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Abstract. Group signatures allow creating signatures on behalf of a group, while remaining anonymous. To prevent
misuse, there exists a designated entity, named the opener, which can revoke anonymity by generating a proof which
links a signature to its creator. Still, many intermediate cases have been discussed in the literature, where not the
full power of the opener is required, or the users themselves require the power to claim (or deny) authorship of a
signature and (un-)link signatures in a controlled way. However, these concepts were only considered in isolation.
We unify these approaches, supporting all these possibilities simultaneously, providing �ne-granular openings, even
by members. Namely, a member can prove itself whether it has created a given signature (or not), and can create
a proof which makes two created signatures linkable (or unlinkable resp.) in a controlled way. Likewise, the opener
can show that a signature was not created by a speci�c member and can prove whether two signatures stem
from the same signer (or not) without revealing anything else. Combined, these possibilities can make full openings
irrelevant in many use-cases. This has the additional bene�t that the requirements on the reachability of the opener
are lessened. Moreover, even in the case of an involved opener, our framework is less privacy-invasive, as the opener
no longer requires access to the signed message.
Our provably secure black-box CCA-anonymous construction with dynamic joins requires only standard building
blocks. We prove its practicality by providing a performance evaluation of a concrete instantiation, and show that
our non-optimized implementation is competitive compared to other, less feature-rich, notions.

1 Introduction

Group signatures (Ω) became an integral tool for a lot of higher-level protocols, such as anonymous credentials. Orig-
inally introduced by Chaum and van Heyst [19], Ω schemes allow a member to sign messages on behalf of the group
without revealing its identity, while also prohibiting linking signatures. Yet, in case of a dispute, a dedicated third party
(known as inspector, (group) opener, judge, or tracing authority) can later revoke the anonymity and make the signer
accountable for the signature, i.e., open a signature.

This very basic de�nition of Ω schemes is, however, overly restricting in certain scenarios. For instance, as pointed
out by Ishida et al. [26], in case of a dispute, the opener always has to reveal the identity of the signer, which is clearly
privacy-invasive in situations where a simple yes/no information is su�cient, i.e., where it is only important to know
whether a speci�c member signed the document or not. To tackle this, they introduced the notion of deniable Ω schemes,
where the opener not only can prove that a member signed a document, but can also prove that a speci�c member was
not the signer � without revealing the identity of the actual signer.

While this reduces the privacy impact of the opening process, the approach by Ishida et al. still requires the opener
to be involved in every opening. This means that the opener learns a lot of additional information about the group and
also the messages under dispute (note here that in the standard de�nition of group signatures [6], the opener learns
the message). Furthermore, the opener can hardly be implemented as an o�ine party and it is unrealistic to assume
that the necessary key material is shared among multiple parties to avoid abuse. Hence, the opener must be seen as a
single point of failure regarding the members' privacy in Ω systems. It is therefore no surprise that this capability was
also considered in the setting where a member itself, i.e., without the opener, can prove (or deny resp.) authorship of a
signature [1,13,24,41].

1.1 Motivation

Still, there are a few open questions. (1) To open a signature, the opener requires a message and a signature before it
can pinpoint the creator. This, however, is very privacy-invasive, as the opener always learns the message. So, can we
somehow reduce the privacy-impact of this possibility? (2) As widely used in anonymous credentials [16,32], selective
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linkability also has its merits. So, why not take back a step and also grant the opener the possibility to create a proof
that two signatures were created by the same signer without revealing the signer's identity and vice versa? (3) Selective
linkability, as discussed above, still requires that the opener is involved. So what about letting a member decide when
two signatures created by it should become linkable, especially if the opener does not need to be involved, further
lowering the requirements of the opener? (4) All of the above possibilities increase the trust in the Ω scheme, while
also limiting the privacy-invading nature of the opener and the proofs generated. However, can these possibilities be
combined into one practical scheme? (5) Is it possible that users, openers and issuers can re-use keys across multiple
groups, further reducing computational overhead?

1.2 Contribution

We answer those question to the a�rmative by presenting a framework which combines all of the mentioned privacy-en-
hancing features and possibilities. Namely, in our new framework, members can claim (or deny, respectively) authorship
of a signature and can disclose a proof whether two signatures created by it are linkable, related to the linkability
property of direct anonymous attestation [15]. This already gives the members a huge amount of freedom, while the
opener is no longer required to be queried for such proofs: for instance, within a company, the former eases solving
many disputes as an accused employee can directly prove that she did (not) sign a document on behalf of the company,
without involving the judge. The latter allows for elegantely realizing a four-eyes principle [11] without leaking the
identities of the actual signers to an external contract partner.

Still, there are cases where the opener needs to be contacted, e.g., if a member is not willing or able to cooperate.
Thus, we grant the opener the possibility to generate less privacy-invading proofs, i.e., it can prove whether a signature
was created by a certain member or not and can also create a proof whether two signatures stem from the same signer
(or not) without revealing any identities. Considering the scenario where a speci�c group member is accused of having
issued a signature, this single bit of information is su�cient to resolve the dispute, without requiring to violate the
privacy of the actual signer.

Finally, our framework allows for re-using keys, i.e., a user can join di�erent groups with the same key pair, while
also the keys of the opener can be used for di�erent issuers and vice versa.

We provide suitable security de�nitions, and a provably secure black-box construction of such a Ω scheme, including
a concrete instantiation. Both constructions are based on the e�cient encrypt-and-prove paradigm, but are enriched
with ideas originating from the concept of anonymous credentials. In particular, our construction is based on non-
interactive zero-knowledge proofs of knowledge, IND-CPA secure encryption schemes, unforgeable signature schemes,
and scope-exclusive pseudonym systems. To show that the resulting schemes are e�cient enough for use in practice, we
have evaluated the concrete scheme in Java.

We stress that our �basic� setup does not consider revocation, but dynamic joins. This was done to keep the model
readable. However, revocation can be realized straightforwardly using, e.g., the results by Baldimtsi et al. [4]. On the
downside, we note that due to our extended capabilities and by the very goal of our framework, we cannot achieve
forward-secrecy [40].

We emphasize that our framework is not supposed to replace existing ones in general, but should rather be seen as
an extension which makes sense to deploy in speci�c scenarios. This decision depends on the very concrete scenario, and
must consider aspects such as the acceptable level of trust into the opener, the frequency of expected opening requests,
or the potential impact of coercion. We stress that in forward-secure Ω schemes, a member has to store the used
randomness in order to prove that it signed a document, and thus coercion can also happen based on past signatures.
Our construction is stateless in this regard.

More Related Work As already mentioned, Ω schemes were introduced by Chaum and van Heyst [19] as a priva-
cy-preserving tool. The �rst thorough formal treatment of this primitive was then given by Bellare et al. [6], which
introduce a sound security model for static groups, i.e., groups which are �xed at setup once and for all. This has later
been extended for the case of dynamic groups [8,28], which has recently been revisited by Bootle et al. [14], including
the case of revocation of members [4,17].

Due to the interesting nature of this primitive, there are a lot of constructions in the literature, based on a plethora
of assumptions, di�erent construction paradigms and possibilities. Constructions proposed include, but are not limited
to, [3,10,12,30,34,39]. Also directly related is the concept of �traceable signatures� [27,31], where the release of a trapdoor
allows to open the signatures from a speci�c member, but not the others. A nice overview of Ω schemes has been
presented by Manulis et al. [33].
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The idea of �self-traceable� group signatures was already mentioned by Song [40]. Namely, she argues that the leakage
of the secret key may allow to �self-trace� all generated signatures, which she avoids by introducing forward-secure Ω
schemes. However, as already clari�ed, this can actually be lifted to allow for something useful, if proofs can selectively
be generated [1,13,24,41].

Likewise, the idea of (selectively) linkable group-signatures has been discussed [12,25,38]. However, we stress that
in the those schemes the �linking authority� is di�erent from the opener, holding its own secret key, which is not the
case in our framework.

An exception is the work done by Garms and Lehmann [23]. However, they focus on a central entity which can link
signatures.

2 Preliminaries

The main security parameter is denoted by λ ∈ N. All algorithms implicitly take 1λ as an additional input. We write
a← A(x) if a is assigned the output of the deterministic algorithm A with input x. If an algorithm A is probabilistic,

we use (a; r)
$← A(x) to make the randomness r drawn internally explicit for further usage. The randomness r may be

dropped if clear from the context. An algorithm is e�cient, if it runs in probabilistic polynomial time (PPT) in the
length of its input. For the remainder of this paper, all algorithms are PPT if not explicitly mentioned otherwise. Most

algorithms may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. If S is a set, we write a
$← S to denote

that a is chosen uniformly at random from S. In the de�nitions, we speak of a general message spaceM to be as generic
as possible. WhatM is concretely, is de�ned in the instantiations. A function ν : N→ R≥0 is negligible, if it vanishes
faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0. With H : {0, 1}∗ → {0, 1}2λ
we denote a random oracle [7].

2.1 Building Blocks

The construction is based on the following building blocks:

1. An IND-CPA secure encryption scheme Π = {PGenΠ ,KGΠ ,Enc,Dec,KVfΠ}, where the last algorithm, on input a
public/private key pair, outputs a bit whether or not the keys correspond to each other3;

2. An UNF-CMA secure signature scheme Σ = {PGenΣ ,KGΣ ,SigΣ ,VfΣ};
3. A weakly simulation-sound extractable non-interactive zero-knowledge system Ξ = {PGenΞ ,PrvΞ ,VfΞ} that can

be transformed into a signature of knowledge4, and
4. A scope-exclusive pseudonym system Θ = {PGenΘ,KGΘ,GenΘ}. Such a system allows to generate collision-resistant

pseudonyms in a deterministic way based on some string sc (the �scope�). If di�erent scs are used, the resulting
pseudonyms are unlinkable across di�erent users.

We stress that combining an IND-CPA secure encryption scheme with a Ξ implies IND-CCA2.
As Θs are not standard, their de�nition is restated next. All other de�nitions are given in Appendix A.

Pseudonym Systems In a nutshell, pseudonym systems enable users to be known under di�erent pseudonyms to
di�erent veri�ers, being mutually unlinkable.

Framework. We now present the framework for pseudonym systems, taken from Camenisch et al. [16].

De�nition 1 (Pseudonym Systems). A pseudonym system Θ consists of three algorithms {PGenΘ,KGΘ,GenΘ} such
that:

PGenΘ. This algorithm outputs parameters:

ppΘ
$← PGenΘ(ppSYS)

The public parameters are assumed to be input to all following algorithms.
KGΘ. A user generates his secret key:

usk
$← KGΘ(ppΘ)

GenΘ. A pseudonym nym for a given user secret key and a sc ∈ {0, 1}∗ is computed deterministically as:

nym← GenΘ(usk, sc)
3 For simplicity, we assume that at most one secret key per public key exists.
4 Formally, we use one proof-system for each of the proof goals involved in the construction; however, as there is no risk of
confusion, we do not make this distinction explicit in the following.
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Correctness. Correctness only requires that none of the above algorithms halts in an error state, when queried on
honestly generated inputs.

Security. Collision resistance guarantees that for each scope string, any two users will have di�erent pseudonyms with
overwhelming probability. Finally, unlinkability guarantees that users cannot be linked across scopes.

