
The Lattice-Based Digital Signature Scheme
qTESLA

Erdem Alkim1, Paulo S. L. M. Barreto2, Nina Bindel3, Patrick Longa4 and
Jefferson E. Ricardini5

1 Ondokuz Mayis University, Turkey
erdemalkim@gmail.com

2 University of Washington Tacoma.
pbarreto@uw.edu

3 Technische Universität Darmstadt, Germany
nbindel@cdc.informatik.tu-darmstadt.de

4 Microsoft Research, USA
plonga@microsoft.com

5 University of São Paulo, Brazil
jricardini@larc.usp.br

Abstract. We present qTESLA, a family of post-quantum digital signature schemes
based on the ring learning with errors (R-LWE) problem that exhibits several attrac-
tive features such as simplicity, high-performance, strong security guarantees against
quantum adversaries, and built-in protection against certain side-channel and fault
attacks. qTESLA—selected for the first round of NIST’s post-quantum cryptography
standardization project—consolidates a series of recent proposals of R-LWE-based
signature schemes originating in works by Lyubashevsky, and Bai and Galbraith,
leading to the best performance among lattice-based signature schemes instantiated
against state-of-the-art quantum attacks and implemented with protection against
timing and cache side-channels.
We provide full-fledged, constant-time reference and AVX2-optimized implementa-
tions that showcase the high-speed and simplicity of our scheme. As part of our
implementations, we present an efficient and portable Gaussian sampler that gets by
without using floating-point operations and is easily implementable in constant-time.
While the Gaussian sampling is solely used in qTESLA’s key generation, variants of it
are used in most lattice-based primitives and, hence, our approach is of independent
interest for other lattice-based implementations.

Keywords: Post-quantum cryptography, lattice-based cryptography, digital signatures,
provable security, efficient implementation, Gaussian sampling.

1 Introduction
The potential advent of quantum computers has prompted the cryptographic community
to look for quantum-resistant alternatives to classical schemes based on factoring and
(elliptic curve) discrete logarithm problems. Among the available options, lattice-based
cryptography has emerged as one of the most promising branches of quantum-resistant
cryptography, as it enables elegant and practical schemes that come with strong security
guarantees against quantum attackers.

mailto:erdemalkim@gmail.com
mailto:pbarreto@uw.edu
mailto:nbindel@cdc.informatik.tu-darmstadt.de
mailto:plonga@microsoft.com
mailto:jricardini@larc.usp.br

In this work, we introduce a family of lattice-based digital signature schemes called qTESLA,
which consolidates a series of recent efforts to design an efficient and provably-secure
signature scheme based on the so-called ring learning with errors (R-LWE) problem [LPR10].
Under the qTESLA family, we distinguish two variants:

Heuristic qTESLA. Parameters are generated according to the hardness level provided by
the R-LWE instance that corresponds to a certain qTESLA instance, without taking
into account the explicit security reduction. Instantiations in this variant feature
high-speed with relatively small signature and key sizes.

Provably-secure qTESLA. Parameters are generated according to the provided security
reduction, i.e., instantiations of the scheme in this case provably guarantee a certain
security level as long as the corresponding R-LWE instances give a certain hardness
level. Thus, these instantiations provide a stronger security argument.

qTESLA’s design and implementation bring together the following relevant features:

Simplicity and efficiency. qTESLA was designed to be simple and easy to implement,
with special emphasis on the most used functions in a signature scheme, namely, signing
and verification. In particular, Gaussian sampling, arguably the most complex part of
traditional lattice-based signature schemes, is relegated exclusively to key generation. This
design approach enables the realization of compact and efficient portable implementations
that are easy to scale to support multiple security levels.

Security foundation. qTESLA is based on the hardness of the R-LWE problem, and comes
accompanied by a tight and explicit security proof in the quantum random oracle model
(QROM) [BDF+11], i.e., a quantum adversary is allowed to ask the random oracle in
superposition. The explicitness of the reduction enables choosing parameters according to
the reduction, while its tightness enables smaller parameters and, thus, better performance
when choosing provably-secure parameters.

Flexible choice of parameters. Our two qTESLA variants, “heuristic” and “provably-secure”,
allow us to target a wide range of applications, from embedded and high-performance
applications to highly sensitive scenarios that require a strong confidence level.

Practical security. qTESLA facilitates realizations that are secure against implementation
attacks. For example, it supports constant-time implementations (i.e., implementations
that are secure against timing and cache side-channel attacks by avoiding secret memory
access and secret-dependent branching), and is inherently protected against certain simple
yet powerful fault attacks.

High speed. qTESLA achieves very high performance for the operations that are typically
time-critical, namely, signing and verification. This is accomplished at the expense of a
moderately more expensive key generation, which is usually performed offline.

Related work. qTESLA is the result of a long line of research and consolidates the most
relevant features of the prior works. The first work in this line is the signature scheme
proposed by Bai and Galbraith [BG14a], which is based on the Fiat-Shamir construction
of Lyubashevsky [Lyu12,Lyu09]. The Bai-Galbraith scheme is constructed over standard
lattices and comes with a (non-tight) security reduction from the LWE and the short integer
solution (SIS) problems in the Random Oracle Model (ROM). Dagdelen et al. [DBG+15]
presented improvements and the first implementation of the Bai-Galbraith scheme. The
scheme was subsequently studied under the name TESLA by Alkim et al. [ABB+17], who
provided an alternative (tight) security reduction from the LWE problem in the QROM.
A variant of TESLA over ideal lattices was derived under the name ring-TESLA [ABB+16].
qTESLA is a direct successor of this scheme, with several modifications aimed at improving

2

its security, correctness and implementation, the most important of which are: qTESLA in-
cludes a new correctness requirement that prevents occasional rejections of valid signatures
during ring-TESLA’s verification; qTESLA’s security reduction is proven in the QROM while
ring-TESLA’s reduction was only given in the ROM; in addition to the provably-secure
parameter generation, qTESLA includes a new approach to choose parameters, namely
heuristic qTESLA, which achieves better performance with reduced signature and key
sizes; the security estimations of ring-TESLA are not state-of-the-art and are limited
to classical algorithms while qTESLA’s instantiations are with respect to state-of-the-art
classical and quantum attacks; the number of R-LWE samples in qTESLA is flexible, not
fixed to two samples as in ring-TESLA, which enables instantiations with better efficiency;
and our qTESLA implementations are protected against several implementation attacks
while known implementations of ring-TESLA are not (e.g., do not run in constant-time).
In addition, we note that qTESLA follows the standard security practice of generating fresh
public polynomials ai at each keypair generation.
Another variant of the Bai-Galbraith scheme is the recently proposed lattice-based sig-
nature scheme Dilithium [DKL+18], which is constructed over module lattices. While
qTESLA and Dilithium share several properties such as a tight security reduction in the
QROM [KLS18], qTESLA offers provably-secure parameters that are chosen according to
this security reduction, in addition to the heuristic parameters also offered by Dilithium.
Moreover, Dilithium signatures are deterministic, whereas qTESLA signatures are prob-
abilistic and come with built-in protection against some powerful fault attacks such as
the simple and easy-to-implement fault attack in [PSS+17,BP18]. It is also important
to remark that, in general, side-channel attacks are more difficult to carry out against
probabilistic signatures.
Two other signature schemes played a major role in the history of Fiat-Shamir-based
lattice-based signature schemes, namely, GLP [GLP12] and BLISS [DDLL13b]. For exam-
ple, the former scheme was inspirational for some of qTESLA’s building blocks, such as the
encoding function.
In a separate category we mention other lattice-based signature schemes such as Fal-
con [FHK+17], pqNTRUSign [CHZ17], and DRS [PSDS17], which are not based on the
Fiat-Shamir paradigm. In comparison to qTESLA, these schemes follow rather complex
design principles and are not as easy to implement. Some of these schemes also have a
complicated history in cryptanalysis. For example, Yu and Ducas presented a statistical
attack against DRS [YD18]. The same attack idea [NR06,DN12] was also used against
pqNTRUSign’s predecessor NTRUSign [HHP+03].

As an additional contribution that may have independent interest, we show how to
implement an efficient and portable Gaussian sampler for qTESLA that only requires in-
teger operations and can be easily written in constant-time. The method combines the
well-known technique of cumulative distribution tables (CDT) with Batcher’s odd-even
mergesort algorithm [Bat68] to sample from a Gaussian distribution; see §5.2 for details.
This solves an open problem for qTESLA, and other similar schemes, which originally relied
on a Gaussian sampler requiring floating-point arithmetic [BLN+16].

Software release. We released our portable and AVX2-optimized implementations as
open source: https://github.com/Microsoft/qTESLA-Library. The implementation
package submitted to NIST’s Post-Quantum Cryptography Standardization process is
available here: https://github.com/qtesla/qTesla.

Outline. After describing some preliminary details in §2, we present the signature scheme
in §3. In §4, we describe the security foundation and the proposed parameter sets.
We discuss thorough implementation details of the scheme in §5, including the proposed
Gaussian sampler and our reference and AVX2-optimized implementations. Finally, §6 gives

3

https://github.com/Microsoft/qTESLA-Library
https://github.com/qtesla/qTesla

our experimental results and a comparison with state-of-the-art signature schemes.

Acknowledgments
NB is partially supported by the German Research Foundation (DFG) as part of project
P1 within the CRC 1119 CROSSING. JR is partially supported by the joint São Paulo Re-
search Foundation (FAPESP)/Intel Research grant 2015/50520-6 “Efficient Post-Quantum
Cryptography for Building Advanced Security Applications” and Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001".

2 Preliminaries
2.1 Notation
Rings. Let Zq = Z/qZ denote the quotient ring of integers modulo q, and let R and Rq
denote the rings Z[x]/〈xn+ 1〉 and Zq[x]/〈xn+ 1〉, respectively. Given f =

∑n−1
i=0 fix

i ∈ R,
we define the reduction of f modulo q to be (f mod q) =

∑n−1
i=0 (fi mod q)xi ∈ Rq. Let

Hn,h = {f ∈ Rq | f =
∑n−1
i=0 fix

i, fi ∈ {−1, 0, 1},
∑n−1
i=0 |fi| = h}, and Rq,[B] = {f ∈

Rq | f =
∑n−1
i=0 fix

i, fi ∈ [−B,B]}.

Rounding operators. Let d ∈ N and c ∈ Z. For an even (odd) modulus m ∈ Z≥0, define
c′ = c mod±m as the unique element −m/2 < c′ ≤ m/2 (resp. −bm/2c ≤ c′ ≤ bm/2c)
such that c′ = c mod m. We then define the functions [·]L : Z → Z, c 7→ c mod±2d,
and [·]M : Z→ Z, c 7→ (c mod±q − [c]L)/2d. These function definitions are extended to
polynomials by applying the operators to each polynomial coefficient; that is, [f]L =∑n−1
i=0 [fi]L xi and [f]M =

∑n−1
i=0 [fi]M xi for a given f =

∑n−1
i=0 fix

i ∈ R.

Infinity norm. Given f ∈ R, the function maxk(f) returns the k-th largest absolute
coefficient of f . That is, if the coefficients of f are reordered as to produce a polynomial g
with coefficients ordered (without losing any generality) as |g1| ≥ |g2| ≥ . . . ≥ |gn|, then
maxi(f) = gi. For an element c ∈ Zq, we have that ‖c‖∞ = |c mod±q|, and define the
infinity norm for a polynomial f ∈ R as ‖f ‖∞ = max

i
‖fi‖∞.

Representation of polynomials and bit strings. We write a given polynomial f ∈ Rq as∑n−1
i=0 fix

i or, in some instances, as the coefficient vector (f0, f1, . . . , fn−1) ∈ Znq . When
it is clear by the context, we represent some specific polynomials with a subscript (e.g.,
to represent polynomials a1, . . . , ak). In these cases, we write aj =

∑n−1
i=0 aj,ix

i, and the
corresponding vector representation is given by aj = (aj,0, aj,1, . . . , aj,n−1) ∈ Znq .
In the case of sparse polynomials c ∈ Hn,h, these polynomials are encoded as the two arrays
pos_list ∈ {0, . . . , n− 1}h and sign_list ∈ {−1, 1}h representing the positions and signs
of the nonzero coefficients of c, respectively. We denote this by c , {pos_list, sign_list}.
In some cases, s-bit strings r ∈ {0, 1}s are written as vectors over the set {0, 1}, in which
an element in the i-th position is represented by ri. This applies analogously to other sets.
Multiple instances of the same set are represented by appending an additional superscript.
For example, {0, 1}s,t corresponds to t s-bit strings each defined over the set {0, 1}.

Distributions. The centered discrete Gaussian distribution for c ∈ Z with standard
deviation σ is defined to be Dσ = ρσ(c)/ρσ(Z), where σ > 0, ρσ(c) = exp(−c

2

2σ2), and
ρσ(Z) = 1 + 2

∑∞
c=1 ρσ(c). We write c ←σ Z to denote sampling of a value c with

distribution Dσ. For a polynomial f ∈ R, we write f ←σ R to denote sampling each
coefficient of f with distribution Dσ. For a finite set S, we denote sampling the element s
uniformly from S with s←$ S.

4

2.2 The number theoretic transform (NTT)
Polynomial multiplication over a finite field is one of the fundamental operations in R-LWE
based schemes such as qTESLA. In this setting, this operation can be efficiently carried out
by satisfying the condition q ≡ 1 (mod 2n) and, thus, enabling the use of the NTT.

