
Efficient Zero-Knowledge for NP from Secure
Two-Party Computation

Hongda Li1,2, Dongxue Pan 1,2, Peifang Ni1,2

1 The Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing 100093, China

2 State Key Lab of Information Security, Institute of Information Engineering,
School of Cyber Security, Chinese Academy of Sciences, Beijing 100093, China

pandongxue@iie.ac.cn, lihongda@iie.ac.cn, nipeifang@iie.ac.cn

Abstract. Ishai et al. [28, 29] introduced a powerful technique that provided a
general transformation from secure multiparty computation (MPC) protocols to
zero-knowledge (ZK) proofs in a black-box way, called “MPC-in-the-head”. A
recent work [27] extends this technique and shows two ZK proof protocols from
a secure two-party computation (2PC) protocol. The works [28, 27] both show a
basic three-round ZK proof protocol which can be made negligibly sound by stan-
dard sequential repetition [19]. Under general black-box zero knowledge notion,
neither ZK proofs nor arguments with negligible soundness error can be achieved
in less than four rounds without additional assumptions [15].
In this paper, we address this problem under the notion of augmented black-box
zero knowledge [26], which is defined with a new simulation method, called aug-
mented black-box simulation. It is presented by permitting the simulator to have
access to the verifier’s current private state (i.e. “random coins” used to compute
the current message) in a special manner. We first show a three-round augmented
black-box ZK proof for the language graph 3-colorability, denoted G3C. And
then we generalize the construction to a three-round augmented black-box ZK
proof for any NP relation R(x,w) without relying on expensive Karp reductions.
The two constructions are based on a family of claw-free permutations and the
general construction is additionally based on a black-box use of a secure 2PC for
a related two-party functionality. Besides, we show our protocols can be made
negligibly sound by directly parallel repetition.

Keywords: Zero-knowledge, claw-free permutation, two-party computation, parallel
repetition.

1 Introduction

Zero-knowledge proofs were first introduced by Goldwasser, Micali, and Rackoff in
[19]. Zero-knowledge proofs allow a prover to convince a verifier about the validity
of a statement, while giving no information beyond the truth of the statement. Infor-
mally, an honest prover should always be able to convince an honest verifier about a
true statement (completeness) while a malicious prover cannot convince a verifier of a
false statement (soundness). Besides, a malicious verifier cannot learn anything beyond

2

the validity of the statement (zero-knowledge). The zero-knowledge property requires
that for every probabilistic polynomial-time (PPT) verifier there exists a PPT algorithm
(simulator), the output of which is indistinguishable from the view of the verifier in the
real protocol.

Simulation techniques. Traditionally, zero-knowledge property is formalized by
simulation and uses black-box (BB) simulator or non-black-box (NBB) simulator to
simulate the verifier’s view. The BB simulator only has oracle access to the verifier’s
strategy program while the NBB simulator can utilize the verifier’s strategy description
as in [1] or [10]. [9, 12] promoted the simulator’s ability by using the “distinguisher-
dependent” simulator, which permits the simulator to know the possibly cheating veri-
fier’s program and the distinguisher. The simulator thus simulates the view of the ver-
ifier with respect to the distinguisher. One another NBB simulation is based on the
knowledge assumptions [8, 23], which require that any algorithm that produces a DDH
tuple, must have “knowledge” of the corresponding exponents specified by the DDH
tuple. In this simulation technique, the simulator is given access to the specified expo-
nent (secret coins) of the verifier by an efficient algorithm (extractor) and can complete
the simulation.

Very recently, [26] proposed a new NBB simulation method, called augmented
black-box simulation, which extends the idea of knowledge assumption. It is presented
by permitting the simulator to have access to the verifier’s current private state (such as
secret coins) in a special manner. The simulator simulates the prover P to interact with
the verifier V . Upon receiving a message form V , the simulator computes P ’s response
to it. Unlike the the prover, the simulator receives not only V ’s message but also V ’s
current private state. In essential, the simulation describes a way to make use of some
internal data of the verifier’s computing process in order to say that whatever the verifier
might have learned from the interaction with an honest prover, the verifier could have
actually obtained by himself. Thus it requires that the power of the simulator is, in fact,
inferior to that of the verifier. Although this simulation technique allows the simulator
to receive the the verifier’s private state, it can only do what the verifier can do. This
satisfies the requirement of zero-knowledge property in essential.