De�nition 2 (Collision Resistance). A pseudonym system is collision resistant, if for every PPT algorithm A there
is a negligible function ν such that:

Pr[nym0 = nym1 ∧ usk0 6= usk1 ∧ nym0 6= ⊥ :

nym0 ← GenΘ(usk0, sc), nym1 ← GenΘ(usk1, sc),

(usk0, usk1, sc)
$← A(PGenΘ(ppSYS))] ≤ ν(λ)

De�nition 3 (Pseudonym Unlinkability). We de�ne pseudonym unlinkability as a game between the adversary
and two oracles O0(usk0, ·),O1(usk1, ·) simulating honest users as follows, where the oracles share an initially empty list
L.

We now require that for every PPT adversary A = (A1,A2) we have that for some negligible function ν it holds
that:

Pr[LinkNymsΘ
A(1

λ) = 1] ≤ 1
2 + ν(λ)

The corresponding experiment is depicted in Fig. 1.

Experiment LinkNymsΘ
A(λ):

ppSYS
$← PGenSYS(1

λ)

ppΘ
$← PGenΘ(ppSYS)

uski
$← KGΘ(ppΘ) for i ∈ {0, 1}

b
$← {0, 1}

L← ∅
(sc∗, state)

$← AO0(usk0,·),O1(usk1,·)(ppΘ)
where oracle Oi, for i = 0, 1, on input sc:
L← L ∪ {sc}
return nym

$← GenΘ(uski, sc)

nym∗
$← GenΘ(uskb, sc

∗)

b′
$← AO0(usk0,·),O1(usk1,·)(state, nym∗)

return 0, if sc∗ ∈ L
return 1, if b = b′

return 0

Fig. 1: Θ Unlinkability

3 Our Framework

We now introduce the formal framework for the Ω schemes with the mentioned additional capabilities. Our model is
based upon prior work [6,14], but was heavily adjusted for our use-case. The main di�erences are made explicit in the
de�nitions to ease readability.

To recap, a Ω scheme has the following participants: An issuer, which decides which users participate in the group,
i.e., can sign. Each user, can, after joining, generate signature on behalf of the group, while the opener can, in case of
a dispute, pinpoint (or deny) the accountable user, and (un)link signatures.

To add an additional layer of privacy, we introduce the new notion opening-privacy de�nition. This de�nition says
that an adversary does not learn which message belongs to a given signature, even if it can generate the opening key.
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This is achieved by letting the signing algorithm SignΩ return some additional veri�cation information τ , which is not
needed to open a signature, but only to verify it. Thus, if the opener does not receive the corresponding veri�cation
information τ , it cannot know which message a given signature σ protects. Additional changes to standard de�nitions
are discussed within each de�nition.

3.1 Syntactic Framework

We now present the formal interfaces for our enhanced Ω.

De�nition 4 (Group Signatures). A group signature scheme Ω consists of PPT algorithms {PGenΩ ,GKG,OKG,
OKVf,UKG, 〈Join; Iss〉,SignΩ ,VfΩ ,Opn, Jdg, Lnk, LnkJdg,SLnk,SLnkJdg} such that:

PGenΩ. This algorithm (executed by a trusted third party) generates the public parameters for the scheme:

ppΩ
$← PGenΩ(ppSYS)

We assume that ppΩ is implicitly input to all other algorithms, while ppSYS are some global parameters.
GKG. This algorithm (executed by the issuer) generates the key pair of the issuer:

(isk, ipk)
$← GKG(ppΩ)

OKG. This algorithm (executed by the opener) generates the key pair of the opener:

(osk, opk)
$← OKG(ppΩ)

OKVf. This algorithm veri�es whether a given opener public key opk corresponds to osk, where d ∈ {0, 1}:

d
$← OKVf(osk, opk)

UKG. This algorithm (executed by a user) generates a key pair of a user:

(usk, upk)
$← UKG(ppΩ)

〈Join; Iss〉. The algorithms Join and Iss allow a user to join a group. As these are the only algorithms which require
interaction, we denote this as a two-step protocol 〈Join(usk, upk, opk, ipk); Iss(isk, ipk, opk)〉, run between a user and
the issuer, receives as input the secret user key usk (and the corresponding public key upk) from the user, the opener's
public key opk, as well as the issuer's secret key isk (and the public key ipk). The only output is the secret user
signing key ssk to the user, and upk to the issuer:

〈ssk; upk〉 $← 〈Join(usk, upk, opk, ipk); Iss(isk, ipk, opk)〉

SignΩ. This algorithm (executed by the user) generates a signature σ, along with some veri�cation information τ , on a
message m w.r.t. ipk, opk, ssk and usk (and the corresponding public key upk):

(σ, τ)
$← SignΩ(ssk, usk, upk, ipk, opk,m)

Here, σ is needed for opening the signature, whereas τ is only needed to also verify the signature.
VfΩ. This algorithm (executed by a veri�er) veri�es a signature σ on m w.r.t. ipk, τ , and opk, where d ∈ {0, 1}:

d
$← VfΩ(opk, ipk, σ, τ,m)

Opn. This algorithm (executed by the opener) generates a proof πopener (to be used by Jdg) which either reveals the
accountable party or shows that the owner of upk′ is (not) the creator of a signature σ w.r.t. ipk and opk:

(πopener, upk)
$← Opn(osk, opk, ipk, σ, upk′)

Note, the opener does neither receive m nor τ . If upk′ = ⊥, this algorithm behaves as a standard opening, i.e., it
�nds upk (if possible).
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Jdg. This algorithm (executed by whatever party) decides whether πopener is a valid proof that owner of upk is really
accountable (b = 1), or not (b = 0), for the signature σ on message m, w.r.t. ipk, τ and opk, where d ∈ {0, 1}:

d← Jdg(opk, ipk, πopener, upk, σ, τ,m, b)

SOpn. This algorithm (executed by a user) generates a proof πsigner (to be used by SJdg), proving whether the holder
of usk is accountable for a signature σ on message m, or not, on input of opk, τ , ipk, ssk, and usk (and the
corresponding public key upk):

πsigner
$← SOpn(ssk, usk, upk, opk, ipk, σ, τ,m)

SJdg. This deterministic algorithm (executed by whatever party) decides whether the proof πsigner shows that the owner
upk is accountable (b = 1), or not (b = 0), for the values (σ, τ) on a message m w.r.t. ipk and opk, where d ∈ {0, 1}:

d← SJdg(opk, ipk, πsigner, upk, σ, τ,m, b)

Lnk. This algorithm (executed by the opener) allows to generate a proof whether two5 signatures σ0 and σ1 stem from
the same signer or not w.r.t. to osk (and the corresponding public key opk) and ipk:

πlink
$← Lnk(osk, opk, ipk, σ0, σ1)

LnkJdg. This deterministic algorithm (executed by whatever party) decides whether πlink is a valid proof that two signa-
tures σ0 and σ1 stem from the same signer (b = 1) or not (b = 0), where d ∈ {0, 1}:

d← LnkJdg(opk, ipk, πlink, σ0, σ1, τ0, τ1,m0,m1, b)

SLnk. This algorithm (executed by a user) allows to generate a proof whether two signatures σ0 and σ1 (along with m0,
m1, τ0 and τ1) stem from it or not w.r.t. to usk (and the corresponding public key upk), opk and ipk:

πlinku
$← SLnk(usk, upk, opk, ipk, σ0, σ1, τ0, τ1,m0,m1)

SLnkJdg. This deterministic algorithm (executed by whatever party) decides whether πlinku is a valid proof that two
signatures σ0 and σ1 (along with τ0 and τ1, as well as the message m0 and m1) stem from the same signer (b = 1)
or not (b = 0), where d ∈ {0, 1}:

d← SLnkJdg(opk, ipk, πlinku, σ0, σ1, τ0, τ1,m0,m1, b)

Correctness. Informally, correctness requires that, when called on an honestly generated inputs, no algorithm halts in
an error state. Furthermore, honestly generated signatures can always be veri�ed and opened, any honestly computed
opening proof veri�es correctly, and given honestly generated and consistent inputs, all signature linking veri�cations
verify correctly. A formalization is straightforward, and thus omitted here.

3.2 Security Framework

Subsequently, we present the security framework.

Most of these de�nitions are based on existing work [6,14], but are altered to account for our use-case. For example,
we need to limit access to the linking oracles to avoid trivial attacks on anonymity. To avoid confusion, we stress that
due to the additional linking capabilities of our Ω, the adversary must be able to return two signatures or messages in
some of the extended de�nitions. This, however, still captures the �standard� de�nitions, as the adversary can always
return the same values twice.

5 Here and in the following, we restrict ourselves to two signatures. However, extending the interfaces of Lnk and SLnk, construc-
tions, de�nitions, and proofs to an arbitrary number of signatures is straightforward, but introduces notational complexity
without providing further insights.
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Experiment Non-FrameabilityΩA(λ)

ppΩ
$← PGenΩ(1

λ)

(usk, upk)
$← UKG(ppΩ)

Q = R← ∅
(opk∗, ipk∗, π∗, σ∗0 , σ

∗
1 , τ
∗
0 , τ
∗
1 ,m

∗
0,m

∗
1)

$← A〈Join(·,·);A〉′,Sign′Ω(·,·,·)
SOpn(·,·,·,·,·),SLnk(·,·,·,·,·,·,·,·)(upk)

where oracle 〈Join;A〉′ on input opk′, ipk′:
return ⊥, if (opk′, ipk′, ·) ∈ Q
let 〈ssk; ·〉 $← 〈Join(usk, upk, opk′, ipk′);A〉
if ssk 6= ⊥, let Q ← Q∪ {(opk′, ipk′, ssk)}

where oracle Sign′Ω on input opk′, ipk′, m:
if (opk′, ipk′, ssk) /∈ Q, return ⊥
let (σ, τ)

$← SignΩ(ssk, usk, upk, ipk
′, opk′,m)

let R← R∪ {(opk′, ipk′, σ, τ,m)}
return (σ, τ)

return 1, if
((opk∗, ipk∗, σ∗0 , τ

∗
0 ,m

∗
0) /∈ R ∧

(Jdg(opk∗, ipk∗, π∗, upk, σ∗0 , τ
∗
0 ,m

∗
0, 1) = 1 ∨

SJdg(opk∗, ipk∗, π∗, upk, σ∗0 , τ
∗
0 ,m

∗
0, 1) = 1)) ∨

((opk∗, ipk∗, σ∗0 , τ
∗
0 ,m

∗
0) ∈ R ∧ (opk∗, ipk∗, σ∗1 , τ

∗
1 ,m

∗
1) /∈ R ∧

(LnkJdg(opk∗, ipk∗, π∗, σ∗0 , σ
∗
1 , τ
∗
0 , τ
∗
1 ,m

∗
0,m

∗
1, 1) = 1 ∨

SLnkJdg(opk∗, ipk∗, π∗, σ∗0 , σ
∗
1 , τ
∗
0 , τ
∗
1 ,m

∗
0,m

∗
1, 1) = 1))

Fig. 2: Ω Non-Frameability

Security Framework. Subsequently, we present the formal security framework our constructions are proven secure
in. Most of these de�nitions are standard, but are altered to account for our use-case. Note, honest (and later to-be-
corrupted) users can be simulated by the adversary itself.

