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Abstract

Randomness is an essential part of any secure cryptosystem, but many constructions rely on distri-
butions that are not uniform. This is particularly true for lattice based cryptosystems, which more often
than not make use of discrete Gaussian distributions over the integers. For practical purposes it is crucial
to evaluate the impact that approximation errors have on the security of a scheme to provide the best
possible trade-off between security and performance. Recent years have seen surprising results allowing to
use relatively low precision while maintaining high levels of security. A key insight in these results is that
sampling a distribution with low relative error can provide very strong security guarantees. Since floating
point numbers provide guarantees on the relative approximation error, they seem a suitable tool in this
setting, but it is not obvious which sampling algorithms can actually profit from them. While previous
works have shown that inversion sampling can be adapted to provide a low relative error (Pöppelmann
et al., CHES 2014; Prest, ASIACRYPT 2017), other works have called into question if this is possible for
other sampling techniques (Zheng et al.,, Eprint report 2018/309). In this work, we consider all sampling
algorithms that are popular in the cryptographic setting and analyze the relationship of floating point
precision and the resulting relative error. We show that all of the algorithms either natively achieve a
low relative error or can be adapted to do so.

1 Introduction

A key building block in many lattice based constructions is discrete Gaussian sampling over the integers. This
is the distribution over the integers that is proportional to the standard continuous Gaussian distribution.
Accordingly, it also has two parameter: a center c and a noise parameter σ. Sampling this distribution is
one of the more complex operations in many lattice-based schemes and can be challenging to implement
efficiently and securely.1

Recent years have seen increasing interest in implementations of lattice-based cryptography, which may
be attributed to two of its properties. First, lattice problems are believed to be resistant to attacks involving
quantum computers. While building a large scale computer that would threaten most of the cryptography
currently in use is still an open problem, progress in that area has already led to an enormous effort in the
search for post-quantum cryptography and compelled NIST to initiate the Post Quantum Standardization
process2. In this process NIST is seeking to identify post-quantum secure key exchange/key encapsulation
mechanisms and signature schemes. Not surprisingly, a large share of the first round submissions can be
classified as lattice-based schemes. When such schemes employ discrete Gaussian sampling, it is usually in a
setting where the parameters of the Gaussian are fixed once and for all, i.e. after initialization the sampling
algorithm does not accept any parameters and generates samples from one fixed distribution.

A second reason for the rising interest in implementations of lattice-based cryptography is its versatility.
Beginning with the breakthrough result of Gentry [9] on fully homomorphic encryption, a number of other
advanced primitives have been realized from lattices, like identity based or attribute based encryption. What
sounded like futuristic science fiction 15 years ago, is now making its way into practical implementations

1Technically, this distribution has infinite support, but it is folklore that the support can be truncated to size O(σ) without
hurting security, so in this entire work we consider the truncated version only.

2https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
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[12, 4, 11]. When discrete Gaussian sampling is used in such implementations, it is almost always in the
context of trapdoor sampling [10, 14, 8]. Here, the parameters of the distribution can change per query, i.e.
for each query the algorithm expects the parameters and outputs a sample from the distribution determined
by the given parameters.

The two settings make for different challenges. For examples, the simpler primitives mentioned first
are often expected to run in constrained environments and to be side-channel resistant, both of which are
challenging to achieve for discrete Gaussian sampling with reasonable performance. On the other hand, in
this context the distribution is fixed, which allows for precomputation and several time-memory trade-offs.
The challenge in the second setting is that the distribution changes per query, which makes it harder to obtain
time-memory trade-offs to increase performance (although some results are known, e.g. [16, 1]). What the
two settings have in common is that the distribution is usually approximated rather than sampled exactly.
However, the corresponding security proofs usually assume the exact distribution. This naturally leads to
the question how accurately the distribution needs to be approximated in order to maintain the security
level. This is a crucial question since the quality of approximation has a large impact on the performance
of the sampling algorithms. Classically, the statistical distance was used to evaluate this trade-off between
approximation and security level. This lead to the common believe that a statistical distance of less than
2−k, achievable with k-bit fixed or floating point arithmetic, is required to maintain a security level of k bits.

Surprisingly, a recent line of research [20, 3, 17, 21, 18] has shown that sampling a distribution with a
relative error of 2−k can preserve up to 2k bits of security, or more. For example, a typical theorem in this
context can be informally summarized as follows.

Theorem (informal). Let S be a cryptographic primitive with access to a probability distribution P, and let Q
be a probability distribution such that the relative error between P and Q is bounded by δre(Pθ,Qθ) ≤ 2−κ/2.
If S is κ-bit secure, then S is still (κ−O(1))-bit secure if P is replaced with Q.

Since floating point numbers with k bits guarantee a relative approximation error of less than 2−k, this
suggests that one can use k-bit floating point numbers to achieve security levels as large as 2k or more, as
demonstrated in [20, 21]. In many settings this can lead to a significant improvement, much larger than a
factor two, over the classical approach of using approximations of about k = λ bits of precision to achieve
λ bits of security. This is because the common IEEE (extended) double precision standard with its 53 (64,
resp.) bits of precision now allows for meaningful security guarantees. Using arbitrary precision libraries
instead would be orders of magnitude slower than arithmetic with the common data types, which is often
supported in hardware.

Due to the guarantees provided by floating point numbers, it is tempting to assume that simply approx-
imating all probabilities/numbers in your favorite sampling algorithm using k-bit floating point numbers
is sufficient to preserve 2k bits of security. Unfortunately, this is not true in general. For example, [20]
already pointed out that blindly using FP approximations in a sampling algorithm (in this case inversion
sampling applied to the discrete Gaussian) can lead to catastrophic errors. A recent work [25] demonstrated
that there are distributions for which one cannot even find a set of floating point numbers that approximate
all the probabilities of the given distribution with small relative error and sum to 1 (thus representing a
probability distribution). The authors claim that their result implies that sampling with small (in the sense
needed for the results in [20, 3, 17, 21, 18] to apply) floating point error is impossible using “methods such as
rejection sampling”. On the other hand, this question has been addressed in the context of inversion (CDT)
sampling [20, 21]. The proposed algorithms use k-bit floating point numbers (during the online phase) only
and the resulting relative error of the distribution is only O(n2−k), where n is the number of elements in
the support. The key point here is that at least in the case of inversion sampling, storing all probabilities
of a distribution approximating the desired one is not necessary. This naturally raises the question if this
is also the case for other samplers that are popular in the cryptographic context. This strikes us as a very
important question for practical implementations of schemes like, for example, some of the ones submitted
to the NIST Post Quantum Standardization process or the PALISADE project3, due to the large potential
improvement. This is amplified by the fact that the performance of sampling algorithms can vary widely on

3https://git.njit.edu/palisade/PALISADE
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different platforms due to different time-memory-randomness trade-offs they achieve. So different samplers
will be more suitable in different settings and it is useful to investigate, which samplers provide a low relative
error and thus achieve strong security guarantees.

