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Abstract. We present the ring-based configuration of the NIST sub-
mission Round5, a Ring Learning with Rounding (RLWR)- based IND-
CPA secure public-key encryption scheme. It combines elements of the
NIST candidates Round2 (use of RLWR as underlying problem, having
1 +x+ . . .+xn with n+ 1 prime as reduction polynomial, allowing for a
large design space) and HILA5 (the constant-time error-correction code
XEf). Round5 performs part of encryption, and decryption via multipli-
cation in Zp[x]/(xn+1 − 1), and uses secret-key polynomials that have a
factor (x− 1). This technique reduces the failure probability and makes
correlation in the decryption error negligibly low. The latter allows the
effective application of error correction through XEf to further reduce
the failure rate and shrink parameters, improving both security and per-
formance.
We argue for the security of Round5, both formal and concrete. We
further analyze the decryption error, and give analytical as well as ex-
perimental results arguing that the decryption failure rate is lower than
in Round2, with negligible correlation in errors.
IND-CCA secure parameters constructed using Round5 and offering more
than 232 and 256 bits of quantum and classical security respectively,
under the conservative core sieving model, require only 2144 B of band-
width. For comparison, similar, competing proposals require over 30%
more bandwidth. Furthermore, the high flexilibity of Round5’s design
allows choosing finely tuned parameters fitting the needs of diverse ap-
plications – ranging from the IoT to high-security levels.

Keywords: Lattice cryptography · Learning With Rounding · Prime cyclotomic
ring · Public-key encryption · IND-CPA · Error correction

1 Introduction

Standardization bodies such as NIST [28] and ETSI [16,17] are currently in
the process of evaluating and standardizing post-quantum cryptography (PQC),



alternative solutions to RSA and elliptic curve cryptography that are secure
against quantum computers. Lattice-based cryptography is a prominent branch
of post-quantum cryptography that is based on well-studied problems and offers
very good performance characteristics.

Motivation. The choice of the underlying polynomial ring greatly affects the per-
formance of schemes based on ideal lattices, i.e., those based on the Ring Learn-
ing with Errors (RLWE) [26] and the Ring Learning with Rounding (RLWR) [6]
problems. A common choice [8,3] of the polynomial ring to instantiate an RLWE
or RLWR problem is Zq[x]/Φ2n(x) where n is a power of 2. Proposals such
as [3,9,13,10] using this ring enjoy lower decryption failure rates due to the
sparse nature of the Φ2n(x) leading to lesser noise propagation. However, requir-
ing that n be a power of 2 restricts the choice of n. Proposals such as [5,33]
choose instead the Zq[x]/Φn+1(x) where Φn+1(x) = xn+xn−1 + . . .+ 1 for n+ 1
a prime, thus offering a much denser design space. However, due to the worse
noise propagation in this polynomial, the decryption failure rate of such schemes
suffers.

Error correction has been shown to improve the security and performance of
ideal lattice based cryptosystems in [18], and has been practically demonstrated
in schemes such as [31,19]. We observe that error correction, when Zq[x]/Φ2n(x)
is used, can bring limited reduction in bandwidth requirements if n is limited
to powers of two. On the other hand, applying error correction in schemes us-
ing Zq[x]/Φn+1(x) can bring major improvements since, if failure probability
is improved, then it is relatively easy to find slightly smaller n values that di-
rectly reduce bandwidth requirements. However, as we will see, multiplications
in Zq[x]/Φn+1(x) lead to correlated decryption errors that limit the application
of error correction.

Contributions. In this paper, we present the ring version of the Round5 cryp-
tosystem submitted to NIST. Round5 builds upon the rounding-based Round2 [5]
scheme, that is constructed based on the prime-order cyclotomic ring, and XEf,
the constant-time error correction code in HILA5 [31]. Round2 can finely tune its
parameter n for each targeted security level, which in combination with rounding
and its characteristically small key-sizes leads to efficient performance. However,
having a design based on the Φn+1(x) polynomial, operational correctness in
Round2 suffers from the above mentioned drawbacks.

Our contributions in this work are as follows:

1. We present the RLWR-based Round5 cryptosystem (Sec. 3), that combines
the dense parameter space offered by the prime-order Φn+1(x) cyclotomic
polynomial (n+1 a prime), with the low decryption failure rates typical of the
power-of-two Φ2n(x) polynomial (n a power of two), such as in NewHope [3]
and Kyber [9].
Round5 does this by computing public-keys modulo Φn+1(x), such that n+1
is a prime (allowing a wide choice for this security parameter), yet comput-
ing part of the ciphertext modulo Nn+1(x) = xn+1 − 1 and requiring that
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secret-keys are polynomials having a factor (x − 1). The latter two ensure
that an additional term originating from reductions modulo Φn+1(x) in the
public-keys vanishes during reduction modulo Nn+1(x) in encryption and
decryption, leading to a decryption error term that has a noise propagation
as low as in the case of the Φ2n(x) polynomial.

2. We present detailed analytical and experimental results on the decryption
error in Round5, especially the occurrence and behavior of correlated errors
occurring due to reductions modulo Φn+1(x). Our experimental simulations
support the claim that the dependence between errors when performing en-
cryption and decryption modulo Nn+1(x), although still existent, is negli-
gible; these results are of independent interest and apply also to schemes
defined based on the power-of-two Φ2n(x) polynomial.

3. Based on our above results on independent bit errors when using theNn+1(x)
polynomial, we extend the design of Round2 further in Round5 by incorpo-
rating the error correction code XEf, originally due to [31]. Our choice of
this code is motivated by the following.
Firstly, XEf is designed to easily implement constant-time correction of up to
f errors, where f is arbitrary, in practice between 2 and 5, and can be chosen
based upon the usage scenario. This flexibility of XEf fits the overall design
goals of Round5. In comparison, the only other NIST [28] post-quantum
candidate utilizing constant-time error correction is ThreeBears [19], however
its Melas code can correct only (up to) 2 errors. Another NIST candidate,
LAC [25] uses BCH error correction, for which no obvious constant-time
implementation exists [24].
Secondly, operations in XEf, are based on Boolean logic only, and are there-
fore simple and fast. XEf’s performance is therefore at least at par with, if not
better, than the constant-time Melas error correction of the ThreeBears [19]
submission, which involves multiplication operations in F29 . However, we
note that the performance overhead of error correction is in general, neg-
ligible compared to other, more significant overheads in ideal lattice based
cryptosystems, such as polynomial ring multiplications.
Thus, XEf allows Round5 to further drop its decryption failure rate signif-
icantly, shrink parameters, and in the process improve security and perfor-
mance, while remaining flexible enough to optimize its performance when
targeting different applications.