To recap, we do not allow for corruptions, as otherwise, due to self-opening, anonymity breaks down. Likewise, we
need to limit access to the linking oracles to avoid trivial attacks on anonymity. Moreover, we introduce an additional
property required in our setting. Namely, the new opening-privacy de�nition says that an adversary does not learn
which message belongs to a given signature, even if it can generate the opening key osk, if it does not receive the
corresponding veri�cation information τ .

Non-Frameability. The property of non-frameability says that even a corrupt issuer working together with a corrupt
opener cannot blame a honest user for a signature it did not create for any group, even if created by the adversary. In
our setting, this must even hold for linking signatures, i.e., if a honest user did not create both signatures in question,
the adversary cannot create a proof which links those signatures.

In more detail, the adversary can generate all key-pairs but a user's one. Thus, this key pair is honestly chosen. The
user's public key is given to the adversary. Then, the adversary gains access to a join oracle (where it again chooses
all public keys w.r.t. to the groups), all signing related oracles, and access to all self-open and self-linking oracles with
arbitrary input. The adversary then wins, if it can output an issuer public-key (ipk∗), opener public-key (opk∗), a bogus
proof π∗, along with two messages (m∗0 and m∗1), two signatures (σ∗0 and σ∗1), and two auxiliary veri�cation values (τ0
and τ1) which either point to the honest user's public key (even though that signature has never been created w.r.t. to
returned values) or the forged signature becomes linkable to a signature actually created by the signer.

De�nition 5 (Ω Non-Frameability). An Ω is non-frameable, if for any e�cient adversary A there exists a negligible
function ν, such that:

Pr[Non-FrameabilityΩA(λ) = 1] ≤ ν(λ)

The corresponding experiment is de�ned in Figure 2.

Anonymity. Anonymity guarantees that no party, but the opener, can decide which party has issued a given signature.
This must even hold for corrupt issuers, while the adversary is not allowed to open signatures from the challenge oracle
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due to obvious reasons, i.e., trivial attacks. This is formalized by challenging the adversary with a left-or-right oracle
which either signs in the name of a �rst or a second user. We stress that if all users, but one, work together, anonymity
cannot hold. This, however, is true for all Ω schemes.

In more detail, the challenger generates two user key-pairs. The challenger draws a random bit b
$← {0, 1}, yet also

generates the key pair (osk and opk) for an opener honestly. The adversary receives the users' public keys and opk.
Its goal is to guess b. The adversary gains access to a join oracle (where it can chose ipk and opk), signing oracle, a
left-or-right signing oracle, an opening oracle, a self-opening oracle, a linking oracle, and a self-linking oracle. However,
the signing oracle also keeps track which signatures have been created (which is later used in the linking oracles to avoid
trivial �transitivity attacks�, i.e., to avoid that the adversary uses signatures from several sources to form a linked chain)
in a list T . For the same reason, the left-or-right oracle keeps generated signatures (it only generates signatures for user
b and the challenge opk) in a list R. The opening-oracle, also to avoid trivial attacks, does not open signatures generated
from the left-or-right oracle (known due to the list T ). The same is true for the self-opening and self-linking oracles,
which, however, allow the adversary to input arbitrary opks. Moreover, as already explained, the linking oracles prohibit
linking signatures generated from di�erent signing oracles to avoid trivially leaking the bit b to the adversary. However,
in the self-linking oracle, we allow the adversary to receive a proof for signatures all coming from the left-or-right oracle,
as this may leak information as well.

De�nition 6 (Ω Anonymity). An Ω is anonymous, if for any e�cient adversary A there exists a negligible function
ν, such that: ∣∣∣∣Pr[AnonymityΩA(λ) = 1]− 1

2

∣∣∣∣ ≤ ν(λ)
The corresponding experiment is de�ned in Figure 3.

Traceability. Traceability requires that no adversary can generate a valid signature which cannot be traced to a speci�c
joined user. In our case, this is also true for linking, i.e., if two signatures stem from the same signer, an honest opener
can link them, and the adversary cannot claim otherwise.

In more detail, the challenger generates the issuer and opening keys honestly. The adversary's goal is to output
two messages (m∗0 and m∗1), two signatures (σ∗0 and σ∗1), and two auxiliary veri�cation values (τ0 and τ1) which either
cannot be opened or linked.

De�nition 7 (Ω Traceability). An Ω is traceable, if for any e�cient adversary A there exists a negligible function
ν, such that:

Pr[TraceabilityΩA(λ) = 1] ≤ ν(λ)
The corresponding experiment is de�ned in Figure 4.

Trace-Soundness. Trace-Soundness requires that a signature can only be opened in an unambiguous way, i.e., an
adversary cannot claim authorship of a signature it did not create. This must even be true, if the adversary can create
all keys in the system. Thus, no oracles are needed. In our case, this also means that the adversary cannot create two
con�icting proofs for linking signatures. This extends the de�nition by Sakai et al. [36].

De�nition 8 (Ω Trace-Soundness). An Ω is trace-sound, if for any e�cient adversary A there exists a negligible
function ν, such that:

Pr[Trace-SoundnessΩA(λ) = 1] ≤ ν(λ)
The corresponding experiment is de�ned in Figure 5.

Opening-Privacy. Opening-Privacy requires that a signature σ does not leak the message m to which is belongs. We
de�ne it in such a way that the adversary, even if it can generate opk, cannot decide which message m a given signature
σ protects, if it does not receive the corresponding veri�cation information τ . This is formalized by a left-or-right signing
oracle, which either signs m0 or m1 and does not return the corresponding τ , but only σ.

In more detail, the challenger draws a bit b
$← {0, 1} and generates a single user key-pair. The user's public key

is handed to the adversary. All other keys are generated by the adversary. Moreover, the adversary gains access to a
joining oracle, a signing oracle, a self-open oracle and a self-link oracle, as well as an left-or-right oracle. All oracles
behave as normal, but the left-or-right oracle only returns a signature for message mb, while the adversary can input
two messages (m0 and m1) of its choice. Thus, the oracle either signs m0 or m1, but does not return the corresponding
veri�cation information τ , but only σ. The adversary wins, if it can guess b correctly.
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Experiment AnonymityΩA(λ)

ppΩ
$← PGenΩ(1

λ)

b
$← {0, 1}

(osk, opk)
$← OKG(ppΩ)

∀i ∈ {0, 1}, let (uski, upki) $← UKG(ppΩ)
Q0 = Q1 = R = T ← ⊥
a

$← A〈Join(·,·,·);A〉′,Sign′Ω(·,·,·),LoRSig(·,·,b),Opn′(·,·,·)
SOpn′(·,·,·,·,·,·),Lnk′(·,·,·),SLnk′(·,·,·,·,·,·,·,·,·,·) (opk, upk0, upk1)

where oracle 〈Join;A〉′ on input i, opk′, ipk′:
return ⊥, if i /∈ {0, 1} ∨ (opk′, ipk′, ·, uski, upki) ∈ Qi
let 〈ssk; ·〉 $← 〈Join(uski, upki, opk′, ipk′);A〉
if ssk 6= ⊥, let Qi ← Qi ∪ {(opk′, ipk′, ssk, uski, upki)}

where oracle Sign′Ω on input i, ipk′, opk′, m:
if i /∈ {0, 1} ∨ (opk′, ipk′, sski, uski, upki) /∈ Qi, return ⊥
let (σ, τ)

$← SignΩ(ssk
i, uski, upki, opk′, ipk′,m)

let T ← T ∪ {(opk′, ipk′, σ, τ,m, i)}
return (σ, τ)

where oracle LoRSig, on input ipk′, m, b:
if (opk, ipk′, sskj , uskj , upkj) /∈ Qj for a j ∈ {0, 1}, return ⊥
let (σ, τ)

$← SignΩ(ssk
b, uskb, upkb, opk, ipk′,m)

let R ← R∪ {(opk, ipk′, σ, τ,m)}
return (σ, τ)

where oracle Opn′, on input ipk′, σ, upk′:
if (opk, ipk′, σ, ·, ·) ∈ R ∧ upk′ ∈ {upk0, upk1,⊥}, return ⊥
return Opn(osk, opk, ipk′, σ, upk′)

where oracle SOpn′, on input i, opk′, ipk′, σ, τ , m
if (opk′, ipk′, σ, τ,m) ∈ R ∨ i /∈ {0, 1} ∨

(opk′, ipk′, sski, uski, upki) /∈ Qi, return ⊥,
return SOpn(sski, uski, upki, opk′, ipk′, σ,m)

where oracle Lnk′, on input ipk′, σ0, σ1

if (opk, ipk′, σj , ·, ·) ∈ R ∧
”′(opk, ipk′, σ1−j , ·, ·, ·) ∈ T for a j ∈ {0, 1}, return ⊥

return Lnk(osk, opk, ipk′, σ0, σ1)
where oracle SLnk′, on input i, opk′, ipk′, σ0, σ1, τ0, τ1, m0, m1, b′′

if (opk′, ipk′, sski, uski, upki) /∈ Qi ∨ i /∈ {0, 1}, return ⊥
if (opk′, ipk′, σj , τj ,mj) ∈ R ∧, return ⊥

(opk′, ipk′, σ1−j , τ1−j ,m1−j) ∈ T for a j ∈ {0, 1}
let i← b′ ⊕ b′′, if (opk′, ipk′, σ0, τ0,m0, b

′) ∈ R ∧
(opk′, ipk′, σ1, τ1,m1, b

′) ∈ R
return SLnk(uski, upki, opk′, ipk′, σ0, σ1, τ0, τ1,m0,m1)

return 1, if a = b
return 0

Fig. 3: Ω Anonymity

De�nition 9 (Ω Opening-Privacy). An Ω is opening-private, if for any e�cient adversary A there exists a negligible
function ν, such that: ∣∣∣∣Pr[Opening-PrivacyΩA(λ) = 1]− 1

2

∣∣∣∣ ≤ ν(λ)
The corresponding experiment is de�ned in Figure 6.

