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Abstract—As data outsourcing becomes popular, oblivious al-
gorithms have raised extensive attentions since their control flow
and data access pattern appear to be independent of the input
data they compute on and thus are especially suitable for secure
processing in outsourced environments. In this work, we focus
on oblivious shuffling algorithms that aim to shuffle encrypted
data blocks outsourced to the cloud server without disclosing the
permutation of blocks to the server. Existing oblivious shuffling
algorithms suffer from issues of heavy communication and client
computation costs when blocks have a large size because all
outsourced blocks must be downloaded to the client for shuffling
or peeling off extra encryption layers. To help eliminate this
void, we introduce the “repeatable oblivious shuffling” notation
that restricts the communication and client computation costs
to be independent of the block size. We present an efficient
construction of repeatable oblivious shuffling using additively
homomorphic encryption schemes. The comprehensive evaluation
of our construction shows its effective usability in practice for
shuffling large-sized blocks.

I. INTRODUCTION

In recent years, data outsourcing has increased in popularity
due to the great benefits available to users. It allows a third
party cloud server to take over complicated and expensive
tasks of storing, managing, and utilizing data for individual
users called the client. Cloud servers are widely considered as
“semi-trusted” or “honest-but-curious”, in that they follow the
protocol honestly but may passively attempt to learn protected
information from all data observed during the execution of
the protocol. For this reason, outsourced data are crucially
encrypted by the client. However, encrypting outsourced data
is not sufficient for providing privacy. For example, previous
works [14], [16], [22], [13] show that disclosing the patterns
of data access may leak information about the contents of
encrypted data. This scenario provides motivation towards the
study of oblivious algorithms.

In this paper, we study oblivious algorithms for shuffling
encrypted data on a server. We consider the scenario in which
the client has outsourced the encryption of n identically-sized
data blocks. At some later time, the client wishes to obliviously
shuffle these encrypted blocks once in a while, according to
some permutation. An oblivious shuffle is an algorithm whose
patterns of block movements and computational operations
do not leak any information about the actual permutation

to the server. The ability to obliviously permute blocks of
encrypted data is an important primitive for privacy-aware
outsourcing services in cloud computing. We highlight some
typical applications here.

• Privacy-preserving data access: The sequence of accesses
to outsourced data (i.e., access pattern) can disclose sensitive
user information, such as access privilege, access frequency,
and visiting habits, etc. To hide access patterns, Oblivious
RAM (ORAM) [9] and other lightweight solutions [8],
[18] commonly depend on oblivious shuffling to continually
move outsourced data around in the server’s storage in a
fashion that disallows the server to correlate the previous
physical locations of the data with their new locations.

• Privacy-preserving data integration and sharing: De-
ploying a federated repository of encrypted data on a
cloud server facilitates outsourcing multi-party computation
(MPC) to the cloud [15], [27] and sharing the information
among multiple owners [4], [30], [28]. Identity privacy
requires that no one can associate an intermediate value with
an individual party/owner that contributes to this value. For
instance, the server may be eligible to find the minimum
or maximum value in the federated dataset, but shouldn’t
know which party/owner provided it. This can be achieved
by starting the protocol by obliviously shuffling data [5].

• Privacy persevering computation: secure computation
over encrypted data enables the users to outsource various
large-scale computational tasks (i.e., data analytics, data
mining, machine learning) to a cloud. Many of these tasks
require to separate certain sub-samples from the entire data
(data filtering) or re-order the data for certain purposes
(data sorting). For example, to train a deep neural network,
within every epoch one often needs to sort the training data
randomly and then operate iteratively on small subsets of
the sorted data (mini-batch) at a time. When the data is
encrypted due to privacy concerns, the above operations
must be also formed obliviously because the exploitation of
any side channels induced by disk, network, and memory
access patterns may leak a surprisingly large amount of
information [24]. Both oblivious filtering and sorting can
be reduced to oblivious shuffling [17], [29], [24].



A. Problem Formalization
Our reference scenario is the typical cloud model [31] con-

taining a fully trusted client and a “honest-but-curious” server.
The client has limited computing resources (i.e., storage space
and computational power) but the server does not have such
limitations.

At initialization, the client has an array of n data blocks,
B = (B1, · · · , Bn), each of size m. The client encrypts
each Bi to [Bi], and outsources encrypted blocks [B] =
([B1], · · · , [Bn]) to the server. Note that n is termed as the
number of blocks involved in a shuffle, not the total number
of blocks in a data repository, thus can be sufficiently small.
The block size m is measured by the number of encryption
units for accommodating all data of a block. For example,
assuming one unit allows 1Kb data for encryption, a block
containing 1Mb data would have the block size m = 1024
that is represented as a column vector of length 1024 with
each element being an encryption unit.

As the key of “obliviousness”, the shuffling of [B] should
prevent the server from tracking any [Bi] during the process,
1 ≤ i ≤ n. This requirement can be formulated as below:

Definition 1 (Oblivious Shuffle (OS) [33]). A random shuffling
of n encrypted blocks [B] = ([B1], · · · , [Bn]) is oblivious if
the server is unable to correlate any block before and after
the shuffling.

To prevent the server from tracking a shuffle, OS usually
requires that outsourced blocks [B] are encrypted with some
semantically (IND-CPA) secure encryption schemes and all
blocks in [B] are re-encrypted during the shuffling, so that
the ciphertexts of the same block become different and these
ciphertexts are indistinguishable to the server [23], [26], [33].
The performance of an OS algorithm can be measured by
communication cost, client computation cost, and server com-
putation cost. Due to network bandwidth bottleneck and client
resource limitation in the outsourcing scenario, minimizing
communication cost and client computation cost is the focus
of research interest [23], [26], [33].