Overview of Samplers In this work, we will survey several samplers and show how to adapt them (if
necessary) in order to ensure that the relative error does not significantly outgrow 2−k when working with
k-bit floating point numbers. To the best of our knowledge our survey includes all samplers that are popular
and/or useful in context of discrete Gaussian sampling.

The first and simplest algorithm that has been used for discrete Gaussian sampling is plain rejection
sampling [10]. In this algorithm, a sample from the support is chosen uniformly at random and accepted
with probability proportional to the desired distribution. This algorithm is very simple and generic and
requires little memory, but it is not very suitable for discrete Gaussian sampling due to a high rejection
rate and the requirement to compute irrational probabilities. Nonetheless, we consider it first due to its
generality and our observations will be useful in later sections.

In settings where the distribution is fixed and known in advance, there are a number of generic algorithms
that allow for faster sampling by performing distribution dependent precomputation and using additional
memory. Probably the most popular one in the context of discrete Gaussian sampling is inversion (CDT)
sampling [19, 20]. Inversion sampling requires to precompute and store the cumulative distribution table,
after which the sampling step becomes a binary search for a random element in this table. While this is
much faster than rejection sampling, it requires a large amount of memory if the desired distribution has a
large support (i.e. the noise parameter σ) is very large.

Less well known in the cryptographic community seems to be the alias method, but we include it in our
survey, because we believe it deserves more attention. The alias method requires a little more precomputa-
tion, but the memory is roughly the same as for inversion sampling. In contrast to inversion sampling, the
online phase only require a Bernoulli trial using a bias randomly chosen from a precomputed set. This has
the potential of being even faster and easier to implement securely (e.g. in constant time) than inversion
sampling.

A third algorithm along similar lines is Knuth-Yao sampling [7, 22]. It also requires to precompute the
probabilities from the entire support of the distribution. To generate a sample, it traverses a tree structure,
which is based on the binary expansion of these probabilities. This tree structure can either be precomputed
explicitly, which requires an even larger memory overhead than inversion or alias sampling, or locally on-
the-fly, in which case the memory requirement is equivalent to that of the previous two methods. However,
the latter is also naturally less efficient. Knuth-Yao sampling is often recommended for environments where
randomness is expensive, since it is provably nearly randomness optimal.

The three generic algorithms discussed above all have the advantage that they avoid any arithmetic with
reals during the online phase, which seems to make them suitable for constraint environments. Unfortunately,
they all suffer from memory requirements that can be prohibitive, especially on constrained devices. To
mitigate this, [5] proposed an algorithm (which we denote by the BLISS sampler) that provides a different
time-memory trade-off. This algorithm cleverly tailors rejection sampling to the discrete Gaussian to reduce
the rejection rate and breaks the rejection step into a logarithmic number of Bernoulli trials with precomputed
bias. Accordingly, it requires only logarithmic memory and no rational arithmetic, which makes it much
more suitable for constrained devices.

With the exception of the rather slow rejection sampling, all algorithms described so far only allow to
sample from a distribution that is fixed and known in advance, since they require distribution dependent
precomputation. In more advanced settings, where the distribution is not fixed in advance, one is left with
much fewer options. One of these options is Karney’s algorithm [13]. It resembles the BLISS sampler insofar
as it is also a rejection sampler that is tailored to the discrete Gaussian (albeit in a different way), but it is
also able to perform the rejection step using no precomputation and using only integer arithmetic, assuming
the parameters of the distribution are given as rationals. As such, it performs well in settings where the
parameters of the desired distribution may vary per query [17].
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Contribution We distinguish between generic samplers that are not specific to discrete Gaussian sampling
and algorithms that are specialized to discrete Gaussians.

We start with generic samplers and first make a rather simple observation that shows that rejection
sampling does not require any modification and its output distribution will have small relative error if used
with floating point numbers. Results from [20, 17] then show that the error in terms of KL divergence is only
the square of the relative error. This directly contradicts the aforementioned claim made in [25]. We also
include a section about inversion sampling and demonstrate that the solution provided in [20] applies more
generally than only to discrete Gaussians. Then we show that alias sampling can be easily adapted to achieve
small relative error with almost no overhead. In Section 2.4, we consider a specific version of Knuth-Yao
sampling and show that there are different ways to adapt it leading to different trade-offs in output quality
versus running time. We note that we demonstrate the result on a specific version for concreteness and that
the results easily carry over to other implementations.

We will then move on to the two specialized algorithms. We first address the BLISS sampler, where we
show that above observation w.r.t. rejection sampling easily implies similar results for the BLISS sampler.
Finally, we will consider Karney’s algorithm, which is originally an exact algorithm, but for implementation
purposes it is convenient to consider a floating point version of it, e.g. in the context of trapdoor sampling.
While the observation about rejection sampling is useful also in this context, Karney’s algorithm requires
much more work to convert to a correct floating point algorithm due to some arithmetic that is required
during the online phase. This part contains the bulk of our technical work. In our opinion this result is
particularly interesting since the experimental results in [17] suggest that Karney’s algorithm could be very
competitive in many settings. We remark though that our floating point version introduces a lot of new
conditionals to guard against numerical errors, which can hurt performance on standard CPUs significantly
due to its detrimental effect on pipelining. To evaluate this effect and compare our algorithm to a high
precision variant, that is able to guarantee a small error, we provide an implementation of our algorithm.
Our experimental results on a standard PC suggest that at least for such architectures the slow down
introduced by the conditionals is very acceptable compared to the speed up achievable in comparison with
a high precision variant of Karney’s algorithm. However, note that the performance of samplers depends
strongly on the platform characteristics and the final choice should be made on a case-by-case consideration
with a specific target platform in mind. We will release our implementation to the public.

Applications The algorithms considered in this work can be used as building blocks in many kinds of
cryptographic primitives. The results shown here on the relative error can be combined with results from
[20, 3, 17, 21, 18] to prove strong security (since [18] even for distinguishing primitives like encryption).
Furthermore, the approximate samplers as surveyed in this work can be used as a basis for convolution
samplers [20, 17]. These were first introduced to mitigate the large memory overhead of generic sampling
techniques [5] and then shown to also yield a reduction from variable sampling to the fixed setting [17]. Such
constructions ensure low relative error if instantiated with base samplers with low relative error. In this
context, the results on alias sampling, inversion sampling and Knuth-Yao are particularly relevant, as their
characteristics are very desirable for convolution sampling.

Previous Work In this work we carry out some basic numerical analysis of some generic discrete sampling
algorithms with a focus on the resulting relative error. Most previous work in the cryptographic context
has focused on ensuring small statistical distances [6, 23, 5], or only considered the special case of inversion
sampling [21, 20]. More specifically, [20] shows that by reordering the probabilities, inversion sampling is
able to achieve a bounded relative error at least in the special case of discrete Gaussians. [21] presents a
version of inversion sampling – conditional CDT sampling – that works for any discrete distribution and
achieves similar bounds but is less efficient, since it requires multiple iterations per sample.