We conclude this section with a �nal de�nition:

De�nition 10 (Secure Ω). We call a Ω secure, if it is correct, anonymous, non-frameable, traceable, trace-sound,
and opening-private.
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Experiment TraceabilityΩA(λ)

ppΩ
$← PGenΩ(1

λ)

(isk, ipk)
$← GKG(ppΩ)

(osk, opk)
$← OKG(ppΩ)

Q ← ∅
(m∗0, σ

∗
0 , τ
∗
0 ,m

∗
1, σ
∗
1 , τ
∗
1 )

$← AOpn(·,·,·,·,·),〈A;Iss(·)〉′,Lnk(·,·,·)(opk, ipk)
where oracle 〈A; Iss(·)〉′ on input opk′:

let (·; upk) $← 〈A; Iss(isk, ipk, opk′)〉
if upk 6= ⊥, let Q ← Q∪ {(opk′, upk)}

return 0, if VfΩ(opk, ipk, σ∗j , τ
∗
j ,m

∗
j ) = 0 for a j ∈ {0, 1}

let (πiopener, upk
i)

$← Opn(osk, opk, ipk, σ∗i ,⊥) for i ∈ {0, 1}
if upk0 = upk1:

let πlink
$← Lnk(osk, opk, ipk, σ0, σ1)

else:
πlink ← ⊥ otherwise.

return 1, if Jdg(opk, ipk, π0
opener, upk

0, σ∗0 , τ
∗
0 ,m

∗
0, 1) 6= 1 ∨

Jdg(opk, ipk, π1
opener, upk

1, σ∗1 , τ
∗
1 ,m

∗
1, 1) 6= 1 ∨

(Jdg(opk, ipk, πjopener, upk
j , σ∗j , τ

∗
j ,m

∗
j , 1) = 1

∧ (opk, upkj) /∈ Q for a j ∈ {0, 1}) ∨
(πlink 6= ⊥ ∧ LnkJdg(opk, ipk, πlink, σ

∗
0 , σ
∗
1 , τ
∗
0 , τ
∗
1 ,m

∗
0,m

∗
1, 1) 6= 1)

return 0

Fig. 4: Ω Traceability

Experiment Trace-SoundnessΩA(λ)

ppΩ
$← PGenΩ(1

λ)

(isk∗, osk∗, π∗, upk∗0, upk
∗
1, π
∗
0 , π
∗
1 , σ
∗
0 , σ
∗
1 , τ
∗
0 , τ
∗
1 ,m

∗
0,m

∗
1)

$← A(ppΩ)
return 1, if ∃Alg1,Alg2 ∈ {Jdg, SJdg}, ∃Alg3,Alg4 ∈ {LnkJdg,SLnkJdg}:(

upk∗0 6= upk∗1 ∧
(SJdg(opk∗, ipk∗, π∗0 , upk

∗
0, σ
∗
0 , τ
∗
0 ,m

∗
0, 0) = 1 ∧

SJdg(opk∗, ipk∗, π∗1 , upk
∗
0, σ
∗
0 , τ
∗
0 ,m

∗
0, 1) = 1) ∨

(Alg1(opk
∗, ipk∗, π∗0 , upk

∗
0, σ
∗
0 , τ
∗
0 ,m

∗
0, 1) = 1 ∧

Alg2(opk
∗, ipk∗, π∗1 , upk

∗
1, σ
∗
0 , τ
∗
0 ,m

∗
0, 1) = 1) ∨

(Alg3(opk
∗, ipk∗, π∗0 , σ

∗
0 , σ
∗
1 , τ
∗
0 , τ
∗
1 ,m

∗
0,m

∗
1, 1) = 1 ∧

Alg4(opk
∗, ipk∗, π∗1 , σ

∗
0 , σ
∗
1 , τ
∗
0 , τ
∗
1 ,m

∗
0,m

∗
1, 0) = 1)

)
return 0

Fig. 5: Ω Trace-Soundness

4 Our Generic Construction

We next present a black-box construction ful�lling the de�nitions presented above. However, to ease understanding, we
give a high-level idea beforehand.

Intuition. Our approach is based on the e�cient encrypt-and-proof paradigm by Bellare et al. [6]. In a nutshell, the
secret signing key of the user is a signature on the key opk of the opener and a Θ public key. For signing, the user draws
a random string pad (�padding�), generates the corresponding pseudonym from the concatenated message/padding,
and encrypts its public key towards the opener. The auxiliary opening information τ is exactly the padding. It then
generates a proof that everything was calculated correctly, with the message and padding as a label. Veri�cation is thus
checking the validity of the generated proof. Opening works as follows: The opener decrypts the ciphertext and proves
that it did so correctly and knows osk. The same idea is also true for linking: the opener proves that both ciphertexts
contain the same upk (without revealing it). In the denying case, the idea is the same, but the opener proves inequality.
From the user's side, however, things change a bit. A user either proves that it knows the secret pseudonym key usk for
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Experiment Opening-PrivacyΩA(λ)

ppΩ
$← PGenΩ(1

λ)

b
$← {0, 1}

(usk, upk)
$← UKG(ppΩ)

Q ← ∅
a

$← A〈Join(·,·);A〉′,Sign′Ω(·,·,·),LoRSig(·,·,·,·),SOpn(·,·,·,·,·),SLnk(·,·,·,·,·,·,·,·)(upk)
where oracle 〈Join;A〉′ on input opk′, ipk′:
if (opk′, ipk′, ·) ∈ Q, return ⊥
let 〈ssk; ·〉 $← 〈Join(usk, upk, opk′, ipk′);A〉
if ssk 6= ⊥, let Q ← Q∪ {(opk′, ipk′, ssk)}

where oracle Sign′Ω on input opk′, ipk′, m:
if (opk′, ipk′, ssk) /∈ Q, return ⊥
return SignΩ(ssk, usk, upk, ipk

′, opk′,m)
where oracle LoRSig on input opk′, ipk′, m0, m1:
if (opk′, ipk′, ssk) /∈ Q, return ⊥
let (σ, τ)

$← SignΩ(ssk, usk, upk, ipk
′, opk′,mb)

return σ
return 1, if a = b

Fig. 6: Ω Opening-Privacy

self-opening and self-linking, or that the secret keys are di�erent. Thus, all judges simply verify proofs, boiling down to
a handful of exponentiations.

Additional Conventions. For the zero-knowledge proofs, we use the notation introduced by Camenisch and Stadler [18],
i.e., instead of PrvΞ we write ZKP[(a, b) : x = gahb ∧ y = gb] to denote a Ξ of a, b such that the relation on the right
hand side is satis�ed; All values not speci�ed in the �rst parentheses are public.

In case that one or more of the building blocks are using common reference strings (CRS), or random oracles (RO),
the resulting gets access to all these CRS or ROs as well, where we assume that the oracles for the di�erent building
blocks are fully independent from each other.

Parameter Generation. The public parameters ppΩ consist of the public parameters of all the building blocks. That

is, PGenΩ(1
λ) behaves as follows: After generating potential system parameters ppSYS

$← PGenSYS(1
λ) for some global

parameter generation algorithm, it computes ppΣ
$← PGenΣ(ppSYS), ppΠ

$← PGenΠ(ppSYS), and ppΘ
$← PGenΘ(ppSYS).

Finally, the algorithm outputs ppΩ ← (ppSYS, ppΣ , ppΠ , ppΘ).

Key Generation. The di�erent parties in the system generate their secret and public key material as follows:

The issuer generates a signing and veri�cation key pair of the signature scheme, i.e., GKG(ppΩ) �rst extracts the

parameters ppΣ of the signature scheme from the overall public parameters. It then generates (isk, ipk)
$← KGΣ(ppΣ).

The opener generates a decryption and encryption key pair of an encryption scheme, i.e., OKG(ppΩ) �rst extracts the

parameters ppΠ of the encryption scheme from the overall public parameters. It then generates (osk, opk)
$← KGΠ(ppΠ).

The key veri�cation algorithm OKVf internally simply executes the corresponding algorithm of the encryption scheme,
i.e., KVfΠ .

The key pair of a user is given as the secret key of a pseudonym system and a pseudonym for a �xed scope. That

is, UKG(ppΩ) �rst extracts the parameters ppΘ from the overall public parameters, and computes usk
$← KGΘ(ppΘ).

It then computes a pseudonym for scope setup as upk ← GenΘ(usk, setup), where we assume that setup is a special
string that is solely used for the purpose of generating and later proving this pseudonym.

Issuance. When a user joins a group, the user simply receives a signature on its public key and the group opener key.
The �ow of this simple protocol (using the notation from the algorithms above) is depicted in Protocol 1.
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Join[usk, upk, opk, ipk] Iss[isk, ipk, opk]

upk -
sig

$← SigΣ(isk, (upk, opk))
sig�

Output: ssk← sig
(If sig is valid)

Prot. 1: The generic issuance protocol 〈Join; Iss〉

Signing. In order to sign a message m, a user encrypts its public key, computes a pseudonym to a padded version of
the message, and then computes a signature proof of knowledge showing that these computations were done correctly,
and that the new pseudonym was derived from a secret key for which the user also possesses a valid signature from the
issuer on the corresponding pseudonym for the scope setup. More formally, the algorithm SignΩ(ssk, usk, upk, ipk, opk,m)
works as follows:

1. Draw a 2λ-bit padding pad. Set nymm‖pad ← GenΘ(usk, h), where h = H(m‖pad).
2. Set (e; r)

$← Enc(opk, upk).
3. Compute the following signature proof of knowledge:

πs
$← ZKP

[
(usk, upk, ssk, r) : upk = GenΘ(usk, setup) ∧

nymm‖pad = GenΘ(usk, h) ∧ e = Enc(opk, upk; r) ∧

VfΣ(ipk, ssk, (upk, opk)) = 1

]
(h, ctx) ,

where ctx = (ppΩ , h, e, opk, ipk, nymm‖pad) (signing ctx essentially rules out the malleability problems identi�ed
in [9]).

4. Output (σ, τ)← ((e, h, πs, nymm‖pad), pad).

To verify a signature, VfΩ(opk, ipk, (e, h, πs, nymm‖pad), pad,m) �rst recomputes the scope ctx. It then checks whether

pad ∈ {0, 1}2λ, and whether h = H(m‖pad). Output 0, if this is not the case. It then veri�es πs with respect to ctx, and
outputs the result of this veri�cation.

Inspection. In order to open a signature σ, the opener checks the validity of πs, and then simply decrypts e, �nally
returning the revealed public key of the user together with a zero-knowledge proof of knowledge showing the correctness
of the decryption, or proves that the decryption is di�erent from the target key upk′.

In more detail, Opn(osk, opk, ipk, σ, upk′) performs the following steps:

1. Verify πs (pad is not required to verify the proof).

2. Compute ûpk← Dec(osk, e).
3. If upk′ = ⊥:

(a) Compute the following zero-knowledge proof of knowledge:

πo
$← ZKP

[
(osk) : OKVf(osk, opk) = 1 ∧ ûpk = Dec(osk, e)

]
(ctx) ,

where ctx = (ppΩ , opk, ipk, (e, h, πs, nymm‖pad), ûpk).

(b) Output (πopener, upk)← (πo, ûpk).
4. Else, if upk′ 6= ⊥:

(a) Set b = 1, if ûpk = upk′ and b = 0 otherwise.
(b) Compute the following zero-knowledge proof of knowledge:

πo
$← ZKP

[
(osk) : OKVf(osk, opk) = 1 ∧ upk′ ∼ Dec(osk, e)

]
(ctx) ,

where ∼∈ {=, 6=}, depending on whether the user with identity upk′ is (b = 1) or is not (b = 0) accountable for
the given signature, and where

ctx = (ppΩ , opk, ipk, (e, h, πs, nymm‖pad), upk
′, b).
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(c) Output (πo,⊥).

To verify whether a user is really accountable for a signature σ, algorithm Jdg(opk, ipk, πo, nym
′, (e, h, πs, nymm‖pad),

pad,m, b) behaves as follows:

1. Output 0, if VfΩ(ipk, opk, (e, h, πs, nymm‖pad), pad,m) = 0.
2. Output 0, if VfΞ(πo, ctx) = 0, where ctx is as above.
3. Output 1.

