
The Secure Link Prediction Problem

Laltu Sardar,
Cryptology and Security Research Unit,
Indian Statistical Institute, Kolkata, India

E-mail: laltuisical@gmail.com

Sushmita Ruj,
R C Bose Centre for Cryptology and Security
Indian Statistical Institute, Kolkata, India

E-mail: sush@isical.ac.in

Abstract

Link Prediction is an important and well-studied problem for social
networks. Given a snapshot of a graph, the link prediction problem pre-
dicts which new interactions between members are most likely to occur
in the near future. As networks grow in size, data owners are forced to
store the data in remote cloud servers which reveals sensitive information
about the network. The graphs are therefore stored in encrypted form.

We study the link prediction problem on encrypted graphs. To the
best of our knowledge, this secure link prediction problem has not been
studied before. We use the number of common neighbors for prediction.
We present three algorithms for the secure link prediction problem. We
design prototypes of the schemes and formally prove their security. We
execute our algorithms in real-life datasets.

Keywords— Link prediction, Homomorphic encryption, Garbled circuit, Secure
computation, Cloud computing.

1 Introduction

Social networks have become an integral part of our lives. These networks can be
represented as graphs with nodes being entities (members) of the network and edges
representing the association between entities (members). As the size of these graphs
increases, it becomes quite difficult for small enterprises and business units to store
the graphs in-house. So, there is a desire to store such information in cloud servers.

In order to protect the privacy of individuals (as is now mandatory in EU and other
places), data is often anonymized before storing in remote cloud servers. However, as
pointed out by Backstrom et al. [3], anonymization does not imply privacy. By
carefully studying the associations between members, a lot of information can be
gleaned.

The data owner, therefore, has to store the data in encrypted form. Trivially, the
data owner can upload all data in encrypted form to the cloud. Whenever some query
is made, data owner has to download all data, do necessary computations and re-
upload the re-encrypted data. This is very inefficient and does not serve the purpose
of cloud service. Thus, we need to keep the data stored in the cloud in encrypted form
in such a way that we can compute efficiently on the encrypted data.

1

Some basic queries for a graph are neighbor query (given a vertex return the set
of vertices adjacent to it), vertex degree query (given a vertex, return the number
of adjacent vertices), adjacency query (given two vertices return if there is an edge
between them) etc. It is important that when an encrypted graph supports some
other queries, like shortest distance queries, it should not stop supporting these basic
queries.

Nowell and Kleinberg [10] first defined the link prediction problem for social net-
works. The link prediction problem states that given a snapshot of a graph whether we
can predict which new interactions between members are most likely to occur in the
near future. For example, given a node A at an instant, the link prediction problem
tries to find the most likely node B with which A would like to connect at a later
instant. Different types of distance metrics are used to measure the likelihood of the
formation of new links. The distances are called score ([10]). Nowell and Kleinberg,
in [10], considered several metrics including common neighbors, Jaccard’s coefficient,
Adamic/Adar, preferential attachment, Katzβ etc. For example, if A and B (with no
edge between them) have a large number of common neighbors they are more likely
to be connected in future. In this paper, for simplicity, we have considered common
neighbors metric to predict the emergence of a link.

Though there has been a large body of literature on link prediction, to the best of
our knowledge the secure version of the problem has not been studied to date. Secure
Link Prediction (SLP) problem computes link prediction algorithms over secure i.e.,
encrypted data.

Our Contribution We introduce the notion of secure link prediction and present
three constructions. In particular, we ask and answer the question, “Given a snapshot
of a graph G ≡ (V,E) (V is the set of vertices and E ⊆ V × V) at a given instant and
a vertex v ∈ V , which is the most likely vertex u, such that, u is a neighbor of v at
a later instant and vu /∈ E”. The score-metric we consider is the number of common
neighbors of the two vertices v and u. This can be used to answer the question, “Given
a snapshot of a graph G = (V,E) at a given instant and a vertex v ∈ V , which are the
k-most likely neighbors of v at a later instant such that none of these k vertices were
neighbors of v in G.”

Note that the data owner outsources an encrypted copy of the graph G to the cloud
and sends an encrypted vertex v as a query. The cloud runs the secure link prediction
algorithm and returns an encrypted result, from which the client can obtain the most
likely neighbor of v. The cloud knows neither the graph G nor the queried vertex v.

It is to be noted that the client has much less computational and storage capacity.
We propose three schemes, (SLP-I, SLP-II and SLP-III), in all of which, the client
takes the help of a proxy server which makes it efficient to obtain query results. At a
high level:

1. SLP-I: is the most efficient with almost no computation at client-side and leaks
only the scores to the proxy server.

2. SLP-II: has a little more communication at client-side compared to SLP-I but
leaks the scores of a subset of vertices to the proxy server.

3. SLP-III: is a very efficient scheme with almost no computation and communi-
cation at the client-side and leaks almost nothing to the proxy. This is achieved
with an extra computational and communication cost between the cloud and
the proxy.

In all three schemes, the client does not leak anything, to the cloud, except the number
of vertices in the graph.

We have designed the scheme in such a way that it supports link prediction query
as well as basic queries. Each of the previous schemes on encrypted graph are designed
to support a specific query (for example, shortest distance query, focused subgraph

2

query etc.). However, we have designed more general schemes that support not only
link prediction query but also basic queries including neighbor query, vertex degree
query, adjacency query etc.

All our schemes have been shown to be adaptively secure in real-ideal paradigm.
Further, we have analyzed the performance of the schemes in terms of storage

requirement, computation cost and communication cost, and counted the execution
time of the schemes assuming benchmark implementations of some underlying crypto-
graphic primitives. we have implemented prototypes for the schemes SLP-I and SLP-II,
and measured the performance with different real-life datasets to study the feasibility.

From the experiment, we see that they take 12.15s and 13.75s to encrypt whereas
8.87s and 8.59s process query for a graph with 102 vertices.

Organization The rest of the paper is organized as follows. Related work is dis-
cussed in Section 2. Preliminaries and cryptographic tools are discussed in Section 3.
Link prediction problem and its security are described in Section 4. Section 5 describes
our proposed scheme for SLP-I. Two improvements of SLP-I, SLP-II and SLP-III, are
discussed in Section 6 and Section 7 respectively. In Section 8, a comparative study of
the complexities of our proposed schemes is given. In Section 9, details of our imple-
mentation and experimental results are shown. A variant of link prediction problem
SLPk is introduced in Section 10. Finally, a summary of the paper and future research
direction are given in Section 11.

2 Related Work

Graph algorithms are well studied when the graph is not encrypted. Since, necessity
of outsourcing graph data in encrypted form is increasing very fast and encryption
makes it difficult to work those algorithms, study is required to enable them. There
are only few works that deals with the ‘query’ on ‘outsourced encrypted graph’.

Chase and Kamara [6] introduced the notion of graph encryption while they were
presenting structured encryption as a generalization of searchable symmetric encryp-
tion (SSE) proposed by Song et al. [20]. They presented schemes for neighbor queries,
adjacency queries and focused subgraph queries on labeled graph-structured data. In
all of their proposed schemes, the graph was considered as an adjacency matrix and
each entry was encrypted separately using symmetric key encryption. The main idea
of their scheme, given a vertex and the corresponding key, the scheme could return
adjacent vertices. However, complex query requires complex operation (like addition,
subtraction, division etc.) on adjacent matrix which make the scheme unsuitable.

A parallel secure computation framework GraphSC has been designed and im-
plemented by Nayak et al. [16]. This framework computes functions like histogram,
PageRank, matrix factorization etc. To run this algorithms, GraphSC introduced
parallel programming paradigms to secure computation. The parallel and secure ex-
ecution enables the algorithms to perform even for large datasets. However, they
adopt Path-ORAM [21] based techniques which is inefficient if the client has little
computation power or the client doesn’t uses very large size RAM.

Sketch-based approximate shortest distance queries over encrypted graph have
been studied by Meng et al. [14]. In the pre-processing stage, the client computes the
sketches for every vertex that is useful for efficient shortest distance query. Instead of
encrypting the graph directly, they encrypted the pre-processed data. Thus, in their
scheme, there is no chance of getting information about the original graph.

Shen et al. [19] introduced and studied cloud-based approximate constrained short-
est distance queries in encrypted graphs which finds the shortest distance with a con-
straint such that the total cost does not exceed a given threshold.

Exact distance has been computed on dynamic encrypted graphs in [22]. Similar to
our paper, this paper uses a proxy to reduce client-side computation and information

3

leakage to the cloud. In the scheme, adjacency lists are stored in an inverted index.
However, in a single query, the scheme leaks all the nodes reachable from the queried
vertex which is a lot of information about the graph. For example, if the graph is
complete, it reveals the whole graph.