Since qTESLA specifies the generation of the polynomials a1, . . . , ak directly in the NTT
domain for efficiency purposes (see §5), we need to define polynomials in such a domain.
Let ω be a primitive n-th root of unity in Zq, i.e., ωn ≡ 1 mod q, and let φ be a primitive
2n-th root of unity in Zq such that φ2 = ω. Then, given a polynomial a =

∑n−1
i=0 aix

i the
forward transform is defined as

NTT : Zq[x]/〈xn + 1〉 → Znq , a 7→ ã =
n−1∑
i=0

n−1∑
j=0

ajφ
jωij

xi,

where ã = NTT(a) is said to be in NTT domain. Similarly, the inverse transformation of a
polynomial ã in NTT domain is defined as

NTT−1 : Znq → Zq[x]/〈xn + 1〉, ã 7→ a =
n−1∑
i=0

n−1φ−i
n−1∑
j=0

ãjω
−ij

xi.

It then holds that NTT−1(NTT(a)) = a for all polynomials a ∈ Rq = Zq[x]/〈xn − 1〉. The
polynomial multiplication of a and b ∈ Rq can be performed as a · b = NTT−1(NTT(a) ◦
NTT(b)), where · is the polynomial multiplication in Rq and ◦ is the coefficient wise
multiplication in Znq .

2.3 The ring learning with errors (R-LWE) problem
The security of qTESLA is based on the hardness of the R-LWE problem, which was pro-
posed by Lyubashevsky, Peikert and Regev in 2010 [LPR10]. It can be defined as a search
or a decision problem. Since qTESLA is based on the decisional R-LWE problem, we omit
the definition of the search version. First, we define the R-LWE distribution.

Definition 1 (R-LWE Distribution). Let n, q > 0 be integers, s ∈ R, and χ be a distribu-
tion over R. We define by Ds,χ the R-LWE distribution which outputs (a, 〈a, s〉+ e) ∈
Rq ×Rq, where a←$ Rq and e← χ.

Definition 2 (Decisional R-LWE problem R-LWEn,k,q,χ). Let n, q > 0 be integers and χ
be a distribution over R. Moreover, let s← χ and Ds,χ be the R-LWE distribution. Given
k tuples (a1, t1), . . . , (ak, tk), the decisional R-LWE problem R-LWEn,k,q,χ is to distinguish
whether (ai, ti)←$ Rq ×Rq or (ai, ti)← Ds,χ for all i.

Note that the above definition follows the so-called normal form of the LWE defini-
tion [LPR10]. That is, the secret and error polynomials follow the same distribution,
whereas in the original definition the secret is chosen uniformly random over Rq.
In qTESLA χ is instantiated with the centered discrete Gaussian distribution with standard
deviation σ.

3 The signature scheme qTESLA
In this section, we describe the signature scheme qTESLA, its most relevant design features,
and all the system parameters. We start with the description of the scheme.

5

3.1 Description of the scheme
qTESLA is parameterized by λ, κ, n, k, q, σ, LE , LS , B, d, h, and bGenA; see Table 1 in
§3.4 for a detailed description of all the system parameters. The following functions are
required for the implementation of the scheme:

• The pseudorandom function PRF1 : {0, 1}κ → {0, 1}κ,k+3, which takes as input a
seed pre-seed that is κ bits long and maps it to (k + 3) seeds of κ bits each.

• The collision-resistant hash function G : {0, 1}∗ → {0, 1}512, which maps a message
m to a 512-bit string.

• The pseudorandom function PRF2 : {0, 1}κ × {0, 1}κ × {0, 1}512 → {0, 1}κ, which
takes as inputs seedy and the random value r, each κ bits long, and the hash G of a
message m, which is 512-bit long, and maps them to the κ-bit seed rand.

• The generation function of the public polynomials a1, . . . , ak, GenA : {0, 1}κ → Rkq ,
which takes as input the κ-bit seed seeda and maps it to k polynomials ai ∈ Rq.
• The Gaussian sampler function GaussSampler : {0, 1}κ × Z → R, which takes as
inputs a κ-bit seed seed ∈ {seeds, seede1 , . . . , seedek} and a nonce counter ∈ Z>0,
and outputs a secret or error polynomial in R sampled according to the Gaussian
distribution Dσ. To realize GaussSampler, we propose a simple yet efficient constant-
time algorithm. This is described in §5.2.

• The encoding function Enc : {0, 1}κ → {0, . . . , n − 1}h × {−1, 1}h. This function
encodes a κ-bit hash value c′ as a polynomial c ∈ Hn,h. The polynomial c is in
turn encoded as the two arrays pos_list ∈ {0, . . . , n− 1}h and sign_list ∈ {−1, 1}h
containing the positions and signs of its nonzero coefficients, respectively.

• The sampling function ySampler : {0, 1}κ × Z→ Rq,[B], which samples a polynomial
y ∈ Rq,[B] taking as inputs a κ-bit seed rand and a nonce counter ∈ Z>0.

• The hash-based function H : Rkq × {0, 1}∗ → {0, 1}κ. This function takes as inputs
k polynomials v1, . . . , vk ∈ Rq and computes [v1]M , . . . , [vk]M . The result is then
hashed together with the hash G of a given message m to a string κ bits long.

• The correctness check function checkE, which gets an error polynomial e as input
and rejects it if

∑h
k=1 maxk(e) is greater than some bound LE ; see Algorithm 1. The

function checkE guarantees the correctness of the signature scheme by ensuring that
‖eic‖∞ ≤ LE for i = 1, . . . , k during key generation, as described in Appendix A.

• The simplification check function checkS, which gets a secret polynomial s as input
and rejects it if

∑h
k=1 maxk(s) is greater than some bound LS ; see Algorithm 2.

checkS ensures that ‖sc‖∞ ≤ LS , which is used to simplify the security reduction.

We are now in position to describe qTESLA’s algorithms for key generation, signing and
verification, which are depicted in Algorithms 3, 4 and 5, respectively.

Key generation. First, the public polynomials a1, . . . , ak are generated uniformly random
distributed over Rq (lines 2–4) by expanding the seed seeda using PRF1. Then, a
secret polynomial s is sampled with Gaussian distribution Dσ. This polynomial
must fulfill the requirement check in checkS (lines 5–8). A similar procedure is
followed to sample the secret error polynomials e1, . . . , ek. In this case, these
polynomials must fulfill the correctness check in checkE (lines 10–13). To generate
pseudorandom bit strings during the Gaussian sampling the corresponding value
from {seeds, seede1 , . . . , seedek} is used as seed, and a counter is used as nonce to
provide domain separation between the different calls to the sampler. Accordingly,
this counter is initialized at 1 and then increased by 1 after each invocation to
the Gaussian sampler. Finally, the secret key sk consists of s, e1, . . . , ek and the
seeds seeda and seedy, and the public key pk consists of seeda and the polynomials
ti = ais+ ei mod q for i = 1, . . . , k. All the seeds required during key generation
are generated by expanding a pre-seed pre-seed using PRF1.

6

Signature generation. To sign a message m, first a polynomial y ∈ Rq,[B] is chosen
uniformly at random (lines 1–4). To this end, a counter initialized at one is used
as nonce, and a random string rand, computed as PRF2(seedy, r,G(m)) with seedy,
a random string r and the digest G(m) of the message m, is used as seed. The
counter is used to provide domain separation between the different calls to sample
y. Accordingly, it is increased by 1 every time the algorithm restarts if any of the
security or correctness tests fail to compute a valid signature (see below). Next,
seeda is expanded to generate the polynomials a1, . . . , ak (line 5) which are then used
to compute the polynomials vi = aiy mod±q for i = 1, . . . , k (lines 6–8). Afterwards,
the hash-based function H computes [v1]M , . . . , [vk]M and hashes these together with
the digest G(m) in order to generate c′. This value is then mapped deterministically
to a pseudorandomly generated polynomial c ∈ Hn,h which is encoded as the two
arrays pos_list ∈ {0, . . . , n−1}h and sign_list ∈ {−1, 1}h representing the positions
and signs of the nonzero coefficients of c, respectively. In order for the potential
signature (z ← sc+ y, c′) at line 11 to be returned by the signing algorithm, it needs
to pass a security and a correctness check, which are described next.
The security check (lines 12–15), also called the rejection sampling, is used to ensure
that the signature does not leak any information about the secret s. It is realized by
checking that z /∈ Rq,[B−LS]. If the check fails, the algorithm discards the current
pair (z, c′) and repeats all the steps beginning with the sampling of y. Otherwise,
the algorithm goes on with the correctness check.
The correctness check (lines 18–21) ensures the correctness of the signature scheme,
i.e., it guarantees that every valid signature generated by the signing algorithm is
accepted by the verification algorithm. It is realized by checking that ‖[wi]L‖∞ <
2d−1 − LE and ‖wi‖∞ < bq/2c − LE . If the check fails, the algorithm discards
the current pair (z, c′) and repeats all the steps beginning with the sampling of y.
Otherwise, the algorithm returns the signature (z, c′) on m.

Verification. The verification algorithm, upon input of a message m and a signature (z, c′),
computes {pos_list, sign_list} ← Enc(c′), expands seeda to generate a1, . . . , ak ∈
Rq and then computes wi = aiz − bic mod q for i = 1, . . . , k. The hash-based
function H computes [w1]M , . . . , [wk]M and hashes these together with the digest
G(m). If the bit string resulting from the previous computation matches the signature
bit string c′, and z ∈ Rq,[B−LS], the signature is accepted; otherwise, it is rejected.

3.2 Correctness of qTESLA
In this section, we explain the correctness of qTESLA informally; a formal proof can be
found in Appendix A.

In general, a signature scheme consisting of a tuple (KeyGen,Sign,Verify) of algorithms is
correct if, for every message m in the message spaceM, we have that

Pr [Verify(pk,m, σ) = 0 : (sk,pk)← KeyGen(), σ ← Sign(sk,m) for m ∈M] = 1,

where the probability is taken over the randomness of the probabilistic algorithms.

In particular, to guarantee the correctness of qTESLA it must hold that for a signature
(z, c′) of a message m generated by Algorithm 4: (i) z ∈ Rq,[B−LS] and (ii) the output of
the hash-based function H at signing (line 9 of Algorithm 4) is the same as the analogous
output at verification (line 6 of Algorithm 5). Requirement (i) is ensured by the security
check during signing (line 12 of Algorithm 4). To ensure (ii), the correctness check at
signing is used (line 18 of Algorithm 4). Essentially, this check ensures that, for i = 1, . . . , k,
[aiz−tic mod±q]M = [ai(y+sc)−(ais+ei)c mod±q]M = [aiy+aisc−aisc−eic mod±q]M =
[aiy − eic mod±q]M = [aiy mod±q]M .

7

Algorithm 1 checkE
Require: e ∈ R
Ensure: {0, 1} . true, false

1: if
∑h
i=1 maxi(e) > LE then

2: return 1
3: end if
4: return 0

Algorithm 2 checkS
Require: s ∈ R
Ensure: {0, 1} . true, false

1: if
∑h
i=1 maxi(s) > LS then

2: return 1
3: end if
4: return 0

Algorithm 3 qTESLA’s key generation
Require: -
Ensure: secret key sk = (s, e1, . . . , ek, seeda, seedy), and public key pk = (seeda, t1, . . . , tk)
1: counter← 1
2: pre-seed←$ {0, 1}κ
3: seeds, seede1 , . . . , seedek , seeda, seedy ← PRF1(pre-seed)

}
Generation of a1, . . . , ak ∈ Rq.

4: a1, . . . , ak ← GenA(seeda)
5: do
6: GaussSampler(seeds, counter)
7: counter← counter + 1

}
Generation of s←σ R
using seeds.8: while checkS(s) 6= 0

9: for i = 1, . . . , k do
10: do
11: GaussSampler(seedei , counter)
12: counter← counter + 1

}
Generation of e1, . . . , ek ←σ R
using seede1 , . . . , seedek .13: while checkE(ei) 6= 0

14: ti ← ais+ ei mod q
15: end for
16: sk ← (s, e1, . . . , ek, seeda, seedy)
17: pk ← (seeda, t1, . . . , tk)

}
Return public and secret key.

18: return sk, pk

8

Algorithm 4 qTESLA’s signature generation
Require: message m, and secret key sk = (s, e1, . . . , ek, seeda, seedy)
Ensure: signature (z, c′)
1: counter← 1
2: r ←$ {0, 1}κ
3: rand← PRF2(seedy, r,G(m))

 Sampling of y ←$ Rq,[B].
4: y ← ySampler(rand, counter)
5: a1, . . . , ak ← GenA(seeda)
6: for i = 1, . . . , k do
7: vi = aiy mod±q
8: end for
9: c′ ← H(v1, . . . , vk,G(m)) } Computation of hash value.
10: c , {pos_list, sign_list} ← Enc(c′) } Generation of sparse c.
11: z ← y + sc } Potential signature (z, c′).
12: if z /∈ Rq,[B−LS] then
13: counter← counter + 1

}
Check to ensure security
(the “rejection sampling”).

14: Restart at step 4
15: end if
16: for i = 1, . . . , k do
17: wi ← vi − eic mod±q
18: if ‖[wi]L‖∞ ≥ 2d−1 − LE ∨ ‖wi‖∞ ≥ bq/2c − LE then
19: counter← counter + 1

Check to ensure correctness.

20: Restart at step 4
21: end if
22: end for
23: return (z, c′) } Return signature for m.

Algorithm 5 qTESLA’s signature verification
Require: message m, signature (z, c′), and public key pk = (seeda, t1, . . . , tk)
Ensure: {0,−1} . accept, reject signature

1: c , {pos_list, sign_list} ← Enc(c′)
2: a1, . . . , ak ← GenA(seeda)
3: for i = 1, . . . , k do
4: wi ← aiz − tic mod±q
5: end for
6: if z /∈ Rq,[B−LS] ∨ c′ 6= H(w1, . . . , wk,G(m)) then
7: return −1 } Reject signature (z, c′) for m.
8: end if
9: return 0 } Accept signature (z, c′) for m.