Self-Inspection. In order to prove, or dis-prove, ownership of a signature of the form ((e, h, πs, nymm‖pad), pad), the user
proves that it knows a valid signature from the issuer on its public key, and that its pseudonym for the given scope is
either equal, or non-equal, to the pseudonym in question. That is, SOpn(ssk, usk, upk, opk, ipk, (e, h, πs, nymm‖pad), pad),
m) performs the following steps:

1. Output ⊥, if VfΩ(ipk, opk, (e, h, πs, nymm‖pad), pad,m) = 0.
2. Set b = 1, if GenΘ(usk, h) = nymm‖pad and b = 0 otherwise.
3. Compute the following zero-knowledge proof of knowledge:

πu
$← ZKP

[
(usk, upk, ssk) : upk = GenΘ(usk, setup) ∧

nymm‖pad ∼ GenΘ(usk, h) ∧ VfΩ(ipk, ssk, (upk, opk)) = 1

]
(ctx) ,

where ∼∈ {=, 6=}, depending on whether ownership is proven (b = 1) or denied (b = 0), where

ctx = (ppΩ ,m, opk, ipk, (e, h, πs, nymm‖pad), pad,∼).

4. It outputs πsigner ← πu.

To verify whether the user with user public key upk is really (not) accountable for a signature σ, algorithm SJdg(opk,
ipk, πu, upk, (e, h, πs, nymm‖pad), pad,m, b) behaves as follows:

1. Output 0, if VfΩ(ipk, opk, (e, h, πs, nymm‖pad), pad,m) = 0.
2. Output 0, if VfΞ(πu, ctx) = 0, where ctx is as above.
3. Output 1.

Signature-Linking. To prove whether two signatures were issued by the same signer, Lnk(osk, opk, ipk, (e0, h0, πs,0,
nymm‖pad,0), (e1, h1, πs,1, nymm‖pad,1)) checks whether or not the two ciphertexts decrypt to the same value. That is, the
algorithm performs the following steps:

1. Check the validity of πs,0 and πs,1. If one is not valid, return ⊥.
2. Compute ûpki ← Dec(osk, ei) for i = 0, 1.

3. Set b = 0, if ûpk0 6= ûpk1 and b = 1 otherwise.
4. Compute the following zero-knowledge proof of knowledge:

πl
$← ZKP

[
(osk) : OKVf(osk, opk) = 1 ∧

Dec(osk, e0) ∼ Dec(osk, e1)
]
(ctx) ,

where ∼∈ {=, 6=}, depending on whether equality of the signers is proven (b = 1) or not (b = 0), and

ctx = (ppΩ , (e0, h0, πs,0, nymm‖pad,0),

(e1, h1, πs,1, nymm‖pad,1), opk, b).

5. It outputs πlink ← πl

To verify whether two signatures were indeed (not) issued by the same signer, LnkJdg(opk, ipk, πl, (e0, h0, πs,0,
nymm‖pad,0), (e1, h1, πs,1, nymm‖pad,1), pad0, pad1,m0,m1, b) behaves as follows:

1. Output 0, if, for some i ∈ {0, 1}, VfΩ(ipk, opk, (ei, hi, πs,i, nymm‖pad,i), padi,mi) = 0.
2. Output 0, if VfΞ(πl, ctx) = 0, where ctx is as above.
3. Output 1.

13



Self-Linking of Signatures. A user can use SLnk(usk, upk, opk, ipk, (e0, h0, πs,0, nymm‖pad,0), (e1, h1, πs,1, nymm‖pad,1), pad0,
pad1,m0,m1) to show that the same signer is or is not accountable for the given signatures, as long as the proving user
was at least the signer of one of the signatures. To do so, the algorithm behaves as follows:

1. Let bi = 1, if nymmi‖padi
= GenΘ(usk, hi), and bi = 0 otherwise for i = 0, 1, and b = 1 if b0 = b1 = 1 and b = 0

otherwise, where hi = H(mi‖padi).
2. Output ⊥, if b0 = b1 = 0.
3. Compute the following zero-knowledge proof of knowledge:

πl
$← ZKP

[
(usk, upk, ι) : nymmι‖padι

= GenΘ(usk, hι) ∧

nymm1−ι‖pad1−ι
∼ GenΘ(usk, h1−ι)

]
(ctx) ,

where ∼∈ {=, 6=}, depending on whether equality of the signers is proven (b = 1) or not (b = 0), hi = H(mi‖padi),
and

ctx = (ppΩ , opk, b, (e0, h0, πs,0, nymm‖pad,0),

(e1, h1, πs,1, nymm‖pad,1), pad0, pad1,m0,m1).

4. It outputs πlinku ← πl

To verify a proof whether two signatures were indeed (or not resp.) issued by the same signer, algorithm SLnkJdg(opk,
ipk, πl, (e0, h0, πs,0, nymm‖pad,0), (e1, h1, πs,1, nymm‖pad,1), pad0, pad1),m0,m1, b) behaves as follows:

1. Output 0, if VfΩ(ipk, opk, (ei, hi, πs,i, nymm‖pad,i), padi,mi) = 0 for i = 0 or i = 1.
2. Output 0, if VfΞ(πl, ctx) = 0, where ctx is as above.
3. Output 1.

The full proof of the following theorem is given in Appendix B.

Theorem 1. If Π is an IND-CPA secure encryption scheme, Σ is an unforgeable signature scheme, ZKP is a weakly
simulation-sound extractable zero-knowledge proof system, and Θ is a collision-resistant unlinkable scope-exclusive
pseudonym system, then the above construction yields a secure group signature scheme Ω.

Proof (Sketch). Correctness follows by inspection. Non-frameability follows from soundness of the used Ξ and - some-
what surprisingly - the unlinkability of Θ. Anonymity follows from the ZK-property of Ξ, the IND-CPA security of Π,
randomly drawn paddings and the unlinkability of Θ. Traceability follows from the soundness of Ξ and the unforgeabil-
ity of the signature scheme. Trace-Soundness follows from the soundness of Ξ and the collision-resistance of Θ. Finally,
opening-privacy follows from the randomly drawn paddings.

5 Implementation and Performance Evaluation

To demonstrate the e�ciency and practicability of the our construction presented above, we provide performance
benchmarks for a concrete instantiation based on ElGamal encryption [22], Abe et al.'s structure preserving signature
scheme [2], the scope-exclusive pseudonym system by Camenisch et al. [16], and zero-knowledge proofs of knowledge
based on the Schnorr protocol (Σ-protocols) [37] and the Fiat-Shamir heuristic [21]. Concrete details on the construction
can be found in Appendix C.

The implementation uses IAIK's ECCelerate pairings library6. In particular, the underlying pairing curves are
�SNARK_2�, while the used hardware was a rather old PC with an Intel Corei5-2400 running at 3.1Ghz, and 16GiB
of RAM. No performance optimizations were implemented, and only a single thread does the computations, while the
random oracle is implemented as SHA-512. An overview over the results, based on 1'000 runs, is given in Figure 7,
Figure 8, Table 1, and Table 2. Here, Opn⊥ means that the opener opens a signature in a standard way, while Opn0
means that an opener denies a signature. Note, verifying a proof that a signature is denied does not require to verify
the signature itself.

6 https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate
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Table 1: Performance Measurements in ms
SignΩ VfΩ SOpn SJdg Lnk LnkJdg SLnk SLnkJdg

Min.: 75 103 165 206 211 210 215 213
1/4: 76 106 168 209 214 214 218 217

Med.: 77 107 169 210 216 215 219 218
3/4: 77 108 171 212 217 217 221 220
9/10: 78 109 173 215 220 219 224 222
19/20: 79 110 176 219 222 221 228 225
Max.: 92 129 197 249 252 252 262 257

Avg.: 72 107 170 211 216 216 221 219
SD: 1.67 2.37 3.24 4.22 3.91 4.32 4.55 4.24

SignΩ VfΩ SOpn SJdg Lnk LnkJdg SLnk SLnkJdg

50ms

100ms

150ms

200ms

250ms

Algorithms
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Fig. 7: Performance Evaluation Results

Table 2: Additional Performance Measurements in ms
GKG OKG UKG Join Opn⊥ Jdg1,⊥ Opn0 Jdg0

Min.: 8 1 1 75 106 107 110 109
1/4: 8 1 1 77 108 109 112 111

Med.: 8 1 1 77 109 110 113 112
3/4: 8 1 1 78 110 111 114 113
9/10: 8 1 1 79 111 112 115 114
19/20: 9 1 1 81 113 113 117 116
Max.: 10 1 2 91 130 138 131 131

Avg.: 8 1 1 78 109 110 113 113
SD: 0.31 0.06 0.11 1.78 2.37 3.04 2.53 2.50

GKG OKG UKG Join Opn⊥ Jdg1,⊥ Opn0 Jdg0
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Fig. 8: Additional Performance Evaluation Results

In this overview, we focus on the, in our opinion, most interesting algorithms. Namely, parameter generation is
omitted, at this is only a one-time setup, while the non-equal algorithms perform the same amount of work as their
counterparts.

Still, our construction performs each operation well below a second, and thus can be considered truly practical. The
increased running times for the judges are easily explained, as they also have to verify signatures. Moreover, compared
to other implementations [35], our non-optimized implementation can be considered competitive.
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6 Conclusion

We have introduced practical group-signatures with privacy-friendly openings. Our notion allows the opener not only
to fully open signatures, but to also prove that a given signatures does not stem from a particular user, and � the
same time � to link signatures without revealing the user which created those signatures. Moreover, the opener no
longer requires the message in question to open a signature. Our framework grants the same possibilities to the users.
Combined, these capabilities lessen the requirements on the opener, and increase the appl0icability of group signatures.
Our construction, which is exclusively based on standard primitives, is practical.
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A Additional Preliminaries

A.1 Non-Interactive Zero-Knowledge Proof of Knowledge Systems

Let L be an NP-language with associated witness relation R, i.e., such that L = {x | ∃w : R(x,w) = 1}. In a nutshell,
a zero-knowledge non-interactive proof of knowledge (a.k.a. signature proof of knowledge) allows to verify that the
generator of that proofs knows a witness w for some statement x without revealing that witness. We use the de�nitions
by Faust et al. [20].

We only consider Σ-protocols:

De�nition 11 (Σ-Protocol). A Σ-protocol Σ = (P,V) for a language L is a three-round public-coin IPS where P
and V are PPT algorithms which also provide soundness, honest-veri�er zero-knowledge (HVZK), completeness and
special soundness, where P moves �rst.

A complete transcript of such a protocol run is denoted as 〈P(x,w),V(x)〉. To make this protocol non-interactive,
the message send from the veri�er to the prover (�the commitment�) is generated by making a random-oracle call
consisting of the �rst message sent by P and the statement to be proven, i.e., the Fiat-Shamir (FS) transform. We use
the following notation for brevity, tailored for FS. Note, all parties have explicit access to a random oracle H.

De�nition 12 (ZKPs). A zero-knowledge non-interactive proof of knowledge system ZKP consists of two algorithms
{PrvΞ ,VfΞ}, such that:

PrvΞ . This algorithm outputs the proof π, on input of the statement x to be proven, and the corresponding witness w

using the FS-transform: π
$← PrvΞ(x,w).

VfΞ . This algorithm veri�es the proof π, w.r.t. to some statement x, where d ∈ {0, 1}: d← VfΞ(x, π).
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For brevity, the Camenisch-Stadler notation [18] is used to express the statements proven in non-interactive, weakly

simulation-sound extractable, zero-knowledge. In more detail, the notation π
$← ZKP [(w) : R(x,w) = 1] denotes the

computation of a non-interactive, weakly simulation-sound extractable, zero-knowledge proof of knowledge, where all
values not in the parentheses are assumed to be public. For example, let L be de�ned by the following NP-relation:

((g, h, y, z), (a, b)) ∈ R ⇐⇒ y = ga ∧ z = gbha

Hence, π
$← ZKP

[
(a, b) : y = ga ∧ z = gbha

]
denotes a corresponding non-interactive proof-of-knowledge (PoK) of wit-

ness (a, b) with respect to the statement (g, h, y, z), for the above language L, while sometimes only �verify π� is used
for veri�cation. It is assumed that the public parameters, and the statement to be proven, are also input to the proof
system, and public. This is not make explicit to increase readability.