A graph encryption scheme, that supports top-k nearest keyword search queries,
has been proposed by Liu et al. [12]. They have made an encrypted index using
order preserving encryption for searching. Together with lightweight symmetric key
encryption schemes, homomorphic encryption is used to compute on encrypted data.

Besides, Zheng et al. [24] proposed link prediction in decentralized social network
preserving the privacy. Their construction split the link score into private and public
parts and applied sparse logistic regression to find links based on the content of the
users. However, the graph data was not considered to be encrypted in the privacy
preserving link prediction schemes.

In this paper, we outsource the graph in encrypted form. In most of the previous
works, the schemes are designed to perform single specific query like neighbor query
([6]), shortest distance query ([14, 19, 22]), focused subgraph queries ([6]) etc. So,
either it is hard to get the information about the source graph ([14], [19]), as they
do not support basic queries, or leaks a lot of information for a single query ([22]).
One trivial approach is that taking different schemes and use all of them to support all
types of required queries. In this paper, our target is to get as much information about
the graph as possible whenever required with supporting the link prediction query and
leak as little information as possible. To the best of our knowledge, the secure link
prediction problem has not been studied before. We study issues on link prediction
problem in encrypted outsourced data and give three possible solutions overcoming
them.

3 Preliminaries

Let G = (V,E) be a graph and A = (aij)N×N be its adjacency matrix where N is
the number of vertices. Let λ be the security parameter. Set of positive integers

{1, 2, · · · , n} is denoted by [n]. By x
$←− X, we mean to choose a random element

from the set X. D log denotes the discrete logarithm. id : {0, 1}∗ → {0, 1}logN gives
the identifiers corresponding to the vertices. A function negl : N ← R is said to be
negligible over n if ∀c ∈ N, ∃Nc ∈ N such that ∀n > Nc, negl(n) < n−c.

A probabilistic polynomial-time (PPT) permutation {0, 1}∗ ×{0, 1}n → {0, 1}n is
said to be a Pseudo Random Permutation (PRP) if it is indistinguishable from random
permutation by any PPT adversary. We consider two PRPs, Fkperm and πs, where
kperm and s are their keys (or seeds) respectively.

3.1 Bilinear Maps

Let G and G1 be two (multiplicative) cyclic groups of order n and g be a generator of
G. A map e : G×G→ G1 is said to be an admissible non-degenerate bilinear map if–

1. ∀u, v ∈ G and ∀a, b ∈ Z, we have e(ua, vb) = e(u, v)ab,

2. e(g, g) 6= 1, and

3. e can be computed efficiently.

Our algorithms use bilinear map based BGN encryption scheme [4]. So, we first
discuss this.

3.2 BGN Encryption Scheme

Boneh et al. [4] proposed a homomorphic encryption scheme (henceforth referred to as
BGN encryption scheme) that allows an arbitrary number of additions and one mul-

4

tiplication. The scheme consists of three algorithms- Gen(), Encrypt() and Decrypt()
.

Algorithm 1: Gen(1λ)

1 (q1, q2, G, G1, e)← G(λ)
2 n← q1q2

3 g
$←− G; r

$←− [n]
4 u← gr; h← uq2

5 sk ← q1; pk ← (n, G, G1, e, g, h)
6 return (pk, sk)

Key generation: This takes a security parameter λ as input and outputs a public-
private key pair (pk, sk) (see Algo. 1). Here, pk = (n, G, G1, e, g, h) and sk = q1.
In pk, e is a bilinear map from G×G to G1 where both G and G1 are groups of order
q1. Note that, given λ, G returns (q1, q2, G, G1, e) (see [4]) where q1 and q2 are two
large primes, and G and G1 are groups of order n = q1q2.

Algorithm 2: EncryptG(pk, a)

1 (n, G, G1, e, g, h)←
pk

2 r
$←− [n]

3 c← gahr

4 return c

Algorithm 3: DecryptG(pk, sk, c)

1 (n, G, G1, e, g, h)← pk;
q1 ← sk

2 c′ ← cq1 ; ĝ = gq1

3 s = D logĝ c
′

4 return s

Encryption: An integer a is encrypted in G using Algo. 2. Let a1 and a2 be two
integers that are encrypted in G as c1 and c2. Then, the bilinear map e(c1, c2), belongs
to G1, gives the encryption of (a1a2). Note that arbitrary addition of plaintext is also
possible in the group G1. If g is a generator of the group G, e(g, g) acts as a generator
of the group G1. Thus, the encryption of an integer a is possible in G1 in similar
manner (see Algo. 4).

Algorithm 4: EncryptG1
(pk, a)

1 (n, G, G1, e, g, h)← pk

2 r
$←− [n]

3 g1 ← e(g, g); h1 ← e(g, h)
4 c← (g1)a(h1)r

5 return c

Algorithm 5: DecryptG1
(pk, sk, c)

1 (n, G, G1, e, g, h)← pk
2 q1 ← sk
3 c′ ← cq1 ; ĝ1 = e(g, g)q1

4 s = D logĝ c
′

5 return s

Decryption: At the time of encryption each entry is randomized. The secret key
q1 eliminates the randomization. Then, it is enough to find discrete logarithm D log
of the rest. Algo. 3 and Algo. 5 describes the decryption in G and G1 respectively.
In decryption algorithms, D log computation can be done with expected time O(

√
n)

using Pollard’s lambda method [13]. However, it can be done in constant time using
some extra storage ([4]).

5

Let BGN be an encryption scheme as described above. Then, it is a tuple of five
algorithms (Gen, EncryptG, DecryptG, EncryptG1

, DecryptG1
) as described in Algo. 1,

2, 3, 4 and 5 respectively.

3.3 Garbled Circuit (GC)

Let us consider two parties, with input x and y respectively, who want to compute a
function f(x, y). Then, a garbled circuit [23, 11] allows them to compute f(x, y) in
such a way that none of the parties get any ‘meaningful information’ about the input
of the other party and none, other than the two parties, is able to compute f(x, y).

Kolesnikov et al. [8] introduced an optimization of garbled circuit that allows
XOR gates to be computed without communication or cryptographic operations [22].
Kolesnikov et al. [7] presented efficient GC constructions for several basic functions
using the garbled circuit construction of [8]. In this paper, we use garbled circuit
blocks for subtraction (SUB), comparison (COMP) and multiplexer (MUX) functions from
[8].

4 The Secure Link Prediction (SLP) Problem

Given G = (V,E), let Nv denotes the set of vertices incident on v ∈ V . Let score(v, u)
be a measure of how likely the vertex v is connected to another vertex u in the near
future, where vu /∈ E. A variant of the Link Prediction problem states that given
v ∈ V , it returns a vertex u ∈ V (vu /∈ E) such that score(v, u) is the maximum in
{score(v, u) : u ∈ V \ (Nv ∪ {v})} i.e.,

score(v, u) ≥ score(v, u′), ∀u′ ∈ V \ (Nv ∪ {v}) (1)

Thus, given a vertex v, we find most likely vertex to connect with. There are various
metrics to measure score like the number of common neighbors, Jaccard’s coefficient,
Adamic/Adar metric etc. In this paper, we consider score(v, u) as the number of
common nodes between v and u i.e., score(v, u) = |Nv ∩Nu|. Let A be the adjacency
matrix of the graph G. If iv and iu are the rows corresponding to the vertices v
and u respectively then, the score is the inner product of the rows i.e., score(v, u) =∑N
k=1A[iv][k].A[iu][k]. In this paper we have used BGN encryption scheme to securely

compute this inner product.

4.1 System Overview

Here, we describe the system model considered for the link prediction problem and
goals which we want to achieve.

System Model: In our model (see Fig. 1), there is a client, a cloud server, and a
proxy server. Each of them communicates with others to execute the protocol.

The client is the data owner and is considered to be trusted. It outsources the
graph in encrypted form to the cloud server and generates link prediction queries.
Given a vertex v, it queries for the vertex u which is most likely to be connected in
the future.

The cloud server (CS) holds the encrypted graph and computes over the encrypted
data when the client requests a query. We assume that the cloud server is honest-but-
curious . It is curious to learn and analyze the encrypted data and queries. Neverthe-
less, it is honest and follows the protocol.

The proxy server (PS) helps the cloud server and the client to find the most
likely vertex securely. It reduces computational overhead of the client by performing
decryptions. However, the proxy server is assumed to be honest-but-curious.

6

Figure 1: System model

All channels connecting the client, the cloud and the proxy servers are assumed to
be secure. An adversary can eavesdrop on channels but can not tamper messages sent
along it. However, we assume, the cloud and the proxy servers do not collude.

This system model is to outsource as much computation as possible without leaking
the information about the data, assuming the client has very low computation power
(like mobile devices). This kind of model to outsource computation previously used
by Wang et al. [22] for secure comparison. Assumption of the proxy and cloud server
do not collude is a standard assumption.