2 Background

For each positive integer a, we denote the set {0, 1, . . . , a − 1} by Za. For a set

A, we denote by a
$←− A that a is drawn uniformly at random from A. For x ∈ Q,

we denote by bxc and bxe rounding downwards to the next smaller integer and
rounding to the closest integer (with rounding up in case of a tie) respectively.

Let n+1 be prime. The (n+1)-th cyclotomic polynomial Φn+1(x) then equals
xn+xn−1 + · · ·+x+1. We denote the polynomial ring Z[x]/Φn+1(x) by Rn. We
denote by Nn+1(x) the polynomial xn+1−1 = Φn+1(x)(x−1). For each positive
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integer a, we write Rn,a for the set of polynomials of degree less than n with
all coefficients in Za. We call a polynomial in Rn ternary if all its coefficients
are 0, 1 or −1. Throughout this document, regular font letters denote elements
from Rn. For each v ∈ Rn, the Hamming weight of v is defined as its number
of non-zero coefficients. We denote with Hn(h) the set of ternary polynomials of
degree less than n, with Hamming weight h.

Round5 as presented in this paper relies on the same underlying problem as
in [5] tailored to the ring case. Like [5], Round5 as submitted to NIST relies on
the General Learning with Rounding problem.

Definition 1 (Ring Learning with Rounding (RLWR)). Let n, p, q be pos-
itive integers such that q ≥ p ≥ 2. Let Rn,q be a polynomial ring, and let Ds

be a probability distribution on Rn. The search version of the RLWR problem

sRLWRn,m,q,p(Ds) is as follows: given m samples of the form
〈⌊

p
q 〈as〉q

⌉〉
p

with

a ∈ Rn,q and a fixed s← Ds, recover s.
The decision version of the RLWR problem dRLWRn,m,q,p(Ds) is to distin-

guish between the uniform distribution on Rn,q × Rn,p and the distribution(
ai, bi =

〈⌊
p
q 〈as〉q

⌉〉
p

)
with a

$←− Rn,q and a fixed s← Ds.

We note that the original decisional RLWR assumption [6] is to distinguish from
Rn,q × 〈Rn,q〉p. We simplify it to uniform case since p|q in our setting.

Round5 uses XEf, an f -bit majority logic error correcting block code, to
decrease the decryption failure rate. The code is built using the same strategy as
codes used by TRUNC8 [32] (2-bit correction) and HILA5 [31] (5-bit correction).
The XEf code is described by 2f “registers” ri of size |ri| = li with i = 0, . . . , 2f−
1. We view the κ-bits payload block m as a binary polynomial mκ−1x

κ−1 +
· · · + m1x + m0 of length κ. Registers are defined via cyclic reduction ri =
m mod xli − 1. A transmitted message consists of the payload m concatenated
with register set r (a total of µ = κ+ xe bits, where xe =

∑
li).

Upon receiving a message (m′ | r′) one computes the register set r′′ corre-
sponding to m′ and compares it to the received register set r′ – that may also
have errors. Errors are in coefficients m′k where there are parity disagreements
for multitude of registers ri. We use a majority rule and flip bit m′k if

2f−1∑
i=0

((r′i[〈k〉li ]− r′′i [〈k〉li ]) mod 2) ≥ f + 1 (1)

where the sum is taken as the number of disagreeing register parity bits at k.

3 Round5

The core of Round5 is r5 cpa pke, an IND-CPA secure public-key encryption
scheme based on the Ring Learning with Rounding (RLWR) problem. r5 cpa pke
is constructed as a noisy El Gamal encryption scheme similar to the works in [23]
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Algorithm 1: r5 cpa pke keygen()

1 a
$←− Rn,q

2 s
$←− Hn(h)

3 b =〈⌊
p
q

(
〈as〉Φn+1(x)

+ h1

)⌋〉
p

4 return (pk = (a, b), sk = s)

Algorithm 2: r5 cpa pke encrypt(pk,m)

1 r
$←− Hn(h)

2 u =
〈⌊

p
q

(
〈ar〉Φn+1(x)

+ h1

)⌋〉
p

3 v =
〈⌊

t
p

(
Sampleµ〈br〉ξ(x) + h1

)⌋
+

t
2
xef computeκ,f (m)

〉
t

4 return ct = (u, v)

Algorithm 3: r5 cpa pke decrypt(sk, ct)

1 vp = p
t
v

2 y =
〈⌊

2
p

(
vp − Sampleµ〈su〉ξ(x) + h2

)⌋〉
2

3 m̂ = xef correctκ,f (y)
4 return m̂

and [4]. Public keys are noisy RLWR samples in Z[x]/Φn+1(x), computed via a
lossy rounding down to a smaller modulus.

Round5 and its core r5 cpa pke builds on Round2 [5], specifically the building
block CPA-PKE. r5 cpa pke is thus described in Algorithms 1, 2 and 3, which
it inherits from the ring variant of CPA-PKE, along with the cryptosystem
parameters, positive integers n, h, p, q, t, µ, f , τ , and a security parameter κ.
The moduli q, p, t are powers of 2, such that t|p|q. It is required that p2 ≥ qt
(see Sec. 5.1), µ ≤ n and µ ≥ κ. h is the Hamming weight of secret polynomials.
r5 cpa pke also defines a generic polynomial ξ(x) ∈ {Nn+1(x), Φn+1(x)}, which
is used to reduce the result of polynomial multiplication during encryption and
decryption. In this paper, we discuss performance (in the form of decryption
failure behavior) and security trade-offs and requirements for the cases that
ξ(x) = Nn+1(x) and ξ(x) = Φn+1(x).

