.1 Collision-Resistant Hash Functions

A hash function Π := (GenHK,H) is a pair of efficient algorithms specified as follows. (i) The
randomized algorithm GenHK takes as input the security parameter and outputs a hash-key hk.
(ii) The deterministic algorithm H takes as input the hash-key hk and a value x ∈ {0, 1}∗, and
outputs a value y ∈ {0, 1}λ.

Definition 10 (Collision resistance). Let Π = (GenHK,H) be a hash function. We say that Π
is collision resistant if for all PPT adversaries A there exists a negligible function ν : N→ [0, 1]
such that:

P
[
x 6= x′ ∧ H(hk, x) = H(hk, x′) : (x, x′)←$ A(hk), hk←$ GenHK(1λ)

]
≤ ν(λ).

A.3 Code Description

We recall the coding scheme Σ = (Init,Enc,Dec) presented in [33], based on an auxiliary code
Σ′ = (LREnc, LRDec), on a NIZK proof system Π′ = (I,P,V) and on a hash function Π =
(GenHK,H).

Init(1λ): Sample ω←$ I(1λ), hk←$ GenHK(1λ), and return ω := (ω, hk).
Enc(ω, s): Parse ω := (ω, hk), sample (c′0, c

′
1)←$ LREnc(s), and for all β ∈ {0, 1} compute

hβ := H(hk, c′β) and πβ ←$ P(ω, h1−β, (hβ, c
′
β)). Output c := (c0, c1) where for β ∈ {0, 1}

we have cβ := (c′β, h1−β, π1−β).
Dec(ω, c): Parse ω := (ω, hk) and c := (c0, c1), where cβ := (c′β, h1−β, π1−β) for β ∈ {0, 1}.

Compute s = LRDec(c′0, c
′
1), and φ0 := H(hk, c′1) and φ1 := H(hk, c′0). If the following

conditions hold return s, and else return ⊥.

(a) Left check: V(ω, φ1, (h1, π1)) = 1;
(b) Right check: V(ω, φ0, (h0, π0)) = 1;
(c) Cross check: h0 = H(hk, c′0) and h1 = H(hk, c′1).

Faust et al. [33] showed that if Σ′ is a leakage-resilient code, the NIZK Π′ satisfies zero-knowledge
and simulation extractability, and the hash function Π is collision resistant, then the coding
scheme Σ from above is continuously non-malleable in the split-state model. Below we prove a
stronger statement, namely, that under the same assumptions the code Σ is augmented contin-
uously non-malleable in the split-state model.
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Theorem 6. Let Σ′ be a (k, n′)-code that is (λ + k + ω(log(λ)))-noisy-leakage resilient, and
assume that, for all β ∈ {0, 1} and for all s ∈ {0, 1}k, the following holds for the conditional av-
erage min-entropy of the random variable (C′0,C

′
1) corresponding to LREnc(s): H̃∞(C′β|C′1−β) ≥

H∞(C′β)− k. Additionally, let Π be a collision resistant hash function with range {0, 1}λ, and
Π′ be NIZK proof systems for the NP-relation Rhash = {((hk, h), x) : H(hk, x) = h}, satisfying
adaptive multi-theorem zero-knowledge and simulation extractability.

Then the code Σ described above is an augmented continuously Fn/2,n/2split -non-malleable (k, n)-
code, where n(λ) = n′(λ) + 2(λ+ nnizk(λ)), and where nnizk(λ) is the size of a proof.

By plugging in the parameters from Theorem 5, we see that it is sufficient to have log |F| = k
and ε = 2−λ and set n′(λ) = 16k(λ) + 9λ when we instantiate the leakage-resilient code using
the inner-product extractor. The additional condition on the average min-entropy of (C′0,C

′
1)

follows by Lemma 13.

A.4 Security Proof

We start by describing the simulator S := (S0, S1). Recall that S0 has to fake the CRS and
additionally the right share of a real encoding, while S1 has to answer tampering queries without
knowing the message, and in a way that is consistent with the right share simulated by S0. Let
S′ := (S′0,S

′
1) be the zero-knowledge simulator for the NIZK proof system Π. Intuitively, S0 will

fake the CRS using S′0, and will emulate the right share of the target codeword by encoding a
dummy message and simulating the zero-knowledge proofs.

Simulator S0(1λ):

• Sample (ω, τsim, τext)←$ S′0(1λ), and hk←$ GenHK(1λ).
• Run (c′0, c

′
1)←$ LREnc(0k), compute h0 = H(hk, c′0), h1 = H(hk, c′1), π0←$ S′1(τsim,

h1, (hk, h0)), and π1←$ S′1(τsim, h0, (hk, h1)).
• Let c := (c0, c1), where c0 = (c′0, h1, π1) and c1 = (c′1, h0, π0).
• Output (ω, σ, ĉ1), where ω := (ω, hk), σ := (τext, c0, c1), and ĉ1 := c1.