Design Goals: In this paper, under the assumption of the above system model, we
aim at providing a solution for the secure link prediction problem. In our design, we
want to achieve the following objectives.

1. Confidentiality: The cloud and proxy servers should not get any information
about the graph structure i.e., the servers should not be able to construct a
graph which is isomorphic to the source graph.

2. Efficiency: In our model, the client is weak with respect to storage and compu-
tations. Since the cloud server has a large amount of storage and computation
power, the client outsources the data to it.

Moreover, the client should efficiently perform neighbor query, vertex degree query
or adjacency query. These are the basic query that every graph should support. The
client should leak as little information as possible.

4.2 Secure Link Prediction Scheme

In this section, we present definition of link prediction scheme for a graph G and its
security against adaptive chosen-query attack.

Definition 1. A secure link prediction (SLP) scheme for a graph G is a tuple (KeyGen,
EncMatrix, TrapdoorGen, LPQuery, FindMaxVertex) of algorithms as follows.

• (PK,SK) ← KeyGen(1λ) : is a client-side PPT algorithm that takes λ as a
security parameter and outputs a public key PK and a secret key SK.

• T ← EncMatrix(G,SK,PK) : is a client-side PPT algorithm that takes a public
key PK, a secret key SK and a graph G as inputs and outputs a structure T
that stores the encrypted adjacency matrix of G.

• τv ← TrapdoorGen(v,SK) : is a client-side PPT algorithm that takes a secret
key SK and a vertex v as inputs and outputs a query trapdoor τv.

• ĉ ← LPQuery(τv, T) : is a PPT algorithm run by a cloud server that takes a
query trapdoor τv and the structure T as inputs and outputs list of encrypted
scores ĉ with all vertices.

• ires ← FindMaxVertex(pk, sk, ĉ) : is a PPT algorithm run by a proxy server that
takes pk, sk and ĉ as inputs and outputs the most probable vertex identifier ires
to connect with the queried vertex.

7

Correctness: An SLP scheme is said to be correct if, ∀λ ∈ N, ∀(PK,SK) generated
using KeyGen(1λ) and all sequences of queries on T , each query outputs a correct vertex
identifier except with negligible probability.

Adaptive security: An SLP scheme should have two properties:

1. Given T , the cloud servers should not learn any information about G and

2. From a sequence of query trapdoors, the servers should learn nothing about
corresponding queried vertices.

The security of an SLP is defined in real-ideal paradigm. In real scenario, the the
challenger C generates keys. The adversary A generates a graph G which it sends to
C. C encrypts the graph with its secret key and sends it to A. Later, q times it finds
a query vertex based on previous results (i.e., adaptive) and receives trapdoor for the
current. Finally A outputs a guess bit b. In ideal scenario, on receiving the graph
G, the simulator S generates a simulated encrypted matrix. For each adaptive query
of A, S returns a simulated token. Finally A outputs a guess bit b′. The security
definition (Definition 2) ensures A can not distinguish C from S.

We have assumed that the communication channel between the client and the
servers are secure. Since the CS and the PS do not collude, they do not share their
collected information. So, the simulator can treat CS and PS separately.

In our scheme, the proxy server does not have the encrypted data or the trapdoors.
During query operation, it gets a set of scrambled scores of the queried vertex with
other vertices. So, we can consider only the cloud server as the adversary (see [5]).
Let us define security as follows.

Algorithm 6: RealSLPA (λ)

1 (PK,SK)← KeyGen(1λ)

2 (G, stA)← A0(1λ)
3 T ← EncMatrix(G,SK,PK)

4 (v1, stA)← A1(stA, T)
5 τv1 ← TrapdoorGen(v1,SK)
6 for 2 ≤ i ≤ q do
7 (vi, stA)←

Ai(stA, T, τv1 , . . . , τvi−1
)

8 τvi ←
TrapdoorGen(vi,SK)

9 end
10 τ = (τv1 , τv2 , . . . , τvq)
11 b← Aq+1(T, τ, stA), where

b ∈ {0, 1}
12 return b

Algorithm 7: IdealSLPA,S(λ)

1 (G, stA)← A0(1λ)
2 (stS , T)← S0(Lbld(G))
3 (v1, stA)← A1(stA, T)
4 (τv1 , stS)← S1(stS ,Lqry(v1))
5 for 2 ≤ i ≤ q do
6 (vi, stA)←

Ai(stA, T, τv1 , . . . , τvi−1
)

7 (τvi , stS)←
Si(stS ,Lqry(v1), . . . ,Lqry(vi−1))

8 end
9 τ = (τv1 , τv2 , . . . , τvq)

10 b′ ← Aq+1(T, τ, stA), where
b′ ∈ {0, 1}

11 return b′

Definition 2 (Adaptive semantic security (CQA2)). Let SLP = (KeyGen, EncMatrix,
TrapdoorGen, LPQuery, FindMaxVertex) be a secure link prediction scheme. Let A be
a stateful adversary, C be a challenger, S be a stateful simulator and L = (Lbld,Lqry)
be a stateful leakage algorithm. Let us consider two games- RealSLPA (λ) (see Algo. 6)
and IdealSLPA,S(λ) (see Algo. 7).

8

The SLP is said to be adaptively semantically L-secure against chosen-query attacks
(CQA2) if, ∀ PPT adversaries A = (A0,A1, . . . ,Aq+1), where q = poly(λ), ∃ a PPT
simulator S = (S0,S1, . . . ,Sq), such that

|Pr[RealSLPA (λ) = 1]− Pr[IdealSLPA,S(λ) = 1]| ≤ negl(λ) (2)

4.3 Overview of our proposed schemes

A graph can be encrypted in several ways like adjacency matrix, adjacency list, edge
list etc. Each of them has advantages and disadvantages depending on the application.
In our scheme, we have defined score as the number of common neighbors that can be
calculated just by computing inner product of the rows corresponding to the calculating
vertices. The basic idea is that, given a vertex, to predict the most probable vertex
to connect with, we compute scores with all other vertices and sort them according to
their score. However, calculating the inner product and sorting them in cloud server
are expensive operations and there is no scheme that provides all of the functionality
to be computed over encrypted data. So, we have used BGN homomorphic encryption
scheme that enables us to compute inner product on encrypted data. Choosing BGN,
gives power to the client for querying not only link prediction query but also neighbor
query, degree of a vertex query, adjacency query etc.

Besides, the score computation, the score decryption and sorting the score in en-
crypted form is non-trivial keeping in mind that the client has low computation power.
So, we have proposed three schemes that perform score computations as well as sorting
on encrypted data with the help of a honest-but-querious proxy server which does not
collude with the cloud server. The three schemes show tread-off between the com-
putation cost, communication cost and leakage in order to compute the vertex most
probable to connect with.

5 Our Proposed Protocol for SLP

In this section, we propose an efficient scheme SLP-I and analyze its security. The
scheme is divided into three phases– key generation, data encryption, and query phase.
The client first generates required secret and public keys. Then it encrypts the ad-
jacency matrix of the graph in a structure and uploads it to the CS. To query for a
vertex, the client generates a query trapdoor and sends it to the CS. The CS computes
encrypted score (i.e., inner products of the row corresponding to the queried vertex
with the other vertices on the encrypted graph). The PS decrypts the scores, finds
the vertex with highest score and sends the result to the client.

Key Generation: In this phase, given a security parameter λ, the client chooses a
bilinear map e : G× G→ G1. Then, the permutation key kperm is chosen at random
for the PRP F : {0, 1}∗×{0, 1}logN → {0, 1}logN . It executes BGN.Gen() to get sk and
pk. After generating private key SK and public key PK, a part sk of SK is shared
with the PS. This part of the key helps the PS to compute secure comparisons. Key
generation is described in Algo. 8.

Algorithm 8: KeyGen(1λ)

1 kperm
$←− {0, 1}λ

2 (pk, sk)← BGN.Gen(1λ)
3 PK ← pk; SK ← (sk, kperm)
4 return (PK,SK)

9

Data Encryption: In this phase, the client encrypts the adjacency matrix with its
private key and uploads the encrypted matrix to the CS (see Algo. 9). Each entry aij
in the adjacency matrix A of G is encrypted using Algo. 2. Let M = (mij)N×N be
the encrypted matrix. Then, each row of M is stored in the structure T . The PRP F
gives the position in T corresponding to vertices. Finally, the structure T is sent to
the CS.

Algorithm 9: EncMatrixI(A,SK,PK)

1 (n,G,G1, e, g, h)← PK
2 (q1, kperm)← SK
3 for i = 1, j = 1 to i = N, j = N

do
4 mij ←

BGN.EncryptG(PK.pk, aij)
5 end
6 Construct a structure T of size

N .
7 for i = 1 to i = N do
8 ind← Fkperm(id(vi))
9 T [ind]←

(mi1,mi2, . . . ,miN).