The work of [3] analyzed the BLISS sampler using Rényi divergences, and specifically the divergence
of order infinity is closely related to the relative error discussed in this work. We will briefly revisit this
analysis in Section 3.1. Finally, a very recent work [24] showed that one can perform the rejection step in
the BLISS sampler using polynomial approximations, which allows for much easier and faster constant-time
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implementation.

Preliminaries In this work we make heavy use of the notation (a± b) for a, b ∈ R. By this we mean the
interval [min(a+ b, a− b),max(a+ b, a− b)]. We will also do arithmetic with intervals and write A ◦ B for
intervals A,B and ◦ ∈ {+,−, ·, /}. We define this to be the interval [minα∈A,β∈B(α◦β),maxα∈A,β∈B(α◦β)].
Finally, we define arithmetic of intervals with reals by viewing any constant c ∈ R as the interval [c, c].

A k-bit floating point (FP) approximation x̂ of a real x stores the k most significant bits of x as the
mantissa m ∈ Z2k together with a binary exponent e ∈ Z and a sign s ∈ {−1, 1}. The value of an FP
number (s,m, e) is sm2e. This guarantees that the relative error is bounded by δre(x, x̂) = |x− x̂|/|x| ≤ 2−k,
or, equivalently, that x̂ ∈ (1 ± 2−k)x. For simplicity, we assume that there is no limit on the size of the
exponent, i.e. there are no overflows or underflows. The standard guarantee provided by most FP systems
is that an arithmetic operation on two FP numbers yields the closest FP number to the true result. This
generally holds for the four basic operations {+,−, ·, /}. Two values that already contain an approximation
error, the operations {·, /} do not increase the error in the result by much, while the operations {+,−} can
have a very detrimental effect on the approximation error.

We use calligraphic letters to denote distributions. The Bernoulli distribution with bias p is denoted by
Bp. We extend the notion of relative error to any two distributions P and Q

δre(P,Q) = max
x∈S

δre(P(x),Q(x)) = max
x∈S

|P(x)−Q(x)|
P(x)

,

where S is the support of P.
In this note, we will be interested in samplers that use only FP numbers of a given precision k (during

the online phase) and output a distribution D̂ such that δre(D, D̂) ≤ O(2−k). Note that this necessarily

implies that D̂ has the same support as the original distribution D.

2 Generic Samplers

Not surprisingly, the literature on discrete Gaussian sampling borrows heavily from known generic sampling
techniques. In the following we analyze some popular sampling methods. The results of this section, while
technically simple, could be of interest in other contexts than discrete Gaussian sampling.

2.1 Rejection Sampling

The following lemma describes the basic principle of rejection sampling specialized to the setting of discrete
probability distributions.

Lemma 1 (Rejection Sampling). Let P be a discrete probability distribution, called the source distribution,
with support SP and f : S 7→ R+ a function with domain S ⊂ SP defining the target distribution Q(x) =

f(x)∑
x∈S f(x) . Let M ≥ maxx∈S

f(x)
P(x) . Given a sampler for P it is easy to generate a sample from Q by repeatedly

drawing a sample x← P and accepting it with probability f(x)
MP(x) , until the first sample is accepted.

Proof. Accepting a sample x with probability f(x)
MP(x) is equivalent to generating a uniform value u ∈

[0,MP(x)] and accepting x if u ≤ f(x). In other words, this generates a pair (x, u) ∈ S×R+ s.t. u ≤MP(x),
which is distributed uniformly random among such pairs. Accepting x only if u ≤ f(x) amounts to a Monte-
Carlo method of producing a pair (x, u) ∈ S ×R+ s.t. u ≤ f(x) uniformly at random and thus the marginal
relative probability of x is exactly f(x).

A particularly simple case is when P is the uniform distribution and f(x) ≤ 1 for all x ∈ S. Then M can
be chosen as |SP |, which means the acceptance probability is simply f(x) for each x and no further floating
point operation is necessary.

We now observe that rejection sampling naturally allows for FP approximations.
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Lemma 2. Let f, f̂ : S 7→ R+ be two functions with domain S and let D, D̂ be the corresponding distributions

obtained by normalization. If δre(f(x), f̂(x)) ≤ µ for all x ∈ S, then δre(D, D̂) ≤ 2µ+O(µ2).

Proof. It is easy to see that
∑
x∈S f̂(x) ∈ (1± µ)

∑
x∈S f(x). So for any x ∈ S we have

D̂(x) =
f̂(x)∑
x∈S f̂(x)

∈ (1± µ)f(x)

(1± µ)
∑
x∈S f(x)

= (1± (2µ+O(µ2)))D(x).

Combining the two lemmas easily shows that at least the simple version of rejection sampling as described
above can be safely used with FP approximations.

Remark 1. An important observation is that approximating the acceptance probability f(x)
MP(x) with a certain

relative error is equivalent to approximating f with the same relative error. This makes Lemma 2 also
applicable to algorithms that approximate the acceptance probability. I.e., if two rejection samplers use the
same source distribution and only differ by a relative error ≤ µ in the acceptance probability for all x, their
output distributions will have relative error of at most 2µ+ O(µ2). Implications of this will be discussed in
Section 3.

2.2 Inversion Sampling

While rejection sampling is very simple and versatile, for many distributions it can be rather slow in its
simple form due to a large rejection rate. If the distribution is known in advance and has moderately
sized support, one can use inversion sampling as a way to trade precomputation and memory for faster
performance. For a discrete distribution P one computes the cumulative distribution table (CDT) of the
desired distribution and stores it. The CDT consists of n + 1 numbers (where n is size of the support)
0 = T [0] < T [1] < · · · < T [n] = 1 such that P(i) = T [i] − T [i − 1] for all i ∈ [n]. When queried for a
sample, a number u ∈ [0, 1) is drawn uniformly at random and the smallest value i with T [i] ≥ u is output.
Clearly, the probability for any output i is Pr[u ≤ T [i] ∧ u > T [i − 1]] = T [i] − T [i − 1] = P(i). The
question that we are concerned with is if a bound can put on the relative error of the output distribution
when storing k-bit FP approximations of the values T [i]. In [20] it was shown that in the special case of
discrete Gaussians, the error can grow arbitrarily when applying inversion sampling in the obvious way, but
is bounded by O(n2−k) when reversing the order of the probabilities. We now demonstrate that this is in
fact a very general technique that works for any finite discrete distribution.

Lemma 3. Let P be discrete probability distribution of n elements with P(1) ≤ P(2) ≤ · · · ≤ P(n). Let P̂
be the distribution output by an inversion sampler that approximates the entries in the CDT using k-bit FP
numbers. Then δre(P, P̂) ≤ n2−k+1.