The tampering and leakage simulators. We now turn to defining the simulator S1. To
facilitate the description, in Fig. 6, we formalize an algorithm T that we call the tampering
simulator and an algorithm L that we call the leakage simulator. Intuitively, algorithm T
simulates the outcome corresponding to a tampering query (f0, f1) from the adversary, by
using only cβ (i.e., one share of the simulated codeword). On a very high level, as long as
both T(c0, f0) and T(c1, f1) return the same message s̃, the simulator S1 uses s̃ to answer the
tampering queries from the adversary; otherwise, in case of disagreement, it emulates a decoding
error (and subsequent self-destruct). The leakage simulator, instead, computes the hash values
corresponding to a tampering query (f0, f1). Intuitively, this is the leakage from the other share
of the codeword that T needs in order emulate the “cross check” step of the decoding algorithm.

Simulator S1(σ, (f0, f1)):

1. Parse σ := (τext, (c0, c1)).
2. Let h̃leak

0 = L(c0, f0) and h̃leak
1 = L(c1, f1).

3. Let (s̃0, h̃0) = T(c0, f0, h̃
leak
1 ) and (s̃1, h̃1)← T(c1, f1, h̃

leak
0 ):

(a) If either s̃0 = ⊥ or s̃1 = ⊥, or s̃0 6= s̃1, return ⊥ and self-destruct;
(b) Else return s̃ := s̃0 = s̃1.
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Algorithm T(cβ, fβ, h̃
leak
1−β):

1. Parse cβ := (c′β, h1−β, π1−β).

2. Compute c̃β := (c̃′β, h̃1−β, π̃1−β) = f(cβ) and φ̃1−β := H(hk, c′β).

3. If h̃leak
1−β 6= h̃1−β, set s̃β := ⊥ (“cross check”).

4. Else if V(ω, φ̃1−β, (hk, h̃1−β), π̃1−β) = 0, set s̃β := ⊥ (“left/right check”).
5. Else if (c̃′β, h̃1−β) = (c′β, h1−β), set s̃β := �.
6. Else run c̃′1−β ←$ Ext(τext, φ̃1−β, (hk, h̃1−β), π̃1−β).

(a) In case c̃′1−β = ⊥, set s̃β := ⊥;
(b) Otherwise set s̃β := LRDec(c̃′0, c̃

′
1).

7. Return (s̃β, h̃1−β).

Algorithm L(cβ, fβ):

1. Parse cβ := (c′β, h1−β, π1−β).

2. Compute c̃β := (c̃′β, h̃1−β, π̃1−b) = f(cβ).
3. Return H(hk, c̃′β).

Figure 6: The tampering and leakage simulators.

In order to prove that the above simulator works, we define a sequence of hybrid experiments
starting with the ideal experiment and ending with the real experiment.

Hybrid H0(λ): This is the ideal experiment, with simulator S := (S0,S1) as defined above.
Hybrid H1(λ): This hybrid is identical to the experiment Simu+

S,A,Fsplit
(λ, n/2, n/2), except

that we change the distribution of the target codeword as follows.

1. Sample (ω, τsim, τext)←$ S′0(1λ) and hk←$ GenHK(1λ), and set ω := (ω, hk).
2. Run (s, α0)←$ A0(ω).
3. Sample (c′0, c

′
1)←$ LREnc(s). For each β ∈ {0, 1}, compute hβ = H(hk, c′β) and

πβ ←$ S′1(τsim, h1−β, (hk, hβ)).
4. Return c := (c0, c1), where c0 = (c′0, h1, π1) and c1 = (c′1, h0, π0).

Hybrid H2(λ): We change the way tampering queries are answered. Namely, instead of an-
swering tampering query (f0,j , f1,j) by running s̃j ←$ S1(σ, (f0,j , f1,j)), we now instead
return s̃j = Dec(ω, f0,j(c0), f1,j(c1)).

Hybrid H3(λ): We modify the distribution of the CRS. Namely, we now sample ω ← Init(1λ)
and also compute the proofs π0, π1 of the target codeword by running the prover of the
underlying zero-knowledge proof system.

Lemma 14. For all (even unbounded) adversaries A, we have that H0(λ) ≈s H1(λ).

Proof. The proof is down to the security of the leakage-resilient code Σ′, as the only difference
between the two experiments is that the former runs the simulator S1 on a dummy encoding
of zero, whereas the latter uses an encoding of the message s chosen by the adversary. By
contradiction, assume that there exists an unbounded distinguisher D and an unbounded A
such that D can tell apart the two experiments with non-negligible probability. Consider the
following attacker B against the leakage-resilient code.

Reduction B:
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1. Sample (ω, τsim, τext)←$ S′0(1λ) and hk←$ GenHK(1λ), and set ω := (ω, hk).
2. Run (s, α0)←$ A0(ω).
3. Forward the pair (0k, s) to the challenger and obtain oracle access to Oleak(c′, ·),

where c′ = (c′0, c
′
1) is the target codeword for the leakage-resilient code.

4. Query the leakage oracle with L(·, id) and L(·, id)), where id is the identity func-
tion. Denote by h0, h1 the answer from the oracle; compute π0←$ S′1(τsim, φ0,
(hk, h0)) and π1←$ S′1(τsim, φ1, (hk, h1)), where φ0 = h1 and φ1 = h0.