Security. We now explicitly de�ne zero-knowledge and weak simulation-sound extractability.

Weak Simulation-Sound Extractability. This security notion says that an adversary cannot generate a proof π∗ for
a statement it does not know a witness for, while the proof-system is also of knowledge, i.e., the witness w can be
extracted from any non-simulated proof π, if the extractor SIM can rewind the adversary. Clearly, this also implies that
the proof-system is non-malleable.

De�nition 13 (Weak Simulation-Sound Extractability). Let L be a language in NP. Consider a proof system
ZKP (where H is a random oracle) for L with a ZK-simulator SIM = (SIM1,SIM2) (sharing state). Let SIM1 simulate
the random oracle, while SIM2 calls the HVZK-simulator and programs the random-oracle accordingly to make proofs
(even �proofs� of false statements) verify. We say that ZKP is weakly simulation-sound extractable with extraction error
µ w.r.t. SIM in the programmable random-oracle model, if for all PPT adversaries A there exists an e�cient algorithm
SIM3 with access to all transcripts such that the following holds. Let

acc = Pr[(x∗, π∗)
$← ASIM1(·),SIM2(·)(ρ) : (x∗, π∗) /∈ T ;VfΞ(x∗, π∗) = 1]

ext = Pr[(x∗, π∗)
$← ASIM1(·),SIM2(·)(ρ) :

w∗
$← SIM3(x

∗, π∗; ρ, TH, T : (x∗, π∗) /∈ T ; (x∗, w∗) ∈ RL]

where ρ is the adversary's random tape, TH the random oracle table and T the answers by SIM2. Then, there exists a
constant d > 0 and a polynomial p such that whenever acc ≥ µ, we have ext ≥ 1

p (acc− µ)
d.

Note, however, that this probability can be made exponentially close to 1 by standard repetition techniques. We can
thus safely assume that extraction is possible with overwhelming probability.

Zero-Knowledge. In a nutshell, zero-knowledge says that the receiver of the proof π does not learn anything except the
validity of the statement.

De�nition 14 (Zero-Knowledge). A non-interactive proof system ZKP is said to be zero-knowledge, if for a �xed
language L, for any e�cient adversary A, there exists an e�cient simulator SIM such that there exists a negligible
function ν such that: ∣∣∣∣Pr[Zero-KnowledgePrvΞ

A,SIM,L(λ) = 1]− 1

2

∣∣∣∣ ≤ ν(λ)
The corresponding experiment is depicted in Figure 9.

Faust et al. have already shown that the FS-transform yields such a ZK-system [20].

A.2 Digital Signatures

De�nition 15 (Digital Signatures Σ). A signature scheme Σ is a tuple {PGenΣ ,KGΣ ,SigΣ ,VfΣ} of PPT algorithms
such that:

PGenΣ. This algorithm generates the public parameter of the scheme: ppΣ
$← PGenΣ(ppSYS).
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Experiment Zero-KnowledgeZKP
A,SIM,L(λ)

b
$← {0, 1}

a
$← APb(·,·),H(·)(1λ)
where oracle P0 on input (x,w):

if R(x,w) = 1, return π
$← PrvΞ(x,w)

return ⊥
and oracle P1 on input (x,w):

if R(x,w) = 1, return π
$← SIM(x)

return ⊥
return 1, if a = b
return 0

Fig. 9: ZKP Zero-Knowledge

Experiment eUNF-CMAΣA(λ)

ppSYS
$← PGenSYS(1

λ)

ppΣ
$← PGenΣ(ppSYS)

(skΣ , pkΣ)← KGΣ(ppSYS)
Q ← ∅
(m∗, σ∗)← ASig′Σ(skΣ ,·)(pkΣ)
where oracle Sig′Σ on input m:
let σ ← SigΣ(skΣ ,m)
set Q ← Q∪ {m}
return σ

return 0, if m∗ ∈ Q
return 1, if VfΣ(pkΣ ,m

∗, σ∗) = 1
return 0

Fig. 10: Σ Unforgeability

KGΣ. This algorithm outputs the public and corresponding private key:

(skΣ , pkΣ)
$← KGΣ(ppΣ)

SigΣ. This algorithm gets as input skΣ, the message m ∈M, and outputs a signature:

σ
$← SigΣ(skΣ ,m)

VfΣ. This deterministic algorithm receives as input a public key pkΣ, a message m and a signature σ and outputs a
decision bit d ∈ {0, 1}:

d← VfΣ(pkΣ ,m, σ)

Correctness. We now de�ne correctness.

De�nition 16 (Correctness.). A digital signature scheme Σ is correct, if for all

Security. Besides completeness, a signature scheme Σ need to satisfy eUNF-CMA security. In a nutshell, we require
that an adversary A cannot (except with negligible probability) come up with a valid signature σ∗ for a new message
m∗. Moreover, the adversary A can adaptively query for new signatures.

De�nition 17 (Unforgeability). A signature scheme Σ is unforgeable, if for any PPT adversary A there exists a
negligible function ν such that:

Pr[eUNF-CMAΣA(1
λ) = 1] ≤ ν(λ)

The corresponding experiment is depicted in Fig. 10.
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Experiment IND-CPAΠA(λ):

ppSYS
$← PGenSYS(1

λ)

ppΠ
$← PGenΠ(ppSYS)

(skΠ , pkΠ)
$← KGΠ(ppΠ)

b
$← {0, 1}

((m∗0,m
∗
1), stateA)

$← A(pkΠ)
If m∗0 /∈M∨m1 /∈M:
let c∗ ← ⊥

Else:

let c∗
$← EncEnc(pkΠ ,m

∗
b)

a
$← A(stateA, c∗)

return 1, if a = b
return 0

Fig. 11: Π IND-CPA Security

A.3 Public-Key Encryption Schemes

De�nition 18 (Public-Key Encryption Schemes). A public-key encryption scheme Π consists of four algorithms
{PGenΠ ,KGΠ ,EncEnc,DecEnc,KVfΠ}, such that:

PGenΠ . This algorithm outputs the public parameters of the scheme:

ppΠ
$← PGenΠ(ppSYS)

It is assumed that ppΠ is implicit input to all other algorithms.
KGΠ . This algorithm outputs the public and private key, on input ppΠ :

(skΠ , pkΠ)
$← KGΠ(ppΠ)

EncEnc. This algorithm gets as input the public key pkΠ , and the message m ∈M to encrypt. It outputs a ciphertext:

c
$← EncEnc(pkΠ ,m)

DecEnc. This algorithm outputs a message m (or ⊥, if the ciphertext is invalid) on input skΠ , and a ciphertext c:

m← DecEnc(skΠ , c)

KVfΠ . This algorithm decides whether a given public key pkΠ corresponds to a given secret key skΠ ,

d← KVfΠ(pkΠ , skΠ)

where d ∈ {0, 1}.

Security. We require that the encryption scheme Π is IND-CPA secure.

De�nition 19 (IND-CPA Security). An encryption scheme Π is IND-CPA secure, if for any PPT adversary A
there exists a negligible function ν such that:∣∣∣Pr[IND-CPAENC

A (λ) = 1]− 1
2

∣∣∣ ≤ ν(λ)
The corresponding experiment is depicted in Figure 11.

B Proof of Theorem 1

Each property is proven on its own.
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Correctness. This property follows by inspection.

Non-Frameability. We now prove that our scheme is non-frameable:

Game 0: The original non-frameability game.
Game 1: As Game 0, but the ZK-proofs for signing, linking and opening are simulated using SIM.
Transition - Game 0 → Game 1: An adversary A distinguishing this replacement can be used to break the ZK-property

of the proof-system. The reduction works as follows. Our reduction B receives oracle access to a prove-oracle. All
other values are generated honestly. For every proof generated, it passes the statement to be proven (note, the
statements to be proven are still legit) to the proof-oracle. The result is embedded into the response for A. So, if A
notices a di�erence, so does B with the same probability. |Pr[S0]− Pr[S1]| ≤ νzk(λ) follows.

7

Game 2: As Game 1, but we abort, if we cannot extract a valid witness w for a verifying proof which was not simulated.
Transition - Game 1 → Game 2: An adversary A outputting such a proof π∗ can be used to break the weak simulation-

sound extractability property of the proof-system. The reduction works as follows. It receives ρ and embeds it as A's
random coins. It then rewires calls to the random-oracle TH to SIM1 and uses SIM2 to simulate all proofs generated.
Then, whenever the adversary outputs π∗, which cannot be extracted using SIM3, we break the weak simulation-
sound extractability property of the proof-system, which, by de�nition, cannot happen.8 |Pr[S1]−Pr[S2]| ≤ νwsse(λ)
follows.

Game 3: As Game 2, but we abort, if the adversary is able to generate a message/signature pair which points to the
challenge upk, but was never generated by the honest user. Note, this case also happens if the adversary queries such
a signature to the opening and linking oracles. Moreover, in this case the opening information τ is not considered
part of the signature σ.

Transition - Game 2 → Game 3: This can be used to break the unlinkability of the pseudonym-system. The reduction
B itself is rather simple: It �rst receives the public parameters ppΘ. It embeds the public parameters accordingly,
i.e., all other parameters are generated as in the prior hop, while joining can be done honestly. It calls its own
challenge oracle O0 to receive a pseudonym (on the correct message and padding, and also for setup) which it can
embed into the response for each signature to be generated (and public key during joining). The self-opening oracles
for signatures generated by the Sign′Ω-oracle are fully simulated, pointing to the signer. For signatures not coming
from that oracle, they deny ownership (but are simulated).
We stress that noticing such a forged signatures is simple: B queries its pseudonym-oracles to receive two nym′m‖pad

on the received m‖pad. If neither nym′m‖pad matches the one in the signature not generated by the Sign′Ω-oracle, a
forgery has happened, already meeting the winning requirements.
The self-linking oracles are simulated in the same fashion: if both signatures come from Sign′Ω-oracle, the proof
is fully simulated, stating that the signatures are linkable. In the case that only one signature comes from the
Sign′Ω-oracle, but they should be linkable, the winning conditions are met and thus this case does not require any
attention. If both signatures are not generated by the Sign′Ω-oracle, B returns ⊥. Again, the case that at least one
signature should make the self-linking oracle output a proof already meets the winning conditions.
Finally, after the adversary outputs a forgery (or, as described above, puts one into the oracles), B extracts usk
(by using the canonical extractor SIM3). B can then trivially break unlinkability of the pseudonym system by
recalculating pseudonyms. In particular, the challenge scope can be chosen randomly from the set of non-seen
scopes, and then simply veri�ed using the extracted usk. |Pr[S2]− Pr[S3]| ≤ νnym−unlink(λ) follows.

This proves that our scheme is non-frameable, as the adversary has no other way to win the game.