Proof. The inversion sampler stores the values T̂ [i] ∈ (1± µ)T [i], where µ = 2−k. So

P̂(i)

P(i)
=
T̂ [i]− T̂ [i− 1]

P(i)

∈ (1± µ)T [i]− (1± µ)T [i]

P(i)

=
(1± µ)

∑
j≤i P(j)− (1± µ)

∑
j<i P(j)

P(i)

= 1±
(
µ
∑
j≤i P(j)

P(i)
+
µ
∑
j<i P(j)

P(i)

)
.

Due to the ordering of the probabilities we have P(j) ≤ P(i) for all j ≤ i and so the result follows.
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Since inversion sampling as described above is only useful for distributions with polynomial support,
the lemma shows that we can use inversion sampling for any such discrete distribution and achieve a small
relative error by ordering the elements in the support according to their probabilities.

Application to Bernoulli Sampling Assume we are given a bias p and want to sample from the respec-
tive Bernoulli distribution, i.e. the distribution over {0, 1} with p0 = p and p1 = 1− p. The straight forward
way of implementing this is to store p and during the online phase one draws a uniform number u in [0, 1)
and outputs 0 iff u ≤ p. It should be clear that this can be viewed as a special case inversion sampling with
two element, i.e. n = 2. Applying the result from above shows that we can perform Bernoulli sampling and
preserve a relative error of 2−k+2 if we reorder the probabilities. In this special case, this means we store an
approximation of p or 1− p, whichever one is smaller. In fact, a direct calculation shows that this results in
a relative error of at most 2−k.

We also remark that [3] already observed that in the context of Bernoulli sampling one can assume
w.l.o.g. that p ≤ 1

2 and that in this case an FP-approximation of p results in a small Rényi divergence of
order infinity, which is essentially equivalent to the relative error.

2.3 Alias Method

Another popular method of using precomputation to speed up sampling for a known distribution is the
alias method. Let P be a given probability distribution with support SP , where |SP | = n. The idea of
alias sampling is to reduce sampling from P to sampling from a Bernoulli sampler randomly chosen from a
carefully crafted set of Bernoulli samplers. To get an intuitive understanding of the algorithm, picture a set
of buckets, one for each element in SP . These buckets have size 1

n and are filled with the probability mass
of the corresponding element. Of course, some buckets are not full, while others are overflowing. In order
to smooth things out, pick a bucket i that is not full, i.e. assume pi <

1
n . Mark its current filling level and

then fill it up by moving probability mass from some overfull bucket, for example bucket j (where we assume
pj >

1
n ). The top of the now exactly full bucket i is labeled with j (so j is i’s alias). Note that bucket j

might now still be overflowing or not be full. Continue this procedure with a different i′ and j′ until every
bucket is filled to exactly 1

n . This is the offline/precomputation phase. In order to sample from P, we select
one of the buckets uniformly at random. Say we selected bucket i, which has a mark at pi and alias j. We
now draw a number r uniformly at random in [0, 1

n ). If r ≤ pi, we output i, otherwise we output the alias
j. This is equivalent to drawing a Bernoulli sample with bias npi and outputting i if the sample is 1 and j
otherwise. The reason this works is that we did not change the amount of probability mass corresponding
to a value. E.g., in the example of i and j above, assume that after moving mass from bucket j to bucket i,
both buckets happen to be full. (In particular, this means that j does not have an alias and when selecting
bucket j during sampling, we always output j.) Then the probability of obtaining i as a sample is exactly
1
nnpi = pi and for j it is 1

n (1 + 1 − npi) = 2
n − pi. Since we assume bucket j was exactly full after moving

1
n − pi mass to bucket i, we have pj = 2

n − pi, which shows that alias sampling works correctly here.
In summary, the alias method works by constructing and storing n Bernoulli samplers Bj in the offline

phase. In the online phase, one of the samplers is selected uniformly at random, a sample is obtained and
depending on the result, one of two values is output. In our setting we assume that the bias of each sampler
is computed exactly during the offline phase and the Bernoulli sampler is then approximated as described
in Section 2.2.

Lemma 4. The alias method can be implemented using only k-bit FP numbers during its online phase and
guarantee a relative error of 2−k.

Proof. In the following we view the Bernoulli samplers as directly outputting one of the two values in the
table, i.e. let xj , yj ∈ [n] be the two values associated with the j-th Bernoulli sampler via the alias table and
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let bj be the bias of that sampler. Then define

pBj (i) =


bj if i = xj

1− bj if i = yj

0 otherwise.

The probability that a value i is output by the alias sampler is then pi = 1
n

∑n
j=1 pBj

(i). From Section 2.2

we know that we can sample each Bernoulli sampler up to a relative error of µ = 2−k, so the probability of

i under the approximate sampler is p̂i ∈ 1
n

∑n
j=1(1 ± µ)pBj

(i) = (1±µ)
n

∑n
j=1 pBj

(i), which shows that the

relative error is at most 2−k.

It is noteworthy that alias sampling actually allows to achieve the optimal bound of 2−k for the relative
error using k-bit FP numbers only. This is in contrast to inversion sampling, where the relative error can be
larger by a factor O(n).

2.4 Knuth-Yao Sampling

Yet another way to spend precomputation and storage in order to speed up sampling from a known dis-
tribution is Knuth-Yao sampling. Knuth-Yao sampling constructs a binary tree, known as the distribution
generating tree (DGT), during initialization from the given probabilities pi. During the online phase, a
random path from the root is traversed to the end, at which point the label of the leaf determines the sample
that is output. Note that a leaf on level t of the tree has a probability of 2−t of being sampled. So if for a
sample i there are l leafs, where each is on a distinct level tj , then the probability of outputting i is exactly∑l
j 2−tj . The tree is constructed from pi such that for every ’1’ in position t in the fixed point binary

expansion of pi there is a leaf for i on level t. Then it is easy to see that the probability of i is exactly pi.
The fact that

∑
i pi = 1 ensures that the tree can be easily constructed from the binary representation of

the pi and that there is a label for every leaf.
Knuth-Yao is often praised for its randomness efficiency, which is close to the entropy of the distribution

and thus close to optimal. We point out though that at least in the context of discrete Gaussians, which
have entropy4 ∼ log σ, both inversion sampling and alias sampling can also be implemented to only require
log n+O(1) = log σ +O(1) random bits.

There are several ways to implement Knuth-Yao:

1. Construct the tree structure and traverse it as described above. This incurs a significant memory
overhead, so this version seems only applicable if memory is not an issue.

2. In order to reduce the memory overhead, one can construct each level of the tree on-the-fly during
the traversal using a table [7]. This table requires less storage than the tree itself, but still leaves
a significant overhead. (In essence, the table contains a number in [n] for every ’1’ in the binary
expansions of the pi, which means this table still requires larger storage than the probabilities itself by
a factor O(log n).)

3. Finally, [22] introduced a variant that constructs the tree entirely on-the-fly only using the probability
table. In this case the storage requirement essentially matches the one of inversion sampling and alias
sampling.