5. Run A1(α0). Upon input a tampering query (f0, f1) ∈ Fn/2,n/2split from A1, define
f ′0 := f0(·, h1, π1) and f ′1 := f1(·, h0, π0), and answer as follows:

(a) Query the leakage oracle with L(·, f ′0) and L(·, f ′1). Denote by h̃leak
0 and

h̃leak
1 the answers from the oracle.

(b) Query the leakage oracle with T(·, f ′0, h̃leak
1 ) and T(·, f ′1, h̃leak

0 )); denote by
(s̃0, h̃1) and (s̃1, h̃0) the answers from the oracle.

• If either s̃0 = ⊥ or s̃1 = ⊥, or s̃0 6= s̃1, return ⊥ and self-destruct;
• Else return s̃ := s̃0 = s̃1.

6. Let α1 be the state information returned by adversary A1. Upon receiving the
right share c′1, define c1 := (c′1, h0, π0) and run A2(α2, c1) obtaining state α2.

7. Return the same as D(α2).

We first notice that B perfectly simulates the experiment H0(λ) when the challenge bit b
is 0, and perfectly simulates the experiment H1(λ) when the challenge bit b is one. In fact, by
inspection, we see that the common reference string is computed exactly as in both experiments,
the target codeword is perfectly simulated inside the leakage oracle (due to the fact that the
target encoding (c′0, c

′
1) is either distributed as in LREnc(0k) or LREnc(s)), and finally tampering

queries are answered exactly as S1 would do, except that the output of the functions L and T
is obtained via leakage queries.

Hence, it suffices to prove that B is `′-admissible, for `′ as in the statement of the theorem.
Note that adversary B makes leakage queries at steps 4, 5a, and 5b, but the leakage query of
step 4 is executed only once. Let j∗ ∈ N be the random variable corresponding to the the
index of the tampering query where a self-destruct is triggered (if any). Clearly, the leakage
queries of steps 5a and 5b are executed exactly j∗ times. Denote by Leakβ, for β ∈ {0, 1},
the random variable corresponding to the leakage performed by the reduction on each share
of the target encoding (C′0,C

′
1); note that Leakβ consists of the hash value hβ and a tuple

Λβ,j := (h̃leak
β,j , s̃β,j , h̃1−β,j) for each tampering query j ≤ j∗ as defined in Fig. 6. We claim that,

for each j ≤ j∗, Λ0,j and Λ1,j are identical up to re-ordering of the elements. In fact, there
exists a bijection ϕ such that ϕ(Λ1−β,j) = Λβ,j for all β ∈ {0, 1}. The latter holds because,
by definition of the self-destruct index j∗, it must be the case that s̃0,j = s̃1,j , and moreover
h̃leak
β = h̃β. Hence, we can take ϕ(Λ1−β,j) = ϕ(h̃leak

1−β,j , s̃1−β,j , h̃β,j) = (h̃β,j , s̃1−β,j , h̃
leak
1−β,j).

Assume that the adversary A1 makes at most q(λ) ∈ poly(λ) tampering queries. For all
β ∈ {0, 1}, we can write:

H̃∞(C′β|Leakβ) ≥ H̃∞(C′β|Λβ,1, . . . ,Λβ,j∗)− λ (1)

= H̃∞(C′β|ϕ(Λ1−β,1), . . . , ϕ(Λ1−β,j∗))− λ (2)

≥ H̃∞(C′β|C′1−β, j∗)− λ (3)

≥ H̃∞(C′β|C′1−β)− λ−O(log(λ)), (4)

where Eq. (1) follows by definition of Leakβ and by Lemma 11, Eq. (2) follows by definition
of the map ϕ(·), Eq. (3) comes from Lemma 10 and by interpreting the tuple (ϕ(Λ1−β,1), . . . ,
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ϕ(Λ1−β,j∗)) as a function of (C′1−β, j
∗), and finally Eq. (4) uses the assumption that q(λ) ∈

poly(λ). The lemma now follows by plugging in the bound on H̃∞(C′β|C′1−β) from the statement
of the theorem.

Lemma 15. For all PPT adversaries A, we have that H1(λ) ≈c H2(λ).

Proof. For each tampering query (f0,j , f1,j) asked by the adversary, let s̃j and s̃dec be, re-
spectively, the random variables corresponding to the decoding of the tampered codeword
(f0,j(c0), f1,j(c1)) as computed by simulator S1 and by the decoding algorithm Dec; we also
write s̃0,j , s̃1,j for the intermediate values computed by S1. Define the event Badj that s̃j 6= s̃dec

j ;
clearly, conditioned on ¬

∨
j Badj not happening, the two experiments are identical, and so it

suffices to upper bound the probability of Badj for all j ∈ [q], where q(λ) ∈ poly(λ) is the
number of tampering queries.