3.3 Design features
Some of the most relevant design features of qTESLA are summarized next.
Simplicity and efficiency. qTESLA was designed with simplicity and efficiency in mind.
The Gaussian sampling, arguably the most complex function in qTESLA, is only required
during key generation, while the most used signature functions, i.e., signing and verifica-
tion, only use very simple arithmetic operations that are easy to implement. This enables
the realization of compact and portable implementations that achieve high performance.
For instance, our reference implementation written in portable C and supporting all our
heuristic qTESLA parameter sets consists of about 350 lines of code 1. Despite this com-

1This count excludes the parameter-specific packing functions, header files, NTT constants and
(c)SHAKE functions.

9

pactness, qTESLA outperforms all the state-of-the-art post-quantum lattice-based schemes
that are implemented in constant-time on, e.g., modern x64 platforms; see §6.
Gaussian sampling during key generation. As stated before, one of the main advantages
of qTESLA is that the Gaussian sampler is restricted to key generation. This contributes
to the high performance and simplicity of the signing and verification algorithms, and
reduces the attack surface to carry out recent timing, cache and power attacks, such
as [EFGT17,BHLY16]. Still, we remark that qTESLA only requires a relatively simple,
easy-to-implement Gaussian sampler, as demonstrated by the efficient Gaussian sampler
described in §5.2.
Probabilistic signatures. qTESLA offers built-in defenses against several attack scenarios,
thanks to its probabilistic nature. Specifically, the seed used to generate the random-
ness y is produced by hashing the value seedy that is part of the secret key, some fresh
randomness r and the digest G(m) of the message m. The use of seedy makes qTESLA
resilient to a catastrophic failure of the Random Number Generator (RNG) during gen-
eration of the fresh randomness, protecting against fixed-randomness attacks such as
the one demonstrated against Sony’s Playstation 3 [CPBS10]. Likewise, the random
value r guarantees the use of a fresh y at each signing operation, which increases the
difficulty to carry out side-channel attacks against the scheme. Moreover, this fresh y
prevents some easy-to-implement but powerful fault attacks against deterministic signature
schemes [PSS+17,BP18]; see [BP18, §6] for a relevant discussion. We note that the use of
a PRF (in our case, PRF2) reduces the need for a high-quality source of randomness to
generate r.

Compactness of the public key. The key generation, signature generation and verification
algorithms expand a seed seeda, stored as part of the secret and public keys, to generate
the public polynomials a1, . . . , ak. The use of fresh a1, . . . , ak per keypair makes the
introduction of backdoors more difficult and reduces drastically the scope of all-for-the-
price-of-one attacks [ADPS16,BLN+16]. Moreover, storing only a seed instead of the full
polynomials permits to save bandwidth since we only need κ bits to store seeda instead of
the kndlog2(q)e bits that are required to represent the full polynomials.

3.4 Parameter description
qTESLA’s system parameters and their corresponding bounds are summarized in Table 1.
Let λ be the security parameter, i.e., the targeted bit security of a given instantiation.
In the targeted R-LWE setting, we have Rq = Zq[x]/〈xn + 1〉, where the dimension n is
a power of two, i.e., n = 2l for l ∈ N. Let σ be the standard deviation of the centered
discrete Gaussian distribution that is used to sample the coefficients of the secret and
error polynomials. Depending on the specific function, the parameter κ defines the input
and/or output lengths of the hash-based and pseudorandom functions. This parameter
is specified to be larger or equal to the security level λ. This is consistent with the use
of the hash in a Fiat-Shamir style signature scheme such as qTESLA, for which preimage
resistance is relevant while collision resistance is much less. Accordingly, we take the hash
size to be enough to resist preimage attacks.
The parameter bGenA ∈ Z>0 represents the number of blocks requested in the first call to
cSHAKE128 during the generation of the public polynomials a1, . . . , ak (see Algorithm 7
in §5.1). The values of bGenA were chosen as to allow the generation of (slightly) more
bytes than are necessary to fill out all the coefficients of the polynomials a1, . . . , ak.
Bound parameters and acceptance probabilities. The values LS and LE are used to
bound the coefficients of the secret and error polynomials in the evaluation functions checkS
and checkE, respectively. Bounding the size of those polynomials restricts the size of the
key space; accordingly we compensate the security loss by choosing a larger bit hardness as

10

Table 1: Description and bounds of all the system parameters.
Param. Description Requirement
λ security parameter -
qh, qs number of hash and sign queries -
n dimension (n− 1 is the poly. degree) power-of-two
σ standard deviation of centered discrete Gaussian distribution -
k #R-LWE samples -
q modulus q ≡ 1 mod 2n, q > 4B

For provably secure parameters:
qnk ≥ |∆S| · |∆L| · |∆H|,
qnk ≥ 24λ+nkd4q3

s(qs + qh)2

h # of nonzero entries of output elements of Enc 2h ·
(
n
h

)
≥ 22λ

κ output length of hash-based function H and input length of GenA,
PRF1, PRF2, Enc, GaussSampler, and ySampler

κ ≥ λ

LE , ηE bound in checkE ηE · h · σ
LS , ηS bound in checkS ηS · h · σ
B determines interval the randomness is chosen from during signing B ≥

k·n√
M+2LS−1

2(1− k·n√
M)

, near a power-of-two

d number of rounded bits
(
1− 2·LE+1

2d
)k·n ≥ 0.3, d > log2(B)

bGenA number of blocks requested to SHAKE128 for GenA bGenA ∈ Z>0

|∆H|
see definition in the text

∑h
j=0

∑h−j
i=0

(
kn
2i
)
22i(kn−2i

j

)
2j

|∆S| (4(B − LS) + 1)n
|∆L| (2d + 1)nk

δz acceptance probability of z in line 12 during signing determined experimentally
δw acceptance probability of w in line 18 during signing determined experimentally
δkeygen acceptance probability of keypairs during key generation determined experimentally
sig size theoretical size of signature [byte] κ+ n(dlog2(B − LS)e+ 1)
pk size theoretical size of public key [byte] kn(dlog2(q)e) + κ
sk size theoretical size of secret key [byte] n(k + 1)(dlog2(t · σ + 1)e) + 2κ

explained in §4.2. Both bounds, LS and LE , impact the rejection probability during the
signature generation as follows. If one increases the values of LS and LE , the acceptance
probability during key generation, referred to as δkeygen, increases (see lines 8 and 13 in
Algorithm 3), while the acceptance probabilities of z and w during signature generation,
referred to as δz and δw resp., decrease (see lines 12 and 18 in Algorithm 4). We determine
a good trade-off between the acceptance probabilities during key generation and signing
experimentally. To this end, we start by choosing LS = ηS · h · σ (resp., LE = ηE · h · σ)
with ηS = ηE = 2.8 and compute the corresponding values for the parameters B, d and q
(which are chosen as explained later). We then carefully tune these parameters by trying
different values for ηS and ηE in the range [2.0, . . . , 3.0] until we find a good trade-off
between the different probabilities and, hence, runtimes.
The parameter B defines the interval of the random polynomial y (see line 4 of Algorithm 4),
and it is determined by the parameters M and LS as follows:(

2B − 2LS + 1
2B + 1

)k·n
≥M ⇔ B ≥

k·n
√
M + 2LS − 1

2(1− k·n
√
M)

,

where M = 0.3 is a value of our choosing. Once B is chosen, we select the value d that
determines the rounding functions [·]M and [·]L to be larger than log2(B) and such that
the acceptance probability of the check ‖[w]L‖∞ ≥ 2d−1 − LE in line 18 of Algorithm 4 is
upper bounded by 0.7.
The acceptance probabilities δz, δw and δkeygen obtained experimentally, following the
procedure above, are summarized in Table 2.
The modulus q. This parameter is chosen to fulfill several bounds and assumptions that
are motivated by efficiency requirements and qTESLA’s security reduction. To enable the
use of fast polynomial multiplication using the NTT, q must be a prime integer such
that q mod 2n = 1. Moreover, we choose q > 4B. To choose parameters according to

11

the security reduction, i.e., for the case of provably-secure qTESLA, it is first convenient
to simplify our security statement. To this end we ensure that qnk ≥ |∆S| · |∆L| · |∆H|
with the following definition of sets: S is the set of polynomials z ∈ Rq,[B−U] and
∆S = {z − z′ : z, z′ ∈ S}, H is the set of polynomials c ∈ Rq,[1] with exactly h nonzero
coefficients and ∆H = {c− c′ : c, c′ ∈ H}, and ∆L = {x − x′ : x, x′ ∈ R and [x]M =
[x′]M}. Then, the following equation (see Theorem 1 in §4.1) has to hold:

23λ+nkd+2q3
s(qs + qh)2

qnk
≤ 2−λ ⇔ q ≥

(
24λ+nkd+2q3

s(qs + qh)2)1/nk .
Key and signature sizes. The theoretical bitlengths of the signatures and public keys are
given by κ+ n · (dlog2(B − LS)e+ 1) and k · n · (dlog2(q)e) + κ, respectively. To determine
the size of secret keys we note that Prx←σZ [|x| > tσ] ≤ 2e−t2/2 for t > 0. Then, it follows
that the size of the secret key is given by n(k + 1)(dlog2(t · σ)e+ 1) + 2κ bits.

4 Security and instantiation of the signature scheme
In this section, we discuss the security of qTESLA and the security proof in the QROM
that reduces the decisional R-LWE problem to the security of the scheme. Afterwards,
we elaborate on the relation between the hardness of R-LWE and qTESLA’s security,
and describe our two approaches to instantiate the scheme. Finally, we explain how we
estimate the hardness of R-LWE and propose parameter sets based on the two qTESLA
variants.

4.1 Provable security in the quantum random oracle model (QROM)
The standard security requirement for signature schemes, namely Existential Unforge-
ability under Chosen-Message Attack (EUF-CMA), dates back to Goldwasser, Micali,
and Rivest [GMR88]: The adversary can obtain qS signatures via signing oracle queries
on messages of their own choosing, and must output one valid signature on a message
not queried to the oracle. In the QROM [BDF+11], which we consider for our security
statements, the adversary is granted access to a quantum random oracle.
Our main security statement is given in Theorem 1, which gives a tight reduction from the
R-LWE problem to the EUF-CMA security of qTESLA in the QROM. Currently, Theorem 1
holds assuming a conjecture, as explained below.

Theorem 1. Let the parameters be as in Table 1. Furthermore, assume that Conjecture 1
holds. If there exists an adversary A that forges a signature of the signature scheme
qTESLA described in §3 in time tΣ and with success probability εΣ, then there exists
an algorithm S that solves the R−LWEn,k,q,σ problem in time tLWE ≈ tΣ with εΣ ≤
23λ+nkd+2q3

s(qs+qh)2

qnk
+ 2qh+5

2λ + εLWE.

The reduction idea follows [ABB+17] that gives the security reduction for qTESLA’s suc-
cessor TESLA. The proof uses the reductionist’s approach that assumes the existence of
an adversary A that forges a qTESLA signature after some time tΣ and with probability
εΣ. We then construct an algorithm that solves the (decisional) R-LWE problem in time
tLWE ≈ tΣ and with a success bias εLWE close to εΣ. Under the assumption that the
R-LWE problem is computationally hard (i.e., that tLWE is large and εLWE is small), it
must follow that qTESLA is secure (i.e., that εΣ must be small and tΣ is large).
Specifically, the idea of the reduction is as follows. Let A be an algorithm that breaks
qTESLA, i.e., given an “expanded” qTESLA public key (a1, . . . , ak, t1, . . . , tk), algorithm A
outputs (c′, σ,m) after some time tΣ. Let forge(a1, . . . , ak, t1, . . . , tk) denote the event that

12

the forger A successfully produces a valid signature for the public key (a1, . . . , ak, t1, . . . , tk),
i.e., with probability Pr [forge(a1, . . . , ak, t1, . . . , tk)], (c′, σ) is a valid signature for message
m. We model the hash-based function H as a random oracle. Since our goal is to prove
that qTESLA is EUF-CMA secure in the QROM, algorithm A is allowed to make (at most)
qh quantum queries to a quantum random oracle H(·) and (at most) qs classical queries
to a qTESLA signing oracle. However, the message m that is returned by A must not be
queried to the signing oracle. We then build an algorithm S that solves the decisional
R-LWE problem with a runtime that is close to that of A and with a success bias close to
Pr [forge(a1, . . . , ak, t1, . . . , tk)].
The solver S gets as input a tuple (a1, . . . , ak, t1, . . . , tk) and must decide whether the
tuple follows the R-LWE distribution (see Definition 1) or the uniform distribution over
R2k
q . It forwards its own input tuple (a1, . . . , ak, t1, . . . , tk) as the public key to A. In

the reduction, S must simulate the responses to A’s quantum and classical queries to the
hash and sign oracles, respectively. It is then shown, that if (a1, . . . , ak, t1, . . . , tk) follows
the R-LWE distribution then the probability with which S answers correctly is close to
Pr [forge(a1, . . . , ak, t1, . . . , tk)]. Furthermore, if (a1, . . . , ak, t1, . . . , tk) follows the uniform
distribution over R2k

q then S returns the wrong answer with negligible probability.
The formal proof follows the approach proposed in [ABB+17] except for the computation
of the two probabilities coll(a, e) and nwr(a, e) that we explain in the following.
We define ∆L to be the set {x− x′ : x, x′ ∈ R and [x]M = [x′]M}. For any f ∈ Rq,[B] it
holds that all the coefficients are at most B in absolute value; we call such a polynomial B-
short. In addition, we call f well-rounded if it is (bq/2c−LE)-short and [f]L is (2d−1−LE)-
short. Furthermore, we define the following quantities for keys (a1, . . . , ak, t1, . . . , tk),
(s, e1, . . . , ek), where we denote −→a = (a1, . . . , ak) and −→e = (e1, . . . , ek):

nwr(−→a ,−→e) def= Pr
(y,c)∈Y×H

[aiy − eic not well-rounded for at least one i ∈ {1, . . . , k}] , (1)

coll(−→a ,−→e) def= max
(w1,...,wk)∈Wk

{
Pr

(y,c)∈Y×H
[[a1y − e1c]M = w1, . . . , [aky − ekc]M = wk]

}
.