Anonymity. We now prove that our scheme is anonymous:

Game 0: The original anonymity game in the case b = 0.
Game 1: As Game 0, but the ZK-proofs for signing, linking and opening are simulated using SIM.
Transition - Game 0 → Game 1: An adversary A distinguishing this replacement can be used to break the ZK-property

of the proof-system. The reduction works as follows. Our reduction B receives oracle access to a prove-oracle. All
other values are generated honestly. For every proof generated, it passes the statement to be proven (note, the

7 In a formal sense, we need to make this hop for every language L involved. However, this is a pure technicality and no additional
insight would be given. We therefore make this no longer explicit.

8 In a formal sense, we need to make this hop for every language L involved. However, this is a pure technicality and no additional
insight would be given. We therefore make this no longer explicit.
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statements to be proven are still legit) to the proof-oracle. The result is embedded into the response for A. So, if A
notices a di�erence, so does B with the same probability. |Pr[S0]− Pr[S1]| ≤ νzk(λ) follows.

9

Game 2: As Game 1, but we abort, if we cannot extract a valid witness w for a verifying proof which was not simulated.
Transition - Game 1 → Game 2: An adversary A outputting such a proof π∗ can be used to break the weak simulation-

sound extractability property of the proof-system. The reduction works as follows. It receives ρ and embeds it as A's
random coins. It then rewires calls to the random-oracle TH to SIM1 and uses SIM2 to simulate all proofs generated.
Then, whenever the adversary outputs π∗, which cannot be extracted using SIM3, we break the weak simulation-
sound extractability property of the proof-system, which, by de�nition, cannot happen.10 |Pr[S1]−Pr[S2]| ≤ νwsse(λ)
follows.

Game 3: As Game 2, but we abort if the adversary was able to query a valid signature to one of the opening or linkings
oracles, pointing to one of the honest users, which has never been generated by one of the honest users. Note, the
information τ is only required at the self-opening and self-linking oracles, but are not part of the signature.

Transition - Game 2 → Game 3: An adversary A generating such a valid message/signature pair can be turned into an
adversary B against the unlinkability de�nition of the underlying pseudonym-system. In particular, the reduction B
works as follows. B receives ppΘ, embedding it honestly. Likewise, it generates opk and osk honestly. It also honestly
generates two user key-pairs (usk′, upk′) and (usk, upk). B then gives (opk, upk, upk′) to A. The oracles are simulated
as follows. Joining can be done honestly. If a signature is to be generated, i.e., a call to Sign′Ω it can be generated
honestly, but the pseudonyms are generated using O0 for upk and O1 for upk

′. Joining is done in the same fashion,
but with the special scope, using the same oracles. Opn′ is simulated as follows. If the signature was generated using
LoRSig, ⊥ is returned (if ipk matches). In all other cases, the answer is returned honestly (if the signature points
to one of the users, but was never generated by them, the winning condition is already met; See below). The same
is true for Lnk′, but quanti�ed over any signature input. Likewise, calls to SOpn′ are performed honestly, except
for simulated signatures; here, the proofs need to be simulated, pointing to the correct user. This is also true for
the SLnk′-oracle. So far, the simulation is perfect. However, when the adversary makes a query to the opening or
linking-oracles for which the opener would return a proof which makes one of the users accountable, while they are
not, B can extract a secret key usk. The reduction B can then use this key to recalculate pseudonyms (the challenge
can be obtained on a random pseudonym not yet seen), directly breaking the unlinkability of the used pseudonym
system. |Pr[S2]− Pr[S3]| ≤ νunlink(λ) follows.

Game 4: As Game 3, but we replace each encryption e with an encryption of 0 for the challenge opk for the signature
generation.

Transition - Game 3 → Game 4: An adversary distinguishing this replacement can be used to break the IND-CPA
security of the used encryption scheme using a standard hybrid argument. Let qs be an upper bound on the number
of signatures generated w.r.t. the challenge opk. Further, let Game 4.0 be the same as Game 3. In Game 4.i we
replace the content of the �rst i encryptions with a 0, i.e., in Game 4.qs all encryption encrypt a 0. Let A be an
adversary which can distinguish this replacement. We can then construct a reduction B which breaks the IND-CPA
security of the underlying encryption scheme. The reduction B works as follows. It receives pkΠ as its own challenge
and ppΠ . Both are embedded into the values the adversary receives � all other values are generated as in the prior
hop. For all queries up to ith one, the content of the encryption is replaced with a 0. On the ith query, however, B
asks its own challenger with either the correct value or a 0. The result is embedded into the response. All oracles are
still answered as in the prior game, with one notable exception: if a ciphertext is to be decrypted during opening
(which is not necessary for simulated ones, as the values are known by B), B uses SIM3 to obtain the plaintext.
Then, whatever is output by A, is also output by B. |Pr[S3] − Pr[S4]| ≤ qsνIND−CPA(λ) follows, where qs is the
number of signatures generated.

Game 5: As Game 4, but we abort, if the same padding was drawn twice for any honest user in the system.
Transition - Game 4 → Game 5: As the pads are drawn completely randomly from {0, 1}2λ, the probability is negligi-

ble, as it is bound by the birthday paradox. |Pr[S4]−Pr[S5]| ≤ q2s/22λ follows, where qs is the number of signatures
generated.

Game 6: As Game 5, but switch to b = 1.
Transition - Game 5 → Game 6: Clearly, as now everything is independent from the input values (but usk for the

pseudonyms), the only option left is that the adversary can link pseudonyms. The reduction B proceeds as follows.

9 In a formal sense, we need to make this hop for every language L involved. However, this is a pure technicality and no additional
insight would be given. We therefore make this no longer explicit.

10 In a formal sense, we need to make this hop for every language L involved. However, this is a pure technicality and no additional
insight would be given. We therefore make this no longer explicit.
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It draws a random bit b′
$← {0, 1}. It receives ppΘ and embeds it accordingly. All other values are generated as in

the prior game. Joining can be done honestly. Then, B calls its own oracles Ob′ (for upk0) and O1−b′ (for upk
1) to

receive the pseudonyms for scope setup and then embeds them into the public keys. Likewise, each pseudonym for
signing is calculated using the oracles provided. Note, proofs are already simulated, and thus the secret key is not
required � how signatures should be opened/linked is directly obvious from the transcript of the signing oracles, as
we already excluded forged signature (regardless of τ). B then chooses an index i from {1, 2, . . . , qs}, where qs is the
number of signatures generated by the LoR-oracle, and calls the challenge oracle with the correct scope and embeds
the result in the signature. For all calls afterwards, B continues using its oracles Ob′ (for upk0) and O1−b′ (for upk

1)
as before. Then, whatever A outputs, is also output by the reduction. Conditioned on the probability that b′ = b
(which happens in exactly 50% of the cases), the simulation is perfect. In the case b′ 6= b there is simulation glitch,
as B embeds the wrong pseudonym. Thus, we obtain |Pr[S5]− Pr[S6]| ≤ 2νnym−unlink(λ).

This proves that our scheme is anonymous.

Traceability. We now prove that our scheme is traceable:

Game 0: The original traceability game.
Game 1: As Game 0, but the ZK-proofs for signing, linking and opening are simulated using SIM.
Transition - Game 0 → Game 1: An adversary A distinguishing this replacement can be used to break the ZK-property

of the proof-system. The reduction works as follows. Our reduction B receives oracle access to a prove-oracle. All
other values are generated honestly. For every proof generated, it passes the statement to be proven (note, the
statements to be proven are still legit) to the proof-oracle. The result is embedded into the response for A. So, if A
notices a di�erence, so does B with the same probability. |Pr[S0]− Pr[S1]| ≤ νzk(λ) follows.

11

Game 2: As Game 1, but we abort, if we cannot extract a valid witness w for a verifying proof which was not simulated.
Transition - Game 1 → Game 2: An adversary A outputting such a proof π∗ can be used to break the weak simulation-

sound extractability property of the proof-system. The reduction works as follows. It receives ρ and embeds it as A's
random coins. It then rewires calls to the random-oracle TH to SIM1 and uses SIM2 to simulate all proofs generated.
Then, whenever the adversary outputs π∗, which cannot be extracted using SIM3, we break the weak simulation-
sound extractability property of the proof-system, which, by de�nition, cannot happen.12 |Pr[S1]−Pr[S2]| ≤ νwsse(λ)
follows.

Game 3: As Game 2, but we abort if the adversary was able to generate a signature for a member not joined (note,
osk is known and thus this condition can easily be checked).

Transition - Game 2 → Game 3: As always the knowledge of sig is proven, the reduction can extract it using the
canonical extractor SIM3. The reduction receives the public key to forge, and embeds it into ipk (the parameters
are embedded as well). Signatures given to the adversary can be generated using the signature oracle provided.
Moreover, as the user never joined, the signature is fresh, as all other proofs are simulated. Thus, sig can be
extracted and breaks the unforgeability of the underlying signature scheme. |Pr[S2]−Pr[S3]| ≤ νunf−cma(λ) follows.

Game 4: As Game 3, but we abort if the adversary was able to generate a signature for which the accountable party
cannot be determined or linking does not work.

Transition - Game 3 → Game 4: This means that the proof contained in the signature is bogus. The statement and
proof can trivially be extracted from the values given. |Pr[S3]− Pr[S4]| ≤ νzkwsimsound(λ) follows.

This proves that our scheme is traceable, as the adversary has no other way to win.

Trace-Soundness. We now prove that our scheme is trace-sound:

Game 0: The original trace-soundness game.
Game 1: As Game 0, but we abort, if we cannot extract a valid witness w for a verifying proof which was not simulated.
Transition - Game 0 → Game 1: An adversary A outputting such a proof π∗ can be used to break the weak simulation-

sound extractability property of the proof-system. The reduction works as follows. It receives ρ and embeds it as A's
random coins. It then rewires calls to the random-oracle TH to SIM1 and uses SIM2 to simulate all proofs generated.

11 In a formal sense, we need to make this hop for every language L involved. However, this is a pure technicality and no additional
insight would be given. We therefore make this no longer explicit.

12 In a formal sense, we need to make this hop for every language L involved. However, this is a pure technicality and no additional
insight would be given. We therefore make this no longer explicit.
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Then, whenever the adversary outputs π∗, which cannot be extracted using SIM3, we break the weak simulation-
sound extractability property of the proof-system, which, by de�nition, cannot happen.13 |Pr[S0]−Pr[S1]| ≤ νwsse(λ)
follows.

Game 2: We now abort, if the conditions of the trace-soundness game are met.
Transition - Game 1 → Game 2: We are now in two cases. In the �rst case, we have colliding pseudonyms with di�erent

secret keys. The secret keys can be extracted from the proofs using SIM3. The reduction B works as follows. It receives
ppΘ from its own challenger. It embeds it accordingly. All other values are generated as in the prior game. Then,
whenever the above case happens, B can return (usk0, usk1, sc).
In the other case we have two proofs π∗0 , and π

∗
1 , proving di�erent statements (one of which must be wrong), trivially

breaking the soundness of the zero-knowledge proof system. |Pr[S0]−Pr[S1]| ≤ νnymcoll +3νzkwsimsound(λ) follows, as
B can only return one proof and do not know which one is bogus.

This proves that our scheme is trace-sound, as the adversary has no other way to win the game.