We claim that for all j ∈ [q], there exists a negligible function ν : N → [0, 1] such that
P [Badj ] ≤ ν(λ). Below, we omit to write the index j for clarity. Consider the following cases:

Case 1: ∃β ∈ {0, 1} s.t. s̃β = ⊥ but s̃dec 6= ⊥. The second condition implies that V(ω, h̃β, (hk,
h̃1−β), π̃1−b) = 1, while the first condition implies that (c̃′β, h̃1−β) 6= (c′β, h1−β), as other-
wise s̃β = �. Hence, the adversary has created a mauled proof for which the extractor fails
to extract a valid witness, which can only happen with negligible probability by simulation
extractability of the NIZK. The reduction is straightforward, and therefore omitted.

Case 2: ∀β ∈ {0, 1}, s̃β 6= ⊥, but s̃0 6= s̃1 and s̃dec 6= ⊥. For all β ∈ {0, 1}, let us write
c̃′′β for the share extracted by the simulator, and c̃′β for the mauled share processed by

the decoding algorithm. The third condition implies that H(hk, c̃′β) = h̃β, while the first

condition implies that H(hk, c̃′′β) = h̃β (this is because we assume that if the extractor did
not output ⊥, then the output is a valid witness). Finally, the second condition implies
that LRDec(c̃′′0, c̃

′
1) 6= Dec(c̃′0, c̃

′′
1), which yields that either c̃′′0 6= c̃′0 or c̃′1 6= c̃′′1. So, we found

a collision in the hash function Π, which only happens with negligible probability. The
reduction is straightforward, and therefore omitted.

Case 3: s̃0 = s̃1 6= ⊥, but s̃0 6= s̃dec 6= ⊥. Recall that s̃dec = LRDec(c̃′0, c̃
′
1), while s̃0 =

LRDec(c̃′0, c̃
′′
1). By the same argument as the previous case, we have that H(hk, c̃′′1) =

H(hk, c̃′1), and if s̃0 6= s̃dec we have that c̃′1 6= c̃′′1 so that we have found a collision. Thus,
this event happens only with negligible probability.

Case 4: s̃0 = s̃1 6= ⊥, but s̃dec = ⊥. The third condition implies that either the “left check”
or the “right check” or the “cross check” failed. However, the simulator performs exactly
the same checks, so this event never happens.

Note that the above cases fully partition the event Badj , and thus a standard union bound
implies the lemma.

Lemma 16. For all PPT adversaries A, we have that H2(λ) ≈c H3(λ).

Proof. Follows directly by adaptive multi-theorem zero-knowledge. The reduction is obvious,
so we omit it.

The theorem follows by the lemmas above, and by observing that H3(λ) is identically dis-
tributed to the real experiment.
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B Split-State Rate-1/2 Compiler with Adaptive Security

B.1 Description of the Compiler

Let Σ = (Init,Enc,Dec) be a rate-zero (d, n)-code, and Π = (KGen,AEnc,ADec) be a (d, k,m)-
SKE scheme. Consider the following construction of a (k, n′)-code Σ′ = (Init′,Enc′,Dec′), where
n′ := 2m+ n.

Init′(1λ): Upon input λ ∈ N, return the same as Init(1λ).
Enc′(ω, s): Upon input ω and a value s ∈ {0, 1}k, sample κ←$ {0, 1}d, compute c←$ Enc(ω, κ)

and γ←$ AEnc(κ, s); parse c as c0||c1, and return c′ := (c′0, c
′
1) = ((c0, γ), (c1, γ)).

Dec′(ω, c′): Parse c′ := ((c0, γ0), (c1, γ1)). If γ0 6= γ1, return ⊥ and self destruct; else let κ̃ =
Dec(ω, c0||c1). If κ̃ = ⊥, return ⊥ and self destruct; else return the same as ADec(κ̃, γ0).

The main difference with the compiler presented in §3.1 is that the ciphertext γ is stored in both
the left and the right share of the codeword, and the decoding algorithm additionally checks
that the two ciphertexts are the same.

B.2 Leakage-Resilient Continuously Non-Malleable Codes

In order to prove security of the above rate compiler, we will need an underlying continuously
non-malleable code that is also leakage resilient, i.e. non-malleability should hold even against
an adversary that can leak independently from the two shares of an encoding.

Let Oleak be the leakage oracle of Fig. 5, and consider a modified version LKReal of exper-
iment Real (see Fig. 1) where the adversary A2, in addition to the tampering oracle Omaul, has
also access to a leakage oracle Oleak(c, ·). Similarly, we consider a modified version LKSimu of
experiment Simu where the simulator replies to the leakage queries of the adversary. More in
details, the simulator receives both queries of the form (tamp, f) (i.e., tampering queries), and
queries of the form (leak, g)) (i.e., leakage queries).

Intuitively, we would like to say that a code is leakage-resilient continuously non-malleable
if there exists a simulator such that the real and ideal experiments are computationally close
as long as the adversary is `-admissible (cf. Def. 6). However, defining this is a bit tricky in
the computational setting due to the fact that the bound ` is an information theoretic measure
that depends on the distribution of the codeword, but such a distribution can be statistically
far within the real and ideal experiment. We therefore consider a more stringent definition with
a so-called “canonical simulator.”

Definition 11 (Canonical simulator). A simulator S = (S0, S1) is canonical if and only if the
following conditions hold.