Motivating Scenarios. In this paper, we focus on the
application scenarios using OS for shuffling a small number of
large-sized blocks, i.e., m� n, inspired by the following ob-
servations. First, in many cases, the data is represented as the
blocks that have a large block size m (e.g., thousands), owing
to the fact that more than 80% of all data is unstructured (e.g.,
images, videos, location information, and social media data)
or semi-structured (e.g., XML documents or word processor
files) large objects (LOBs) [6], [21].

On the other hand, for many applications oblivious shuffles
often involve only a small number n of blocks (a typical n
is in [2, 10]). For example, private data access requires to
frequently permute the children of nodes within some tree-
based storage for hiding access patterns [9], [18], [8], where
each node normally has few children (such as 2 for binary trees
in [9], [18]) but a child contains one or several LOB as one
block each. Private data integration for outsourcing multi-party
computation may require to shuffle the outsourced data from

different parties for hiding identity privacy [5], where all LOBs
belonging to the same parties create a gigantic data block but
only a small number of parties (≤10) is often involved in
real applications [3]. Private computation for answering Top-
k or k-NN query over LOB data may require to shuffle the
k answers for hiding their relative ordering [20], [7], where
every answer is an individual LOB but k is often sufficiently
small (≤10).

Under the scenario of m � n, it is important to eliminate
the effect of block size m on the communication and client
computation costs. This requires that OS is performed without
moving outsourced blocks between the server and the client,
regardless of how many shuffles are performed. We can
formulate this problem as below:

Definition 2 (Repeatable Oblivious Shuffle (ROS)). An obliv-
ious shuffle of [B] = ([B1], · · · , [Bn]) is repeatable if its
communication cost and client computation cost depend only
on the number n of blocks, regardless of the number of shuffles.

Essentially, ROS requires the data [B] to be completely
confined to the server during any shuffling, no matter how
many shuffles are performed. Meeting this property turns out
to be a major challenge. In fact, existing OS algorithms either
treat the server as a simple storage device and perform the
shuffle through downloading the outsourced data to the client
and uploading the shuffled/re-encrypted data to the server [11],
[12], [23], [26], [33], or permute outsourced data using server
computation at the cost of increasing encryption layers each
time, which requires periodically downloading outsourced data
to the client for peeling off extra encryption layers [2], [9].
Therefore, existing OS algorithms are not repeatable because
they all suffer from the O(m) blowup in communication and
client computation costs due to moving outsourced data blocks
from the server to the client for re-encryption/peeling-off. The
costly O(m) blowup would limit their practical adoption for
large-sized blocks.

B. Contributions

The goal of this work is to construct an efficient ROS
algorithm that eliminates the O(m) blowup in communication
cost and client computation cost for the scenario of m � n.
Our contributions are summarized as follows:

• (Section I-A) Motivated by the applications where m�
n holds, we present the notation of repeatable oblivious
shuffle (ROS) as a tailored OS solution to overcome
the typical communication bottleneck and limited client
resources in outsourced environments.

• (Section IV) We construct the first practical ROS algo-
rithm using efficient additively homomorphic encryption.

• (Section V) We give a rigorous security analysis of our
ROS construction and show that it is secure.

• (Section VI) We show experimentally that our ROS con-
struction outperforms the state-of-the-art OS algorithms
in the motivated scenarios.



TABLE I: Comparison of OS algorithms over n data blocks of size m. For m � n, our ROS construction is asymptotically
better than existing OS algorithms in terms of communication and client computation costs by avoiding the large term m.

OS Algorithms Communication cost Client computation cost Server computation cost

Client-side shuffling

Zig-zag Sort [11] O(mn logn) O(mn logn) —

Melbourne Shuffle [23] O(mn) O(mn) —

Cache Shuffle [26] O(mn) O(mn) —

Buffer Shuffle [12] O(mn) O(mn) —

Interleave Buffer Shuffle [33] O(mn) O(mn) —

Server-side shuffling

Layered Shuffle [2], [9] (` ≥ 1) O(`n2 +mn) O(`n2 +mn) O(mn2`2)

Our ROS Construction O(n2) O(n2) O(mn2)

II. RELATED WORK

Existing OS algorithms fall into two general categories:
client-side shuffling and server-side shuffling. The former
depends on the client’s computation for obliviously shuffling
encrypted data, while the latter depends on the server’s com-
putation for achieving this purpose. Next, we review existing
client-side and server-side shuffling algorithms and summarize
them in Table I. The discussion is based on the shuffling of n
outsourced data blocks of size m, i.e., B = (B1, · · · , Bn).

A. Client-side Shuffling

Since outsourced data can be of unbounded size but the
client has only limited storage, client-side shuffling commonly
works in a multi-round manner. In each round, the client
downloads a small portion of encrypted outsourced data to
its local storage, shuffles it after decryption, re-encrypts the
data and writes it back to the server. The early approach
to oblivious shuffling in this category is based on oblivious
sorting algorithms. The best bound is obtained by Zig-zag Sort
[11], which involves O(mn log n) client cost and O(mn log n)
communication cost. Melbourne Shuffle [23] is the first OS
method that is not based on an oblivious sorting algorithm.
The optimized Melbourne Shuffle has O(mn) client cost
and O(mn) communication cost. Some other works such as
Buffer Shuffle [12], Interleave Buffer Shuffle [33], and Cache
Shuffle [26] also implement client-side shuffling with this cost
complexity. All of these approaches have some constant factors
in the aforementioned complexity.

B. Server-side Shuffling

This group of works leverages server-side computation to
perform oblivious shuffle for reducing communication cost
and client computation cost. It essentially performs a shuf-
fle through computing a homomorphic matrix multiplication
between outsourced data blocks and permutation matrix on
the server.