Algorithm 1 first samples a public polynomial a with coefficients in Zq, a
secret-key polynomial s and computes the public-key polynomial b by rounding
its coefficients (to the closest integer) to a smaller modulus p < q. Here, rounding
is described in terms of rounding downwards, and addition of a rounding constant
h1 = q/2p. In Algorithm 2, the encryptor samples an ephemeral secret encryption
randomness r and uses it along with a to compute the first ciphertext component
u similar to b. The second ciphertext component v is computed using the public-
key b and r to obtain a RLWR sample, which is then used as a one-time pad
to encrypt the message (which is additionally encoded using an error correction
code). Finally, the decryptor in Algorithm 3 computes 〈su〉ξ(x) ≈ 〈br〉ξ(x) and

recovers the message. The rounding constant h2 = p/2t+p/4−q/2p is used here
to remove bias in the decryption error.

Since not all coefficients of v are needed to encrypt a κ bit message, encryption
uses the function Sampleµ : c ∈ Rn,p → Zµp , whose output corresponds to the µ
lowest order polynomial coefficients of c: c0 + c1x+ · · ·+ cµ−1x

µ−1. The use of
Sampleµ makes encryption and decryption more efficient since only µ coefficients
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need to be computed in the ciphertext instead of all n. This also improves the
failure probability since the encryptor and decryptor need to agree on fewer
symbols. Further, this also requires sending fewer symbols, reducing bandwidth
required.

The integer f denotes the error-correction capability of a code Xefκ,f ⊂
Zµ2 . We have an encoding function xef computeκ,f : {0, 1}κ → Xefκ,f and a
decoding function xef correctκ,f : Zµ2 → {0, 1}κ such that for each m ∈ {0, 1}κ
and each error e = (e0, . . . , eµ−1) with at most f bits equal to 1

xef correctκ,f (xef computeκ,f (m) + e) = m. (2)

Secret-keys in Round5 are sparse, ternary and balanced, i.e., they are poly-
nomials of degree at most (n− 1), exactly h/2 coefficients of which are +1, h/2
are −1, and the rest zero. Having a fixed weight (sparse) reduces probability
of decryption failure and makes computations faster. The latter is also helped
by the fact that non-zero components are either +1 or −1 (ternary), implying
that multiplications can be accomplished using only additions and subtractions.
Finally, having an equal number of +1’s and −1’s (balanced) ensures that the
secret-keys have a factor (x−1). Section 4 analyzes how this ensures that decryp-
tion errors are not correlated, allowing error correction to be used in Round5.
As an additional benefit, the decryption failure rate remains low and at the level

of x2
k

+ 1 cyclotomic polynomials, despite using reductions modulo Φn+1(x) to
compute public-keys.

As a final note, the NIST submission Lizard [10,11] also uses sparse, ternary
secret-keys, and similar to our proposal enjoys the resulting benefits in decryp-
tion failure probability and computational efficiency. However, Lizard (specifi-
cally, its ring-based instantiation RLizard) uses Φ2n (for n a power of 2) as the
reduction polynomial. It thus does not require balanced secret-keys and our tech-
nique for reducing error correlations, although its ring choice limits its parameter
choices and design space.

4 Correctness analysis

In this section, the decryption failure behavior of r5 cpa pke is analyzed. We
first present a sufficient condition for correct decryption. We then analyze the
probability of this condition not being satisfied and describe how we evaluated
this decryption failure probability.

Sufficient condition for correctness. Let ∆ = (h1 + h2)1µ − iv + Sampleµ(〈(br−
su)〉ξ), where t

p iv(x) represents the error introduced in the ciphertext component

v(x) due to rounding downwards; each coefficient of iv(x) is in Zp/t, and 1a is
the polynomial of degree a − 1 with all coefficients equal to 1. As shown in
Appendix A, if the i-th coefficient of the polynomial y in decryption and the
i-th coefficient of xef computeκ,f (m) do not agree, then〈

q

p
∆i

〉
q

∈
[q

4
, q − q

4

]
. (3)
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Decryption failure probability. The probability of decryption failure in coefficient
i before error correction is thus at most the probability that (3) is satisfied. We
write b ≡ p

q (〈as〉Φn+1 + h11n) − ib with all coefficients of ib in [0, 1). We thus

have that q
pb ≡ 〈as〉Φn+1

+ jb (mod q) with all coefficients of jb = h11n − ib in

I = (− q
2p ,

q
2p ] ∩ Z. Similarly, q

pu ≡ 〈ar〉Φn+1
+ ju (mod q) with all components

of ju in I. We thus can write

q

p
(br − su) ≡ 〈sa〉Φn+1

r − s〈ar〉Φn+1
+ jbr − sju (mod q). (4)

Obviously, if ξ = Φn+1, then 〈sa〉Φn+1
r − s〈ar〉Φn+1

≡ 0 (mod ξ). The same is
true if ξ = Nn+1 and r and s both are multiples of (x − 1). This is so as there
are λs, λr ∈ Z[x] such that 〈as〉Φn+1

r − s〈ar〉Φn+1
= λsΦn+1(x)r(x) − sλrΦn+1.

As (x − 1) divides s and r, both Φn+1r and sΦn+1 are divisible by Nn+1. As a
result, for ξ ∈ {Φn+1, Nn+1} we have that

q

p
∆ ≡ jv + Sampleµ (〈jbr − sju〉ξ) (mod q). (5)

In our analysis below, the coefficients of jb and ju are drawn independently
and uniformly from I, and the coefficients of jv are drawn independently and
distributed as q

py with y uniform on (− p
2t ,

p
2t ] ∩ Z.