1. Let (ω, σ)← S0(1λ), then we can parse σ as (σ̂, (ĉ0, ĉ1)).
2. The simulator S1 answers a leakage query (leak, g := (g0, g1)) by returning g0(ĉ0), g1(ĉ1).

We call (ĉ0, ĉ1) the simulated codeword.

Observe that the simulator of the augmented continuously non-malleable code from §A is,
indeed, canonical. We can now generalize the notion of `-admissible adversary by requiring
that, for all β ∈ {0, 1},

H̃∞(Ĉβ|Leakβ) ≥ H∞(Ĉβ)− `,

where Leakβ is the random variable corresponding to the leakage performed by the adversary

A, and where (Ĉ0, Ĉ1) is the random variable corresponding to the simulated codeword in the
ideal experiment with a canonical simulator. The above leads to the following definition.
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Definition 12 (Leakage-resilient continuous non-malleability). Let Σ = (Init,Enc,Dec) be a
(k, n)-code in the CRS model, and let n0(λ) = n0 ∈ N and n1(λ) = n1 ∈ N be such that
n = n0 + n1. We say that Σ is `-leakage-resilient continuously Fn0,n1

split -non-malleable if for all
`-admissible PPT adversaries A := (A0,A1) there exists a canonical simulator S := (S0, S1) such
that

LKRealΣ,A,Fn0,n1split
(λ, n0, n1) ≈c LKSimuS,A,Fn0,n1split

(λ, n0, n1).

One can prove that the code from §A is already leakage resilient. In fact, the leakage
resilience is inherited from the underlying leakage-resilient code. In particular, when proving
an equivalent of Lemma 14, the reduction B can use the leakage queries (leak, (g0, g1)) from
the adversary A, to define its own leakage queries (g0(·, h1, π1), g1(·, h0, π0)) that are forwarded
to the challenger. Importantly, this step of the proof still involves a simulated codeword, and
thus allows to exploit the fact that A is admissible.

The above discussion can be summarized in the following statement.

Theorem 7. Let Σ′ be a (k, n′)-code that is (λ+k+ω(log(λ)) + `′)-noisy-leakage resilient, and
assume that, for all β ∈ {0, 1} and for all s ∈ {0, 1}k, the following holds for the conditional av-
erage min-entropy of the random variable (C′0,C

′
1) corresponding to LREnc(s): H̃∞(C′β|C′1−β) ≥

H∞(C′β)− k. Additionally, let Π be a collision resistant hash function with range {0, 1}λ, and
Π′ be NIZK proof systems for the NP-relation Rhash = {((hk, h), x) : H(hk, x) = h}, satisfying
adaptive multi-theorem zero-knowledge and simulation extractability.

Then the code Σ described in §A is an `′-leakage-resilient continuously Fn/2,n/2split -non-malleable
(k, n)-code, where n(λ) = n′(λ)+2(λ+nnizk(λ)), and where nnizk(λ) is the size of a proof. Addi-
tionally, the distribution (Ĉ0, Ĉ1) of the simulated codeword output by the canonical simulator is
(λ+k)-correlated, meaning that, for all β ∈ {0, 1}, one has H̃∞(Ĉβ|Ĉ1−β) ≥ H∞(Ĉβ)−(λ+k).

The last part of the statement follows readily by the fact that the codewords of the underlying
leakage-resilient code are k-correlated, whereas the hash values h0, h1 are λ-bit long.

B.3 Security Analysis

We establish the following result.

Theorem 8. Assume that Σ is an (λ + `)-leakage-resilient continuously Fn0,n1

split -non-malleable
(d, n)-code with `-correlated simulated codewords, and that Π is a secure (d, k,m)-SKE scheme.
Then Σ′ as defined in §B.1 is a continuously Fn0+m,n1+m

split -non-malleable (k, 2m+ n)-code.

Proof sketch. Since the proof follows very closely that proof of Theorem 3, we only highlight the
main differences between the two proofs. Let S = (S0,S1) be the canonical simulator guaranteed
by the underlying leakage-resilient continuously non-malleable code. The simulator S′ = (S′0, S

′
1)

works as follows.

S′0(1λ):

1. Run (ω, σ)←$ S0(1λ).
2. Sample κ←$ {0, 1}d, and let γ←$ AEnc(κ, 0k).
3. Set σ′ := (σ, κ, γ) and return (ω, σ′)

S′1(σ′, (f0, f1)):

1. Parse σ′ := (σ, κ, γ);
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2. For all i ∈ [m] sample (ci,0, ci,1)←$ S1(σ, (leak, (Lγ,f0,i0 (·), Lγ,f1,i1 (·)), where for

all β ∈ {0, 1} the function L
γ,fβ ,i
β (cβ) computes (c̃β, γ̃) = fβ(cβ, γ) and then

outputs the i-th bit of γ̃. In case (ci,0 6= ci,1) break the cycle, and set γ̃ := ⊥.
3. If γ̃ = ⊥, return ⊥ and self-destruct. Else, set γ̃ := (c0,0, . . . , cm,0);
4. Let κ̃←$ S1(σ, (tamp, f ′0, f

′
1), ĉ1), where f ′β(·) := fβ(·, γ).