Layered Shuffle [2] is the first concrete server-side shuffling.
It requires a sequence of additively homomorphic encryption
(AHE) schemes E` where the ciphertext space of E` is in the
plaintext space of E`+1 and the ciphertext size of E` is linear

with `, for all ` ≥ 1. Each scheme E` is additively homomor-
phic meaning E`(x)⊕E`(y) = E`(x+y) and E`+1(x)⊗E`(y) =
E`+1 (E`(y) · x). After `−1 consecutive shuffles, the current
outsourced counterpart of B has ` encryption layers1, notated
by E` (B). To perform the `-th shuffle, the client encrypts
a permutation matrix π with E`+1 and uploads E`+1 (π) to
the server. Then the server performs homomorphic matrix
multiplication using E` (B) and E`+1 (π), which outputs the
permuted result E`+1 (B) = E`+1

(
E` (B) · π

)
that has ` + 1

encryption layers. Due to ciphertext expansion, the shuffling
costs increase at a polynomial rate with the total number `
of shuffles so far. The average costs of the first ` consecutive
shuffles include O(`n2) client cost for encrypting permutation
matrix, O(`n2) communication cost for uploading encrypted
permutation matrix, and O(mn2`2) server cost for homomor-
phic matrix multiplication.

The costs of layered shuffle can become unbounded due to
the unbounded increase of ` as more shuffles are performed. To
solve this problem, [9] proposed to periodically, say after every
` shuffles, peel off extra encryption layers by downloading
the current outsourced blocks E`+1 (B) of `+1 encryption
layers to the client, removing extra layers and re-encrypting it,
and uploading encrypted data of one layer to the server. This
operation incurs O(`mn) communication cost and O(`mn)
client cost amortized over the ` shuffles. Thus, the total cost
per shuffle with peeling-off is O(`n2 + mn) client cost,
O(`n2+mn) communication cost, and O(mn2`2) server cost.

Fully homomorphic encryption (FHE) enables an unlimited
number of both homomorphic addition and multiplication. If
both the blocks and permutation matrix were encrypted under
FHE, the server can trivially perform homomorphic matrix
multiplication on its own without interacting with the client.
This ROS construction, however, is theoretically interesting
because FHE is too far away from being practical [19].

From Table I, we can see that all existing OS algorithms
suffer from the term O(m) in client and communication
costs. In Section IV, we will construct a ROS algorithm that
eliminates this term and uses only the efficient AHE scheme.

1The initial outsourced blocks corresponds to ` = 1, i.e., E1(B) = E1(B)
.



III. PRELIMINARIES

A. Cryptographic Primitives
Our ROS construction employs the Paillier cryptosystem

[25], which is an AHE scheme providing semantic security.
It has the public key N as the product of two large random
primes2, and the secret key as the least common multiple of
these primes. In this paper, both the client and server have the
public key but only the client has the secret key. Let ZN denote
the integers mod N and Z∗

N2 denote the integers coprime to
N2. Paillier cryptosystem encrypts a plaintext x ∈ ZN to a ci-
phertext [x] ∈ Z∗

N2 with the public key and some randomness,
so that encrypting the same plaintext multiple times yields
different indistinguishable ciphertexts due to using different
randomness each time. The exact encryption/decryption can
be found in [25]. We focus on the following homomorphic
properties that are essential to our construction later.

Let xi, yi ∈ ZN , ~x = (x1, · · · , xn), ~y = (y1, · · · , yn)T ,
and ~x · ~y be the dot product of ~x and ~y.

1) Homomorphic addition

[x1 + x2] = [x1]× [x2] mod N2

2) Homomorphic multiplication

[x1 × x2] = [x1]x2 mod N2

3) Homomorphic dot product
Let [~x] = ([x1], · · · , [xn]). Then we have the following
equation from 1) and 2):

[~x]� ~y def
= ([x1]y1)× · · · × ([xn]yn) mod N2

= [~x · ~y]
(1)

Here, each homomorphic multiplication [xi]
yi is repeated

homomorphic additions of [xi] to itself. Thus, the homomor-
phic dot product essentially computes a sequence of homo-
morphic additions involving all ciphertext in [~x].

B. Computational Primitives
1) Matrix-based Data Shuffling: Any shuffling of n data

blocks B = (B1, · · · , Bn) can be executed by the matrix
multiplication B · π, for some n×n permutation matrix π.
For example, the computation with π = ( 0 1

1 0 ) would swap the
two blocks in B = (B1, B2):

B · π = (B1, B2) ·
(

0 1
1 0

)
= (B2, B1) (2)

Assuming there are η ≥ 1 consecutive shuffles over B
where i-th shuffle permutes output of i-1-th shuffle according
to permutation matrix π(i), for all 1 ≤ i ≤ η. Then, the final
result of these η shuffles would be given by B · πη , where πη

is the permutation matrix accumulating all η shuffles, i.e.,

πη = πη-1 · π(η) = π(1) · π(2) · · ·π(η) (3)

For consistency, we define π0 as the n×n identity matrix
so that π1 = π0 · π(1) = π(1).

2The actual public key of Paillier cryptosystem is (N, g) with g = 1+N .

2) Matrix-based Data Scaling: Given n data blocks B =
(B1, · · · , Bn) and an n×n diagonal matrix C, the matrix
multiplication B · C scales each block Bi with C(i, i), for
all 1 ≤ i ≤ n. For example, if B = (B1, B2) and C = ( 2 0

0 3 ),
then we have

B · C = (B1, B2) ·
(

2 0
0 3

)
= (2B1, 3B2) (4)

IV. OUR CONSTRUCTION

From Definition 2, it is seen that a repeatable oblivious
shuffle (ROS) protocol must satisfy both: (repeatability) the
communication cost and client computation cost for shuffling
n encrypted blocks [B] = ([B1], · · · , [Bn]) depend only on n,
and (obliviousness) the shuffling is oblivious. In this section,
we start by building a shuffle algorithm that satisfies repeata-
bility but violates obliviousness. We explore nice properties of
this algorithm and then give out our final ROS construction.