10 end
11 return T

Algorithm 10: TrapdoorGenI(v,SK)

1 (sk, kperm)← SK
2 i′ ← Fkperm(id(v)); s

$←− {0, 1}λ
3 τv ← (i′, s)
4 return τv

Algorithm 11: LPQueryI(τv, T)

1 N ← |T |; (i′, s)← τv
2 (mi′1,mi′2, . . . ,mi′N)← T [i′]
3 for i = 1 to i = N do

4 r
$←− {0, 1}λ

5 if i 6= i′ then
6 (mi1,mi2, . . . ,miN)←

T [i]
7 ci ←

e(g, h)r.
∏N
k=1 e(mi′k,mik)

8 else
9 ci′ ← e(g, g)0.e(g, h)r

10 end

11 end
12 πs ← permutation with key s.
13 ĉ← (cπs(1), cπs(2), . . . , cπs(N))
14 m̂←

(mπs(1),mπs(2), . . . ,mπs(N)),
15 where mi ← mi′i.h

ri ,

ri
$←− {0, 1}λ

16 return (ĉ, m̂) to the PS

Query: In the query phase, the client sends a query trapdoor to the CS. The CS finds
encrypted scores with respect to the other vertices and sends them to the PS. The PS
decrypts them and sends the identifier of the vertex with highest score to the client.

To query for a vertex v, the client first chooses a secret key s
$←− {0, 1}λ for

the PRP πs that is not known to the PS (see Algo. 10). Then it finds the position
i′ = Fkperm(id(v)). Finally, the client sends the trapdoor τv = (i′, s) as query trapdoor
to the CS.

On receiving τv, the CS computes the encrypted scores (c1, c2, . . . , cN) (see Algo. 11)
and computes (m1,m2, . . . ,mN) corresponding to the queried vertex. Using πs, the CS
shuffles the order of the encrypted scores and mi’s. Finally, the CS sends the shuffled
encrypted scores and the scrambled queried-row entries (mπs(1),mπs(2), . . . ,mπs(N))
to the PS.

Since, the PS has sk (= q1), it can decrypt all c̄is and m̄is. It decrypts m̄i first
and then decrypts c̄i only if corresponding decrypted value of m̄i is 0. Then, it takes
an ires such that sires is the maximum in the set {si : i ∈ [N]} and sends it to the
client (see Algo. 12). Finally, the client finds the resulting vertex identifier vres as
vres ← π−1

s (ires).

Correctness: For any two rows T [i] and T [j], if cij is the encryption of the score sij

10

Algorithm 12: FindMaxVertexI(sk, ĉ, m̂)

1 (c̄1, c̄2, . . . , c̄N)← ĉ
2 (m̄1, m̄2, . . . , m̄N)← m̂
3 for i = 1 to i = N do
4 si ← BGN.DecryptG1

(pk, sk, c̄i)

5 ai ← (BGN.DecryptG(pk, sk, m̄i)) mod 2

6 end
7 ires ← i : (ai = 0) ∧ (si = max{sj : j ∈ [N]})
8 return ires to the client

then, cij = e(g, h)r
∏N
k=1 e(mik,mjk). Again, since e(g, g)q1q2 = 1, we get (cij)

q1 =

(e(g, g)q1)
∑N

k=1 aikajk = ĝsij , where ĝ = e(g, g)q1 .
Thus, D log of (cij)

q1 to the base ĝ gives sij . If powers of ĝ are pre-computed, the
score sij can be found in constant time. However, Pollard’s lambda method [13] can
be used to find discrete logarithm of c′ij base ĝ.

5.1 Security Analysis

In the security definition, a small amount of leakage has been allowed. The adversary
knows the algorithms and possesses the encrypted data and queried trapdoors. Only
SK is unknown to it. The leakage function L is a pair (Lbld,Lqry) (associated with
EncMatrix and LPQuery respectively) where Lbld(G) = {|T |} and Lqry(v) = {τv}.

Theorem 1. If BGN is semantically secure and F is a PRP, then SLP-I is L-secure
against adaptive chosen-query attacks.

Proof. The proof of security is based on the simulation-based CQA-II security (see
Definition 2). Given the leakage Lbld, the simulator S generates a randomized structure

T̃ which simulates the structure T of the challenger C. Given a query trapdoor τv, S
returns simulated trapdoors τ̃v maintaining system consistency of the future queries
by the adversary. To prove the theorem, it is enough to show that the trapdoors
generated by C and S are indistinguishable to A.

• (Simulating the structure T) S first generates (SK,PK)← BGN.Gen(1λ). Given

Lbld(A), S takes an empty structure T̃ of size |T |. Finally, it takes m̃ij ←
BGN.EncryptG(PK.pk, 0λ), (i, j) ∈ [N]× [N] where N = |T |.

• (Simulating query trapdoor τv) S first takes an empty dictionary Q. Given
Lsrch(v), S checks whether v is present in Q. If not, it takes a random logN -bit
string τ̃v, stores it as Q[v] = τ̃v and returns τ̃v. If v has appeared before, it
returns Q[v].

Semantic security of BGN guarantees that m̃ij and mij are indistinguishable. Since F
is a PRP, τ̃v and τv are indistinguishable. This completes the proof.

6 SLP-II with less leakage

Though the SLP-I scheme is efficient, it has few disadvantages. Firstly, in SLP-I, the
number of common nodes between the queried vertex and all other vertices are leaked
to the PS which provides partial knowledge of the graph to it. Since, the server PS
is semi honest, we want to leak as little information as possible. In this section, we
propose another scheme SLP-II that hides most of the scores from the PS which results
in leakage reduction.

11

Secondly, the client has high communication cost with PS while processing a link
prediction query. Our proposed SLP-II scheme has an advantages over this with re-
duced communication cost from CS to PS is. We achieve these by using extra storage
of size of the matrix M and extra bandwidth from the PS to the CS of O(N).

6.1 Proposed Protocol

In SLP-II, after computing the scores, the CS increases that of the incident vertices
randomly from maximum possible score i.e., degree of the queried vertex. For example,
let s be a score in the form gs1, then a random number r, greater than or equal to the
degree, is added with it. Then the scores is increased as gs1.g

r
1 = g

(s+r)
1 . Since lower

bound of r is known to the client, it can eliminate the scores with adjacent vertices.
The PS only derypts the scores and sends the sorted list to the client. Since the degree
is hidden from PS and known to the client, it can eliminate the vertices with score
larger than degree. The algorithms are as follows.

Key Generation: Same as Algo. 8.

Data Encryption: In SLP-II, data encryption is similar to Algo. 9. Together with
M = (mij)N×N , another matrix M ′ = (m′ij)N×N is generated by encrypting a matrix
B (see Algo. 13). The matrix B = (bij)N×N where bij = t, (deg vi < t < N −deg vi) if
vi and vj are connected, else bij = 0. Now, m′ij = e(g, g)bij .e(g, h)rij , where notations
are usual. Finally, The matrices M and M ′ are uploaded to the CS together in
structures T and T ′ respectively. Rows of M and M ′ corresponding to the vertex v
are stored in T [Fkperm(id(v))] and T ′[Fkperm(id(v))] respectively. Note that, entries
of M are in the group G whereas that of M ′ are in G1.

Algorithm 13: EncMatrixII(A,SK,PK)

1 (n,G,G1, e, g, h)← PK;
(q1, kperm)← SK

2 Construct matrix B from A
3 for i = 1, j = 1 to i = N, j = N

do
4 mij ←

BGN.EncryptG(PK.pk, aij)
5 m′ij ←

BGN.EncryptG1
(PK.pk, bij)

6 end
7 Construct structures T and T ′

of size N
8 for i = 1 to i = N do
9 indi ← Fkperm(id(vi))

10 T [indi]←
(mi1,mi2, . . . ,miN)

11 T ′[indi]←
(m′i1,m

′
i2, . . . ,m

′
iN)

12 end
13 return (T, T ′)

Algorithm 14: LPQueryII(τv, T)

1 N ← |T |; (i′, s)← τv
2 (mi′1,mi′2, . . . ,mi′N)← T [i′]
3 for i = 1 to i = N do

4 r
$←− {0, 1}λ

5 if i 6= i′ then
6 (mi1,mi2, . . . ,miN)←

T [i]
7 ci ←

e(g, h)r.
∏N
k=1 e(mi′k,mik)

8 else
9 ci ← e(g, g)0.e(g, h)r

10 end
11 ci = ci.m

′
i′i

12 end

13 m←
∏i=N
i=1 mi′i

14 πs ← permutation with key s.
15 ĉ← (cπs(1), cπs(2), . . . , cπs(N))

16 return d̂ to PS and m to the
client

Query: As in the previous scheme, the client sends query trapdoor τv = (i′, s) to the
CS for a vertex v. Let ĉ = (c1, c2, . . . , cN) be the set of encrypted scores computed

12

in step 7 of Algo. 14. In addition, for each i, ci is updated as ci = ci.m
′
i′i. Then

ĉ = (cπs(1), cπs(2), . . . , cπs(N)) is sent to the PS. Instead of sending m̂ to the PS,

m =
∏i=N
i=1 mi′i is sent to the client, which results the encryption of the degree of the

vertex v. SLP-II query is described in Algo. 14.
The PS decrypts ĉ as s′1, s

′
2, . . . , s

′
N and sorts them. Then, the PS sends (s′i1 , i1),

(s′i2 , i2), . . ., (s′iN , iN) where s′ij ’s are in sorted order and ij ’s are their indices in ĉ (see
Algo.15).