Floating point numbers can be used to reduce the storage requirement in all three variants. When using
FP approximations p̂i of pi for all i, the difficulty is to deal with the fact that

∑
i p̂i 6= 1. Note that we can

easily ensure that
∑
i p̂i ≤ 1 by requiring that p̂i ≤ pi by always rounding down the approximations, which

will increase the relative error by at most a factor 2. In this case, the DGT tree is not well defined and the
result is that the algorithm might not ever encounter a leaf. However, this case is easily detected since the

4Here, σ is the noise parameter of the discrete Gaussian. See Definition 1.
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depth of the tree is bounded by k − min log p̂i, where k is the precision of the FP numbers. In that case,
one can simply restart the algorithm, which essentially turns this algorithm into a rejection sampler. We
demonstrate this approach in Algorithm 1, where the subroutine Bit(p = (s,m, e), c) gives access to the c’th
bit of the fixed point representation of the number represented by the k-bit FP number p.

Algorithm 1 Floating point version of Knuth-Yao, adapted from [22]. The list (pi)i consists of k-bit FP
numbers.
SampleKY((pi)i, k)

1 cmax = d− log mini pie+ k
2 d← 0
3 while true
4 for c = 0 to cmax

5 b← {0, 1}
6 d← 2d+ 1− b
7 for r = n down to 0
8 d← d− bit(pr, c)
9 if d = −1
10 return r

Bit((p = (s,m, e), c)
1 if c < −e− k or c > −e
2 return 0
3 return m[c+ e+ k]

Theorem 1. Let P be a discrete distribution over a finite set with probabilities pi. If given k ∈ Z and a
list of k-bit FP numbers (p̂i)i such that p̂i ≤ pi and δre(pi, p̂i) ≤ µ for all i, then the output distribution

P̂ of Algorithm 1 satisfies δre(P, P̂) ≤ 2µ + (O(µ2)). Furthermore, the expected running time and expected
randomness consumption is (1 + µ)H(P) +O(1).

Proof. Since Algorithm 1 corresponds to a randomized walk on a truncated DGT (see [22] for details), the
relative probability of each sample i is p̂i. Now the first part of the theorem follows from Lemma 2.

For the second part notice that Algorithm 1 behaves, up to rejection, exactly like an exact implementation
of Knuth-Yao, which has running time and randomness consumption H(P). The result follows from the fact
that the rejection probability is ≤ µ.

Remark 2. If the rejection step is undesirable for some reason, there is another way to deal with the situation
where no leaf is encountered: simply always output j = arg maxi pi. Note that pj > 1/n and so

p̂i + µ = (1− µ)pi + µ =

(
1− µ+

µ

pi

)
pi ≤ (1− µ+ nµ)pi.

This shows that this solution leads to a relative error of ≤ 2nµ.

3 Specialized Algorithms

We now consider two algorithms that are specialized to discrete Gaussians. They are both based on rejection
sampling and differ in the source distribution and the way the rejection step is carried out to achieve high
efficiency. We start by defining the distribution we are interested in.

Definition 1. We denote by DZ,σ,c the distribution over Z that is proportional to ρσ,c(x) = exp(− (x−c)2
2σ2 ).

Furthermore, we define the distribution D+
Z,σ,c to be the distribution proportional to DZ,σ,c restricted to

non-negative integers Z≥0. In either case, if the parameter c is omitted, it is understood to be 0.

Note that sampling DZ,σ is easily reduced to sampling D+
Z,σ: draw a sample x ← D+

Z,σ and a uniform
bit s ← U({0, 1}). If x = s = 0, reject x and try again. Otherwise, return (−1)s · x. It is folklore that for
cryptographic purposes one can view DZ,σ,c as a [c− tσ, c+ tσ] bounded distribution for some constant t due
to its exponential decay in the tails. This follows from known bounds on the so called smoothing parameter
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[15] and a simple hybrid argument. Furthermore, from an algorithmic perspective we can assume w.l.o.g.
that c ∈ [0, 1) since the distribution can easily be shifted by an arbitrary integer. Finally, in all applications
in the cryptographic context that we are aware of one can safely assume that σ ≥ 1.

3.1 BLISS Sampler

The BLISS sampler was proposed in [5] as a way to achieve another trade-off between memory requirements
and sampling performance for a known distribution. In particular, while plain rejection sampling is very
slow, in many settings the memory required to apply any of the generic algorithms described in Section
2 is prohibitively large, especially on constraint devices. The BLISS sampler addresses this issue by only
requiring precomputed storage of O(log n) instead of O(n), while still yielding much better performance than
rejection sampling.

The BLISS sampler is a rejection sampler with two main differences to plain rejection sampling. First, it
uses a different source distribution, which is still easy to sample, but better adapted to the target distribution,
which reduces the rejection rate. Second, a list of logarithmically many precomputed values is used to perform
the rejection step through a set of Bernoulli samples. This has the advantage that no FP arithmetic has to
be performed during sampling.

The algorithm assumes that σ = k · σ2 for σ2 =
√

1/(2 ln 2) and some k ∈ Z. This is justified since in
many settings σ is a parameter of the scheme and can be chosen accordingly. The source distribution is
defined as k · D+

Z,σ2
+ U({0, . . . , k − 1}), which can be easily sampled if there is an efficient way to sample

D+
Z,σ2

. By the choice of σ2 this can be done using inversion sampling, where the CDT is computed on-the-

fly. To see this, note that ρσ2
(x) = exp(− x2

2σ2
2
) = exp(−x2 ln 2) = 2−x

2

. So
∑j
x=0 ρ(x) =

∑j
x=0 2−x

2

which

converges to a constant α < 2 as j → ∞. Furthermore, the entries of the CDT correspond exactly to the
sums

∑j
x=0 2−x

2

for j ∈ Z, which exhibits their binary expansion: the expansion has a one in positions that
correspond to squares. Since (a+ 1)2− a2 = 2a+ 1, there are exactly 2a zeros between the a-th one and the
a + 1-st one for a < j. This structure can be exploited by sampling a uniformly random number r in [0, 2)

one bit at a time (or in chunks) and checking if r ∈
[∑j

x=0 ρ(x),
∑j+1
x=0 ρ(x))

)
for some j. (Note that one

can also easily check if r > α and reject r in that case). See [5] for details.
To sample from D+

Z,kσ2
, a sample from the source distribution is chosen by sampling x ← D+

Z,σ2
and

y ← U({0, . . . , k−1}), which represent the sample z = kx+y. This sample is now accepted with probability

exp(−y(y+2kx)
2σ2 ). Correctness follows from the fact that the probability of outputting a sample z = kx+ y is

proportional to

ρσ2
(x) exp(−y(y + 2kx)

2σ2
) = exp(− x2

2σ2
− y(y + 2kx)

2σ2
) = exp(− (kx+ y)2

2σ2
) = ρσ(z).