A. Basic Construction

As shown in Eqn (2), shuffling n blocks of B according to
a permutation π is achieved through the matrix multiplication
B · π, which essentially computes the dot products between
B and each column of π. If the outsourced blocks [B] =
([B1], · · · , [Bn]) are encrypted using Paillier cryptosystem,
[B] can be shuffled as follows: the client unloads the desired
permutation π to the server, then the server can shuffle [B] by
computing the “homomorphic dot product” defined in Eqn (1)
between [B] and each column of π, i.e.,

[B]� π = [B · π].

Clearly, this shuffling algorithm is not “oblivious” because
the server learns the actual permutation π. However, the
construction has some very nice properties: the client’s job
is to generate an n×n permutation matrix π and upload it to
the server, which incurs O(n2) client cost and communication
cost that depend only on n. In this sense, the construction is
“repeatable”.

These nice properties are given by the fact that the client
“guides” the server to perform the shuffling homomorphically
by sending the server some plaintext “helper instruction” that
encodes the desired permutation π (here, π itself is sent). With
helper instruction and [B], the server’s main job will be to
trivially run “homomorphic dot product” operations.

B. Overview

To retain the nice properties above as well as make the
shuffling become oblivious (that is, build a complete ROS),
the key is to prevent the server from learning the actual
permutation π from helper instruction. To achieve this purpose,
we propose to accompany every shuffling of blocks (illustrated
in Eqn (2)) by a scaling of these blocks (illustrated in Eqn (4)).
We refine the ROS notation in Definition 2 by including such
mix of shuffling and scaling as below:



Definition 3 (Refined ROS). Consider B = (B1, · · · , Bn),
for any η ≥ 1, the call of

[B(η)]← ROS(π(η), C(η), [B(η-1)])

permutes/scales [B(η-1)] = [B · C(η-1) · πη-1] into [B(η)] =
[B ·C(η) ·πη] on the server without disclosing the permutation
matrix π(η) and the scaling matrix C(η) to the server (πη =
πη-1 · π(η) as defined in Eqn (3)), while the communication
cost and client computation cost depend only on n.

Example 1. Let B=(B1, B2) and [B(η-1)]=[B · C(η-1) ·
πη-1] w.r.t current scaling C(η-1)= ( 2 0

0 3 ) and accumulated
permutation πη-1= ( 0 1

1 0 ). If inputting a permutation matrix
π(η)= ( 0 1

1 0 ) and a scaling matrix C(η)= ( 5 0
0 4 ), ROS outputs

[B(η)]=[B · C(η) · π(η)] that permutes [B(η-1)] according to
π(η) and updates the scaling with C(η). For example, B2 is
moved to position 2 and scaled by 4 because π(η)(1, 2) = 1
and C(η)(2, 2) = 4. Table II shows the outcomes of such mixed
shuffling and scaling. �

TABLE II: Illustration of our ROS construction

[B(η-1)] = ([3B2], [2B1])

[B(η)]← ROS(π(η), C(η), [B(η-1)]) [B(η)] = ([5B1], [4B2])

To address of the challenge of hiding π(η) and C(η) from
the server while allowing the client to guide the server to per-
form shuffling/scaling as specified, we propose the following
strategy. The client constructs some plaintext helper instruction
H(η) and the server generates some encrypted auxiliary blocks
[B

(η)
A ]. Here, H(η) and B(η)

A jointly encode π(η) and C(η), but
B

(η)
A is unknown to the server due to encryption. In this way,

the server is unable to learn π(η) and C(η) from H(η), but still
able to perform the shuffling/scaling through “homomorphic
dot product” between ([B

(η)
A ], [B(η-1)]) and H(η). The next

example illustrates this idea.

Example 2. To encode π(η) and C(η) in Example 1, let

H(η) =


3 0
0 1
1 1
4 -1


and [B

(η)
A ] = ([−B1−B2], [2B1 +B2]). Then, the server can

obliviously permute [B(η-1)] into [B(η)] by computing

[B(η)] = ([B
(η)
A ], [B(η-1)])�H(η) (5)

or

([5B1], [4B2]) =


[−B1 −B2]

[2B1 +B2]

[3B2]

[2B1]


T

�


3 0

0 1

1 1

4 -1



During this computation3, the LHS is the target shuf-
fling/scaling specified by ( 5 0

0 4 ) = C(η) · πη with πη =
πη-1·π(η). The RHS, the actual computation to meet this target,
can be rewritten into ~x1·~y1 ~x1·~y2

~x2·~y1 ~x2·~y2


where ~xi is the coefficient vector of each block Bi in
([B

(η)
A ], [B(η-1)]) and ~yi is the i-th column of H(η), i = 1, 2.

It is easy to see
~x1·~y1 = (-1, 2, 0, 2) · (3, 0, 1, 4)T = 5

~x2·~y1 = (-1, 1, 3, 0) · (3, 0, 1, 4)T = 0

~x1·~y2 = (-1, 2, 0, 2) · (0, 1, 1, -1)T = 0

~x2·~y2 = (-1, 1, 3, 0) · (0, 1, 1, -1)T = 4.

(6)

In this sense, H(η) and B(η)
A jointly encode π(η) and C(η). �

Example 2 illustrates the following key ideas that underpin
our ROS construction.

Correctness: For any π(η) and C(η), the client can always
find the H(η) to encode them. Note that π(η) and C(η), accom-
panied by accumulated permutation πη-1 so far, determine the
target shuffling/scaling specified by C(η) ·πη = ( 5 0

0 4 ), i.e., the
RHS of Eqn (6). The client also knows ~x1 and ~x2 by tracking
the previous shuffling/scaling in [B(η-1)] and the generation of
[B

(η)
A ]. Therefore, given ~x1 and ~x2, the client can always find

a solution for ~y1 and ~y2 (i.e., H(η)) using Eqn (6), because it
is a under-determined linear system.