5. If κ̃ = � and γ̃ 6= γ, let s̃ := ⊥ (and self-destruct).
6. Else, if κ̃ = � and γ̃ = γ, let s̃ := �.
7. Else, let s̃ := ADec(κ̃, γ̃).

We consider exactly the same sequence of hybrid experiments H0(λ)–H3(λ) as for the proof
of Theorem 3, where H0(λ) ≡ RealΣ′,A′,cF ′ and H3(λ) ≡ SimuS′,A′,F ′ (for the above defined
simulator S′).

The proof of the lemmas below follows closely that of, respectively, Lemma 3 and Lemma 4,
and is therefore omitted.

Lemma 17. For all PPT adversaries A′ there exists a function ν1,2 ∈ negl(λ) such that for all
PPT distinguishers D′ we have:∣∣P [D′(H1(λ)) = 1

]
− P

[
D′(H2(λ)) = 1

]∣∣ ≤ ν1,2(λ).

Lemma 18. For all PPT adversaries A′ there exists a function ν2,3 ∈ negl(λ) such that for all
PPT distinguishers D′ we have:∣∣P [D′(H2(λ)) = 1

]
− P

[
D′(H3(λ)) = 1

]∣∣ ≤ ν2,3(λ).

Lemma 19. For all PPT adversaries A′ there exists a function ν0,1 ∈ negl(λ) such that for all
PPT distinguishers D′ we have:∣∣P [D′(H0(λ)) = 1

]
− P

[
D′(H1(λ)) = 1

]∣∣ ≤ ν0,1(λ).

Proof. We reduce to the security of the (λ+`)-leakage-resilient continuously Fsplit-non-malleable
code. Consider the following adversary B = (B0,B1), where B0(ω) runs (s, α)← A0(ω) and sets
α′ := (s, α):

Adversary B1(α′)

1. Parse α′ as (s, α).
2. Sample κ←$ {0, 1}d, and let γ←$ AEnc(κ, s).
3. Run the adversary A1(α), and upon each adaptive query (f0, f1):

(a) For all i ∈ [m] make a leakage query (leak, (Lγ,f0,i0 (·), Lγ,f1,i1 (·))), obtaining
an answer (ci,0, ci,1); in case (ci,0 6= ci,1) break the cycle and set γ̃ := ⊥.

(b) If γ̃ = ⊥, return the message ⊥ to A1 and self-destruct; else, let γ̃ :=
(c0,0, . . . , cm,0).

(c) Let κ̃←$ S1(σ, (tamp, f ′0, f
′
1), ĉ1), where f ′β(·) := fβ(·, γ).

(d) If κ̃ = � and γ̃ 6= γ, return ⊥ to A1 and self-destruct.
(e) Else, if κ̃ = � and γ̃ = γ, return � to A1.
(f) Else, return ADec(κ̃, γ̃) to A1.

By inspection, the above simulation is perfect in the sense that B perfectly simulates the exper-
iment H1 when running in the ideal experiment LKSimu, whereas it simulates perfectly the
experiment H0 when running in the real experiment LKReal. Hence, it remains to prove that
B is a (λ+ `)-admissible according to Definition 12.
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Let q(λ) ∈ poly(λ) be an upper bound on the number of tampering queries asked by
A. Furthermore, denote by cji,β the value ci,β as computed by B1 while answering the j-th
tampering query of A1. We write j∗ for the random variable that indicates the index j∗ ≤ q
corresponding to the tampering query where a self-destruct is triggered (if any), and i∗ for
the random variable corresponding to the first index i∗ ≤ m such that cji,0 6= cji,1 for some
j ≤ j∗ (in case no such index exists, we assume i∗ = m). Finally, let Leakβ be the random
variable corresponding to the leakage performed by the reduction, which consists of a sequence
of ciphertexts ((c0

0,0, c
0
0,1, . . . , c

j∗

i∗,0, c
j∗

i∗,1).
For all β ∈ {0, 1}, we can write

H̃∞
(
Ĉβ|Leakβ

)
= H̃∞

(
Ĉβ|C0

0,0,C
0
0,1, . . . ,C

j∗

i∗,0,C
j∗

i∗,1

)
= H̃∞

(
Ĉβ|C0

0,1−β, . . . ,C
j∗

i∗−1,1−β,C
j∗

i∗,0,C
j∗

i∗,0

)
(5)

≥ H̃∞
(
Ĉβ|Ĉ1−β,C

j∗

i∗,0,C
j∗

i∗,0, j
∗, i∗

)
(6)

≥ H̃∞
(
Ĉβ|Ĉ1−β

)
− 1− log q(λ)− logm(λ) (7)

where Eq. (5) comes from the definition of the simulator S′, Eq. (6) follows by Lemma 10,

and Eq. (7) comes from Lemma 11 together with the fact that (Cj∗

i∗,0,C
j∗

i∗,0) ∈ {01, 10}. The
statement now follows by the fact that simulated codewords are `-correlated, and moreover, for
large enough λ ∈ N, we have 1 + logm+ log q ≤ λ.

The statement of the theorem now follows by the above lemmas and the triangle inequality.