(2)

Informally speaking nwr(−→a ,−→e) refers to the probability over random (y, c) that aiy − eic
is not well-rounded for some i. This quantity varies as a function of a1, . . . , ak, e1, . . . , ek.
In contrast to [ABB+17], we cannot upper bound this in general in the ring setting. Hence,
we first assume that nwr(−→a ,−→e) < 3/4 and afterwards check experimentally that this holds
true. As our acceptance probability δw of wi at signing (line 18 of Algorithm 4) is at least
1/4 for all the parameter sets (see Table 2), the bound nwr(−→a ,−→e) < 3/4 holds.
Secondly, we need to bound the probability coll(−→a ,−→e). In [ABB+17, Lemma 4] the
corresponding probability coll(A,E) for standard lattices is upper bounded. Unfortunately,
we were not able to transfer the proof to the ring setting for the following reason. In the
proof of [ABB+17, Lemma 4], it is used that if the randomness y is not equal to 0, the
vector Ay is uniformly random distributed over Zq and, hence, also Ay − Ec is uniformly
random distributed over Zq. This does not necessarily hold if qTESLA’s polynomial y
is chosen uniformly in Rq,[B]. Moreover, in Equation (99) in [ABB+17], ψ denotes the
probability that a random vector x ∈ Zmq is in ∆L, i.e.,

ψ
def= Pr

x∈Zmq
[x ∈ ∆L] ≤

(
2d + 1
q

)m
. (3)

The quantity ψ is a function of the TESLA parameters q,m, d, and it is negligibly small.
We cannot prove a similar statement for the signature scheme qTESLA over ideals. Instead,
we conjecture the following.

13

Conjecture 1. Let I be a nonzero ideal in Rq and let r ∈ Rq be a fixed choice of ring
elements. Then, it holds that the probability that x+ r ∈ ∆L for a uniformly distributed
element x←$ I is negligibly small.

The intuition behind our conjecture is as follows. Let ψI denote the probability that a
random element from the ideal I lands in ∆L. We know that ψI is small when the ideal
I = Rq, i.e., a negligibly small fraction of elements from Rq are in ∆L. Furthermore, the
set ∆L appears to have no relationship with the ideal structure of the ring, so it seems
reasonable to view each ideal as a “random” subset of Rq in the following sense: no larger
or smaller portion of elements in the ideal I is in ∆L than that portion of elements of Rq
that is in ∆L.
Hence, the corresponding statement described above and needed in [ABB+17, Lemma 4]
translates to the following in the case of qTESLA. If y 6= 0 then aiy is a uniformly random
element of some non-zero ideal I for all i. The polynomial c is fixed and the polynomials
e1, . . . , ek are independent of the polynomials a1, . . . , ak, and y. Hence, by our conjecture
(with x = aiy and r = eic) it holds that the probability of Equation (107) in [ABB+17] is
negligibly small. Thus, assuming that our conjecture holds true, [ABB+17, Lemma 4] and,
hence, the security reduction in [ABB+17] holds for qTESLA as well.

Remark 1. Our explanation above assumes an “expanded” public key (a1, ..., ak, t1, ..., tk).
In the description of qTESLA, however, the public polynomials a1, ..., ak are generated from
seeda which is part of the secret and public key. This assumption can be justified by another
reduction in the QROM: assume there exists an algorithm A that breaks the original
qTESLA scheme with public key (seeda, t1, ..., tk). Then we can construct an algorithm B
that breaks a variant of qTESLA with “expanded” public key (a1, ..., ak, t1, ..., tk). To this
end, we model GenA(·) as a (programmable) random oracle. The algorithm B chooses
first seed′a ←$ {0, 1}κ and reprograms GenA(seed′a) = (a1, ..., ak). Afterwards, it forwards
(seed′a, t1, ..., tk) as the input tuple to A. Quantum queries to GenA(·) by A can be
simulated by B according to the construction of Zhandry based on 2qh-wise independent
functions [Zha12]. Hence, the assumption above also holds in the QROM.

4.2 qTESLA variants: relation between the R-LWE hardness and qTESLA
security

The security reduction given by Theorem 1 in §4.1, provides an explicit reduction from the
hardness of the R-LWE problem, enabling the selection of parameters according to this
reduction. To offer high flexibility for a wide range of applications, however, we propose
two different approaches to instantiate qTESLA:

Provably-secure qTESLA. For this variant, parameters are chosen according to the
security reduction provided in Theorem 1. That is, parameters are chosen such that
εLWE ≈ εΣ and tΣ ≈ tLWE , which guarantees that the bit hardness of the R-LWE instance
is theoretically the same as the bit security of our signature scheme, by virtue of the
security reduction and its tightness. The reduction provably guarantees that the scheme
has the selected security level as long as the corresponding R-LWE instance gives the
assumed hardness level 2. This approach provides a stronger security argument.

Heuristic qTESLA. For this variant, the scheme is instantiated such that the correspond-
ing R-LWE parameters (i.e., n, σ and q) provide an R-LWE instance of a certain hardness.
It is then assumed that its bit security is theoretically the same as the bit hardness of the
corresponding R-LWE instance, without taking into account the security reduction. The

2We emphasize that our provably-secure parameters are chosen according to their security reductions
from R-LWE but not according to reductions from underlying existing worst-case to average-case reductions
from SIVP or GapSVP to R-LWE [LPR10].

14

assumption is that Theorem 1 still holds. So far no attack that exploits this heuristic is
known. This approach features high-speed performance and a small memory footprint
while requiring relatively compact keys and signatures.

Remark 2. In practical instantiations of qTESLA, the bit security does not exactly match the
bit hardness of R-LWE (see Table 2). This is because the bit security does not only depend
on the bit hardness of R-LWE, but also on the probability of rejected/accepted keypairs
and on the security of other building blocks such as the encoding function Enc. First, in all
our parameter sets, heuristic and provably-secure, the key space is reduced by the rejection
of polynomials s, e1, . . . , ek with large coefficients via checkE and checkS. In particular,
depending on the instantiation the size of the key space is decreased by d| log2(δKeyGen)|e
bits. We compensate this security loss by choosing an R-LWE instance of larger bit
hardness. Hence, the corresponding R-LWE instances give at least λ+ d| log2(δKeyGen)|e
bits of hardness against currently known (classical and quantum) attacks. Finally, we
instantiate the encoding function Enc such that it is λ-bit secure.

4.3 Hardness estimation of R-LWE
Since its introduction in [LPR10], it has remained an open question to determine whether
the R-LWE problem is as hard as the LWE problem for instances typically used in signature
schemes. Several results exist that exploit the structure of some ideal lattices [GGH13,
CGS14,CDPR16,ELOS15]. However, up to now, these results do not seem to apply to
R-LWE instances that are typically used in practice. Consequently, we assume that the
R-LWE problem is as hard as the LWE problem, and estimate the hardness of R-LWE
using state-of-the-art attacks against LWE.
Albrecht, Player, and Scott [APS15] presented the LWE-Estimator, a software to estimate
the hardness of LWE given the matrix dimension n, the modulus q, the relative error
rate α = σ

q , and the number of given LWE samples. The LWE-Estimator determines
the hardness against the fastest classical and quantum LWE solvers currently known, i.e.,
it outputs an upper (conservative) bound on the number of operations an attack needs
to break a given LWE instance. In particular, the following attacks are considered in
the LWE-Estimator: the meet-in-the-middle exhaustive search, the coded Blum-Kalai-
Wassermann algorithm [GJS15], the recent dual lattice attacks in [Alb17], the enumeration
approach by Linder and Peikert [LP11], the primal attack [AFG13,BG14b], the Arora-Ge
algorithm [AG11] using Gröbner bases [ACF+15], and the latest analysis to compute
the block sizes used in the lattice basis reduction BKZ by Albrecht et al. [AGVW17].
Moreover, quantum speedups for the sieving algorithm used in BKZ [Laa16,LMP13] are
also considered. We use the LWE-Estimator with commit-id a2296b8 on 2018-10-31 and
with the BKZ cost model of 0.265β + 16.4 + log2(8d), where β is the BKZ blocksize and d
is the lattice dimension, for the hardness estimation of our parameters.

4.4 Parameter sets
We propose five parameter sets corresponding to the two qTESLA variants introduced in §4.2:
three heuristic instantiations called qTESLA-I, qTESLA-III-speed, and qTESLA-III-size,
and two provably-secure instantiations called qTESLA-p-I and qTESLA-p-III.
The notation “I” and “III” indicate that the corresponding parameter sets provide 95
and 160 bits of post-quantum security, respectively. We note that the heuristic parameter
sets qTESLA-III-speed and qTESLA-III-size target the same security level but are
optimized for different purposes: qTESLA-III-speed gives very fast runtimes whereas
qTESLA-III-size is optimized for small key and signature sizes.
Table 2 summarizes all the parameters of the proposed parameter sets. Following the
NIST’s call for proposals [Nat16, §4.A.4], we choose the number of classical queries to the

15

sign oracle to be qs = 264 for all our parameter sets. Moreover, we choose the number of
queries of a hash function to be qh = 2128.
To determine the size of the secret keys, we follow §3.4. For Level-I and Level-III
parameter sets the probability Prx←σZ [|x| > tσ] is less or equal to 2−95 and 2−160 for
t = 11.6 and t = 15, respectively. These values are then plugged into the equation
n(k + 1)(dlog2(t · σ)e+ 1) + 2κ from Table 1 to obtain the secret key sizes displayed in
Table 2.

Table 2: Parameters for each of the proposed heuristic and provably-secure parameter sets
with qh = 2128 and qs = 264; we choose M = 0.3.

Param. qTESLA-I qTESLA-III-speed qTESLA-III-size qTESLA-p-I qTESLA-p-III

λ 95 160 160 95 160
κ 256 256 256 256 256
n 512 1 024 1 024 1 024 2 048
σ 22.93 10.2 7.64 8.5 8.5
k 1 1 1 4 5
q 4 205 569 8 404 993 4 206 593 485 978 113 1 129 725 953

≈ 222 ≈ 223 ≈ 222 ≈ 229 ≈ 230

h 30 48 48 25 40
LE , ηE 1 586, 2.223 1 147, 2.34 910, 2.23 554, 2.61 901, 2.65
LS , ηS 1 586, 2.223 1 233, 2.52 910, 2.23 554, 2.61 901, 2.65
B 220 − 1 221 − 1 220 − 1 221 − 1 223 − 1
d 21 22 21 22 24
bGenA 19 38 38 108 180
δw 0.31 0.43 0.27 0.36 0.32
δz 0.49 0.54 0.42 0.80 0.81
δsign 0.15 0.23 0.11 0.29 0.26
δkeygen 0.64 0.57 0.96 0.57 0.44
sig size [byte] 1, 376 2, 848 2, 720 2 848 6 176
pk size [byte] 1, 504 3, 104 2, 976 14 880 39 712
sk size [byte] 1, 344 2, 368 2, 112 5 184 12 352
classical bit hardness 103 178 180 132 270
quantum bit hardness 96 164 166 123 247

5 Implementation aspects

5.1 Implementation of basic functions
Pseudorandom bit generation. Several functions used for the implementation of qTESLA
require hashing and pseudorandom bit generation. This functionality is provided by so-
called extendable output functions (XOFs). In the case of qTESLA we use the XOF function
SHAKE [Dwo15] in the realization of the functions G and H, and cSHAKE128 [Kel16] in
the realization of the functions GenA and Enc. To implement the functions PRF1, PRF2,
ySampler and GaussSampler implementers are free to pick a cryptographic PRF of their
choice. For simplicity purposes, in our implementations we use SHAKE (in the case of
PRF1 and PRF2) and cSHAKE (in the case of ySampler and GaussSampler). With the
exception of GenA and Enc (which always use cSHAKE128), Level-I parameter sets use
(c)SHAKE128 and Level-III parameter sets use (c)SHAKE256.
For the remainder, we use XOF(X, L,S) to denote a call to a XOF, where X is the input string,
L specifies the output length in bytes, and S specifies an optional domain separator 3.

3The domain separator S is used with cSHAKE, but ignored when SHAKE is used.