Obliviousness: [B
(η)
A ] and H(η) discloses no information

about π(η) and C(η). In fact, for any choice of π(η) and C(η)

(thus, any choice of the RHS of Eqn (6)), there always exists
a solution for ~xi’s satisfying Eqn (6) w.r.t. the observed ~yi’s
(i.e., H(η)), due to the system being under-determined. The
server cannot distinguish the actual π(η) and C(η) from these
choices because actual ~xi’s are hidden in [B(η-1)] and [B

(η)
A ]

and unknown to the server.
Repeatability: In this example, the client’s job is to gen-

erate/upload the helper instruction H(η), the size of which
depends solely on the block number n. Importantly, as we
shall see in Section IV-C, the auxiliary blocks [B

(η)
A ] are

generated by the server itself, using another helper instruction
from the client that has a similar size to H(η). Therefore, the
total client computation cost and communication cost, due to
generating/uploading these two help instructions, depends on
the block number n but nothing else.

C. Algorithm

Initialization. Recall that, n is the number of blocks in B
and N is the public key of Paillier cryptosystem. Initially, the
client randomly chooses an n×n diagonal matrix C(0) over

3All computations are over the ring ZN .



Z∗
N , an n×n invertible full matrix S(0) over ZN , and computes

B(0) and B(0)
A by

B(0) = B · C(0) mod N (7)

B
(0)
A = B · S(0) mod N (8)

The client then encrypts B(0) to [B(0)] with Paillier cryp-
tosystem, and uploads {[B(0)], B

(0)
A } to the server. Table III

summarizes all notations used throughout the rest of the paper.
We say that a full matrix is over ZN or Z∗

N if all its elements
are in that ring, and a diagonal matrix is over Z∗

N if all its
diagonal elements are in Z∗

N .
Main Protocol. Algorithm 1 describes the steps of our

ROS construction. For any η ≥ 1, with inputting an n×n
permutation matrix π(η) and an n×n scaling matrix C(η) (that
is, a diagonal matrix over Z∗

N ), it obliviously permutes/scales
[B(η-1)] to [B(η)] in two phases.

• Phase 1. The client generates an n×n random matrix S(η),
computes an n×n matrix H

(η)
A (line 1) and an 2n×n

matrix H(η) (line 2), encrypts H(η)
A to [H

(η)
A ] element-wisely

with Paillier cryptosystem and sends {[H(η)
A ], H(η)} to the

server (line 3). The client also updates the accumulated
permutation matrix πη (line 4).

• Phase 2. The server computes [B
(η)
A ] using {[H(η)

A ], B
(0)
A }

(line 5), where [H
(η)
A ] is the helper instruction for guiding

the server to generate [B
(η)
A ]. Then the server computes

[B(η)] from [B(η-1)] using {[B(η)
A ], H(η)} (line 6).

Complexity Analysis. During the η-th calling of ROS for
shuffling n encrypted blocks, each of size m, the client gener-
ates an 2n×n matrix H(η), an n×n matrix [H

(η)
A ], and sends

them to the server. The client cost and the communication
cost are bounded by the size of these matrices, i.e., O(n2).
The server cost involves O(mn) homomorphic dot products
with O(n) cost each to compute [B

(η)
A ] and [B(η)] (lines 5,

6), so the total cost is O(mn2).
As for space overhead, the client use O(n) space for storing

the information in C(η-1) and πη-1, and O(n2) space for S(0).
On the server, the space required is O(mn) for storing B

(0)
A

and [B(η-1)]. These spaces are not accumulated over different
calls of ROS because they are reused by every call.

D. Correctness Analysis

Theorem 1. For any η ≥ 1, Algorithm 1 produces [B
(η)
A ] =

[B · S(η)] and [B(η)] = [B · C(η) · πη].

Proof. Let us consider the proof for [B
(η)
A ] first. [B

(η)
A ] is

computed by Eqn (12) as follows,

[B
(η)
A ]T = [H

(η)
A ]T � (B

(0)
A )T

⇒[(B
(η)
A )T ] = [(H

(η)
A )T · (B(0)

A )T ] (a)

⇒[B
(η)
A ] = [B

(0)
A ·H

(η)
A ] (b)

⇒[B
(η)
A ] = [B · S(0) · (S(0))-1 · S(η)] (c)

⇒[B
(η)
A ] = [B · S(η)] (d)

Algorithm 1 [B(η)]← ROS(π(η), C(η), [B(η-1)])

Require: The client has S(0), C(η-1), and πη-1; the server has
B

(0)
A and [B(η-1)]

Phase 1 (Client):

1: randomly generate S(η) as an n×n full matrix over Z∗
N and

compute

H
(η)
A = (S(0))−1 · S(η) mod N (9)

2: compute

H(η) =

H
(η)
1

H
(η)
2


where H(η)

1 is an n×n diagonal matrix over Z∗
N satisfying

C(η) · πη-1 · π(η) − S(η) ·H(η)
1 is over Z∗

N (10)

and H(η)
2 is an n×n full matrix over Z∗

N satisfying

S(η) ·H(η)
1 +C(η-1) ·πη-1 ·H(η)

2 = C(η) ·πη-1 ·π(η) mod N
(11)

3: encrypt H(η)
A , send [H

(η)
A ] and H(η) to the server

4: πη ← πη-1 · π(η)

Phase 2 (Server):

5: generate auxiliary blocks by computing

[B
(η)
A ]T = [H

(η)
A ]T � (B

(0)
A )T (12)

6: perform the shuffle by computing

[B(η)] =
(

[B
(η)
A ], [B(η-1)]

)
�H(η) (13)

(a) follows from homomorphic dot product defined in Eqn
(1). By removing the matrix transpose of (a), we get (b). (c)
follows from Eqn (8) and Eqn (9). (d) holds because (S(0))-1

is the inverse of S(0). This shows [B
(η)
A ] = [B · S(η)].