4.1 Computing failure probability when ξ = Φn+1

We now combine (3) and (5) for the case that ξ = Φn+1. As Nn+1(x) is a multiple
of Φn+1(x), we have that 〈f〉Φn+1 = 〈〈f〉N 〉Φn+1 . Moreover, if g(x) =

∑n
i=0 gix

i,
then 〈g〉Φn+1 = g − gnΦn+1. In particular, for all polynomials s, e,

if 〈se〉N =

n∑
k=0

ck(s, e)xk, then 〈se〉Φn+1 =

n−1∑
k=0

(ck(s, e)− cn(s, e))xk, (6)

Hence, if the i-th bit is not retrieved correctly, then

〈(jv(x))i + ci(jb, r)− cn(jb, r)− ci(s, ju) + cn(s, ju)〉q ∈
[ q

4
, q − q

4

]
. (7)

Assuming independence, and taking into account that r and s contain h/2 ones
and h/2 minus ones, ck(jb, r) − cn(jb, r) − ck(s, ju) + cn(s, ju) is distributed as
the difference of 2h independent random variables on I, minus the sum of 2h
independent random variables on I. The probability that (7) is satisfied thus can
be computed explicitly. By the union bound, the probability that at least one of
the µ symbols is not retrieved correctly is at most µ times the probability that
(7) is satisfied.

4.2 Correlation in decryption errors when ξ = Φn+1

A basic requirement for using XEf error correction code is that the errors it aims
to correct are independent. However, the condition in (7) for a decryption error
in position i shows terms cn(jb, r) and cn(s, ju) that are common to all positions
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Fig. 1: Probabilities of at least one (continuous lines) and at least two errors
(dotted lines) in Round5 ring parameters, plotted against the Hamming weight of
secrets (X-axis), for the reduction polynomials Φn+1(x) and Nn+1(x). Diamonds
represent corresponding probabilities computed from actual Round5 simulations
for the same parameters. Scripts for analyzing and reproducing these results can
be found at www.round5.org.

i. Figure 1 shows the effect of this dependency, by comparing the estimated
probabilities of at least one error and that of at least two errors occurring, when
the reduction polynomial ξ = Nn+1 (as in r5 cpa pke) and when ξ = Φn+1 (as
in Round2 [5]), respectively. It can be seen that due to correlated errors, the
probability of at least two errors occurring when the reduction polynomial is
ξ = Φn+1 is much larger than in the case of the Nn+1(x) reduction polynomial.
As a consequence, the XEf code cannot be directly employed with the reduction
polynomial ξ = Φn+1 as used in Round2.

For any a, (6) can be used to compute p(i | a), the probability that bit
i is not retrieved correctly, given that −cn(jb, r) + cn(s, ju) ≡ a (mod q). We
assume that having a bit error in position i, given that cn(s, ju)− cn(jb, r) ≡ a,
is independent of having a bit error in another position j, given that cn(s, ju)−
cn(jb, r) ≡ a. The probability of having exactly k bit errors, given that cn(s, ju)−
cn(jb, r) ≡ a, then equals

(
µ
k

)
(p(0 | a)k(1 − p(0 | a))µ−k. By summing these

probabilities over a, weighted with the probability that cn(s, ju)− cn(jb, r) ≡ a,
the probability of having exactly k bit errors is obtained. In Figure 1, the result
of application of this method is also compared with simulations of scaled-down
Round5 parameters; Section 4.4 contains details.

4.3 Computing failure probability when ξ = Nn+1

Combination of (3) and (5) for ξ = Nn+1 implies that if an error occurs in
position i, then

〈(jv(x))i + ci(jb, r)− ci(s, ju)〉q ∈
[q

4
, q − q

4

]
. (8)

Note that in order that (8) can be used, it is required that s and r both are
multiples of (x− 1), as is the case with Round5.
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Assuming independence, and assuming that r and s contains h/2 ones and
h/2 minus ones, ci(jb, r) − ci(s, ju) is distributed as the sum of h independent
uniform random variables on I, minus the sum of h independent uniform ran-
dom variables on I. The probability that (8) is satisfied thus can be computed
explicitly.

Now let the error-correcting code be capable of correcting f symbol errors.
Assuming that ci(s, e) and cj(s, e) are independent whenever i 6= j, the proba-
bility of not decoding correctly is at most

∑
e≥f+1

(
µ
e

)
pen(1− pn)µ−e.

4.4 Correlation and Error correction: Experimental results

Figure 1 compares the estimated probabilities of at least one error occurring
and that of at least two errors occurring, when ξ = Nn+1 (as in r5 cpa pke) and
when ξ = Φn+1 (as in Round2 [5]), respectively. These estimates are computed by
explicitly convolving probability distributions. Parameters are simulated without
error correction, and are n = 800, q = 211, p = 27, t = 24, µ = κ = 128, while
the Hamming weight varies between 100 and 750 in order to show its effect on
both the bit failure rate and error correlation. The influence of the highest-order
coefficients cn(s, e) common to all coefficients in the Φn+1 case is accounted for
as explained in Section 4.2. Clearly, the probability of at least two errors is much
higher when multiplications are done modulo Φn+1 instead of Nn+1, and in the
latter case, this probability is significantly lower than the probability of at least
one error. Figure 1 also shows corresponding probabilities of at least one and
at least two errors, obtained from simulations of actual, scaled-down r5 cpa pke
parameters, showing that the actual behavior closely matches estimates.

To conclude, the effect of dependency due to polynomial multiplication mod-
ulo Φn+1 as in Round2 is made negligible by the combined use of polynomial
multiplication modulo Nn+1 and balanced secrets in Round5, allowing the use
of forward error correction, resulting in better security and performance.

5 Security analysis

In Section 5.1, we show that if ξ = Φn+1, then r5 cpa pke is IND-CPA se-
cure. Section 5.2 details how Round2’s use of the function Sampleµ prevents
known distinguishing attacks such as the “Evaluate at 1 ” attack [20]. Next,
Section 5.3 extends the IND-CPA security proof in Section 5.1 to a RLWE-
variant of r5 cpa pke, which gives strong confidence in Round5’s design. Finally,
in Section 5.4 it is discussed why this proof does not directly translate to an
RLWR-based design and a simple design change in Round5 that would make it
apply, but which is not introduced since it does not bring major benefits from a
concrete security viewpoint.

5.1 IND-CPA security of r5 cpa pke when ξ = Φn+1

When the reduction polynomial ξ(x) in Round5 equals Φn+1(x), then r5 cpa pke
is an IND-CPA secure public-key encryption scheme, under the assumption that
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the decision Ring Learning with Rounding (RLWR) problem with sparse-ternary
secrets (dRLWRspt) is hard for the polynomial ring Z[x]/Φn+1(x). [6, Theorem 3.2]
proves that the RLWR problem for any distribution on the secrets is hard as-
suming that the RLWE problem is hard for the same distribution, for a super-
polynomial modulus q. This gives confidence in the asymptotic hardness of our
scheme’s underlying problem.