It remains to show how to perform the rejection step without FP arithmetic and little precomputed
memory. For this, recall that an integer sample z ∈ {0, . . . , τσ} that is output by the source distribution,

is accepted with probability exp(− f(z)
2σ2 ) for some fixed integer f(z) ≤ z2. As seen above, f(z) is easily

computable from z using only small integer arithmetic and τ can be considered a constant. The corresponding

Bernoulli trial is realized by storing the numbers ci = exp(− 2i

2σ2 ) for all i ∈ [d2 log(τσ)e] in memory. Then
the Bernoulli trial is performed by considering the binary representation of f(z) =

∑
i zi2

i and rewriting

exp

(
−f(z)

2σ2

)
= exp

(
−
∑
i zi2

i

2σ2

)
=
∏
i

exp

(
−zi2

i

2σ2

)
=
∏
i:zi=1

exp

(
− 2i

2σ2

)
.

This shows that this trial can be carried out by a series of at most l = d2 log(τσ)e Bernoulli trials with bias
of the form ci for some i. It is clear that this works if storing the numbers ci exactly, but this is clearly
impossible in practice. The next lemma shows that we can approximate the biases ci and achieve small
relative error.
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Lemma 5. Let D be the output distribution of the BLISS sampler with biases ci, and D̂ be the same algorithm
with biases ĉi. If δre(ci, ĉi) ≤ µ for all i then δre(D, D̂) ≤ 2lµ+O(l2µ2).

Proof. Since ĉi ∈ (1± µ)ci, the rejection probability for any x is∏
i:zi=1

ĉi ∈
∏
i:zi=1

(1± µ)ci ∈ (1± µ)l
∏
i:zi=1

ci ∈ (1± (lµ+O(µ2)))
∏
i:zi=1

ci.

The result follows from Lemma 2 (cf. Remark 1).

Lemma 5 shows that the BLISS sampler preserves the relative error up to a multiplicative loss of ∼ 2l =
O(log σ) if using FP numbers to approximate the biases ci.

Remark 3. The work of [3] analyzed the required precision for the biases of the BLISS sampler by viewing the
cryptosystem as using samples from the respective Bernoulli samplers, rather than from the discrete Gaussian.
This requires fixing the number of Bernoulli samples a priori, which is possible in security analyses because
one is usually only interested in bounded adversaries and it is reasonable to charge the adversary resources
for obtaining Bernoulli samples. In comparison, our result is of a statistical nature and thus slightly stronger:
the relative error of the distribution is bounded independently of the number of times the Bernoulli samplers
are invoked, which is unbounded in the worst case. Furthermore, our approach has the advantage of being
simpler and more modular.

3.2 Karney’s Algorithm

Karney’s algorithm is a type of rejection algorithm that efficiently samples from the discrete Gaussian. (In
fact, the work [13] also shows how to sample from the continuous Gaussian, but we are only interested in
discrete distributions here.) We give a description of Karney’s algorithm in Alg. 3.2. Sampling from the
non-negative unit discrete Gaussian in Step 2 can be done using only uniform Bernoulli trials. Similarly,
the Bernoulli trial in Step 12 is also done by cleverly dividing it up into a series of uniform Bernoulli trials.
How exactly these two steps are carried out is not important here.

Karney presented his algorithm as an exact algorithm using only integer arithmetic. The algorithm
assumes that the parameters are given as rationals. However, a common use case is to apply this sampler
on a regular PC using floating point numbers, for example during trapdoor sampling. In this context the
parameters are given as floating point numbers, not as rationals. While floating point numbers can be
naturally viewed as rationals, doing so in the straight-forward manner leads to relatively large integers.
Inspecting the algorithm, it is clear that the integers involved can have roughly twice the size of the mantissa
of the floating point numbers of the input parameters. So if working with regular double precision floating
point numbers (k = 53), the numbers may be larger than 100 bits, which exceeds the length of integers on
most architectures (a reasonable target could be 64 bits).
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Algorithm 2 Karney’s Algorithm

Karney(σ, c)
1 while true

2 t← D+
Z,1

3 s← {−1, 1}
4 j ← {0, . . . , dσe − 1}
5 i← dtσ + sce
6 x̄← i− (tσ + sc)
7 x← x̄+j

σ
8 if x ≥ 1
9 continue // reject
10 if t = 0 and x = 0 and s < 0
11 continue // reject
12 b← Bp where p = exp(− 1

2x(2t+ x))
13 if b = 1
14 return s(i+ j)

3.2.1 A Counterexample

The first natural question is if Algorithm 3.2 simply preserves a relative error of µ = 2−k if one replaces the
exact integer arithmetic with FP operations. We now give a counterexample showing that this is not true.
For concreteness we set k = 4 (but note that this example can be generalized to any k), c = 0 and σ = 1+ 1

8 .
We consider the case where t = 7 in Step 2, s = 1 and j = 1. In that case we have that tσ = 7 + 7

8 , which
is not a 4-bit FP number so it needs to be rounded. The closest 4-bit number is 8, so i = 8 in Step 5 and
x̄ = 0, while the correct value of x̄ would have been 1

8 . This will result in x = 7
8 (the closest 4-bit FP value

to 1
σ = 8

9 ), while it should have been 1. So the check in Step 8 will pass, even though it should have been
rejected, and the value s(i+ j) = 9 will be accepted with some positive probability.

On the other hand, the value 9 can also be output in case t = 8 and j = 0 with about the same probability.
In this case tσ is in fact an integer and no rounding errors occur. This shows that 9 has about twice as much
relative probability than it should have, which means that the relative error of the distribution is a constant.

3.2.2 A Floating Point Version

We are interested in a floating point version of Karney’s algorithm. We will assume that the input is given
as floating point numbers and that we only have floating point numbers of the same precision available.
Furthermore, we assume that we have integers available with a specific bit size. This immediately puts an
upper bound on the noise parameter, since we need to be able to represent samples from a discrete Gaussian
that have more than negligible probability.

We want to bound the relative error achieved by the modified algorithm. We will show that we can
perform all the steps in Karney’s algorithm exactly, even with low precision numbers, except step 12 as this
requires to compute x. Instead, we will approximate x, which allows to carry out an approximate Bernoulli
trial (in the same way as in Karney’s algorithm). The main observation is that Lemma 2 now applies: this
approximation of the bias in the last rejection step only leads to a small difference in the relative probability
for each potential sample s(i+ j) and thus a small relative error.

We will require a little background on floating point numbers, in particular we identify a set of operations
on FP numbers with fixed precision that can be carried out exactly without resorting to FP numbers with
higher precision.

Fact 1. Given two k-bit FP numbers a and b we can easily compute

• a ≤ b, a < b, a = b

• (a)%1, the reduction mod 1, i.e. separating out the fractional part of a

12



• 2ta for any t ∈ Z

• bac and dae

exactly as k-bit FP numbers.

Lemma 6 (Sterbenz Lemma). Given two k-bit FP numbers a and b with 1
2 ≤

a
b ≤ 2, their difference a− b

is also a k-bit FP number.

Corollary 1. Given three positive FP numbers a, b, and c, we can check if (a+ b) ◦ c for any ◦ ∈ {≤,≥, <
,>,=}.