The proof for [B(η)] is by induction on η. The basis is
[B(0)] = [B · C(0) · π0], which comes from Eqn (7) with π0

being the identity matrix. Assume

[B(η-1)] = [B · C(η-1) · πη-1] (14)

We show [B(η)] = [B ·C(η) · πη]. From Eqn (13), we have

[B(η)] = ([B
(η)
A ], [B(η-1)])�H(η)

⇒[B(η)] = [B
(η)
A ·H(η)

1 +B(η-1) ·H(η)
2 ] (a)

⇒[B(η)] = [B · (S(η) ·H(η)
1 + C(η-1) · πη-1 ·H(η)

2 )] (b)

⇒[B(η)] = [B · C(η) · πη-1 · π(η)] (c)

⇒[B(η)] = [B · C(η) · πη] (d)

Recall that H(η) consists of H(η)
1 and H

(η)
2 . (a) comes from

computing homomorphic dot product of Eqn (13). (b) is



TABLE III: Parameters and notations in the ROS construction (η ≥ 1)

Notation Meaning

B n blocks of size m, B = (B1, · · · , Bn)

[B(η)] shuffling result of η-th calling, [B(η)] = [B · C(η) · πη]

B
(0)
A initially outsourced auxiliary blocks, B(0)

A = B · S(0)

[B
(η)
A ] auxiliary blocks used by η-th calling, [B(η)

A ] = [B · S(η)]

H(η) helper instruction for computing [B(η)]

[H
(η)
A ] helper instruction for computing [B

(η)
A ]

C(η) scaling matrix of η-th calling

π(η) permutation matrix of η-th calling

πη accumulated permutation of η callings, πη = πη-1 · π(η)

S(0) coefficient matrix of B(0)
A

S(η) coefficient matrix of B(η)
A

obtained from Eqn (14) and B
(η)
A = B · S(η) shown in the

first part. (c) is obtained from Eqn (11). Finally, (d) holds as
πη-1 · π(η) = πη .

The next theorem shows the existence of H(η).

Theorem 2. For any η ≥ 1, H(η) constrained by Eqns (10)
and (11) always exists.

Proof. H(η) is mainly constrained by Eqn (11). Typi-
cally, C(η)·πη-1·π(η) specifies the target shuffling/scaling as
[B(η)] = [B ·C(η) · πη]; S(η) specifies the coefficient of each
block Bi in the auxiliary blocks [B

(η)
A ] as [B

(η)
A ] = [B ·S(η)];

C(η-1)·πη-1 specifies the coefficient of each Bi in the current
outsourced data [B(η-1)] as [B(η-1)] = [B · C(η-1) · πη-1]. In
a similar spirit to Eqn (6), Eqn (11) is an underdetermined
linear system with H(η)’s entries being unknown variables: the
matrix computation in Eqn (11) defines n2 linear equations but
there are n2 + n unknown variables in H(η) (diagonal matrix
H

(η)
1 has n unknowns and full matrix H(η)

2 has n2 unknowns).
Thus, a solution for H(η) always exists.

V. SECURITY ANALYSIS

For any η ≥ 1, from the server’s perspective, the calling of
Algorithm 1 involves the following observed data:

• encrypted data: Enc(η)={[B(η-1)], [B(η)], [B
(η)
A ], [H

(η)
A ]}

• non-encrypted data: Non Enc(η) = {B(0)
A , H(η)}

and non-observed data:

• Θ0={B,S(0)},Θ(η)
1 ={C(η), πη-1, π(η)},Θ(η)

2 ={S(η), C(η-1)}
To claim the security of our construction, we show that the

observed data discloses no information about the non-observed
data. We first show that encrypted data Enc(η) observed by
the server discloses nothing in Section V-A, then complete
our security analysis by showing that the non-encrypted data
Non Enc(η) discloses no information about Θ0, Θ

(η)
1 , and

Θ
(η)
2 in Section V-B.

A. Security of Enc(η)

The data in Enc(η) is either encrypted/uploaded by the
client, or computed by the server through homomorphic dot
product operations defined in Eqn (1). Thanks to the semantic
security of Paillier cryptosystem (i.e., any ciphertext discloses
nothing about the corresponding plaintext) and its homomor-
phic properties (i.e., any computation through homomorphic
operations preserves the privacy of original data and computed
results), the privacy of all data in Enc(η) is guaranteed.

Oblivious shuffling also requires [B(η)] to be a re-encryption
of [B(η-1)] using different randomness, so that the server
cannot track the permutation from the ciphertexts. Next, we
show that our construction indeed achieves such re-encryption
for outsourced blocks. Recall that homomorphic addition of
Paillier cryptosystem propagates the randomness of both inputs
[x1] and [x2] into the output [x1+x2] [25]. As homomorphic
dot product defined in Eqn (1) is composed of multiple homo-
morphic additions involving each element of [~x], it propagates
the randomness of all ciphertexts of [~x] into the result. During
the η-th calling of Algorithm 1, the client generates a newly
encrypted matrix [H

(η)
A ] with some fresh randomness. These

fresh randomness are propagated into the ciphertexts [B
(η)
A ]

first due to computing the homomorphic dot products of Eqn
(12) and finally propagated into the ciphertexts [B(η)] due to
computing the homomorphic dot product of Eqn (13). Thus,
[B(η)] is a re-encryption of [B(η-1)] with fresh randomness.