The client takes the first index ires = ij such that s′ij ≤ deg v. The client gets
deg v by decrypting m. Finally, the client can find the resulting vertex identifier vres
as vres ← π−1

s (ires).

Algorithm 15: FindMaxVertexII(sk, c̄, m̄)

1 (d̄1, d̄2, . . . , d̄N)← d̂
2 for i = 1 to i = N do
3 s′i ← BGN.DecryptG1

(pk, sk, d̄i)
4 end
5 Sorting s′is gets ((s′i1 , i1), (s′i2 , i2), . . . , (s′iN , iN))

6 return ((s′i1 , i1), (s′i2 , i2), . . . , (s′iN , iN))

Correctness: For all i, the decrypted entry s′i (line 3, Algo. 15) is equals to si +
bi′i where si is the actual score. Since si ≤ deg v and bi′i is zero, when vi′ and vi
are connected, we can see that, s′i becomes greater than deg v when vi′ and vi are
connected. So, the client can eliminate these entries from the list.

6.2 Security Analysis

SLP-II does not leak any extra information to the CS than SLP-I. The leakage L =
(Lbld,Lqry) is same as it is in SLP-I.

Theorem 2. If BGN is semantically secure and F is a PRP, then SLP-II is L-secure
against adaptive chosen-query attacks.

Proof. As we have seen the proof of Theorem 1, The simulator requires to simulate the
T , T ′ and τv. To simulate the structure T ′, given Lbld(A), S takes an empty structure

T̃ ′ of size |T ′|. Finally, it takes m̃′ij ← BGN.EncryptG1(PK.pk, 0λ), (i, j) ∈ [N] × [N].
Rest of the proof is similar as that of Theorem 1.

7 SLP scheme using garbled circuit (SLP-III)

In SLP-II, the PS is still able to get scores with many vertices and there is a good
amount of communication cost from PS to the client. In this section, we propose
SLP-III in which PS does not get any scores. Besides, the proxy needs to send only
result to the client which reduces communication overhead for the client.

7.1 Protocol Description

In SLP-III, after generating the keys, the client encrypts the adjacency matrix of the
graph and uploads it to the CS. At the same time, it shares a part of its secret key
with the PS. In the query phase, the CS computes the encrypted scores on receiving
query trapdoor from the client. However, it masks each score with random number
selected by itself before sending them to the PS. The PS decrypts the masked scores

13

and evaluates a garbled circuit, constructed by the CS (as described in Section 7.2), to
find the vertex with maximum score. Finally, the PS returns the index corresponding
to the evaluated identifier of the vertex with maximum score.

Key Generation: Same as Algo. 8.

Data Encryption: Same as Algo. 9.

Query: To query for a vertex v, the client generates a query trapdoor tv = (i′, s)
(see Algo. 10) and sends it to the CS. On receiving τv, the CS computes the en-
crypted scores (c1, c2, . . . , cN). It then considers the row T [i′] = (mi′1,mi′2, . . . ,mi′N)
corresponding to the queried vertex. Then, with random ri and r′i, it computes,
c̄i ← cπs(i).BGN.EncryptG1

(PK.pk, ri) and m̄i ← mi′πs(i).BGN.EncryptG(PK.pk, r′i), for
all i. If the encrypted scores are sent directly, the PS can decrypt the scores directly
as it has the partial secret key sk. That is why the CS chooses random ris and r′is to
mask them.

Algorithm 16: LPQueryIII(τv, T)

1 N ← |T |; (i′, s)← τv
2 (mi′1,mi′2, . . . ,mi′N)← T [i′]
3 for i = 1 to i = N do
4 if i 6= i′ then
5 (mi1,mi2, . . . ,miN)← T [i]

6 ci ←
∏N
k=1 e(mτvk,mik)

7 else

8 r
$←− {0, 1}λ

9 ci′ ← e(g, g)0.e(g, h)r

10 end

11 end
12 πs ← permutation with key s.
13 for i = 1 to i = N do

14 ri, r
′
i, xi, x

′
i

$←− {0, 1}λ
15 c̄i ← cπs(i).e(g, g)ri .e(g, h)xi

16 m̄i ← mi′πs(i).g
r′i .hx

′
i

17 end
18 ĉ← (c̄1, c̄2, . . . , c̄N)
19 m̂← (m̄1, m̄2, . . . , m̄N)
20 Computes MGC
21 return (ĉ, m̂, MGC) to PS

To find the vertex with highest score, the CS builds a garbled circuit MGC (see
Fig. 2) as described in Section 7.2. The CS sends ĉ = (c̄1, c̄2, . . . , c̄N) and m̂ =
(m̄1, m̄2, . . . , m̄N) together with a garbled circuit MGC. The CS-side algorithm is
described in Algo. 16.

The PS receives ĉ and m̂. ∀i, let s̄i and āi be the decryption of c̄i and m̄i respec-
tively (see Algo. 17). Then, the PS evaluates MGC. During evaluation, the PS gives
all s̄is and ais and corresponding indices is as input where ai = (āi mod 2). The CS
gives ris and r′′i s where r′′i = (r′i mod 2), ∀i (see Section 7.2).

Algorithm 17: FindMaxVertexIII(sk, ĉ, m̂, GC)

1 (c̄1, c̄2, . . . , c̄N)← ĉ
2 (m̄1, m̄2, . . . , m̄N)← m̂
3 for i = 1 to i = N do
4 s̄i ← BGN.DecryptG1

(pk, sk, c̄i)

5 āi ← (BGN.DecryptG(pk, sk, m̄i))
6 ai ← āi mod 2

7 end
8 Evaluates MGC with s̄i and ais as its inputs.
9 ires ← output of the MGC evaluation

10 return ires to the client

From MGC, the PS gets an index ires which is sent to the client. Finally, the
client finds the resulting vertex identifier vres as vres ← π−1

s (ires).

14

7.2 Maximum Garbled Circuit (MGC)

We want minimum information to be leaked to both the servers. Without the knowl-
edge of values, it is hard to find the maximum value because it is an iterative com-
parison process and requires several round of communication if we use only secure
comparison. However, building a maximum garbled circuit allows cloud and proxy
servers to find the maximum without knowing the value by anyone.

Kolesnikov and Schneider [7] first presented a garbled circuit that computes mini-
mum from a set of distance. In their scheme, one party holds a set of points and the
second party holds a single point. They used homomorphic encryption to compute
the the distances from the single points to the set of points and sort them using the
garble circuit. However, the original value of the points belongs to them were known to
them. In this paper, we have introduced a novel maximum garbled circuit (MGC) by
which one party computes the maximum from a set of numbers, without the knowledge
their values, with the help of another party without leaking them to it. Given a set of
scores MGC outputs only the identity of the vertex with maximum score.
Computing vertex with max score: In SLP-III, the CS computes a garbled circuit
MGC (an example is shown in Fig. 2) for each query to find the maximum scored
vertex identifier. Before computing MGC, in SLP-III, the PS gets (s̄1, s̄2, . . . , s̄N)
and (a1, a2, . . . , aN) (Algo. 17). The CS keeps (r1, r2, . . . , rN) and (r′′1 , r

′′
2 , . . . , r

′′
N)

which are used as input in MGC. During construction, it keeps the indices in the
MGC such a way that MGC outputs only the index of the resulted maximum score.

Figure 2: Example of a Maximum circuit with N = 7

MGC is required to find the index corresponding to the maximum scored vertex.
The circuit is constructed layer by layer. The idea is to compare pair of scores every
time in a layer and pass the result for the next until the resulted vertex is found.
If |V | = N , MGC has (logN + 1) layers starting from 0 to N . In the 0th layer,
there are N number of NSS blocks and the rest of the blocks are Max block. The NSS

blocks is for the 1st layers and computes the scores securely without knowing them.
Thus, each NSS block corresponds to some vertex. Max computes the maximum score
and corresponding index without knowing them. Example of a MGC, to compute
maximum, assuming N = 7 and using Max blocks and NSS blocks, is shown in Fig. 2.
MGC for any N is constructed similarly.