Proof. Algorithm 3 performs the check for ≤. Its correctness follows from Sterbenz lemma. The same
approach works for any other comparison operator.

Algorithm 3 An exact algorithm to check if a+ b ≤ c for given FP numbers a, b, c

CompareSumFP(a, b, c)
1 if a > c or b > c
2 return false

3 if a > c
2

4 return b ≤ c− a
5 if b > c

2
6 return a ≤ c− b
7 return true

Lemma 7. Given a k-bit FP number a ≥ 1 and an integer t, we can compute (ta)%1 and btac using dlog te
operations, assuming integer data types that are capable of representing btac.

Proof. First note that (a)%1 is a (k − 1)-bit fixed point number. Using simple peasant multiplication with
k-bit fixed point arithmetic (e.g. emulated using k-bit FP arithmetic with fixed exponent) we can compute
(ta)%1 and bt(a)%1c. Finally, compute btac = tbac+ bt(a)%1c.

We remark that in the case where the available integer type has bit size larger than the mantissa of
the FP numbers plus dlog te, the task in Lemma 7 can be achieved in a much simpler way: multiply t
with the mantissa of a, which allows to directly read off the two desired values. This case is common on
standard CPUs, where the FP numbers have 53 bits of precision and the common integer type has 63 bits.
Furthermore, in our setting log t < 4 with overwhelming probability. On the other hand, if working with
80-bit extended precision, where FP numbers commonly have a 63-bit mantissa, this is not the case anymore.

We begin our analysis by rewriting Algorithm 3.2 using auxiliary procedures that encapsulate the critical
steps (see Algorithm 4). Then we will present alternative procedures that can be implemented with FP
numbers such that the entire procedure is guaranteed to yield a small relative error in the output distribution.
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Algorithm 4 Rewrite of Karney’s Algorithm

KarneyRewrite(σ, c)
1 while true

2 t← D+
Z,1

3 s← {−1, 1}
4 j ← {0, . . . , dσe − 1}
5 if CheckRejectA(σ, c, t, s, j)
6 continue // reject
7 if CheckRejectB(σ, c, t, s, j)
8 continue // reject
9 i← ComputeI(σ, c, t, s)
10 x← ComputeX(σ, c, t, s, j)
11 b← Bp where p = exp(− 1

2x(2t+ x))
12 if b = 1
13 return s(i+ j)

ComputeI(σ, c, t, s)
1 return dtσ + sce

ComputeX(σ, c, t, s, j)
1 i← ComputeI(σ, c, t, s)

2 return i−(tσ+sc)+j
σ

CheckRejectA(σ, c, t, s, j)
1 x← ComputeX(σ, c, t, s, j)
2 return x ≥ 1

CheckRejectB(σ, c, t, s, j)
1 x← ComputeX(σ, c, t, s, j)
2 return (t = 0 and x = 0 and s < 0)

In the following, we show how to implement ComputeI, CheckRejectA and CheckRejectB exactly
using FP numbers. The latter two will not explicitly compute x. Finally, we will introduce a procedure that
approximates x such that the computed bias p has small relative error. Then the result follows from Lemma
2.

Algorithm 5 An exact algorithm to compute i = dtσ + sce using FP numbers, where t ∈ Z, s ∈ {−1, 1}
and c ∈ [0, 1)

ComputeIFP(σ, c, t, s)
1 i← btσc
2 b← (tσ)%1

3 if s < 0 and b > c
4 i← i+ 1
5 if s > 0 and (b > 0 or c > 0)
6 if b+ c ≤ 1 // cf. Algorithm 3
7 i← i+ 1
8 else
9 i← i+ 2
10 return i

Lemma 8. For any set of inputs (t, s, σ, c) ∈ Z+ × {−1, 1} ×R+ × [0, 1)

ComputeIFP(σ, c, t, s) = ComputeI(σ, c, t, s)

where σ and c are given as FP numbers and ComputeIFP(t, s, σ, c) is implemented using FP numbers of
the same precision.

Proof. Let a = btσc and b = (tσ)%1. Then dtσ+ sce = a+ db+ sce. Since c ∈ [0, 1), there are only 3 possible
values: dtσ + sce ∈ {a, a + 1, a + 2}. We can split this up into the cases where s = −1 and s = 1. In the
former case, we have

dtσ + sce =

{
a if b ≤ c
a+ 1 otherwise

In the case s = 1 we have three cases:

dtσ + sce =


a if b = c = 0

a+ 1 if b+ c ≤ 1

a+ 2 otherwise
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Recall that the second case can be checked using Corollary 1.

Algorithm 6 An exact algorithm to check if x ≥ 1

CheckRejectAFP(σ, c, t, s, j)
1 if j < bσc or IsXbarZeroFP(σ, c, t, s)
2 return false

3 b← (tσ)%1

4 a← (σ)%1

5 z ← a+ b
6 if s > 0
7 if b+ c ≥ 1
8 return (z + c ≤ 2)
9 else
10 return (z + c ≤ 1)
11 else
12 if b > c
13 if z ≤ 1
14 return true

15 else
16 return (c ≥ (z)%1)
17 else
18 return (c ≥ z)

Algorithm 7 An exact algorithm to check if tσ + sc
is integral

IsXbarZeroFP(σ, c, t, s)
1 b← (tσ)%1

2 if s > 0
3 if [(b = 0 and c = 0) or (b+ c = 1)]
4 return true

5 if s < 0 and b = c
6 return true

7 return false

Algorithm 8 An exact algorithm to perform Check-
RejectB using FP numbers

CheckRejectBFP(σ, c, t, s, j)
1 return (c = 0 and t = 0 and j = 0 and s < 0)

Lemma 9. For any set of inputs (t, s, σ, c, j) ∈ Z+ × {−1, 1} ×R+ × [0, 1)×Z+

CheckRejectAFP(σ, c, t, s, j) = CheckRejectA(σ, c, t, s, j)

where σ and c are given as FP numbers and CheckRejectAFP is implemented using FP numbers of the
same precision.

Proof. As in the original algorithm, denote with x̄ = i−dtσ+sce. Then this check is equivalent to x̄+j ≥ σ.
If x̄ = 0 this must always be false by the choice of j so by correctness of IsXbarZero (see below) we can
assume x̄ ∈ (0, 1). Furthermore, the check can only be true if j = bσc, because c ∈ [0, 1). In this case this is
equivalent to x̄ ≥ (σ)%1. Note that x̄ = 1− (tσ + sc)%1, so this is the same as

1 ≥ (tσ + sc)%1 + (σ)%1. (1)

We consider the case s > 0. Then we have

(tσ + c)%1 =

{
(tσ)%1 + c− 1 if (tσ)%1 + c ≥ 1

(tσ)%1 + c else

Plugging this into (1)

1 ≥ (tσ + sc)%1 + (σ)%1 =

{
(tσ)%1 + (σ)%1 + c− 1 if (tσ)%1 + c ≥ 1

(tσ)%1 + (σ)%1 + c else

Note that we can distinguish the cases using Algorithm 3. In each case we can compute (tσ)%1 + (σ)%1

exactly and invoke Algorithm 3, with the left-hand side being either 2 or 1, respectively.
Next consider the case s < 0. Then (1) is equivalent to 1 ≥ (tσ − c)%1 + (σ)%1. Note that

(tσ − c)%1 =

{
(tσ)%1 − c if (tσ)%1 ≥ c
(tσ)%1 − c+ 1 else.
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Again we can rewrite

1 ≥ (tσ − c)%1 + (σ)%1 =

{
(tσ)%1 + (σ)%1 − c if (tσ)%1 ≥ c
(tσ)%1 + (σ)%1 − c+ 1 else.