B. Security of Non Enc(η)

The rationale behind Non Enc(η) disclosing no informa-
tion about non-observed data Θ0, Θ

(η)
1 , and Θ

(η)
2 is that there

are many different choices of non-observed data for producing
the same Non Enc(η) but the server is unable to identify the
true choices as they are unobserved.



Theorem 3. Given Non Enc(η), for any choice of
Θ̃

(η)
1 = {C̃(η), π̃η-1, π̃(η)}, there exists a choice of Θ̃

(η)
2 =

{S̃(η), C̃(η-1)} such that Eqn (10) and (11) remain to hold if
{Θ(η)

1 ,Θ
(η)
2 } is replaced with {Θ̃(η)

1 , Θ̃
(η)
2 }.

Proof. By replacing {Θ(η)
1 ,Θ

(η)
2 } with {Θ̃(η)

1 , Θ̃
(η)
2 }, Eqn (11)

becomes

S̃(η) ·H(η)
1 + C̃(η-1) · π̃η-1 ·H(η)

2 = C̃(η) · π̃η-1 · π̃(η) mod N

This equation is a generalized form of Eqn (6). Similar
to the argument of “Obliviousness” in Example 2, for any
choice of Θ̃

(η)
1 and the given H(η), this linear system is under-

determined with Θ̃
(η)
2 ={S̃(η), C̃(η-1)} being the unknown vari-

ables: the matrix computation above defines n2 equations but
there are n2 + n unknowns (full matrix S̃(η) has n2 variables
and diagonal matrix C̃(η-1) has n variables). So a solution for
Θ̃

(η)
2 letting Eqn (11) remain to hold always exists.
Next, to satisfy Eqn (10), the above C̃(η-1) and π̃η-1 should

also enforce that C̃(η-1) · π̃η-1 · H(η)
2 is over Z∗

N (the above
equation gives Eqn (10) by moving S̃(η) ·H(η)

1 to the RHS).
This condition indeed holds according to [10] because C̃(η-1)

is a diagonal matrix over Z∗
N , H(η)

2 is a full matrix over Z∗
N ,

and C̃(η-1) · π̃η-1 ·H(η)
2 corresponds to permute/scale the rows

of H(η)
2 using π̃η-1 and C̃(η-1).

From Theorem 3, given the observed Non Enc(η), the
server cannot distinguish {Θ(η)

1 ,Θ
(η)
2 } from {Θ̃(η)

1 , Θ̃
(η)
2 }.

Since π̃(η) and C̃(η) in Θ̃
(η)
1 are arbitrarily chosen (subject

to the constraints required), the server cannot determine the
true permutation matrix π(η) and true scaling matrix C(η)

from the η-th calling of ROS. The next corollary shows that
no information about the non-observed Θ0, Θ

(η)
1 , Θ

(η)
2 is

disclosed even if the server has access to all Non Enc(i)

for all previous calls 1 ≤ i ≤ η.

Corollary 1. Even if the server has access to Non Enc(i) for
all 1 ≤ i ≤ η, the server is still unable to infer Θ0,Θ

(η)
1 ,Θ

(η)
2 .

Proof. Theorem 3 shows that, for any Θ̃
(η)
1 , we can find a Θ̃

(η)
2

to satisfy Eqn (10) and (11), with the given Non Enc(η). This
{Θ̃(η)

1 , Θ̃
(η)
2 } explicitly gives {C̃(η-1), π̃η-1}.

Let Θ̃
(η-1)
1 = {C̃(η-1), π̃η-2, π̃(η-1)} w.r.t. the above

{C̃(η-1), π̃η-1} and π̃η-2 be an arbitrary permutation, repeating
the argument of Theorem 3 for the (η-1)-th calling, we
can find a Θ̃

(η-1)
2 . This argument can be repeated for all

1 ≤ i ≤ η, in the order of i = η, η-1, · · · , 1. Note that
the observed Non Enc(η), · · · , Non Enc(1) are preserved
through all these replacements. Therefore, the server cannot
infer Θ

(η)
1 and Θ

(η)
2 from these Non Enc(i).

Lastly, to see that Θ0 cannot be inferred, consider any
choice of an n×n invertible matrix S̃(0) over ZN , with the
inverse (S̃(0))−1, and define B̃ = B ·S(0) · (S̃(0))−1 mod N .
Then we have B̃ · S̃(0) mod N = B · S(0) mod N ; that is,
B

(0)
A is preserved (Eqn (8)) after replacing Θ0 = {B,S(0)}

with Θ̃0 = {B̃, S̃(0)}. Therefore, the server cannot distinguish
Θ0 = {B,S(0)} from Θ̃0 = {B̃, S̃(0)}. Although such
replacement will affect B(η) and B(η)

A , these data are encrypted
and thus can not help the server’s attacks.

VI. PERFORMANCE EVALUATION

This section reports the empirical evaluation of our ROS
construction by comparing it with the competitors discussed
in Section II. All methods are implemented in C with OpenMP
parallel programming on a server machine 96 Intel Core i7-
3770 CPUs at 3.40 GHz, and a client machine with 2 Intel
Core e7-4860 CPUs at 2.60 GHz. Both run a Linux system.

The empirical comparisons are based on applying each OS
algorithm to permute n encrypted blocks of size m. The im-
plementation details of each OS algorithm in the experiments
are summarized as below:

• ClientShuffle. Different client-side shuffling algorithms have
significantly varied implementations but commonly permute
outsourced data in multi-rounds and each round downloads
and permutes a small portion of the data on the client. To
unify diverse client-side shuffling algorithms in our exper-
iments, we adopt a simplified single-round implementation
for client-side shuffling that downloads all encrypted blocks
to the client, re-encrypts these blocks, and uploads them to
the server in the permuted order. This simplification is in
favor of client-side shuffling algorithms by reducing their
shuffling costs, because every block is downloaded and re-
encrypted only once while their original multi-round im-
plementations involve downloading and re-encrypting each
block multiple times. We follow the same encryption setting
as [33] to implement such simplified client-side shuffling
through encrypting the blocks with AES-128 from Crypto++
Library [1] (each encryption unit contains 128-bit data).