C Split-State Rate-One Compiler with Adaptive Security

C.1 Description of the Compiler

Let Σ = (Init,Enc,Dec) be a rate-zero (d, n)-code, and Π = (KGen,AEnc,ADec) be a (d, k,m)-
SKE scheme. Consider the following construction of a (k, n′)-code Σ′ = (Init′,Enc′,Dec′) in the
random oracle model, where n′ := m+ n+ λ.

Init′(1λ): run the same as Init(1λ).
Enc′(ω′, s): Upon input ω′ and a value s ∈ {0, 1}k, sample κ←$ {0, 1}d, compute c←$ Enc(ω, κ),

γ←$ AEnc(κ, s), and h = H(c); parse c as c0||c1, and return c′ := (c′0, c
′
1) = ((c0, h), (c1, γ)).

Dec′(ω′, c′): Parse c′ := ((c0, h), (c1, γ)). If h 6= H(γ), return ⊥ and self destruct; else let
κ̃ = Dec(ω′, c0||c1). If κ̃ = ⊥, return ⊥ and self destruct; else, let µ̃ = ADec(κ̃, γ). If
µ̃ = ⊥ return ⊥ and self destruct, else return µ̃.

The only difference with the compiler presented in §B is that the ciphertext γ is stored on the
right share of the codeword, whereas a digest of the ciphertext h (computed via the random
oracle) is stored on the left share.

C.2 Security Analysis

We establish the following result.

Theorem 9. Assume that Σ is a (2λ + `)-leakage-resilient continuously Fn0,n1

split -non-malleable
(d, n)-code with a canonical simulator outputting simulated codewords that are `-correlated,
and that Π is a secure (d, k,m)-SKE scheme. Then Σ′ as defined in §C.1 is a continuously
Fn0+m,n1+m

split -non-malleable (k,m+ n+ λ)-code in the non-programmable random oracle model.
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Proof. Since the proof follows very closely that proof of Theorem 3, we only highlight the
main differences. Let S = (S0, S1) be the canonical simulator guaranteed by the underlying
leakage-resilient continuously non-malleable code. The simulator S′ = (S′0,S

′
1) works as follows.

S′0(1λ):

1. Run (ω, σ)←$ S0(1λ);
2. Sample κ←$ {0, 1}d, and let γ←$ AEnc(κ, 0k) and h = H(γ);
3. Set σ′ := (σ, κ, γ, h) and return (ω, σ′);

S′1(σ′, (f0, f1)):

1. Parse σ′ := (σ, κ, γ, h);

2. Sample (h̃0, h̃1)←$ S1(σ, (leak, (Lγ,f00 (·), Lγ,f11 (·)))), where the function Lγ,f00 (c0)

computes (c̃0, h̃) = f0(c0, h) and outputs h̃, whereas the function Lγ,f11 (c1) com-
putes (c̃1, γ̃) = f1(c1, γ) and outputs H(γ̃).

3. In case (h̃0 6= h̃1) set γ̃ := ⊥, else sample (ε, γ̃)←$ S1(σ, (leak, (null, Lγ,f12 (·)),
where the function Lγ,f12 (c1) computes (c̃1, γ̃) = f1(c1, γ) and then outputs γ̃
while the function null simply outputs the empty string ε.

4. Let κ̃←$ S1(σ, (tamp, f ′0, f
′
1), ĉ1), where f ′0(·) computes (c̃0, h̃) = f0(·, h) and

outputs c̃0, whereas f ′1(·) computes (c̃1, γ̃) = f1(·, γ) and outputs c̃1.
5. If κ̃ = � and γ̃ 6= γ, let s̃ := ⊥ (and self-destruct).
6. Else, if κ̃ = � and γ̃ = γ, let s̃ := �.
7. Else, let s̃ := ADec(κ̃, γ̃).

We consider exactly the same sequence of hybrid experiments H0(λ)–H3(λ) as for the proof
of Theorem 3, where H0(λ) ≡ RealΣ′,A′,cF ′ and H3(λ) ≡ SimuS′,A′,F ′ (for the above defined
simulator S′).

The proof of the lemmas below follows closely that of, respectively, Lemma 3 and Lemma 4,
and is therefore omitted.

Lemma 20. For all PPT adversaries A′ there exists a function ν1,2 ∈ negl(λ) such that for all
PPT distinguishers D′ we have:∣∣P [D′(H1(λ)) = 1

]
− P

[
D′(H2(λ)) = 1

]∣∣ ≤ ν1,2(λ).

Lemma 21. For all PPT adversaries A′ there exists a function ν2,3 ∈ negl(λ) such that for all
PPT distinguishers D′ we have:∣∣P [D′(H2(λ)) = 1

]
− P

[
D′(H3(λ)) = 1

]∣∣ ≤ ν2,3(λ).

Lemma 22. For all PPT adversaries A′ there exists a function ν0,1 ∈ negl(λ) such that for all
PPT distinguishers D′ we have:∣∣P [D′(H0(λ)) = 1

]
− P

[
D′(H1(λ)) = 1

]∣∣ ≤ ν0,1(λ).