Again we can compute (tσ)%1 + (σ)%1 exactly. Note that in the latter case the 1 cancels and we can directly
check the inequality. In the former case, we check if (tσ)%1 + (σ)%1 < 1 in which case the inequality is
obviously true. Otherwise, we subtract 1 from both sides which yields 0 ≥ ((t + 1)σ)%1 − c, which we can
obviously check with c ≥ ((t+ 1)σ)%1.

It remains to prove correctness of IsXbarZeroFP.

Lemma 10. Algorithm 7 returns true iff tσ + sc is integral.

Proof. The value tσ + sc is integral iff (tσ)%1 + (sc)%1 ∈ {0, 1}. If s < 0, this simply reduces to (tσ)%1 = c.
Otherwise we need to check if (tσ)%1 + c = 1, which we can do by Corollary 1, or if tσ = c = 0.

Performing CheckRejectB exactly is straightforward, since x = 0 iff j = 0 and x̄ = 0. Conditioned on
t = 0, the latter is the case iff c = 0 (cf. Algorithm 8).

The above shows that Algorithm 4 behaves identical if we replace ComputeI, CheckRejectA and
CheckRejectB with ComputeIFP, CheckRejectAFP and CheckRejectBFP, respectively. Clearly, we
cannot hope to implement ComputeX exactly, since the result might not even be a k-bit FP number (where
k is the precision of the parameters). However, it is sufficient to approximate x well enough in order to
maintain a small relative error in the output distribution. We begin with the observation that it is sufficient
to approximate x with a small absolute or relative error µ. Standard calculations show that in either case
the term exp(− 1

2 x̂(2t + x̂)) will be off by a multiplicative factor ∼ exp(tµ) ≈ 1 + tµ, which shows that the
relative error is only about tµ.

The problematic part is computing x̄ = i− (tσ + sc) with low error. Recall that we can check if x̄ = 0,
so assume that x̄ ∈ (0, 1), which means x̄ = 1− (tσ + sc)%1. While we can compute b = (tσ)%1 (cf. Lemma
7) and sc exactly, the sum a = b+ sc is computed up to an approximation. Naively extracting the fractional
part of a could cause catastrophic errors if (b + sc)%1 is very close to 1 and a is rounded to an integer. In
that case, (a)%1 = 0, which is very far from (b+ sc)%1. This would result in a bad approximation of x̄. To
avoid this problem, we forgo the (·)%1 computation and check explicitly if b+sc < 0 or b+sc ≥ 1 and adjust
x̄ accordingly through appropriate additions and subtractions.

Algorithm 9 An algorithm to approximately compute x

ComputeXFP(σ, c, t, s, j)
1 if IsXbarZeroFP(σ, c, t, s)
2 return j

σ
3 b← (tσ)%1

4 x̄← 1− (b+ sc)
5 if s < 0 and b < c
6 x̄← x̄− 1
7 if s > 0 and b+ c ≥ 1
8 x̄← x̄+ 1
9 return x̄+j

σ

To prove a good approximation for Algorithm 9, we need a technical fact that can be easily verified using
standard calculations.

Fact 2. Let â and b be k-bit FP numbers such that |a− â| ≤ µ. Then∣∣∣̂̂a+ b− (a+ b)
∣∣∣ ≤ µ+ 2−k(a+ b) + 2−kµ . µ+ 2−k(a+ b).
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Lemma 11. For any set of inputs σ, c, t, s, j ∈ R+× [0, 1)×Z+×{−1, 1}×Z+ given as k-bit FP numbers,
if Algorithm 9 is implemented with k-bit FP numbers, then its output value x′ will satisfy at least one of

• |x′ − x| = O(2−k)

• δre(x′, x) = O(2−k).

Proof. Multiple applications of Lemma 2 show that x̄, as computed in Line 4 to 8 of Algorithm 9, has low
absolute error of O(2−k), since all the numbers involved have small absolute value. We now make a case
distinction: first consider the case j = 0. In that case, x = x̄

σ will have also small absolute error of O(2−k/σ).
On the other hand, if j ≥ 1, x̄+ j will actually have relative error O(2−k/(x+ j)) = O(2−k). Division by σ
can increase this by at most a factor 2, which shows that also x has relative error of O(2−k).

We are now ready to prove the main theorem of this section.

Theorem 2. If Algorithm 4 is implemented using ComputeIFP, CheckRejectAFP, CheckRejectBFP

and ComputeXFP with k-bit numbers and the exponentiation in step 11 is computed with low relative error,
the relative error between its output distribution and the one of Karney’s algorithm is O(2−k).

Proof. Recall that Algorithm 4 behaves identical to its FP variant up to step 9. Denote the distribution of
(s, i, j) that are not rejected up to that point as source distribution. The probability that such a sample is
rejected has relative error O(2−k) compared to the exact variant by Lemma 11. We can now apply Lemma
2 (cf. Remark 1) to finish the proof.

We note that the rejection step with value exp(− 1
2x(2t + x)) can be either carried out exactly as in

Karney’s original algorithm or using a fast procedure to approximate exp(·) with small relative error, if it is
available.

3.3 Experimental Results

We implemented our FP version of Karney’s algorithm (which we denote by KarneyFP in this section)
using standard IEEE double precision floating point numbers and compared it to a public implementation
of Karney’s algorithm [2], where we set the precision to 100 bits, such that the two algorithms offer similar
security guarantees when used in cryptographic primitives. Our implementation uses the same source of
randomness as [2], is also written in C and compiled with the same parameters. During our experimentation
on a standard PC we found that KarneyFP is about 20 times faster than the high precision variant in
[2] on typical parameters. We stress though that this is highly platform dependent and caution that this
comparison is merely an indication that the relative performance of KarneyFP can be very good.

We note that [2] also provides an implementation using double precision FP numbers. While this version
cannot guarantee a low relative error, as outlined in Section 3.2.1, and thus guarantees a much lower level of
security (if any), we point out that our implementation was only roughly 25% slower than the low precision
version in [2]. This indicates that on standard PC’s the penalty for the additional conditionals required to
guarantee low relative error is very acceptable. The source code of our implementation will be made public
with the publication of this work.
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