16

Algorithm 6 Seed generation, PRF1

Require: pre-seed ∈ {0, 1}κ
Ensure: (seeds, seede1 , . . . , seedek , seeda), where each seed is κ bits long
1: 〈seeds〉‖〈seede1〉‖ . . . ‖〈seedek 〉‖〈seeda〉‖〈seedy〉 ← XOF(pre-seed, κ · (k + 3)/8), where each
〈seed〉 ∈ {0, 1}κ

2: return (seeds, seede1 , . . . , seedek , seeda)

Algorithm 7 Generation of public polynomials ai, GenA
Require: seeda ∈ {0, 1}κ. Set b = d(log2 q)/8e and the SHAKE128 rate constant rateXOF = 168
Ensure: ai ∈ Rq for i = 1, . . . , k
1: S ← 0, b′ ← bGenA
2: 〈c0〉‖〈c1〉‖ . . . ‖〈cT 〉 ← cSHAKE128(seeda, rateXOF · b′, S), where each 〈ct〉 ∈ {0, 1}8b

3: i← 0, pos← 0
4: while i < k · n do
5: if pos > b(rateXOF · b′)/bc − 1 then
6: S ← S + 1, pos← 0, b′ ← 1
7: 〈c0〉‖〈c1〉‖ . . . ‖〈cT 〉 ← cSHAKE128(seeda, rateXOF · b′, S), where each 〈ct〉 ∈ {0, 1}8b

8: end if
9: if q > cpos mod 2dlog2 qe then
10: abi/nc+1,i−n·bi/nc ← cpos mod 2dlog2 qe, where a polynomial ax is interpreted as a vector

of coefficients (ax,0, ax,1, . . . , ax,n−1)
11: i← i+ 1
12: end if
13: pos← pos+ 1
14: end while
15: return (a1, . . . , ak)

Generation of seeds, PRF1. qTESLA requires the generation of the seeds seeds, seede1 ,
. . . , seedek , seeda, and seedy during key generation. These seeds, of κ bits each, are then
used to produce the polynomials s, e1, . . . , ek, a1, . . . , ak, and y, respectively. In our
implementations, the seeds are generated by first calling the system RNG to produce a
pre-seed of size κ bits (line 2 of Algorithm 3), and then expanding this pre-seed using
SHAKE as the XOF function; see Algorithm 6.

Generation of a1, . . . , ak. The procedure to generate a1, . . . , ak is as follows. The seed
seeda produced by PRF1 is expanded to (rateXOF · bGenA) bytes using cSHAKE128, where
rateXOF is the SHAKE128 rate constant 168 [Dwo15] and bGenA is a qTESLA parameter
(see §3.4). Then, the algorithm proceeds to do rejection sampling over each 8 · dlog2(q)e-bit
string of the cSHAKE output modulo 2dlog2(q)e, discarding every package that has a value
equal or greater than the modulus q. Since there is a possibility that the cSHAKE output
is exhausted before all the k · n coefficients are filled out, the algorithm permits successive
(and as many as necessary) calls to the function requesting rateXOF bytes each time.
The procedure above, which is depicted in Algorithm 7, produces polynomials with
uniformly random coefficients. Thus, following a standard practice, qTESLA assumes that
the resulting polynomials a1, . . . , ak are already in the NTT domain, eliminating the need
of their NTT conversion during the polynomial multiplications. This permits an important
speedup of the polynomial operations without affecting security.
It should be noted that the value S = 0 is used as domain separator in the first call to
cSHAKE128 in Algorithm 7. This value is incremented by one at each subsequent call, if
required.

17

Algorithm 8 Sampling y, ySampler
Require: seed rand ∈ {0, 1}κ and nonce S ∈ Z>0. Set b = d(log2 B + 1)/8e
Ensure: y ∈ Rq,[B]

1: pos← 0, n′ ← n, S′ ← S · 28

2: 〈c0〉‖〈c1〉‖ . . . ‖〈cn′−1〉 ← XOF(rand, b · n′, S′), where each 〈ci〉 ∈ {0, 1}8b

3: while i < n do
4: if pos ≥ n′ then
5: S′ ← S′ + 1, pos← 0, n′ ← brateXOF/bc
6: 〈c0〉‖〈c1〉‖ . . . ‖〈cn′−1〉 ← XOF(rand, rateXOF, S

′), where each 〈ci〉 ∈ {0, 1}8b

7: end if
8: yi ← cpos mod 2dlog2 Be+1 −B
9: if yi 6= B + 1 then
10: i← i+ 1
11: end if
12: pos← pos+ 1
13: end while
14: return y = (y0, y1, . . . , yn−1) ∈ Rq,[B]

Sampling of y. The sampling of the polynomial y (line 4 of Algorithm 4) can be performed
by generating n (dlog2Be+ 1)-bit values uniformly at random, and then correcting each
value to the range [−B,B + 1] with a subtraction by B. Since values need to be in the
range [−B,B], coefficients with value B + 1 need to be rejected, which in turn might
require the generation of additional random bits.
For the pseudorandom bit generation, the seed rand produced by PRF2 (see line 3 of
Algorithm 4) is used as input string to a XOF, while the nonce S (written as counter in
Algorithm 4) is intended for the computation of the values for the domain separation.
Algorithm 8 depicts the procedure used in our implementations. The first call to the XOF
function uses the value S′ ← S · 28 as domain separator. Each subsequent call to the XOF
increases S′ by 1. Since S is initialized at 1 by the signing algorithm, and then increased
by 1 at each subsequent call to sample y, the successive calls to the sampler use nonces S′
initialized at 28, 2 · 28, 3 · 28, and so on, providing proper domain separation between the
different uses of the XOF in the signing algorithm.
Our implementations use cSHAKE as the XOF function.

Hash-based function H. This function takes as inputs k polynomials v1, . . . , vk ∈ Rq and
computes [v1]M , . . . , [vk]M . The result is hashed together with the hash G of a message m
to a string c′ that is κ bits long. The detailed procedure is as follows. Let each polynomial
vi be interpreted as a vector of coefficients (vi,0, vi,1, . . . , vi,n−1), where vi,j ∈ (−q/2, q/2],
i.e., vi,j = vi,j mod±q. We first compute [vi]L by reducing each coefficient modulo 2d
and subtracting the result by 2d if it is greater than 2d−1. This guarantees a result in
the range (−2d−1, 2d−1], as required by the definition of [·]L. Next, we compute [vi]M as
(vi − [vi]L)/2d. Since each resulting coefficient is guaranteed to be very small it is stored
as a byte, which in total makes up a string of k · n bytes. Finally, SHAKE is used to hash
the resulting k · n-byte string together with the 64-byte digest G(m) to the κ-bit string c′.
This procedure is depicted in Algorithm 9.

Encoding function. This function maps the bit string c′ to a polynomial c ∈ Hn,h ⊂ Rq
of degree n− 1 with coefficients in {−1, 0, 1} and weight h, i.e., c has h coefficients that
are either 1 or −1. For efficiency, c is encoded as two arrays pos_list and sign_list that
contain the positions and signs of its nonzero coefficients, respectively.
For the implementation of the encoding function Enc we follow [DDLL13c, ABB+16].
Basically, the idea is to use a XOF to generate values uniformly at random that are

18

Algorithm 9 Hash-based function H
Require: polynomials v1, . . . , vk ∈ Rq, where vi,j ∈ (−q/2, q/2], for i = 1, . . . , k and j =

0, . . . , n− 1, and the hash G of a message m, G(m), of length 64 bytes.
Ensure: c′ ∈ {0, 1}κ

1: for i = 1, 2, . . . , k do
2: for j = 0, 1, . . . , n− 1 do
3: val← vi,j mod 2d
4: if val > 2d−1 then
5: val← val− 2d
6: end if
7: w(i−1)·n+j ← (vi,j − val)/2d
8: end for
9: end for
10: 〈wk·n〉‖〈wk·n+1〉‖ . . . ‖〈wk·n+63〉 ← G(m), where each 〈wi〉 ∈ {0, 1}8

11: c′ ← SHAKE(w, κ/8), where w is the byte array 〈w0〉‖〈w1〉‖ . . . ‖〈wk·n+63〉
12: return c′ ∈ {0, 1}κ

interpreted as the positions and signs of the h nonzero entries of c. The outputs are stored
as entries to the two arrays pos_list and sign_list.
The pseudocode of our implementation of this function is depicted in Algorithm 10. This
works as follows.

The algorithm first requests rateXOF bytes from a XOF, and the output stream is interpreted
as an array of 3-byte packets in little endian format. Each 3-byte packet is then processed
as follows, beginning with the least significant packet. The dlog2 ne least significant bits of
the lowest two bytes in every packet are interpreted as an integer value in little endian
representing the position pos of a nonzero coefficient of c. If such value already exists in
the pos_list array, the 3-byte packet is rejected and the next packet in line is processed;
otherwise, the packet is accepted, the value is added to pos_list as the position of a new
coefficient, and then the third byte is used to determine the coefficient’s sign as follows.
If the least significant bit of the third byte is 0, the coefficient is assumed to be positive
(+1), otherwise, it is taken as negative (−1). In our implementations, sign_list encodes
positive and negative coefficients as 0’s and 1’s, respectively.
The procedure above is executed until pos_list and sign_list are filled out with h entries
each. If the XOF output is exhausted before completing the task then additional calls
are invoked, requesting rateXOF bytes each time. qTESLA uses cSHAKE128 as the XOF
function, with the value S = 0 as domain separator for the first call. S is incremented by
one at each subsequent call.

Polynomial multiplication and the number theoretic transform. As mentioned earlier,
the outputs a1, . . . , ak of GenA are assumed to be in NTT domain. In particular, let ãi be
the output ai in NTT domain. Polynomial multiplications ai · b can be efficiently realized
as NTT−1(ãi ◦ NTT(b)).
To compute the NTT in our implementations, we adopt butterfly algorithms that ef-
ficiently merge the powers of φ and φ−1 with the powers of ω (see §2.2), and that at
the same time avoid the need of the so-called bit-reversal operation which is required
by some implementations [PG14,RVM+14,ADPS16]. Specifically, we use an algorithm
that computes the forward NTT based on the Cooley-Tukey butterfly that absorbs the
products of the root powers in bit-reversed ordering. This algorithm receives the inputs of a
polynomial a in standard ordering and produces a result in bit-reversed ordering. Similarly,
for the inverse NTT we use an algorithm based on the Gentleman-Sande butterfly that
absorbs the inverses of the products of the root powers in the bit-reversed ordering. The

19

Algorithm 10 Encoding function, Enc
Require: c′ ∈ {0, 1}κ
Ensure: arrays pos_list ∈ {0, . . . , n − 1}h and sign_list ∈ {−1, 1}h containing the

positions and signs, resp., of the nonzero elements of c ∈ Hn,h
1: S ← 0, cnt← 0
2: 〈r0〉‖〈r1〉‖ . . . ‖〈rT 〉 ← cSHAKE128(c′, rateXOF, S), where each 〈rt〉 ∈ {0, 1}8
3: i← 0
4: Set all coefficients of c to 0
5: while i < h do
6: if cnt > (rateXOF − 3) then
7: S ← S + 1, cnt← 0
8: 〈r0〉‖〈r1〉‖ . . . ‖〈rT 〉 ← cSHAKE128(c′, rateXOF, S), where each 〈rt〉 ∈ {0, 1}8
9: end if
10: pos← (rcnt · 28 + rcnt+1) mod n
11: if cpos = 0 then
12: if rcnt+2 mod 2 = 1 then
13: cpos ← −1
14: else
15: cpos ← 1
16: end if
17: pos_listi ← pos
18: sign_listi ← cpos
19: i← i+ 1
20: end if
21: cnt← cnt+ 3
22: end while
23: return {pos_list0, . . . , pos_listh−1} and {sign_list0, . . . , sign_listh−1}

algorithm receives the inputs of a polynomial ã in the bit-reversed ordering and produces
an output in standard ordering. Efficient versions of these algorithms, which we follow for
our implementations, can be found in [Sei18, Algorithm 1 and 2].

Algorithm 11 Sparse Polynomial Multiplication

Require: g =
∑n−1
i=0 gix

i ∈ Rq with gi ∈ Zq, and list arrays pos_list ∈ {0, . . . , n − 1}h
and sign_list ∈ {−1, 1}h containing the positions and signs, resp., of the nonzero
elements of a polynomial c ∈ Hn,h

Ensure: f = g · c ∈ Rq
1: Set all coefficients of f to 0
2: for i = 0, . . . , h− 1 do
3: pos← pos_listi
4: for j = 0, . . . , pos− 1 do
5: fj ← fj − sign_listi · gj+n−pos
6: end for
7: for j = pos, . . . , n− 1 do
8: fj ← fj + sign_listi · gj−pos
9: end for
10: end for
11: return f

20

Sparse multiplication. While standard polynomial multiplications can be efficiently
carried out using the NTT as explained above, sparse multiplications with a polynomial
c ∈ Hn,h, which only contain h nonzero coefficients in {−1, 1}, can be realized more
efficiently with a specialized algorithm that exploits the sparseness of the input. In our
implementations we use Algorithm 11 to realize the multiplications in lines 11 and 17 of
Algorithm 4 and in line 4 of Algorithm 5, which have as inputs a given polynomial g ∈ Rq
and a polynomial c ∈ Hn,h encoded as the position and sign arrays pos_list and sign_list
(as outputted by Enc).

5.2 An efficient and portable constant-time Gaussian sampler
Gaussian sampling has received significant attention in the last few years given its relevance
in the design of lattice-based schemes [DG14,BLN+16,HKR+18,ZSS18]. A well-established
technique is based on the cumulative distribution table (CDT) of the normal distribution,
which consists of precomputing, to a given β-bit precision, a table CDT[i] := b2β Pr[c 6 i |
c←σ Z]c, for i ∈ [−t+ 1 . . . t− 1] with the smallest t such that Pr[|c| > t | c←σ Z] < 2−β .
To obtain a Gaussian sample, one picks a uniform sample u←$ Z/2βZ, looks it up in the
table, and returns the value z such that CDT[z] 6 u < CDT[z + 1].
A CDT-based approach has apparently first been considered for cryptographic purposes
by Peikert [Pei10] (in a somewhat more complex form). The approach was assessed and
deemed mostly impractical by Ducas et al. [DDLL13a], since it would take βtσ bits. Yet,
they only considered a scenario where the standard deviation σ was at least 107, and
as high as 271. As a result, table sizes around 78 Kbytes are reported (presumably for
σ = 271 with roughly 160-bit sampling precision). For the qTESLA parameter sets, however,
the values of σ are much smaller, making the CDT approach feasible, as one can see in
Table 3.