The below theorem (informal) gives a tight, classical reduction against clas-
sical or quantum adversaries in the standard model:

Theorem 1 For every adversary A against r5 cpa pke, there exist distinguish-
ers B and C such that, for z = max(p, tq/p),

AdvIND-CPA
r5 cpa pke(ξ=Φn+1)

(A) ≤ Adv
dRLWRspt
n,1,q,p (B) + Adv

dRLWRspt
n,2,q,z (C). (9)

The proof of the above theorem follows a similar approach as [13] to equalize the
noise ratios q/p and p/t in (the coefficients of) the two ciphertext components
u and v, allowing them to be expressed as two RLWR samples with a common
secret and noise distribution (with noise ratio q/z). This technique however does
not apply if the reduction polynomial ξ in Round5 is Nn+1, as is required for
the secure usage of (XEf) error correction in Round5 (see Section 4.3).

5.2 Distinguishing attack at x = 1 for ξ = Nn+1

When ξ = Nn+1 and µ = n+ 1, a distinguisher can be built from the evaluation
of the ciphertext component v(x) in Algorithm 2 in x = 1. This is based on the
fact that (x− 1) divides both r(x) and Nn+1(x) . The attack does not apply if
µ ≤ n as in Round5, as the sum of the coefficients of v(x) hidden by Sampleµ is
uniformly distributed. Further details can be found in Appendix B.

5.3 IND-CPA security of r5 cpa pke with ξ = Nn+1 and
independent noise

A variant of r5 cpa pke where the noise is independently sampled from a given
distribution instead of being generated via rounding, is an IND-CPA secure
public-key encryption scheme, if the decision Ring LWE problem for Z[x]/Φn+1(x)
is hard; this results gives confidence in Round5’s RLWR-based design.

Theorem 2 For every adversary A against a variant r5 cpa pke′ of r5 cpa pke
where the noise is independently sampled, there exist distinguishers C and E such
that

AdvIND-CPA
r5 cpa pke′(ξ=Nn+1)(A) ≤ Adv

RLWE(Zq [x]/Φn+1(x))
m=1 (C) + Adv

RLWE(Zq [x]/Φn+1(x))
m=2 (E).

(10)
where m denotes the number of RLWE samples available to each distinguisher.

A more detailed version of the above theorem and its proof can be found in
Appendix C.
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Algorithm 4: round to root(a, q, p)

1 b←
⌊
p
q
a
⌋

2 for i← 0 to n− 1 do

3 ei ←
(
idx = i ∈ Z, val = p

q
a−

⌊
p
q
a
⌋
∈ Q

)
4 Sort e in descending order of e.val.

5 k ← p
⌈
b(1)
p

⌉
− b(1)

6 for i← 0 to k − 1 do
7 bei.idx ← bei.idx + 1
8 return b

5.4 IND-CPA security of r5 cpa pke with ξ = Nn+1 and Rounding
noise

The proof of IND-CPA security for a RLWE variant of r5 cpa pke in Sec. 5.3
requires both the secrets and also the noise polynomials to be multiples of (x−
1) (this is used in an essential step of the proof, see Appendix C). This last
requirement is the reason why this proof does not apply to Round5 with ξ(x) =
xn+1 − 1 using RLWR defined as component-wise rounding. This deterministic
component-wise rounding does not allow enforcing that the noisy “rounding”
polynomials are multiples of (x− 1).

Round5’s design can be adapted to use a slightly different type of rounding
informally named as “rounding to the root lattice” [14,15,27] – that allows the
IND-CPA proof to work. This alternate rounding technique is described in Al-
gorithm 4, that takes as input an a ∈ Zq[x], integer moduli q, p where p < q and
returns a b ∈ Zp[x] satisfying b(1) ≡ 0 (mod p).

Rounded noise introduced in b using Algorithm 4 is a polynomial whose
coefficients sum to zero, so that a direct translation of the IND-CPA proof in
Sec. 5.3 to the RLWR case is possible. However, this modification – going from
component-wise rounding to rounding to the root lattice – would introduce ad-
ditional complexity with no clear concrete security benefits. First, Sampleµ gets
rid of n + 1 − µ coefficients so that knowing k is irrelevant. Second, concrete
security attacks use the norm of the noise that hardly changes here. Because of
these two reasons, we argue that the current Round5 design (and the rounding
used in it) is sound and secure, and further modifications are not required.

6 Parameters, Performance and Comparison

Round5 has a large design space, adding to the parameters available in Round2,
namely n, h, q, p, t, also f . If f > 0, then ξ(x) = N(x). By searching over the
design space, we obtain parameters that minimize bandwidth requirements given
a minimum targeted security level and failure probability. The failure probability
analysis is done as in Section 4. Concrete security is analyzed in the standard
manner [5], the primal [4], dual [1], hybrid [22], and sparse secret attacks [1,5]
are considered, under both sieving [7] and enumeration [2] cost models. Details

11



are not included due to space limits. A script to verify computations is available
at www.round5.org.

Table 1: Parameters: “C” denotes security level against classical adversaries,
while “Q” denotes that against quantum ones. Bandwidth is in bytes.

Name Parameters Failure Sieving Enumeration Bandwidth
Set (n, h, q, p, t, f) rate (C/Q) (C/Q) (pk/ct)

R5ND 1KEM 5c 490, 162, 210, 27, 23, 5 2−88 128/122 170/135 445 + 549
R5ND 1KEM 0c 618, 104, 211, 28, 24, 0 2−65 128/122 160/133 634 + 682
R5ND 1KEM 4longkey 490, 162, 210, 27, 23, 4 2−71 128/122 170/135 453 + 563
R5ND 1PKE 5c 508, 136, 210, 27, 24, 5 2−142 128/122 166/134 461 + 636
R5ND 5PKE 5c 940, 414, 212, 28, 23, 2 2−144 256/232 390/307 972 + 1172
R5ND 0KEM 2iot 372, 178, 211, 27, 23, 2 2−41 96/90 129/96 342 + 394
NewHope1024-CCA-KEM [30] N/A 2−216 257/233 - 1824 + 2208
Kyber1024 [9] N/A 2−169 241/218 - 1440 + 1504
FireSaber-KEM [13] N/A 2−165 270/245 - 1312 + 1472

Table 1 includes a number of exemplary Round5 parameter sets. Also shown
are a number of similar proposals for comparison. R5ND 1KEM 5c and R5ND 1KEM 0c

both target NIST security category 1 as IND-CPA secure KEMs. However, the
second requires around 33% more bandwidth since it does not use error correc-
tion (f = 0), this demonstrates the benefit of error correction.