(a) Max1 block (b) Max2 block (c) Max3 block (d) Max4 block

Figure 3: Different max blocks used in MAXIMUM circuit

Max blocks There are 4-types of Max blocks to compute the maximum- Max1, Max2,
Max3 and Max4 (see Fig. 3). The blocks are made different to handle extreme cases.

15

These blocks use COMP and MUX blocks (see Section 3.3).
NSS blocks: Each NSS block has four inputs s̄i, ri, ai and r′′i . The inputs ri and r′′i
comes from the CS while s̄i and ai comes from the PS. It first subtracts ri from s̄i
using SUB block to get the score si. Then, using SUB′ block, it finds the flag bit that
tells whether the vertex is adjacent to the queried vertex. MUL block (see Fig 4b) is
used in NSS block as shown in Fig. 4a to make the score si zero if the vertex is adjacent
else keeps the score si same.

(a) NSS block (b) MUL block (c) SUB′ block

Figure 4: Few circuit blocks

Elimination of scores for adjacent vertices: It can be seen from encryption that
s̄i = si + ri, where si is the actual score corresponding to ith row and ri randomizes
the score. Each bit r′′i is taken to indicate whether r′i is odd or even. On the other
hand, each bit ai indicates whether the decrypted āi is odd or even. Inequality of
r′′i and ai indicates that the vertex corresponding to ith row is connected with the
queried vertex. In that case, we consider the score si = 0.

The block SUB′, in Fig. 4c, finds outputs 1 if they are equal, else outputs 0. Since,
(s̄i − ri) gives the score, SUB block (see Section. 3.3) is used in MGC to compute the
scores where the PS gives s̄i and CS gives ri. It can be seen that SUB′ subtract only
one bit which is very efficient.

7.3 Security Analysis

In SLP-III, though the PS has almost no leakage, the CS has a little more leakage than
SLP-I. This extra leakage occurs when it interacts with the PS through OT protocol
to provide encoding corresponding to the input of PS. Since OT is secure and does not
leak any meaningful information, we can ignore this leakage. In SLP-III, the leakage
L = (Lbld,Lqry) is same as it is in SLP-I.

Theorem 3. If BGN is semantically secure and F is a PRP, then SLP-III is L-secure
against adaptive chosen-query attacks.

Proof. The proof is the same as that of Theorem 1.

7.4 Basic Queries

All the three schemes support basic queries which includes neighbor query, vertex
degree query and adjacency query.

Neighbor query: Given a vertex, neighbor query is to return the set of vertices
adjacent to it. It is to be noted that, since we have encrypted adjacency matrix of
the graph, it is enough for the client if it gets the decrypted row corresponding to the
queried vertex,

To query neighbor for a vertex v, the client generates τv = (i′, s) as in Algo. 10
and sends it to the CS. The CS permutes rows corresponding to row i′ and send the
permuted row m̂ ← (mπs(1),mπs(2), . . . ,mπs(N)) to the PS. The PS decrypts them

16

and send the decrypted vector (a1, a2, . . . , aN) to the client. The client can compute
inverse permutation for the entries for which the the entries are 1. Here, the CS gets
only the queried vertex and the PS gets the degree of the vertex.

Vertex degree query: To query degree of a vertex v, similarly, the client sends
τv = i′ to the CS. The CS computes encrypted degree as m ←

∏i=N
i=1 mi′i and sends

m to the proxy. The proxy decrypts m and sends the result to the client. s is not
needed as permuting the elements of some row is not required.

Here, the degree is leaked to the PS which can be prevented by randomizing the
result. The CS can randomize the encrypted degree and send the randomization secret
to the client. The client can get the degree just by subtracting the randomization from
the result by the PS.

However, this leakage can be avoided easily, without randomizing the encrypted
degree, if the client performs the decryption.

Adjacency Query: Given two vertices, adjacency query (edge query) tells wither
there is an edge between them. If the client wants to perform adjacency query for the
pair of vertices v1 and v2, the client sends (i′1, i

′
2) (as generated in Algo. 10) to the CS.

The CS returns mi′1i
′
2
. The client can get either the randomized result from the PS or

it can decrypt mi′1i
′
2

by itself.

8 Performance Analysis

In this section, we discuss the efficiency of our proposed schemes. The efficiency is
measured in terms of computations and communication complexities together with
storage requirement and allowed leakages. A summary is given in Table 1. Since there
is no work on the secure link prediction before, we have not compared complexities of
our schemes with any other similar encrypted computations.

8.1 Complexity analysis

Let the graph be G = (V,E) and N = |V |. Let BGN encryption outputs ρ-bit string
for every encryption. We describe the complexities as bellow.

Leakage Comparison: As we see the Table 1, each scheme leaks, to the CS, same
amount of information which is the number of vertices of the graph and the query
trapdoors. However, none of the schemes leaks information about the edges in the
graph to the CS. In SLP-I, since the PS has the power to decrypt the scores, it gets
to know Sv = {score(v, u) : u ∈ V }. However, SLP-II reveals only a subset S′v of Sv
and SLP-III manages to hide all scores from the PS. SLP-I can not hide scores from
the PS which results in maximum leakage to the PS.

Storage Requirement: One of the major goals of secure link prediction scheme is
that the client should require very little storage. All our designed schemes have very
low storage requirement for the client. The client has to only store a key which is of
λ bits. For all schemes, the PS stores only a part of the secret key which is of λ bits.

In SLP-I, the CS is required to store |V |2ρ bits for the structure T where the PS
is required to store only the secret key. While reducing the leakage in SLP-II, the CS
storage becomes doubled. However, SLP-III requires the same amount of storage as
SLP-I.

Computation Complexity: In all schemes, the client computes |V |2 number of BGN
encryption to encrypt A while SLP-II additionally computes |V |2 number of the same
to encrypt B. To compute each of |V | encrypted scores, the CS requires |V | bilinear
map (e) computation and |V | multiplications.

17

Table 1: Complexity Comparison Table

Param Entity SLP-I SLP-II SLP-III

Leakage CS |V |, τv1 , τv2 , . . . |V |, τv1 , τv2 , . . . |V |, τv1 , τv2 , . . .
PS Sv, ires S′v, ires ires

client λ bits λ bits λ bits
Storage CS |V |2ρ bits 2|V |2ρ bits |V |2ρ bits

PS ρ bits ρ bits ρ bits
client |V |2(M + A) |V |2(M + A + M1 + A1) |V |2(M + A)

Compu- CS |V |2 P + |V | E |V |2 P + |V |2 P + 4|V | E
tation + (|V |2 + |V |) M (|V |2 + 2|V |) M + (|V |2 + 3|V |) M +

MGCconst(log |V |, |V |)
PS |V |log|V |(M + C + M1 + C1) |V |(M1 + C1) + |V |(M + C + M1 + C1)+

+|V |log|V |C +|V |log|V |C MGCeval(log |V |, |V |)
client→CS |V |2ρ bits 2|V |2ρ bits |V |2ρ bits

Commu- CS→PS 2|V |ρ bits |V |ρ bits 2|V |ρ bits + |V |OT (log |V |+1)
snd +

nication MGCsize(log |V |, |V |) bits

PS→CS - - |V |OT (log |V |+1)
rcv

PS→client log |V | bits 2|V | log |V | bits log |V | bits

Sv - Set of scores of v with all other vertices, S′v- a subset of Sv, ρ- length of
elements in G or G1, C- comparison in G, C1- comparison in G1, M-
multiplication in G, M1- multiplication in G1, E- exponentiation in G, E1-
exponentiation in G1, P- pairing/ bilinear map computation,
MGCsize(log |V |, |V |)- size of MGC with |V | log |V |-bit inputs,
MGCconst(log |V |, |V |)- MGC contraction with |V | log |V |-bit inputs,
MGCeval(log |V |, |V |)- MGC evaluation with |V | log |V |-bit inputs,

OT
(log |V |+1)
snd - information to send for (log |V |+ 1)-bit OT , OT

(log |V |+1)
rcv -

information to receive for log |V |-bit OT .

Additionally, SLP-I randomizes the encrypted entries corresponding to the row that
has been queried. This requires |V | exponentiations and |V | multiplications. SLP-II
randomizes the encrypted scores. This requires |V | multiplications and computes
the encrypted degree of the queried vertex which requires |V | multiplications. Apart
from computations of encrypted scores, in SLP-III, the CS computes a garbled circuit
MGC.

In all, the PS decrypts |V | scores. Each decryption requires log |V | multiplications
on average. To find the vertex with maximum score, in SLP-I and SLP-II, the PS
compares |V | numbers. The |V | encrypted entries are decrypted by the PS in SLP-I
and SLP-III. In addition, the PS evaluates the garbled circuit MGC in SLP-III.