Table 3: CDT dimensions (precision in bits : size in bytes).
qTESLA-I qTESLA-III-speed qTESLA-III-size qTESLA-p-I qTESLA-p-III
96 : 3072 160 : 2980 160 : 2240 96 : 1152 160 : 2500
64 : 1672 128 : 2160 128 : 1616 64 : 632 128 : 1792

The naïve approach to CDT-based sampling would be to perform table lookups via binary
search, but this is susceptible to side-channel attacks since the branching depends on the
private uniform samples. To prevent this, two techniques are possible:

• On platforms where a reasonably large number of Gaussian samples can be generated
at once, one can sort a list of uniformly random samples together with the CDT
itself, then identify the CDT entries between which each sample is located. The cost
of sorting, which can be implemented in a constant-time fashion using, e.g., Batcher’s
odd-even mergesort [Bat68] (also called merge-exchange sorting [Knu97, §5.2.2 Algo-
rithm M (Merge exchange)]), is thus amortized among all samples.
Constant-time sorting networks have previously been adopted in a cryptographic
context to uniformly sample permutations or fixed weight vectors [BCL+,BCLV]. Its
proposed use to sample from a non-uniform distribution (specifically, the Gaussian
distribution, though the same idea clearly generalizes to any distribution) appears to
be new.

• For memory-constrained platforms, where only one or a few samples can be generated
at a time, one can adapt sequential search to always scan the whole table, keeping
track of the index z in a constant-time fashion. Interestingly, this approach may
even be somewhat faster than the sorting approach when the CDT is very small (see
Table 4).

21

Amortized sorting approach. Assume that BatcherMergeExchange(〈sequence〉, key:〈key〉,
data:〈data〉) is a constant-time implementation of the Batcher merge-exchange sorting
algorithm for 〈sequence〉, using the specified 〈key〉 field of each of its entries for ordering,
and carrying the corresponding 〈data〉 field(s) as associated data. Algorithm 12 generates
n Gaussian samples, a chunk of c | n samples at a time, in a constant-time fashion.

The advantages of this approach are manifold. This method can be easily written in
constant-time, amortizing Batcher’s merge-exchange over many samples or resorting to
simple sequential search. This flexibility enables its implementation in a wide range of
platforms, from desktop/server computers to embedded devices. Moreover, it supports
efficient portable implementations without the need of floating-point arithmetic. Methods
relying on floating-point arithmetic are more complex and, more importantly, cannot be
directly implemented on the many devices that do not include a floating-point unit (FPU).
The method is also flexible with regard to the target security level (tailored tables can
be readily precomputed and conditionally compiled), since the sampling precision can be
easily adjusted.

Implementation details. For our qTESLA implementations the sampling precision is set
to β > λ/2. Specifically, for Level-I and Level-III parameter sets we use β = 64 and
128, respectively, for platforms with computer wordsize w ∈ {32, 64}. Likewise, we fix the
chunk size to c = 512.
For the pseudorandom bit generation required by Algorithm 12, we use cSHAKE as XOF
using a seed seed produced by PRF1 (see line 3 of Algorithm 3) as input string, and a
nonce S (written as counter in Algorithm 3) as domain separator.

Table 4 shows the CDT-based methods, sampling precision, and observed speedups
when generating chunks of c = 512 Gaussian samples at a time, compared to the orig-
inal qTESLA implementation submitted to NIST on November 2017 [Nat17], which was
based on the Bernoulli-based rejection sampling from [BLN+16] which in turn was based
on [DDLL13a].

Table 4: CDT speedups compared to Bernoulli-based rejection sampling.
qTESLA-I qTESLA-III-speed qTESLA-III-size qTESLA-p-I qTESLA-p-III
Batcher Batcher Batcher sequential Batcher
64 bits 128 bits 128 bits 64 bits 128 bits

26% 42% 52% 82% 47%

5.3 Reference implementation
Our reference implementations, written exclusively in portable C, distinguish between the
two variants, heuristic and provably-secure, in order to maximize simplicity and efficiency in
the former case by exploiting the fact that the number of R-LWE samples k for the heuristic
parameters is restricted to 1 4. Moreover, our implementations exploit the simplicity and
scalability of qTESLA to provide a common codebase for the different security levels, with
only a few minor differences in some packing functions and system constants that are
instantiated at compilation time.

All our implementations avoid the use of secret address accesses and secret branches and,
hence, are protected against timing and cache side-channel attacks. Whenever appropriate
we write “constant-time” code that is branch-free using masking and logical operations.
This is the case of the function H, checkE, checkS, polynomial multiplication using the
NTT, sparse multiplication and all the polynomial operations requiring modular reductions

4We remark that, since the provably-secure implementation uses a generalization of the scheme with
k ≥ 1, it is straightforward to extend this implementation to support heuristic qTESLA parameters.

22

Algorithm 12 Constant-time CDT-based Gaussian sampling, GaussSampler
Input: seed seed ∈ {0, 1}κ and nonce S ∈ Z>0.
Output: a sequence z of n Gaussian samples.
Global: dimension n, cdt_v: the t-entry right-hand-sided, β-bit precision CDT; c: chunk

size, s.t. c | n; and computer wordsize w.
Local: samp: a list of c + t triples of form (k, s, g). . Denote its j-th entry fields as

samp[j].k, samp[j].s, and samp[j].g, respectively.
1: for 0 6 i < n do
. Prepare a sequence of c uniformly random sorting keys of β-bit precision and keep
track of their original sampling order, with an initially null Gaussian index. Invoke
cSHAKE(seed, dβ/8e, S) for generating the required pseudorandom values:

2: for 0 6 j < c do
3: samp[j].k ←$ Z/2βZ
4: samp[j].s← j
5: samp[j].g ← 0 // placeholder
6: end for
. Append the t entries of the CDT and keep track of the corresponding sequence of the

Gaussian indices:
7: for 0 6 j < t do
8: samp[c+ j].k ← cdt_v[j]
9: samp[c+ j].s←∞ // search sentinel
10: samp[c+ j].g ← j
11: end for
. Sort samp in constant-time according to the k field (the uniformly random samples):

12: BatcherMergeExchange(samp, key: k, data: s, g)
. Set each entry’s Gaussian index, including its sign:

13: p_inx← 0
14: for 0 6 j < c+ t do
15: inx← samp[j].g
16: p_inx← p_inx⊕ (inx⊕ p_inx) & ((p_inx− inx)� (w − 1))
17: sign←$ Z/2Z // sample the sign
18: samp[j].g ← (sign & −p_inx)⊕ (∼sign & p_inx)
19: end for
. Sort samp in constant-time according to the s field (the sampling order):

20: BatcherMergeExchange(samp, key: s, data: g) // no need to involve k anymore
. Discard the trailing entries of samp (corresponding to the CDT):

21: for 0 6 j < c do
22: z[i+ j]← samp[j].g
23: end for
24: i← i+ c
25: end for
26: return z

23

or corrections. All the functions that perform some form of rejection sampling, such as
the security and correctness tests at signing, GenA, ySampler and Enc potentially leak the
timing of the failure to some internal test, but this information is independent of the
secret data. Table lookups performed in our implementation of the Gaussian sampler are
done with linear passes over the full table and extracting entries via masking with logical
operations.

For the polynomial multiplication we use iterative algorithms for the forward and inverse
NTTs, as described in §5.1, using a signed 32-bit datatype for the inputs and outputs.
Intermediate results after additions and subtractions are let to grow throughout the ex-
ecution, and are only reduced or corrected when there is a chance of exceeding 32 bits
of length, after a multiplication, or when a result needs to be prepared for final packing
(e.g., when outputting secret and public keys). In the NTT and pointwise multiplication
the results of multiplications are reduced via Montgomery reductions. To minimize the
cost of converting to/from Montgomery representation we use the following approach.
First, twiddle factors are scaled offline by multiplying with R, where R is the Montgomery
constant 232 mod q. Similarly, the coefficients of the outputs ai from GenA are scaled to
remainders r′ = rn−1R (mod q) by multiplying with the constant R2 · n−1. This enables
an efficient use of Montgomery reductions during the NTT-based polynomial multiplication
NTT−1(ã ◦NTT(b)), where ã = NTT(a) is the output in NTT domain of GenA. Multiplica-
tions with the twiddle factors during the computation of NTT(b) naturally cancel out the
Montgomery constant. The same happens during the pointwise multiplication with ã, and
finally during the inverse NTT, which naturally outputs values in standard representation
without the need of explicit conversions.

5.4 AVX2 optimizations
We have optimized three functions with hand-written assembly implementations exploiting
AVX2 vector instructions, namely, polynomial multiplication, sparse multiplication and
the XOF expansion for sampling y.

Our polynomial multiplication follows the recent approach by Seiler [Sei18], and the real-
ization of the method has some similarities with the implementation from [DKL+18]. That
is, our implementation processes 32 coefficients loaded in 8 AVX2 registers simultaneously,
in such a way that butterfly computations are carried out through multiple NTT levels
without the need of storing and loading intermediate results, whenever possible. Let
us illustrate the procedure we apply for a polynomial a of dimension n = 512 written
as the vector of coefficients (a0, a1, . . . , a511). We split the coefficients in 8 subsets a′i
equally distributed, namely, a′0 = (a0, . . . , a63), a′1 = (a64, . . . , a127), and so on. We start
by loading the first 4 coefficients of each subset a′i, filling out 8 AVX2 registers in total,
and then performing 3 levels of butterfly computations between the corresponding pairs of
subsets according to the Cooley-Tukey algorithm. We repeat this procedure 16 times using
the subsequent 4 coefficients from each subset a′i each time. Note that the 3 levels can be
completed at once without the need of storing and loading intermediate results. A similar
procedure applies to level 4. However, in this case we instead split the coefficients in 16
subsets a′i such that a′0 = (a0, . . . , a31), a′1 = (a32, . . . , a63), and so on. We first compute
over the first 8 subsets, and then over the other 8. In each case, the butterfly computation
is iterated 8 times to cover all the coefficients (again, 4 coefficients are taken at a time from
each of the 8 subsets). After level 4, the coefficients are split again in the same 16 subsets
a′i. Conveniently, remaining butterflies need to only be computed between coefficients that
belong to the same subset. Hence, the NTT computation can be completed by running 16
iterations of butterfly computations, where each iteration computes levels 5–9 at once for
each subset a′i. Therefore, these remaining NTT levels can be computed without additional
stores and loads of intermediate results.

24

One difference with [Sei18,DKL+18] is that our NTT coefficients are represented as 32-bit
signed integers, which motivates a speedup in the butterfly computation by avoiding the
extra additions that are required to make the result of subtractions positive when using
an unsigned representation. Moreover, we implement a full polynomial multiplication
NTT−1(ã ◦ NTT(b)) that integrates the pointwise multiplication and the forward and
inverse NTTs. This allows us to further optimize the implementation by eliminating
multiple load/store operations and some data processing to pack coefficients in the AVX2
registers.
With our approach we reduce the cost of the reference polynomial multiplication from
25, 300 to only 5, 800 cycles for dimension n = 512 on an Intel Skylake processor using gcc
for compilation. For n = 1024, we reduce the cost from 58, 200 to 12, 700 cycles.

Sampling of y is sped up by using the AVX2 implementation of SHAKE by Bertoni et
al. [BDH+], which allows us to sample up to 4 coefficients in parallel.

We note that it is possible to modify GenA to favor a vectorized computation of the XOF
expansion inside this function. However, we avoid this optimization because we prioritize
performance on platforms with no vector instruction support.

6 Performance and comparison
Performance. We evaluated the performance of our implementations on a x64 machine
powered by a 3.4GHz Intel Core i7-6700 (Skylake) processor running Ubuntu 16.04.3 LTS.
As is standard practice, TurboBoost was disabled during the tests. For compilation we used
gcc version 7.2.0 with the command gcc -O3 -march=native -fomit-frame-pointer.
The results for the reference and AVX2-optimized implementations are summarized in
Tables 5 and 6, respectively.

Table 5: Performance (in thousands of cycles) of the reference implementations of qTESLA
on a 3.4GHz Intel Core i7-6700 (Skylake) processor. Results for the median and average
(in parenthesis) are rounded to the nearest 102 cycles. Signing is performed on a message
of 59 bytes.

Scheme keygen sign verify
total

(sign + verify)

qTESLA-I
1, 123.3 377.5 82.6 460.1
(1, 142.3) (507.5) (83.2) (590.7)

qTESLA-III-speed
2, 904.9 536.1 171.0 707.1
(3, 218.4) (705.2) (171.3) (876.5)

qTESLA-III-size
1, 932.1 975.5 176.5 1, 152.0
(2, 010.1) (1, 363.2) (176.8) (1, 540.0)

qTESLA-p-I
4, 854.5 1, 208.9 499.7 1, 708.6
(5, 051.7) (1, 552.5) (500.2) (2, 052.7)

qTESLA-p-III
26, 025.8 5, 033.1 2, 519.6 7, 552.7
(26, 507.3) (6, 131.2) (2, 519.6) (8, 650.8)

Our results showcase the high performance of heuristic qTESLA with a simple and
compact implementation written entirely in portable C: the combined (median) time of
signing and verification on the Skylake platform is of approximately 135.3, 208.0 and
338.8 microseconds for qTESLA-I, qTESLA-III-speed and qTESLA-III-size, respectively.
Likewise, provably-secure qTESLA computes the same operations in approximately 0.50
and 2.22 milliseconds with qTESLA-p-I and qTESLA-p-III, respectively. This demonstrates

25

Table 6: Performance (in thousands of cycles) of the AVX2 implementations of qTESLA on
a 3.4GHz Intel Core i7-6700 (Skylake) processor. Results for the median and average (in
parenthesis) are rounded to the nearest 102 cycles. Signing is performed on a message of
59 bytes.