R5ND 1KEM 4longkey also targets NIST security category 1 as an IND-CPA
secure KEM. However, it uses the flexibility of Sampleµ to encapsulate a longer
key (192 bits instead of 128) so that the (quantum) hardness of attacking the
shared secret is as much as (quantum) attacking the underlying lattice problem.

R5ND 1KEM 5c and R5ND 1PKE 5c differ in the target failure probability. The
latter is constructed by applying the Fujisaki-Okamoto transform [21] on r5 cpa-
pke in a standard manner and combining with a secure (one-time) data encap-

sulation scheme (e.g., AES256); its failure rate is much lower to achieve the IND-
CCA security required of public-key encryption (PKE). Comparing the above
two parameter sets shows that a more relaxed failure probability target leads to
bandwidth savings of more than 100 B.

R5ND 5PKE 5c targets NIST security category 5 as an IND-CCA secure PKE.
It requires 2144 B of bandwidth. Among existing proposals targeting the same
security category, NewHope1024-CCA-KEM [30] requires 88% more bandwidth,
FireSaber [12] requires 30% more, and Kyber1024 requires 37% more. Round5’s
compact keys fit easily in protocols with a limited (1500 B) MTU.

Finally, parameter set R5ND 0KEM 2iot shows that Round5’s design flexibility
makes it easy to obtain parameters that offer a reasonable security level, but
require relatively little bandwidth enabling security in more resource constrained
applications such as IoT.
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7 Conclusions and Future work

In this work, we introduced Round5, a lattice-based cryptosystem consisting
of a public-key encryption scheme that uses rounding both to introduce noise
(for security) and at the same time reduce the key-size, improving performance.
Public-keys are computed via ring multiplications in Z[x]/Φn+1(x), thus offer-
ing a wide variety of choices for the security parameter n, in turn allowing to
finely tune the parameters and performance of Round5. A novel contribution
of this work is to compute part of the ciphertext, on the other hand, via ring
multiplications in Z[x]/Nn+1(x); this, in combination with the fact that Round5
secret-keys are polynomials with a factor (x− 1), allows to have low decryption

failure rates similar to schemes constructed using the x2
k

+1 cyclotomic polyno-
mial, while still allowing to have the above mentioned benefit of the Z[x]/Φn+1(x)
polynomial ring.

Further, this leads to very low dependencies between coefficients and inde-
pendent bit failures, so that error correction can be used to further improve
failure rates, performance (since parameters can be shrunk) and security (since
more noise can be added). For the latter, r5 cpa pke uses the XEf f -bit error
correcting code originally introduced in the HILA5 scheme [31]. The main ad-
vantage of XEf codes is that they avoid table look-ups and conditions altogether
and are therefore resistant to timing attacks.

An interesting open question is to investigate a variant of Round5 where
component-wise rounding is replaced by the alternate rounding technique de-
scribed in Algorithm 4 and investigate implications on the resulting scheme’s
concrete security and decryption failure behavior.
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7. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in
nearest neighbor searching with applications to lattice sieving. In SODA, pages
10–24, 2016. https://eprint.iacr.org/2015/1128.

8. Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with errors
problem. In IEEE S&P, pages 553–570, 2015.
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CCA-secure module-lattice-based KEM. In Euro S&P, pages 353–367, 2018.

10. Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. Lizard: Cut off
the tail! practical post-quantum public-key encryption from LWE and LWR. In
SCN, pages 160–177, 2018.

11. Jung Hee Cheon, Sangjoon Park, Joohee Lee, Duhyeong Kim, Yongsoo Song, Se-
ungwan Hong, Dongwoo Kim, Jinsu Kim, Seong-Min Hong, Aaram Yun, Jeongsu
Kim, Haeryong Park, Eunyoung Choi, Kimoon Kim, Jun-Sub Kim, and Jieun
Lee. Lizard Public Key Encryption. Technical report, National Institute of
Standards and Technology, 2017. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

12. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. SABER. Technical report, National Institute of Stan-
dards and Technology, 2017. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

13. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-
cauteren. Saber: Module-LWR based key exchange, CPA-secure encryption and
CCA-secure KEM. In AFRICACRYPT, pages 282–305, 2018.
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A Probability of decryption failures in Round5

In decryption, the polynomial y = 〈b 2pζc〉2 is computed, where ζ = 〈pt v −
Sampleµ(〈su)〉ξ) + h21µ)〉p, where 1µ is the polynomial of degree µ − 1 with
all coefficients equal to 1. First, a sufficient condition is derived so that y and
η = xef computeκ,f (m) agree in a given coefficient. We have that

v ≡
〈
t

p
Sampleµ(〈br〉ξ + h11n)− t

p
iv

〉
p

+
t

2
η (mod t),
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where t
p iv is the error introduced by the rounding downwards, with each com-

ponent of iv in Zp/t. As a result,

ζ ≡ p

2
η +∆ (mod p) with ∆ = (h1 + h2)1µ − iv + Sampleµ(〈br − su+ h4j〉ξ). (11)

As y = b 2pζ −
1
2e, it holds that y ≡ η + b 2p∆ −

1
21ne ≡ η + b 2p{∆ −

p
41n}pe

(mod 2). Here {w}p denotes the integer in (−p/2, p/2] that is equivalent to w
modulo p. As a consequence, yi = ηi whenever |{∆i − p

4}p| <
p
4 . We infer that

yi = ηi whenever

|
{
q

p
∆i −

q

4

}
q

|< q

4
(12)

Equivalently, as q
p∆i has integer components, if yi 6= ηi, then〈

q

p
∆i

〉
q

∈
[q

4
, q − q

4

]
(13)