Opening-Privacy. We now prove that our scheme is opening-private:

Game 0: The original opening-privacy game.
Game 1: As Game 0, but the ZK-proofs for signing and opening are simulated.
Transition - Game 0 → Game 1: An adversary distinguishing this replacement can clearly be used to break the ZK-

property of the proof-system. |Pr[S0]− Pr[S1]| ≤ νzk(λ) follows.
Game 2: As Game 1, but we abort if the adversary was able to query a valid signature to one of the opening oracles,

pointing to one of the honest users, which has never been generated by one of the honest users.
Transition - Game 1 → Game 2: An adversaryA generating such a valid message/signature pair can trivially be turned

into an adversary B against the non-frameability requirement. In particular, the reduction B works as follows. B
receives upk. B then gives upk to A. The oracles are simply rewired to B's own challenger. So far, the simulation is
perfect. However, when the adversary makes a query to the opening-oracles for which the opener would return a proof
which makes upk accountable, while it is not, B can return that signature to its own challenger. |Pr[S1]−Pr[S2]| ≤
νframe(λ) follows.

Game 3: As Game 2, but each h is no longer calculated using the message and the padding in the LoR-oracle, but

using a random value h
$← {0, 1}2λ, while we abort, if the adversary makes a query p which results in h.

Transition - Game 2 → Game 3: As H maps values to {0, 1}2λ, this only happens with negligible probability, i.e.,
|Pr[S1]−Pr[S2]| ≤ qhqs

22λ
, where qh is the number of random oracle queries and qs the number of signatures generated.

Note, all oracles can thus be simulated honestly.

This proves that our scheme is opening-private, as the signatures are now completely independent from the message.

C Concrete Instantiation

Parameter Generation. On input 1λ, PGenΩ outputs ppSYS = (1λ, e,G1,G2,GT ), where q is a prime of su�cient length,
and e : G1 ×G2 → GT is an asymmetric pairing, where the DDH assumption holds in G1 and G2.

The parameters ppΣ generated by PGenΣ(ppSYS) consist of generators gi of Gi for i = 1, 2. No additional parameters
ppΘ generated by PGenΘ(ppSYS) are needed; however, the pseudonym system has access to a random oracle OΘ mapping
arbitrary bitstrings to elements of G1. The parameters ppΠ generated by PGenΠ(ppSYS) consist of a generator g of G1

(potentially, g = g1). Finally, the zero-knowledge building block again has access to a random oracle OΞ mapping
arbitrary bitstrings to elements of Zq.

Key Generation. The issuer generates its key pair using the key generation algorithm of the Abe et al. signature

scheme [2]. That is, it chooses v, w1, w2, z
$← Zq and de�nes (V,W1,W2, Z) = (gv2 , g

w1
2 , gw2

2 , gz2). Finally, the GKG
outputs (isk, ipk)← ((v, w1, w2, z), (V,W1,W2, Z)).

To generate its key pair, the opener's key generation algorithm OKG draws osk
$← Zq and de�nes opk← gosk.

The user's key generation algorithm UKG draws usk
$← Zq and de�nes upk ← OΘ(setup)usk as a scope-exclusive

pseudonym to the special scope setup.

13 In a formal sense, we need to make this hop for every language L involved. However, this is a pure technicality and no additional
insight would be given. We therefore make this no longer explicit.
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Join[usk, upk] Iss[isk, ipk]

upk -
o

$← Z∗q
R← go1

S ← gz−ov1 upk−w1opk−w2

T ← g
1/o
2

(R,S,T )�
Output: ssk← (R,S, T )
(If sig is valid)

Prot. 2: Concrete instantiation of the protocol 〈Join; Iss〉.

Join / Issuance. As described in the generic construction, the interactive protocol 〈Join, Iss〉 simply consists in the user
transferring its pseudonym to the issuer, who then signs this value and opk using its own key material. It then sends
back the signature to the user. The concrete operations are depicted in Protocol 2.

Sign / Verify. In order to sign a message m, a user computes an ElGamal encryption of its upk, computes a fresh
pseudonym for the given message-padding-pair. It then generates a signature of knowledge on the given context, proving
that the above computations were done correctly and that upk was originally signed by the issuer. Note that the
consistency of the secret user keys used for nym and upk � and thereby also that the signer is the valid owner of upk �
is implicitly demonstrated by showing that the plaintext of the ElGamal encryption corresponds to OΘ(setup)usk.

More precisely, the signer executes the following steps (note that the third step is a purely technical work that is
needed to make the proof goal in the next step compatible with standard Schnorr-like protocols, cf., e.g., Bangerter [5]):

1. s
$← Zq, e← (gs, upk · opks)

2. nym← H(m‖pad)usk

3. k
$← Z∗q , T̂ ← T−k

4.

π
$← ZKP

[(
usk, s, R, S, k

)
: e = (gs,OΘ(setup)uskopks) ∧

e(R, V )e(S, g2)e(OΘ(setup)usk,W1) = e(g1, Z)e(opk,W2)
−1 ∧

nym = OΘ(h)usk ∧ e(R, T̂ )e(g1, g2)
k = 1

]
(h, ctx) ,

where h = H(m‖pad).
5. Output: (σ, τ)← (e, nym, (T̂ , π), pad)

In order to verify a signature, VfΩ behaves as described in Section 4.

Open / Judge. In order to open a signature σ on message m, the opener behaves as follows if upk′ = ⊥, i.e., if the
signature should indeed be opened and no (in)equality to a target user key is to be proven. It �rst checks the validity

of π. It decrypts the ciphertext e to obtain the user's public key ˆupk← e2e
−osk
1 and generates a zero-knowledge proofs

that it did so correctly:

πopener
$← ZKP

[
(osk) : opk = gosk ∧ ˆupke−12 = e−osk

1

]
(ctx) .

To verify the validity of the opener's claim, Jdg �rst checks whether VfΩ(opk, ipk, σ, τ,m) = 1, and outputs 0
otherwise. It then outputs whatever VfΞ outputs on input πopener for the given context.

In the case that upk′ 6= ⊥, the algorithm computes b as in the generic construction. If b = 1, it computes the very
same proof as above, using upk′ instead of ˆupk. Otherwise, if b = 0 and the opener should therefore prove that the
target upk′ is not accountable for the signature, the following steps are performed:

1. The algorithm draws a blinding factor v
$← Z∗q and computes E ← (upk′e2)

v, D1 ← ev1, and D2 ← D−osk
1 .
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2. It computes the following proof:

π′opener
$← ZKP

[
(osk, v) : opk = gosk ∧ E = (upk′e2)

v ∧

D1 = ev1 ∧ D2 = D−osk
1

]
(ctx) ,

where ctx also includes D1, D2, E.
3. It sets πopener ← (π′opener, D1, D2, E).

Upon veri�cation, the algorithm Jdg in addition to verifying π′opener also checks that D2 6= E and D1, D2, E 6= 1.

Note that from this last proof it follows that E · D−12 = (upk′e−12 )v(e−v·osk
1 )−1 = upk′v(eosk1 e−12 )v = (upk′ ˆupk

−1
)v,

where ˆupk denotes the decryption (e1, e2) under the opener's key. By checking E 6= D2, it thus follows that the
correct decryption is di�erent from the target user public key upk′. Note further that the real user's identity remains
computationally hidden under DLOG, which however does not weaken the user's privacy, as the encryption (e1, e2) of
ˆupk itself already depends on the same assumption anyways, and therefore no additional overhead to achieve perfect
instead of computational zero-knowledge in this construction is necessary.

Self-Inspection. To self-inspect a valid signature (σ, τ) = (e, nym, (T̂ , π), pad), the user's algorithm SJdg (dis-)proves
that the pseudonym in question was generated by the user by showing that the user is the legitimate owner of the public
key upk = OΘ(setup)usk, and the pseudonym for the respective m‖pad is (un-)equal to nym.

Speci�cally, the algorithm computes the following proof πu to prove ownership of a signature (i.e., in the case that
b = 1):

1. k
$← Z∗q , T̂ ′ ← T−k

2.

π′u
$← ZKP

[(
usk, R, S, k

)
: nym = OΘ(h)usk ∧ upk = OΘ(setup)usk ∧

e(R, V )e(S, g2) = e(g1, Z)e(opk,W2)
−1e(upk,W1)

−1 ∧

e(R, T̂ ′)e(g1, g2)
k = 1

]
(ctx) ,

where h = H(m‖pad).
3. and outputs πu ← (T̂ , π′u).

To deny a signature (i.e., if b = 0), the algorithm behaves as follows:

1. k
$← Z∗q , T̂ ′ ← T−k

2. r
$← Z∗q and D ← nymrOΘ(h)−usk·r

3.

π′u
$← ZKP

[(
usk, R, S, k, r

)
: D = nymrOΘ(h)−usk·r ∧

e(R, V )e(S, g2)e(OΘ(setup)usk,W1) = e(g1, Z)e(opk,W2)
−1 ∧

e(R, T̂ ′)e(g1, g2)
k = 1

]
(ctx) ,

where the multiplication is resolved using standard techniques found in the literature, e.g., Krenn [29], and h =
H(m‖pad).

4. and outputs πu ← (D, T̂ , π′u).

To verify the correctness of a user's claim, SJdg �rst checks whether VfΩ(opk, ipk, σ, τ,m) = 1, and outputs 0
otherwise. In case of a denied signature, it also checks that D 6= 0 and outputs 0 otherwise. It then outputs whatever
VfΞ outputs on input πsigner for the given context.
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Signature-Linking. On input (osk, opk, ipk, (ei, nymi, (T̂i, πi))), where for i = 0, 1, algorithm Lnk �rst checks the validity

of each πi, computes ˆupki = ei,1e
−osk
i,2 for i = 0, 1. It then de�nes b = 1 if ˆupk0 = ˆupk1 and b = 0 otherwise.

If b = 1, it then computes the following zero knowledge proof of knowledge:

πl = ZKP
[
(osk) : opk = gosk ∧ e1,1 · e−12,1 =

(
e1,2 · e−12,2

)osk
]
(ctx) .

Veri�cation follows straightforward from the black-box construction.
Otherwise, if b = 0, the algorithm follows the same logics as Opn to show that ˆupk0 6= ˆupk1. The algorithm draws

v
$← Z∗q , and sets D1 ←

(
e1,2 · e−12,2

)v
, D2 ← Dosk

1 , and E ←
(
e1,1 · e−12,1

)v
. It then computes:

π′l = ZKP

[
(osk, v) : opk = gosk ∧ D1 =

(
e1,2 · e−12,2

)v ∧
D2 = Dosk

1 ∧ E =
(
e1,1 · e−12,1

)v ]
(ctx) ,

and sets πl = (π′l, E,D1, D2), and adds (E,D1, D2) to ctx. Upon veri�cation of πl, the veri�er not only veri�es π′l, but
also checks that D2 6= E.

Self-Linking of Signatures. After having checked whether or not the same signer is accountable for both signatures, the
algorithm behaves as follows if b = 1. It computes:

πl
$← ZKP

[
(usk) :

1∧
i=0

nymmi‖padi
= OΘ(hi)usk

]
(ctx) .

where hi = H(mi‖padi). In the case that b = 0 it computes:

πl
$← ZKP

[
(usk) :

1∨
i=0

(
nymmi‖padi

= OΘ(hi)usk ∧

nymm1−i‖pad1−i
6= OΘ(hi−1)usk

)]
(ctx) ,

where the inequality is resolved as in the previous algorithms and hi = H(mi‖padi).
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