• LayeredShuffle: Layered Shuffle [2], [9] is the sole server-
side shuffling algorithm but must peel off extra encryption
layers after every ` shuffles, where ` is usually a small
number due to the higher shuffle cost associated with the
increased `. Let LayeredShuffle (` = 2) and LayeredShuffle
(` = 10) denote layered shuffle with ` being 2 and 10.
Layered shuffle is implemented by adopting the library of
Damgard-Jurik cryptosystem in [32] with 1024-bit key size
for encryption (each encryption unit contains 1024-bit data).

• ROS. Our ROS construction (Section IV) is implemented
by adopting the library of Paillier Cryptosystem in [32]
with 1024-bit key size for encryption (each encryption unit
contains 1024-bit data).

As different OS algorithms adopt encryption schemes that
vary the size of an encryption unit, the block size m in the
experiments indicates the size of a plaintext block in MB,
instead of the number of encryption units for holding a block.
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Fig. 1: Shuffle cost w.r.t. block size m (MB) (n = 4, ClientShuffle has no server computation and thus not reported)
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Fig. 2: Shuffle cost w.r.t. block number n (m = 10MB, ClientShuffle has no server computation and thus not reported)

A. Effect of Block Size

We first conduct an experiment to examine the performance
of different OS algorithms for shuffling a fixed number (n =
4) of blocks with varying the block size m from 0.1 MB
(e.g., a LOB of a document file) to 1,000 MB (e.g., a LOB
of a video file). We evaluate them with three measurements:
communication cost (MB), client computation cost (second),
and server computation cost (second).

As shown in Figure 1(a) and 1(b), the communication cost
and client computation cost of both client-side shuffling and
layered shuffle grow linearly to the block size m, while those
of our ROS construction stay at a constant around 16KB for
communication and 0.05 second for client computation. ROS
successfully achieves our design goals for eliminating the ef-
fect of the block size m on these two costs, because of strictly
limiting the outsourced data blocks to the server and only
communicating “helper instruction” of size O(n2) with the
server. In contrast, client-side shuffling incurs an unbounded
increase in communication and client computation costs due
to the client’s performing shuffles through downloading all
outsourced data to its local storage and re-encrypting them;
layered shuffle has the same drawback due to downloading all
outsourced data of `+1 encryption layers for peeling off extra
layers after every ` shuffles. These results are consistent with
the asymptotical superiority of ROS in Table I.

In Figure 1(b), we observe that client-side shuffling out-
performs layered shuffle in client cost. This seems counter
intuitive as their client cost complexity are similar (recall that
m � n holds in our setting and ` is a small constant, thus
from Table I the client costs of both algorithms are dominated
by O(mn)). The reason is that client-side shuffling does
not require any homomorphic operation and thus adopts the
secret key cryptosystem AES for fast encryption/decryption,
while layered shuffle adopts the public-key Damgard-Jurik
cryptosystem for allowing additively homomorphic but having
much slower encryption/decryption. The same reason also
explains why client-side shuffling may beat ROS in client cost
when the block size m is sufficiently small (e.g., ≤ 1 MB).

Figure 1(c) presents our results on server computation cost.
Although both ROS and layered shuffle show a linear increase
with the block size m, ROS outperforms layered shuffling on
all settings of m. The costs of ROS are independent of the
number of shuffles performed so far due to ROS never increas-
ing encryption layers of outsourced data. However, layered
shuffle adds an extra encryption layer after every shuffle and
thus leads to the increase of the shuffling costs (especially
the client and server computation costs) with the number ` of
consecutive shuffles before a peeling-off. Nevertheless, layered
shuffle is inapplicable to the scenarios in which shuffling is
intensively involved.



B. Effect of Block Number

We also compare the performance of different OS methods
with respective to varied number n of blocks while fixing the
block size m = 10 MB (e.g., a LOB of an image file).

As shown in Figure 2, all algorithms exhibit an increase in
communication cost and client computation cost. ROS grows
slightly faster than client-side shuffling. The major reason
is that the two costs of ROS (O(n2)) increase quadratically
to the block number n due to generating/uploading helper
instructions of size O(n2) by the client, while those of client-
side shuffling (O(mn)) are linear to the block number n,
as summarized in Table I. In this sense, the saving of the
communication cost and client computation cost using ROS
becomes more significant for small n.

C. Summary

Through the experiments, we can see that ROS evidently
outperforms existing OS algorithms when a small number
of large-sized blocks are shuffled (i.e., m � n) because its
communication and client costs grow with the square of n but
independent of m. On the other hand, client-side shuffling
becomes a better option if a large number of small-sized
blocks are shuffled (i.e., n � m) because its communication
and client costs are linear to both m and n. Lastly, layered
shuffling can only be used when the outsourced data is
shuffled by a limited number of times; otherwise, expensive
peeling-off operations are frequently involved that introduce
overwhelming communication and client costs.

VII. CONCLUSION

In this paper, we study the problem of oblivious algorithms
for shuffling outsourced data blocks. We introduce repeatable
oblivious shuffling (ROS), a fine-grained notation of oblivious
shuffling that eliminates the effect of block size on the commu-
nication and client computation costs. ROS provides a tailored
OS solution for the scenario of shuffling a small number of
large-sized blocks to overcome the typical network bandwidth
bottleneck and client resource limitation in outsourced en-
vironments. We present the first practical ROS construction
using Paillier cryptosystem. According to experimental results,
our construction significantly outperforms the state-of-the-art
OS algorithms in the motivated scenarios.
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