Communication Complexity: To upload the encrypted matrices, SLP-I and SLP-
III requires |V |2ρ bits and SLP-II requires 2|V |2ρ bits of communications. To query,
it sends only the trapdoor of size 2ρ bits (aprx.).

The CS sends 2|V | entries to the PS, in case of SLP-I and SLP-III. For SLP-II,
the CS sends only |V | entries. Each of these entries is of ρ bits. In addition, SLP-III
sends the garbled circuit MGC. PS to CS communication happens only when the PS
evaluates MGC. For SLP-I and SLP-III, the PS sends only ires which is of log |V | bits
to the client. However, the PS sends 2|V | log |V | bits to the client.

Complexity for GC Computation: It can be observed that log |V |-bit SUB, 1-bit
SUB′, log |V |-bit MUL, log |V |-bit COMP and log |V |-bit MUX blocks consist of (4 log |V |
XOR-gates and log |V | AND-gates), (4 XOR-gates and 1 AND-gate), (log |V | AND-
gates), (3 log |V | XOR-gates and log |V | AND-gates) and (2 log |V | XOR-gates and
log |V | AND-gates) respectively. Thus, log |V |-bit NSS and log |V |-bit Max blocks con-
sist of ((4 log |V |+ 4) XOR-gates and (2 log |V |+ 1) AND-gates) and (7 log |V | XOR-

18

gates and 3 log |V | AND-gates) respectively.
In our designed garbled circuit MGC, there are (|V | − 1) Max blocks and |V | NSS

blocks. Thus, MGC requires |V |(11 log |V | + 4) XOR-gates and |V |(5 log |V | + 1)
AND-gates. However, the PS receives |V |(log |V | + 1) bits through OT for the first
layer.

Thus, MGCsize(log |V |, |V |) is the size of |V |(11 log |V |+4) XOR-gates and |V |(5 log |V |+
1) AND-gates, whereas MGCconst(log |V |, |V |) and MGCeval(log |V |, |V |) are compu-
tational cost to construct and evaluate.

9 Experimental Evaluation

In this section, the experimental evaluations of our designed schemes, SLP-I and SLP-
II, are presented. In our experiment, we have used a single machine for both the
client and the server. All data has been assumed to be residing in main memory. The
machine is with an Intel Core i7-4770 CPU and with 8-core operating at 3.40GHz. It
is equipped with 8GB RAM and runs an Ubuntu 16.04 LTS 64-bit operating system.
The open source PBC [17] library has been used in our implementation to support
BGN. The code is in the repository [18].

9.1 Datasets

For our experiment, we have used real-world datasets. We have taken the datasets from
the SNAP datasets [9]. The collection consists of various kinds of real-world network
data which includes social networks, citation networks, collaboration networks, web
graphs etc.

Table 2: Detail of the graph datasets

Dataset Name #Nodes #Edges

bitcoin-alpha 3,783 24,186
ego-facebook 4,039 88,234
email-Enron 36,692 183,831
email-Eu-core 1,005 25,571
Wiki-Vote 7,115 103,689

For our experiment, we have considered the undirected graph datasets- bitcoin-
alpha, ego-Facebook, Email-Enron, email-Eu-core and Wiki-Vote. The number of nodes
and the edges of the graphs are shown in Table 2.

Instead of the above graphs, their subgraphs have been considered. First fixed
number of vertices from the graph datasets and edges joining them have been chosen
for the subgraphs. For example, for 1000, vertices with identifier < 1000 have been
taken for the subgraph.

9.2 Experiment Results

In our experiment, five datasets have been taken. The experiment has been done for
each dataset taking extracted subgraphs with vertices 50 to 1000 incremented by 50.
The number of edges in the subgraphs is shown in Fig. 5. For the pairing, 128, 256
and 512 bits prime-pairs are taken. In our proposed schemes, the most expensive
operation for the client is encrypting the matrix (EncMatrix). For the cloud and the
proxy, score computing (LPQuery) and finding maximum vertex (FindMaxVertex) are
the most expensive operations respectively. Hence, throughout this section, we have
discussed mainly these three operations.

19

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of vertices

N
u

m
b

e
r

o
f

e
d

g
e

s

bitcoin
Facebook
Enron
Eu-core
Wiki-Vote

Figure 5: Number of vertices and edges of the subgraphs

As we have seen, in the proposed protocols, encrypting each entry of the adjacency
matrix is the main operation of the encryption, the number of edges does not affect
the encryption time for both SLP-I and SLP-II. This is because, irrespective of SLP
schemes, the number of operations are independent of number of edges.

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

Number of vertices

T
im

e
 t
a
k
e
n
 t
b
y
 t
h
e
 c

lie
n
t
(s

)

SLP-I
SLP-II

(a) Encryption time taken
by the client

0 200 400 600 800 1000
0

200

400

600

800

1000

Number of vertices

T
im

e
 t
a
k
e
n
 b

y
 t
h
e
 c

lo
u
d
 (

s
)

SLP-I
SLP-II

(b) Encrypted score compu-
tation times

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of vertices

T
im

e
 t
a
k
e
n
 b

y
 t
h
e
 p

ro
x
y
 (

s
)

SLP-I
SLP-II

(c) Score decryption and
sorting times

Figure 6: comparison between SLP-I and SLP-II w.r.t. computation time when
the primes are of 128 bits each

Similarly, time required by the cloud to compute score is independent of number
of edges and depends on number of entries in the adjacency matrix i.e., N2. Time
taken for each of the operations is shown in Fig. 6. In the figure, we have compared
time for both SLP-I and SLP-II taking primes 128 bits each.

However, the time taken by the proxy to decrypt the scores is depends on the
number of vertices. In SLP-I, the proxy has to decrypt |V | entries in G as well as |V |
scores in G1 where in SLP-II, it decrypts only in |V | scores in G1. So proxy takes more
time in SLP-I than in SLP-II. This can be observed in Fig. 6c.

50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of vertices

T
im

e
 t
a
k
e
n
 b

y
 t
h
e
 p

ro
x
y
 (

s
)

Bitcoin
Facebook
Enron
Eu-core
Wiki-Vote

Figure 7: Time taken by the proxy in SLP-II for different datasets considering
128-bit primes

For a query, in SLP-II, the proxy decrypts scores only for corresponding vertices

20

that are not incident to the vertex queried for. So, only in this case, the computational
time depends on the number of edges in the graph. As density of edges in a graph
increases the chance of decreasing computational time for the graph increases. In
Fig. 7 we have compared computational time taken by the proxy in SLP-II for different
datasets.

In the above figures, we have considered only 128-bit primes. It can be observed
from the experiment, the computational time depends on the security parameter. As
we increase the size of the primes, the computational time grows exponentially. We
have compared the change of computational time for all of the client, cloud and proxy
for both SLP-I and SLP-II (see Fig. 8 and Fig. 9 respectively). However, in practical,
as we keep the security bit fixed, keeping the security bits as low as possible improves
the performance.

50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Vertices (n)

T
im

e
 t
a
k
e
n
 b

y
 t
h
e
 C

lie
n
t
(s

e
c
)

128
256
512

(a) Client time in SLP-I

50 100 150 200 250 300
0

500

1000

1500

2000

Number of Vertices (n)

T
im

e
 t
a
k
e
n
 b

y
 t
h
e
 C

lo
u
d
 (

s
e
c
)

128
256
512

(b) Cloud time in SLP-I

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Number of Vertices (n)

T
im

e
 t

a
k
e

n
 b

y
 t

h
e

 P
ro

x
y
 (

s
e

c
)

128
256
512

(c) Proxy time in SLP-I

Figure 8: Computational time in SLP-I with 128, 256 and 512-bit primes

50 100 150 200 250 300
0

500

1000

1500

2000

Number of Vertices (n)

T
im

e
 t
a
k
e
n
 b

y
 t
h
e
 C

lie
n
t
(s

e
c
)

128
256
512

(a) Client time in SLP-II

50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Vertices (n)

T
im

e
 t
a
k
e
n
 b

y
 t
h
e
 C

lo
u
d
 (

s
e
c
)

128
256
512

(b) Cloud time in SLP-II

50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Vertices (n)

T
im

e
 t

a
k
e

n
 b

y
 t

h
e

 P
ro

x
y
 (

s
e

c
)

128
256
512

(c) Proxy time in SLP-II

Figure 9: Computational time in SLP-II with 128, 256 and 512-bit primes

9.3 Estimation of computational cost in SLP-III

In the previous section, we have shown the experimental results for SLP-I and SLP-II.
In this section, we have estimated the computational cost for SLP-III. Encryption
algorithm of SLP-III is same as SLP-I. So both required same amount of time for
encryption for the same dataset. To estimate query time, we have considered a random
graph with 103 vertices.