In order to analyze this probability, we work out q
p∆ −

q
4j, using (11). We

write jv = q
p ((h1 + h2)1µ − iv − p

41µ). The definitions of h1 and h2 imply that

jv = q
p ( p2t1µ − iv). Each coefficient of iv is in Zp/t. The value of h2 thus ensures

that the absolute value of each coefficient of p
2t − iv is at most p

2t .
We now analyze q

p 〈br − su)〉ξ. Similarly to the expression for v, we write

b =

〈
p

q

(
〈as〉Φn+1 + h11n

)
− p

q
ib

〉
p

and u =

〈
p

q
(〈ar〉Φn+1 + h11n)− p

q
iu

〉
p

,

with all components of ib and iu in Zq/p. We thus have

q

p
(br − su) ≡ 〈sa〉Φn+1r − s〈ar〉Φn+1 + jbr − sju (mod q) (14)

where jb = h11n − ib and ju = h11n − iu. (15)

As h1 = q
2p , all entries of jb and of ju are from the set I := (− q

2p ,
q
2p ] ∩ Z.

Obviously, if ξ(x) = Φn+1(x), then 〈sa〉Φn+1r − s〈ar〉Φn+1 ≡ 0 (mod ξ). The
same is true if ξ = Nn+1 and r and s both are multiple of (x− 1). Indeed, there
are λs, λr ∈ Z[x] such that 〈sa〉Φn+1

= sa+λrΦn+1 and 〈ar〉Φn+1
= ar−λsΦn+1.

As a consequence, 〈as〉Φn+1
r − s〈ar〉Φn+1

= λsΦn+1r − sλrΦn+1. As (x − 1)
divides s and r, both Φn+1r and sΦn+1 are divisible by Nn+1. As a result, for
ξ ∈ {Φn+1, Nn+1}

q

p
∆ ≡ jv + Sampleµ (〈jbr − sju〉ξ) (mod q). (16)

The probability of a decryption failure in position i before error correction is at
most the probability that (13) is satisfied.

In our analysis of (13) combined with (16), the coefficients of jb and ju are
drawn independently and uniformly from I = (− q

2p ,
q
2p ]∩Z, and the coefficients of

jv are drawn independently and distributed as q
py with y uniform on (− p

2t ,
p
2t ]∩Z.
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B Distinguishing attack at x = 1 for ξ = Nn+1

The “Evaluate at x = 1” distinguishing attack [20] applies against schemes using
the ring Z[x]/Nn+1(x). We argue that this attack cannot be applied in Round5
if µ ≤ n.

Consider a pair of polynomials (b(x), v(x)) with b(x) uniformly distributed on
Zp[x]/(xn+1−1) and v(x) = 〈Sampleµ(b tp (〈b(x)r(x)〉N(x)+h1)c)+ t

2m(x)〉t with

r(x) drawn independently and uniformly from the ternary polynomials of degree
at most n−1 satisfying r(1) = 0, and m(x) drawn according to some distribution
on Z2[x]/(xµ−1). We then have that v(x) ≡ bSampleµ( tp (〈b(x)r(x)〉N(x)+h1)c)+
t
2m(x) (mod t), and so w(x) = p

t v(x) satisfies

w(x) ≡ Sampleµ(〈b(x)r(x)〉N(x)) +
p

t
· h1

µ−1∑
i=0

xi − p

t
ε(x) +

p

2
m(x) (mod p).

where ε(x) is the result of rounding downwards, so all components of p
t ε(x) are

in [0, pt )∩Z. As (x− 1) divides both r(x) and N(x), it follows that x− 1 divides
〈b(x)r(x)〉N(x), and so if µ = n+ 1, then

w(1) ≡ p

t
· h1 · (n+ 1)− p

t

n∑
i=0

εi +
p

2
m(1) (mod p).

For large n, the value of p
t

∑n
i=0 εi is close to its average, i.e., close to n p

2t . As a
result, has maxima at values p

t h1(n+ 1)− n p
2t + p

2k for 0 ≤ k ≤ 1. So w(1) can
serve as a distinguisher between the above distribution and the uniform one.

Now assume that µ < n + 1. We take µ = n, which is the case giving most
information to the attacker. Writing f(x) = 〈b(x)r(x)〉N(x) =

∑n
i=0 fix

i, it holds
that

w(1) ≡
n−1∑
i=0

fi +
p

t
· h1 · n−

p

t
ε(1) +

p

2
m(1) (mod p).

As shown above, f(1) = 0, and so
∑n−1
i=0 fi = −fn. Hence, under the assumption

that fn is distributed uniformly modulo p, also w(1) is distributed uniformly
modulo p. The latter assumption is supported by [29].

C Proof of IND-CPA security of r5 cpa pke RLWE
variant

We present the proof of IND-CPA security for an RLWE variant of r5 cpa pke.
The following notation will be used. We write φ(x) = 1 + x + . . . + xn, and
N(x) = xn+1 − 1, where n+ 1 is prime. Moreover, Rφ = Zq[x]/φ(x), and

R0 = {f(x) =

n∑
i=0

fix
i ∈ Zq[x] |

n∑
i=0

fi ≡ 0 (mod q)} (17)

As N(x) = (x − 1)φ(x), it holds that 〈(x − 1)f(x)〉N(x) = (x − 1)〈f(x)〉φ(x) for
any f ∈ Z[x]. As a result, f(x) 7→ (x− 1)f(x) is a bijection from Rφ to R0.

In the proof, the following lemma will be used.
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Lemma 1 Let q and n + 1 be relatively prime, and let (n + 1)−1 be the multi-
plicative inverse of n+ 1 in Zq. The mapping F defined as

F : (

n−1∑
i=0

fix
i) 7→

n−1∑
i=0

fix
i − (n+ 1)−1 ·

(
n−1∑
i=0

fi

)
· φ(x)

is a bijection from Rφ to R0.

Proof. It is easy to see that F maps Rφ to R0. To show that F is a bijection,
let g(x) =

∑n
i=0 gix

i ∈ R0, and let f(x) =
∑n
i=0〈gi − gn〉qxi. Clearly, f ∈ Zq[x]

has degree at most n− 1, and by direct computation, F(f(x)) = g(x).