Scheme keygen sign verify
total

(sign + verify)

qTESLA-I
1, 109.7 248.4 62.8 311.2
(1, 140.1) (321.8) (63.4) (385.2)

qTESLA-III-speed
2, 862.2 328.8 126.2 455.0
(3, 156.5) (414.5) (126.9) (541.4)

qTESLA-III-size
1, 883.3 557.2 130.1 687.3
(1, 964.4) (751.9) (130.5) (882.4)

that the speed of provably-secure qTESLA, although slower, can still be considered
practical for most applications.

The AVX2 optimizations improve the performance by a factor between 1.5–1.7x, ap-
proximately. The speedup is mainly due to the AVX2 implementation of the polynomial
multiplication, which is responsible for ∼ 70% of the total speedup. The combined (median)
time of signing and verification on the Skylake platform is of about 91.5, 133.8 and 202.1
microseconds for qTESLA-I, qTESLA-III-speed and qTESLA-III-size, respectively.
Similar results were observed on an Intel Haswell processor; see Appendix B.

Comparison. Table 7 compares qTESLA to some representative state-of-the-art signature
schemes in terms of bit security, signature and key sizes, and performance of reference
and AVX2-optimized implementations (if available). If both median and average of cycle
counts are provided in the literature, we report the average for signing and the median
for verify. To have a fair comparison, we state the bit security of qTESLA, pqNTRUSign,
Falcon and Dilithium assuming the same BKZ cost model of 0.265β + 16.4 + log2(8d) with
β being the BKZ blocksize and d being the lattice dimension (for some schemes that use
other cost models we write in brackets the bit security stated in the corresponding papers).
As can be seen, with the exception of FALCON-512, heuristic qTESLA achieves the best
performance among schemes instantiated against state-of-the-art classical and quantum
attacks 5. This is accomplished while featuring competitive signature sizes.
It is important to note that, although FALCON-512 exhibits the fastest reference imple-
mentation and has the smallest (pk + sig) size among all the post-quantum signature
schemes shown in the table, the Falcon scheme has some serious shortcomings due to
its high complexity. In particular, this scheme relies on very complex Fourier sampling
methods and requires floating-point arithmetic, which is not supported by many devices.
All this makes the scheme significantly hard to implement in general, and hard to protect
against side-channel and fault attacks in particular. In fact, the results reported in Table 7
correspond to a reference implementation of Falcon that is unprotected against timing and
cache attacks. A fully protected implementation is expected to be much more costly.
Schemes based on other underlying problems, such as SPHINCS+ and MQDSS, offer
compact public keys at the expense of having very long signatures. In contrast, qTESLA
has smaller signature sizes, and is significantly faster for signing and verifying. For exam-
ple, signature generation with qTESLA-III-speed is about 21 times faster compared to
MGDSS-31-64, when using AVX2 optimizations.

5The original instantiations of BLISS and BLISS-B are realized taking into account classical attacks
only [DDLL13b,Duc14]. Moreover, known implementations of this scheme are not protected against timing
and cache attacks [EFGT17].

26

In summary, qTESLA offers a good balance between performance and signature/key sizes,
accompanied by a simple and compact design that facilitates secure implementations.

References
[ABB+16] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and

Giorgia Azzurra Marson. An efficient lattice-based signature scheme with
provably secure instantiation. In David Pointcheval, Abderrahmane Nitaj, and
Tajjeeddine Rachidi, editors, AFRICACRYPT 2016, volume 9646 of LNCS,
pages 44–60. Springer, 2016.

[ABB+17] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, Özgür Dagdelen, Edward
Eaton, Gus Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting TESLA
in the quantum random oracle model. In Tanja Lange and Tsuyoshi Takagi,
editors, Post-Quantum Cryptography - 8th International Workshop, PQCrypto
2017, pages 143–162. Springer, Heidelberg, 2017.

[ACD+18] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel
Player, Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer.
Estimate all the LWE, NTRU schemes! In SCN 2018, LNCS. Springer, 2018.

[ACF+15] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick,
and Ludovic Perret. Algebraic algorithms for LWE problems. ACM Comm.
Computer Algebra, 49(2):62, 2015.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, pages 327–
343. USENIX Association, 2016.

[AFG13] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy
of solving LWE by reduction to unique-svp. In Hyang-Sook Lee and Dong-Guk
Han, editors, Information Security and Cryptology - ICISC 2013, volume 8565
of LNCS, pages 293–310. Springer, 2013.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors.
In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I,
volume 6755 of LNCS, pages 403–415. Springer, Heidelberg, July 2011.

[AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer.
Revisiting the expected cost of solving uSVP and applications to LWE. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 297–322. Springer, Heidelberg, December 2017.

[Alb17] Martin R. Albrecht. On dual lattice attacks against small-secret LWE and pa-
rameter choices in HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
103–129. Springer, Heidelberg, April / May 2017.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

[Bat68] K. E. Batcher. Sorting networks and their application. In AFIPS Spring Joint
Computer Conference, volume 32 of AFIPS Conference Proceedings, pages
307–314, Atlantic City (NJ), 1968. Thomson Book Company, Washington
D.C.

27

Ta
bl
e
7:

O
ve
rv
ie
w

of
di
ffe

re
nt

po
st
-q
ua

nt
um

sig
na

tu
re

sc
he

m
es

Sc
he

m
e

Se
cu

ri
ty

co
ns
t.

Si
ze
s
[B
]

C
yc
le

co
un

ts
[k
-c
yc
le
s]

C
P
U

[b
it
]

ti
m
e

R
ef
er
en
ce

AV
X
2

pk
sk

si
g.

Si
gn

V
er
ify

Si
gn

V
er
ify

Selectedideallattice-basedsignatures

B
LI
SS

-B
I

12
8

7
89
6

25
6

71
7

≈
35
8.
0

-
U

[D
D
LL

13
b,
D
uc
14

]
10
2.
0

-
pq

N
T
R
U
Si
gn

(U
ni
fo
rm

)
18

3b
7

2,
04

8
2,

60
4

2,
04

8
20

2,
18

5.
0

-
U

[C
H
Z1

7,
Sa

f]
2,

53
3.

0
-

FA
LC

O
N
-5
12

a
15

8b
7

89
7

4,
09

7
61

7
8,

36
0.

0
-

S
[F
H
K

+
17

,S
af
]

64
0.

0
-

D
ili
th
iu
m
-m

ed
iu
m

12
2b

3
1,

18
4

2,
80

0
2,

04
4

1,
51

0.
6

44
8.

9
S

[D
K
L+

18
]

27
3.

6
11

8.
8

D
ili
th
iu
m
-r
ec
om

m
en
de
d

16
0b

3
1,

47
2

3,
50

4
2,

70
1

2,
23

9.
5

62
7.

1
S

[D
K
L+

18
]

39
0.

0
17

4.
9

qT
ES

LA
-p

-I
a

1,
55

2.
5

-
(t
hi
s
pa

pe
r)

95
b

3
14

88
0

5
18

4
2

84
8

49
9.

7
-

S

qT
ES

LA
-p

-I
II

a
6,

13
1.

2
-

(t
hi
s
pa

pe
r)

16
0b

3
39

71
2

12
35

2
6

17
6

2,
51

9.
6

-
S

qT
ES

LA
-I

50
7.

5
32

1.
8

(t
hi
s
pa

pe
r)

95
b

3
1,

50
4

1,
34

4
1,

37
6

82
.6

62
.8

S

qT
ES

LA
-I

II
-s

iz
e

1,
36

3.
2

75
1.

9
(t
hi
s
pa

pe
r)

16
0b

3
2,

97
6

2,
11

2
2,

72
0

17
6.

5
13

0.
1

S

qT
ES

LA
-I

II
-s

pe
ed

70
5.

2
41

4.
5

(t
hi
s
pa

pe
r)

16
0b

3
3,

10
4

2,
36

8
2,

84
8

17
1.

0
12

6.
2

S

Selected
PQ

signatures

SP
H
IN

C
S+

-1
28

fa
12

8c
3

32
64

16
,9
76

56
,1

13
.0

-
H

(H
ar
ak

a)
[B
D
E

+
17

]
2,

41
7.

0
-

M
Q
D
SS

-3
1-
64

12
8c

3
64

24
34

,0
32

84
,6

15
.0

8,
70

9.
0

H
[C
H
R

+
,C

H
R

+
16

]
63

,2
10

.0
6,

18
3.

0
a

P
ar

am
et

er
s

ar
e

ch
os

en
ac

co
rd

in
g

to
gi

ve
n

se
cu

ri
ty

re
du

ct
io

n
in

th
e

R
O

M
/Q

R
O

M
.

b
B

it
se

cu
ri

ty
an

al
yz

ed
ag

ai
ns

t
cl

as
si

ca
l

an
d

qu
an

tu
m

ad
ve

rs
ar

ie
s

w
it

h
B

K
Z

co
st

m
od

el
0.

26
5β

+
16
.4

+
lo

g 2
(8
d
)

[A
C

D
+

18
].

c
B

it
se

cu
ri

ty
an

al
yz

ed
ag

ai
ns

t
cl

as
si

ca
l

an
d

qu
an

tu
m

ad
ve

rs
ar

ie
s.

U
:

U
nk

no
w

n
3.

4G
H

z
In

te
l

C
or

e
fo

r
B

L
IS

S,
an

d
un

kn
ow

n
x6

4
C

P
U

[S
af

]
fo

r
pq

N
T

R
U

Si
gn

.
S:

2.
6G

H
z
In
te
lC

or
e
i7
-6
60

0U
(S
ky

la
ke
)
fo
r
D
ili
th
iu
m
,a

nd
3.
4G

H
z
In
te
lC

or
e
i7
-6
70
0
(S
ky

la
ke
)
fo
r

qT
ES

LA
an

d
FA

LC
O
N
-5
12
.

H
:3

.5
G
H
z
In
te
lC

or
e
i7
-4
77

0K
(H

as
w
el
l)
.

28

[BCL+] D. Bernstein, T. Chou, T. Lange, I. v. Maurich, R. Misoczki, R. Niederhagen,
E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, and W. Wang.
Classic McEliece: conservative code-based cryptography. NIST post-quantum
standardization submission. https://classic.mceliece.org.

[BCLV] D. Bernstein, C. Chuengsatiansup, T. Lange, and C. v. Vredendaal. NTRU
Prime. NIST Post-Quantum Cryptography Standardization [Nat17]. https:
//ntruprime.cr.yp.to. Accessed on 2019-01-07.

[BDE+17] Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl,
Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, and Peter Schwabe. SPHINCS+.
NIST Post-Quantum Cryptography Standardization [Nat17], 2017. https:
//sphincs.org. Accessed on 2019-01-07.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073
of LNCS, pages 41–69. Springer, Heidelberg, December 2011.

[BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, , Gilles Van
Assche, and Ronny Van Keer. The eXtended Keccak Code Package (XKCP).
https://github.com/XKCP/XKCP.

[BG14a] Shi Bai and Steven D. Galbraith. An improved compression technique for sig-
natures based on learning with errors. In Josh Benaloh, editor, CT-RSA 2014,
volume 8366 of LNCS, pages 28–47. Springer, Heidelberg, February 2014.

[BG14b] Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE.
In Willy Susilo and Yi Mu, editors, ACISP 14, volume 8544 of LNCS, pages
322–337. Springer, Heidelberg, July 2014.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload - A cache attack on the BLISS lattice-based signature
scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016,
volume 9813 of LNCS, pages 323–345. Springer, Heidelberg, August 2016.

[BLN+16] Paulo S. L. M. Barreto, Patrick Longa, Michael Naehrig, Jefferson E. Ricardini,
and Gustavo Zanon. Sharper ring-LWE signatures. Cryptology ePrint Archive,
Report 2016/1026, 2016. http://eprint.iacr.org/2016/1026.

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on de-
terministic lattice signatures. IACR TCHES, 2018(3):21–43, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/7267.

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering
short generators of principal ideals in cyclotomic rings. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, volume 9666 of LNCS, pages 559–585. Springer,
2016.

[CGS14] Peter Campbell, Michael Groves, and Dan Shepherd. SOLILO-
QUY: A cautionary tale. ETSI 2nd Quantum-Safe Crypto Work-
shop, 2014. http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/
S07_Systems_and_Attacks/S07_Groves_Annex.pdf.

29

https://classic.mceliece.org
https://ntruprime.cr.yp.to
https://ntruprime.cr.yp.to
https://sphincs.org
https://sphincs.org
https://github.com/XKCP/XKCP
http://eprint.iacr.org/2016/1026
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf

[CHR+] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and
Peter Schwabe. MQDSS. NIST Post-Quantum Cryptography Standardization
[Nat17]. http://mqdss.org/. Accessed on 2019-01-07.

[CHR+16] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and
Peter Schwabe. From 5-pass MQ-based identification to MQ-based signatures.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 135–165. Springer, Heidelberg, December 2016.

[CHZ17] Cong Chen, Jeffrey Hoffstein, and William Whyteand Zhenfei Zhang.
pqNTRUSign–A modular lattice signature scheme. NIST Post-Quantum Cryp-
tography Standardization [Nat17], 2017. https://www.onboardsecurity.
com/nist-post-quantum-crypto-submission . Accessed: 2018-07-23.

[CPBS10] H.M. Cantero, S. Peter, Bushing, and Segher. Console hack-
ing 2010 – PS3 epic fail. 27th Chaos Communication Congress,
2010. https://events.ccc.de/congress/2010/Fahrplan/attachments/
1780_27c3_console_hacking_2010.pdf.