Proof. We augment the underlying rate-zero code by allowing tampering functions (f0, f1) to
make random-oracle queries. This is fine since Σ is independent of the random oracle, and
additionally the code admits a canonical simulator, which can easily answer any random-oracle
query asked by the tampering functions on its own (e.g., by using a PRF with a known key).

The proof is down to the security of the (2λ + `)-leakage-resilient continuously Fsplit-non-
malleable code. Consider the following adversary B = (B0,B1), where B0(ω) runs (s, α)← A0(ω)
and sets α′ := (s, α):
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Adversary B1(α′)

1. Parse α′ as (s, α).
2. Sample κ←$ {0, 1}d, and let γ←$ AEnc(κ, s).
3. Run the adversary A1(α); answer any random-oracle query by forwarding it to

the random oracle H. Upon input a tampering query (f0, f1) from A1, answer
as follows:

(a) Make a leakage query (leak, (Lγ,f00 (·), Lγ,f11 (·))), obtaining an answer (h̃0, h̃1);
(b) In case h̃0 6= h̃1, set γ̃ := ⊥, return ⊥ to A1, and self destruct.
(c) Let QH be the set of random-oracle queries asked by A1; check that there

exists a query x such that H(x) = h̃0. If no such value is found, return ⊥
to A1 and self destruct.

(d) Make the leakage query (leak, (null, Lγ,f12 (·))), obtaining an answer (ε, γ̃).
(e) If H(γ̃) = H(x), but x 6= γ̃ then abort.
(f) Make the tampering query (tamp, (f ′0, f

′
1), ĉ1), obtaining an answer κ̃.

(g) If κ̃ = κ and γ̃ 6= γ, return ⊥ to A1 and self-destruct.
(h) Else, if κ̃ = κ and γ̃ = γ, return µ to A1.
(i) Else, return ADec(κ̃, γ̃) to A1.

We claim that the above simulation is almost perfect, in the sense that with all but a negligible
probability the reduction correctly emulates either the view in experiment H1 (if it is running in
experiment LKSimu), or the view in experiment H0 (if it is running in experiment LKReal).
The only differences are in the checks performed by the reduction in step 3c and step 3e. In
particular, the reduction outputs ⊥ and simulates a self-destruct whenever A1 sets correctly
H(x) = h̃0 without querying x to the random oracle; since the latter can only happen with
probability at most 2−λ, the simulation performed by the reduction is correct with probability
at least 1 − 2−λ. As a consequence, we must have that x = γ̃ in step 3e since otherwise A1

found a collision in the random oracle, which can only happen with negligible probability.
It remains to prove that B is a (λ + `)-admissible according to Definition 12. Let q(λ) ∈

poly(λ) be an upper bound on the number of tampering queries asked by A. Furthermore,
denote by h̃jβ (resp. γ̃j) the value h̃β (resp. γ̃j) as computed by B1 while answering the j-th
tampering query of A1. We write j∗ for the random variable that indicates the index j∗ ≤ q
corresponding to the tampering query where a self-destruct is triggered (if any). Finally, let
Leak be the random variable corresponding to the leakage performed by the reduction, which
consists of values (h̃1

0, h̃
1
1, γ̃

1, . . . , h̃j
∗

0 , h̃
j∗

1 ), and let Leakβ correspond to (h̃1
β, γ̃

1, . . . , h̃j
∗

β ).
We compute the conditional average min-entropy of each share of a codeword conditioned

on the leakage performed by the reduction and on the list of random oracle queries (and answers
to these queries) QH . For all β ∈ {0, 1}, we can write

H̃∞
(
Ĉβ|Leakβ,QH

)
= H̃∞

(
Ĉβ|(h̃1

β, γ̃
1), . . . , (h̃j

∗−1
β , γ̃j

∗−1), h̃j
∗

β ,Q
H , j∗

)
= H̃∞

(
Ĉβ|h̃1

β, . . . , h̃
j∗−1
β , h̃j

∗

β ,Q
H , j∗

)
(8)

= H̃∞
(
Ĉβ|h̃1

β, . . . , h̃
j∗−1
β , h̃j

∗

β , j
∗
)

(9)

≥ H̃∞
(
Ĉβ|h̃1

β−1, . . . , h̃
j∗−1
β−1 , h̃

j∗

β ,Q
H , j∗

)
(10)

≥ H̃∞
(
Ĉβ|Ĉ1−β

)
− log q(λ)− λ. (11)

Eq. (8) holds because in step 3c the adversary B checks that A1 asks a query x to the random
oracle such that H(x) = h̃β, and in step 3e the reduction ensures that x = γ̃, so that the values
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γ̃1, . . . γ̃j
∗−1 are redundant. Eq. (9) comes from the fact that the queries QH are independent

from the codeword Ĉβ. Eq. (10) follows by definition of the simulator S′, as for j < j∗ we have

h̃j0 = h̃j1. Eq. (10) holds by applying Lemma 10 and Lemma 11.
The statement now follows by the fact that simulated codewords are `-correlated, and more-

over, for large enough λ ∈ N, we have λ+ log q ≤ 2λ.

The theorem follows by the above lemmas and the triangle inequality.
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