In the description below, S denotes a set of secrets such that

S ⊂ {f(x) =

n−1∑
i=0

fix
i ∈ Zq[x] |

n−1∑
i=0

fi ≡ 0 (mod q)}, (18)

Moreover, M denotes a message space, and ECC Enc and ECC Dec are error
correcting encoding and decoding algorithms such that

{ECC Enc(m) | m ∈M} ⊂ {f(x) =

n∑
i=0

fix
i ∈ Z2[x] |

n∑
i=0

fi ≡ 0 (mod 2)}.

(19)
Moreover, χ denotes a probability distribution on Rφ.

For understanding Algorithm 7, note that as (x−1)|s(x), we have that su′ ≡
sa′r + se1 (mod N), and, as (x− 1)|r(x), that rb′ ≡ ra′s+ re0 (mod N). As a
consequence,

ζ ≡ v − su′ ≡ q

2
ECC Enc(m) + (x− 1)e2 + re0 − se1 (mod N), whence

b2
q
ζe ≡ ECC Enc(m) + b2

q
((x− 1)e2 + re0 − se1)e (mod N).

We are now in a position to prove the following result.

Theorem 3 For every IND-CPA adversary A with advantage A, there exist
algorithms C and E such that

A ≤ Adv1(C) + Adv3(E). (20)

Here Adv1 refers to the advantage of distinguishing between the uniform distri-
bution on (Zq[x]/φ(x))2 and the R-LWE distribution

(a′, b′ = 〈a′s+ e0〉φ) with a′
$← Rφ, s

$← S, e0 ← χ (21)

Similarly, Adv3 refers to the advantage of distinguishing between the uniform
distribution on (Zq[x]/φ(x))4 and the distribution of two R-LWE samples with
a common secret, given by

(a′, b′′, u′, v′) with a′, b′′
$← Zq[x]/φ(x), u = 〈a′r + e1〉φ, (22)

v = 〈b”r + e2〉φ with r
$← S, e1, e2 ← χ (23)
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Algorithm 5: CPA-PKE.Keygen()

1 a′
$← Rφ, s

$← S, e0 ← χ
2 b′ = 〈a′s+ e0〉φ
3 pk = (a′, b′)
4 sk = s
5 return (pk, sk)

Algorithm 6: CPA-PKE.Enc(pk = (a′, b′),m ∈M)

1 r
$← S, e1, e2

$← χ
2 u′ = 〈a′r + e1〉φ
3 v = 〈 q2ECC Enc(m) + b′r + (x− 1)e2〉N
4 c = (u′, v)
5 return c

Algorithm 7: CPA-PKE.Dec(sk, c)

1 ζ = 〈v − su′〉N
2 m̂ = ECC Dec〈b 2ζq e〉2)

3 return m̂

Proof. We prove the theorem using a sequence of IND-CPA games. We denote
by Si the event that the output of game i equals 1.
Game G0 is the original IND-CPA game. In Game G1, the public key (a′, b′) is
replaced by a pair (a′, b′) uniformly drawn from R2

φ. It can be shown that there

exists an algorithm C for distinguishing between the uniform distribution on R2
φ

and the R-LWE distribution of pairs (a′, b′) with a′
$←− Rφ, b′ = 〈as′+ e0〉φ with

s
$←− S and e0 ← χ such that

Adv1(C) = |Pr(S0)− Pr(S1)|.

In Game G2, the values u′ = 〈a′r + e1〉φ and v̂ = 〈b′r + (x− 1)e2〉N used in the
generation of v are simultaneously substituted with uniform random variables
from Rφ and R0, respectively. it can be shown that there exists an adversary D
with the same running time as that of A such that

Adv2(D) = |Pr(S1)− Pr(S2)|.

Here Adv2 refers to the advantage of distinguishing between the uniform distri-
bution on R3

φ ×R0 and the distribution

(a′, b′, u′, v) = (a′, b′, 〈a′r+e1〉φ, 〈b′r+(x−1)e2〉N ) with a′, b′
$← Rφ, r

$← S, e1, e2
$← χ.

(24)
Because of (19), the value of the ciphertext v in Game G2 is independent of bit
b, and therefore Pr(S2) = 1/2. As a final step, we define Ψ : R3

φ ×R0 → R4
φ as

Ψ(a′(x), b′(x), u′(x), v(x)) = (a′(x), b′′(x), u′(x), v′(x)) with (25)
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b′′(x) =
F(b′(x))

x− 1
, v′(x) =

v(x)

x− 1
(26)

As F is a bijection from Rφ to R0 (see Lemma 1) and f(x) 7→ f(x)
x−1 is a bijection

from R0 to Rφ, it follows that Ψ is a bijection. Writing b(x) = F(b′(x)), we infer
that

b(x)r(x) = b′(x)r(x)− (n+ 1)−1b′(1)φ(x)r(x) ≡ b′(x)r(x) (mod N(x)),

where the latter equivalence holds as r(x) is a multiple of (x− 1), and so

v(x) = 〈b′(x)r(x) + (x− 1)e2(x)〉N = 〈b(x)r(x) + (x− 1)e2(x)〉N .

As r(x) is a multiple of x− 1, it follows that v(x) ∈ R0 and that

v′(x) =
v(x)

x− 1
≡ 〈b′′(x)r(x) + e2(x)〉φ where b′′(x) =

b(x)

x− 1
.

As a result, the advantage of E = Ψ ◦ D in distinguishing between the uniform
distribution on R4

Φ and the distribution

(a′, b′′, u′, v′) with a, b′′
$← Rφ, u

′(x) = 〈a′r + e1〉φ and v′ = 〈b′′r + e2〉φ

is equal to Adv2(D). Note that (a, u′) and (b′′, v′) are two R-LWE samples with
common secret r(x) ∈ S, with a′, b′′ chosen uniformly in Rφ and independent
noise polynomials e1(x) and e2(x).
As Pr(S2) = 1

2 , we conclude that

Adv(A) = |Pr(S0)− Pr(S2)| ≤
1∑
i=0

|Pr(Si)− Pr(Si+1)| = Adv1(C) + Adv2(E).
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