[DBG+15] Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu,
Tobias Oder, Thomas Pöppelmann, Ana Helena Sánchez, and Peter Schwabe.
High-speed signatures from standard lattices. In Diego F. Aranha and Alfred
Menezes, editors, Progress in Cryptology – LATINCRYPT 2014, volume 8895
of LNCS, pages 84–103. Springer, 2015.

[DDLL13a] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures
and bimodal gaussians. In Advances in Cryptology – CRYPTO 2013, volume
8042 of Lecture Notes in Computer Science, pages 40–56, Santa Barbara (CA),
2013. Springer.

[DDLL13b] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal Gaussians. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40–56. Springer,
Heidelberg, August 2013.

[DDLL13c] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. Cryptology ePrint Archive, Report
2013/383, 2013. https://eprint.iacr.org/2013/383.

[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete
gaussians for lattice-based cryptography on a constrained device. Applicable
Algebra in Engineering, Communication and Computing, 25(3):159–180, Jun
2014.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based
digital signature scheme. IACR TCHES, 2018(1):238–268, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/839.

[DN12] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Crypt-
analysis of NTRUSign countermeasures. In Xiaoyun Wang and Kazue Sako,
editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 433–450. Springer,
Heidelberg, December 2012.

[Duc14] Léo Ducas. Accelerating BLISS: the geometry of ternary polynomials. Cryp-
tology ePrint Archive, Report 2014/874, 2014. http://eprint.iacr.org/
2014/874.

30

http://mqdss.org/
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://eprint.iacr.org/2013/383
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
http://eprint.iacr.org/2014/874
http://eprint.iacr.org/2014/874

[Dwo15] Morris J. Dworkin. SHA-3 standard: Permutation-based hash and extendable-
output functions. Federal Inf. Process. Stds. (NIST FIPS) – 202, 2015. Avail-
able at https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Side-channel attacks on BLISS lattice-based signatures: Exploiting branch
tracing against strongSwan and electromagnetic emanations in microcontrollers.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 17, pages 1857–1874. ACM Press, October / November
2017.

[ELOS15] Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange. Provably
weak instances of ring-LWE. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, volume 9215 of LNCS, pages 63–92. Springer, 2015.

[FHK+17] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier Lattice-Based Compact
Signatures over NTRU. NIST Post-Quantum Cryptography Standardization
[Nat17], 2017. https://falcon-sign.info/. Accessed: 2018-07-23.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, Heidelberg,
May 2013.

[GJS15] Qian Guo, Thomas Johansson, and Paul Stankovski. Coded-bkw: Solving
LWE using lattice codes. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, volume 9215 of LNCS, pages 23–42.
Springer, 2015.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 530–547. Springer, Heidelberg, September 2012.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

[HHP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman,
and William Whyte. NTRUSign: Digital signatures using the NTRU lattice.
In Marc Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 122–140.
Springer, Heidelberg, April 2003.

[HKR+18] J. Howe, A. Khalid, C. Rafferty, F. Regazzoni, and M. O’Neill. On practical
discrete gaussian samplers for lattice-based cryptography. IEEE Transactions
on Computers, 67(3):322–334, March 2018.

[Kel16] John Kelsey. SHA-3 derived functions: cSHAKE, KMAC, TupleHash,
and ParallelHash. NIST Special Publication, 800:185, 2016. Avail-
able at http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-185.pdf.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treat-
ment of Fiat-Shamir signatures in the quantum random-oracle model. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,

31

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://falcon-sign.info/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

volume 10822 of LNCS, pages 552–586. Springer, Heidelberg, April / May
2018.

[Knu97] D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and
Searching. Addison-Wesley, 2ns edition, 1997.

[Laa16] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven
University of Technology, 2016.

[LMP13] Thijs Laarhoven, Michele Mosca, and Joop Pol. Solving the Shortest Vector
Problem in Lattices Faster Using Quantum Search. In Philippe Gaborit, editor,
Post-Quantum Cryptography, volume 7932 of Lecture Notes in Computer
Science, pages 83–101. Springer Berlin Heidelberg, 2013.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-
based encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of
LNCS, pages 319–339. Springer, Heidelberg, February 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 1–23. Springer, Heidelberg, May / June 2010.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755. Springer, Heidelberg, April 2012.

[Nat16] National Institute of Standards and Technology (NIST). Submis-
sion requirements and evaluation criteria for the post-quantum
cryptography standardization process, December, 2016. https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf. Accessed: 2018-07-
23.

[Nat17] National Institute of Standards and Technology (NIST). Post-
Quantum Cryptography Standardization. https://csrc.nist.gov/
projects/post-quantum-cryptography, 2017. Accessed: 2018-07-23.

[NR06] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis
of GGH and NTRU signatures. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 271–288. Springer, Heidelberg, May / June 2006.

[Pei10] C. Peikert. An efficient and parallel Gaussian sampler for lattices. In Advances
in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 80–97, Santa Barbara (CA), 2010. Springer.

[PG14] T. Pöppelmann and T. Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. In Tanja Lange, Kristin E. Lauter,
and Petr Lisonek, editors, Selected Areas in Cryptography - SAC 2013, volume
8282 of Lecture Notes in Computer Science, pages 68–85. Springer, 2014.

[PSDS17] Thomas Plantard, Arnaud Sipasseuth, Cédric Dumondelle, and Willy Susilo.
DRS: Diagonal dominant Reduction for lattice-based Signature. NIST Post-
Quantum Cryptography Standardization [Nat17], 2017. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions . Ac-
cessed: 2018-07-23.

32

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

[PSS+17] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rösler. Attacking deterministic signature schemes using fault attacks.
Cryptology ePrint Archive, Report 2017/1014, 2017. http://eprint.iacr.
org/2017/1014.

[RVM+14] S. Sinha Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede.
Compact Ring-LWE cryptoprocessor. In Lejla Batina and Matthew Robshaw,
editors, Cryptographic Hardware and Embedded Systems - CHES 2014, volume
8731 of Lecture Notes in Computer Science, pages 371–391. Springer, 2014.

[Saf] SafeCrypto. NIST Software Analysis–Signatures. https://www.safecrypto.
eu/pqclounge/software-analysis-signatures/. Accessed: 2018-07-05.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography. Cryptology ePrint Archive, Report 2018/039, 2018.
https://eprint.iacr.org/2018/039.

[YD18] Yang Yu and Léo Ducas. Learning strikes again: The case of the DRS signature
scheme. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part II, volume 11273 of LNCS, pages 525–543. Springer, Heidelberg, December
2018.

[Zha12] Mark Zhandry. Secure identity-based encryption in the quantum random oracle
model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 758–775. Springer, Heidelberg, August 2012.

[ZSS18] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. FACCT: FAst, Compact,
and Constant-Time Discrete Gaussian Sampler over Integers. Cryptology
ePrint Archive, Report 2018/1234, 2018. https://eprint.iacr.org/2018/
1234.

A Correctness of qTESLA

To prove the correctness of qTESLA, we have to show that for every signature (z, c′) of a
message m generated by Algorithm 4 it holds that (i) z ∈ Rq,[B−LS] and (ii) the output of
the hash-based function H at signing (line 9 of Algorithm 4) is the same as the analogous
output at verification (line 6 of Algorithm 5).

Requirement (i) is ensured by the security check during signing (line 12 of Algorithm 4). To
ensure (ii), we need to prove that, for genuine signatures and for all i = 1, . . . , k it holds that
[aiy mod±q]M = [aiz− tic mod±q]M = [ai(y+ sc)− (ais+ ei)c mod±q]M = [aiy+ aisc−
aisc−eic mod±q]M = [aiy−eic mod±q]M . From the definition of [·]M , this means proving
that (aiy mod±q − [aiy mod±q]L)/2d = (aiy − eic mod±q − [aiy − eic mod±q]L)/2d, or
simply [aiy mod±q]L = eic+ [aiy − eic mod±q]L.

The above equality must hold component-wise, so let us prove the corresponding property
for individual integers.

Assume that for integers α and ε it holds that |[α− ε mod±q]L| < 2d−1 − LE , |ε| ≤ LE <
bq/2c, |α− ε mod±q| < bq/2c − LE , and −bq/2c < α ≤ bq/2c (i.e., α mod±q = α). Then,
we need to prove that

[α]L = ε+ [α− ε mod±q]L. (4)

Proof. To prove equation (4), start by noticing that |ε| ≤ LE < 2d−1 implies [ε]L = ε.
Thus, from −2d−1 + LE < [α− ε mod±q]L < 2d−1 − LE and −LE ≤ [ε]L ≤ LE it follows

33

http://eprint.iacr.org/2017/1014
http://eprint.iacr.org/2017/1014
https://www.safecrypto.eu/pqclounge/software-analysis-signatures/
https://www.safecrypto.eu/pqclounge/software-analysis-signatures/
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/1234
https://eprint.iacr.org/2018/1234

that

−2d−1 = −2d−1 + LE − LE < [ε]L + [α− ε mod±q]L < 2d−1 − LE + LE = 2d−1,

and therefore

[[ε]L + [α− ε mod±q]L]L = [ε]L + [α− ε mod±q]L = ε+ [α− ε mod±q]L. (5)

Next we prove that
[[ε]L + [α− ε mod±q]L]L = [α]L. (6)

We note that since |ε| ≤ LE < bq/2c it holds that [ε]L = [ε mod±q]L. It holds further that

[[ε mod±q]L + [α− ε mod±q]L]L (7)
= ((ε mod±q) mod±2d + (α− ε mod±q) mod±2d) mod±2d (8)

by the definition of [·]L
= (ε mod±q + (α− ε mod±q)) mod±2d. (9)

Since |ε| ≤ LE and |α − ε mod±q| < bq/2c − LE , it holds that |α − ε| + |ε| < (bq/2c −
LE) + LE = bq/2c. Hence, equation (9) is the same as

= (ε+ α− ε mod±q) mod±2d = (α mod±q) mod±2d = α mod±2d

= [α]L.

Combining equations (5) and (6) we deduce that [α]L = ε+ [α− ε mod±q]L, which is the
equation we needed to prove.

Now define α := (aiy)j and ε := (eic)j with i ∈ {1, . . . , k} and j ∈ {0, . . . , n− 1}. From
line 18 of Algorithm 4, we know that for i = 1, . . . , k, ‖[aiy − eic]L‖∞ < 2d−1 − LE and
‖aiy−eic‖∞ < bq/2c−LE for a valid signature, and that Algorithm 3 (line 13) guarantees
‖eic‖∞ ≤ LE . Likewise, by definition it holds that LE < bq/2c; see Section 3.4. Finally,
vi = aiy is reduced mod±q in line 7 of Algorithm 4 and, hence, vi is in the centered range
−bq/2c < aiy ≤ bq/2c.

In conclusion, we get the desired condition for ring elements, [aiy]L = eic+ [aiy − eic]L,
which in turn means [aiz − tic]M = [aiy]M for i = 1, . . . , k as argued above.

B Performance of qTESLA on Haswell
Our benchmarking results on a 3.4GHz Intel Core i7-4770 (Haswell) processor are sum-
marized in Table 8 for the reference implementation, and in Table 9 for the AVX2
implementation. As is standard practice, TurboBoost was disabled during the tests.
For compilation we used gcc version 7.2.0 with the command gcc -O3 -march=native
-fomit-frame-pointer.

34

Table 8: Performance (in thousands of cycles) of the reference implementation of qTESLA
on a 3.4GHz Intel Core i7-4770 (Haswell) processor. Results for the median and average
(in parenthesis) are rounded to the nearest 102 cycles. Signing is performed on a message
of 59 bytes.

Scheme keygen sign verify
total

(sign + verify)

qTESLA-I
1, 148.3 395.3 85.8 481.1
(1, 170.4) (527.5) (86.4) (613.9)

qTESLA-III-speed
2, 921.2 564.7 177.6 745.3
(3, 325.9) (736.0) (181.0) (923.7)

qTESLA-III-size
1, 927.2 1, 036.0 182.1 1, 218.1
(2, 044.5) (1, 455.8) (186.0) (1, 641.8)

qTESLA-p-I
4, 959.7 1, 273.0 518.0 1, 791.0
(5, 182.0) (1, 591.5) (518.6) (2, 110.1)

qTESLA-p-III
26, 342.3 5, 275.9 2, 636.7 7, 912.6
(26, 925.1) (6, 425.5) (2, 640.9) (9, 066.4)

Table 9: Performance (in thousands of cycles) of the AVX2 implementation of qTESLA on
a 3.4GHz Intel Core i7-4770 (Haswell) processor. Results for the median and average (in
parenthesis) are rounded to the nearest 102 cycles. Signing is performed on a message of
59 bytes.

Scheme keygen sign verify
total

(sign + verify)

qTESLA-I
1, 125.2 257.3 65.7 323.0
(1, 150.7) (332.4) (66.6) (399.0)

qTESLA-III-speed
2, 872.7 341.5 134.6 476.1
(3, 192.2) (436.2) (136.7) (572.9)

qTESLA-III-size
1, 879.2 589.4 140.5 729.9
(1, 959.2) (787.0) (140.7) (927.7)

35

	Introduction
	Preliminaries
	Notation
	The number theoretic transform (NTT)
	The ring learning with errors (R-LWE) problem

	The signature scheme qTESLA
	Description of the scheme
	Correctness of qTESLA
	Design features
	Parameter description

	Security and instantiation of the signature scheme
	Provable security in the quantum random oracle model (QROM)
	qTESLA variants: relation between the R-LWE hardness and qTESLA security
	Hardness estimation of R-LWE
	Parameter sets

	Implementation aspects
	Implementation of basic functions
	An efficient and portable constant-time Gaussian sampler
	Reference implementation
	AVX2 optimizations

	Performance and comparison
	Correctness of qTESLA
	Performance of qTESLA on Haswell