Query Time: In SLP-III the cloud computes encrypted scores and the proxy decrypts
the scores as well as random numbers. The number of decryption in each group is same
as SLP-I. However, in SLP-III, it requires an extra garbled circuit computation. For
this, 1000 OT for 128-bit security of ECC is required which takes 138∗1000ms = 138s
aprx. ([2, 15]). In addition to that, the PS evaluates the GC with 1000∗(11∗257+4) =
2831000 XOR-gates and 1000 ∗ (5 ∗ 257 + 1) = 1286000 AND-gates. Assuming that
the encryption used in each GC circuit is AES (128-bit), GC evaluation requires 2

21

AES decryption and the CS requires 8 encryption. As we see in [1], it requires 0.57
cycles per byte for AES. Thus, for evaluation in a single core processor, the PS requires
(2*(1286000*256/8)*0.57) cycles = 46913280 cycles that takes (46913280/(2.5∗109)) =
0.019s. Similarly, The CS requires 0.078s to construct the GC.

The estimated costs are measured with respect to a single core 2.5 GHz processor.
However, in practice, the CS provides a large number of multi-core processors. As we
see all the computations can be computed in parallel, the query cost can be reduced
dramatically. Each of the above-mentioned costs can be improved to cost

p
s with p

processors and cost is cost.

10 Introduction to SLPk

Let us define another variant of secure link prediction problem SLPk. Instead of return-
ing the vertex with highest score, an SLPk returns indices of k number of top-scored
vertices.

Let, a graph G = (V,E) is given. Then, the top-k Link Prediction Problem states
that given a vertex v ∈ V , it returns a set of vertices {u1, u2, . . . , uk} such that
score(v, ui) is among top-k elements in Sv. The top-k link prediction scheme is said
to be secure i.e., a secure top-k link prediction problem scheme (SLPk) if, the servers
do not get any meaningful information about G from its encryption or sequence of
queries.

Our proposed schemes, SLP-I and SLP-II, can be extended to support SLPk queries.
In SLP-I, the only change is that instead of returning only the index of the vertex with
highest score, the proxy has to return the indices of the top-k highest scores to the
client.

11 Conclusion

In this paper, we have introduced the secure link prediction problem and discussed
its security. We have presented three constructions of SLP. The first proposed scheme
SLP-I has the least computational time with maximum leakage to the proxy. The
second one SLP-II reduces the leakage by randomizing scores. However, it suffers high
communication cost from proxy to the client. The third scheme SLP-III has minimum
leakage to the proxy. Though the garbled circuit helps to reduce leakage, it increases
the communication and computational cost of the cloud and the proxy servers.

Performance analysis shows that they are practical. We have implemented proto-
types of first two schemes and measured the performance by doing experiment with
different real-life datasets. We also estimated the cost for SLP-III. In the future, we
want to make a library that support multiple queries including neighbor query, edge
query, degree query, link prediction query etc.

It is to be noted that the cost of computation without privacy and security is
far better. The performance has been degraded since we have added security. The
performance comes at the cost of security.

Throughout the paper, we have considered unweighted graph. As a future work the
schemes can be extended to weighted graphs. Moreover, we have initiated the secure
link prediction problem and considered only common neighbors as score metric. As
a future work, we will consider the other distance metrics like Jaccard’s coefficient,
Adamic/Adar, preferential attachment, Katzβ etc. and compare the efficiency of each.

22

Acknowledgments

We thank Gagandeep Singh and Sameep Mehta of IBM India research for their initial
valuable comments on this work.

References

[1] https://www.cryptopp.com/benchmarks.html.

[2] G. Asharov, Y. Lindell, T. Schneider and M. Zohner, More efficient oblivious
transfer and extensions for faster secure computation, in 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013, 2013, 535–548.

[3] L. Backstrom, C. Dwork and J. M. Kleinberg, Wherefore art thou r3579x:
anonymized social networks, hidden patterns, and structural steganography,
Commun. ACM, 54 (2011), 133–141.

[4] D. Boneh, E. Goh and K. Nissim, Evaluating 2-dnf formulas on ciphertexts, in
Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005, Proceedings, 2005, 325–341.

[5] C. Bösch, A. Peter, B. Leenders, H. W. Lim, Q. Tang, H. Wang, P. H. Hartel
and W. Jonker, Distributed searchable symmetric encryption, in 2014 Twelfth
Annual International Conference on Privacy, Security and Trust, Toronto, ON,
Canada, July 23-24, 2014, 2014, 330–337.

[6] M. Chase and S. Kamara, Structured encryption and controlled disclosure, in
Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, 2010, 577–594.

[7] V. Kolesnikov, A. Sadeghi and T. Schneider, Improved garbled circuit building
blocks and applications to auctions and computing minima, in Cryptology and
Network Security, 8th International Conference, CANS 2009, Kanazawa, Japan,
December 12-14, 2009. Proceedings, 2009, 1–20.

[8] V. Kolesnikov and T. Schneider, Improved garbled circuit: Free XOR gates
and applications, in Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part
II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security
and Cryptography Foundations, 2008, 486–498.

[9] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset
collection, http://snap.stanford.edu/data, 2014.

[10] D. Liben-Nowell and J. M. Kleinberg, The link prediction problem for social net-
works, in Proceedings of the 2003 ACM CIKM International Conference on Infor-
mation and Knowledge Management, New Orleans, Louisiana, USA, November
2-8, 2003, 2003, 556–559.

[11] Y. Lindell and B. Pinkas, A proof of security of yao’s protocol for two-party
computation, J. Cryptology, 22 (2009), 161–188.

[12] C. Liu, L. Zhu and J. Chen, Graph encryption for top-k nearest keyword search
queries on cloud, T-SUSC, 2 (2017), 371–381.

[13] A. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

[14] X. Meng, S. Kamara, K. Nissim and G. Kollios, GRECS: graph encryption for
approximate shortest distance queries, in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, Oc-
tober 12-6, 2015, 2015, 504–517.

23

https://www.cryptopp.com/benchmarks.html
http://snap.stanford.edu/data

[15] M. Naor and B. Pinkas, Efficient oblivious transfer protocols, in Proceedings
of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001,
Washington, DC, USA., 2001, 448–457.

[16] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft and E. Shi, Graphsc:
Parallel secure computation made easy, in 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, 2015, 377–394.

[17] PBC Library, The Pairing-based Cryptography Library, https://crypto.

stanford.edu/pbc/.

[18] L. Sardar and S. Ruj, Prototypes of secure link prediction schemes,
Dropbox repository, https://www.dropbox.com/sh/y2obrkefvbrqt05/

AAA-nzr1tmK8uJPfVWtXxJFba?dl=0.

[19] M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du and J. Hu, Cloud-based approx-
imate constrained shortest distance queries over encrypted graphs with privacy
protection, IEEE Trans. Information Forensics and Security, 13 (2018), 940–953.

[20] D. X. Song, D. A. Wagner and A. Perrig, Practical techniques for searches on
encrypted data, in 2000 IEEE Symposium on Security and Privacy, Berkeley,
California, USA, May 14-17, 2000, 2000, 44–55.

[21] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu and S. De-
vadas, Path ORAM: an extremely simple oblivious RAM protocol, in 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, 2013, 299–310,

[22] Q. Wang, K. Ren, M. Du, Q. Li and A. Mohaisen, Secgdb: Graph encryption for
exact shortest distance queries with efficient updates, in Financial Cryptography
and Data Security - FC 2017, Sliema, Malta, April 3-7, 2017, Revised Selected
Papers, 2017, 79–97.

[23] A. C. Yao, Protocols for secure computations (extended abstract), in 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA,
3-5 November 1982, 1982, 160–164.

[24] Y. Zheng, B. Wang, W. Lou and Y. T. Hou, Privacy-preserving link prediction
in decentralized online social networks, in Computer Security - ESORICS 2015 -
Vienna, Austria, September 21-25, 2015, Proceedings, Part II, 2015, 61–80.

24

https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://www.dropbox.com/sh/y2obrkefvbrqt05/AAA-nzr1tmK8uJPfVWtXxJFba?dl=0
https://www.dropbox.com/sh/y2obrkefvbrqt05/AAA-nzr1tmK8uJPfVWtXxJFba?dl=0

	Introduction
	Related Work
	Preliminaries
	Bilinear Maps
	BGN Encryption Scheme
	Garbled Circuit (GC)

	The Secure Link Prediction (SLP) Problem
	System Overview
	Secure Link Prediction Scheme
	Overview of our proposed schemes

	Our Proposed Protocol for SLP
	Security Analysis

	SLP-II with less leakage
	Proposed Protocol
	Security Analysis

	 SLP scheme using garbled circuit (SLP-III)
	Protocol Description
	Maximum Garbled Circuit (MGC)
	Security Analysis
	Basic Queries

	Performance Analysis
	Complexity analysis

	Experimental Evaluation
	Datasets
	Experiment Results
	Estimation of computational cost in SLP-III

	Introduction to SLPk
	Conclusion