Three-round protocols. [22] first shows that three-round BB ZK for NP is not
possible. Later, [15] shows that neither ZK proofs nor arguments for languages outside
BPP with negligible soundness error can be achieved in less than four rounds without
additional assumptions. However, there are still works [28, 27, 21, 2] on three-round BB
ZK proofs with constant soundness error. [2] shows the classic three-round ZK proof
of the NP-complete hamilton circle problem. [21] shows the classic three-round ZK
proof of the NP-complete graph 3-colorability (G3C) problem. Ishai et al. [28] obtain
a ZK proof for any NP relation with an multi-party computation (MPC) protocol in the
commitment-hybrid model. They show the “MPC-in-the-head” approach [28], which
provides a powerful tool to obtain black-box ZK proofs for generic statements that does
not rely on expensive Karp reductions. Hazay et al. [27] extend this idea and give a
generic transformation from a two-party computation (2PC) protocol to a ZK proof.
The works [28, 27] both show a basic three-round BB ZK proof protocol which can be
made negligibly sound by standard sequential repetition [19]. Our ZK proof for NP also

3

uses secure 2PC protocol to avoid the expensive Karp reduction of an NP language to
an NP-complete language.

There are works [23, 25, 8, 9, 14, 7] on three-round NBB ZK for NP. The works [23,
8] provide a three-round NBB ZK argument from the knowledge assumptions, which
allow the simulator to extract the verifier’s private coins and complete the simulation.
Extending the idea of [23], [25] presents a three-round NBB ZK proof with Blum’s
three-round ZK proof and the proof of knowledge assumption (POKA). The POKA al-
lows the verifier to prove the knowledge of required private coins and thus the simulator
can extract the verifier’s private coins. With the “distinguisher-dependent” simulation
technique, [9] shows a three-round weak ZK argument from obfuscators for multibit
point circuits. Recently, [14] gives a negative result of three-round NBB ZK proofs
with negligible soundness error against non-uniform verifiers under certain assump-
tions on program obfuscation [5]. The similar way has been used in [24] to rule out
constant round public-coin ZK proof systems for NP. [14] also shows that the negative
result applies to the protocol achieved by parallel repetitions of the protocol (executed
by non-uniform verifiers) in [25]. Three-round ZK argument protocols have been shown
in restricted adversarial models where either the prover or the verifier is assumed to be
uniform [3, 4]. Bitansky et al. [7] shows a three-round NBB ZK argument from keyless
multi-collision resistant hash functions (MCRH). They construct the protocol with a
three-round witness indistinguishable proof of knowledge (WIPOK) protocol, and thus
that the language they defined in the protocol (from the proving statement and tran-
scripts) must have a WIPOK, otherwise it needs a reduction process.

In this paper, we address this problem under the notion of augmented black-box
zero knowledge [26]. We focus on the construction of three-round ZK proof protocols
that can be made negligibly sound by directly parallel repetition.

1.1 Our Results

To the best of our knowledge, previous works on three-round ZK proofs under general
black-box zero knowledge notion all formed ZK proofs in a similar way: the prover first
make a “commitment”, which can later be opened to corresponding values according
to the verifier’s different challenges. The simulator for the zero-knowledge property
needs to guess the verifier’s challenge ch first, and aborts if the verifier’s algorithm
oracle does not output ch as its challenge. This is the problem which breaks the zero-
knowledge property of polynomial times parallel repetitions of previous three-round
BB ZK proofs since the simulator can guess the verifier’s challenge with negligible
probability.

In this paper, we address this problem under the notion of augmented black-box
zero knowledge [26], which allows the simulator to have access to the verifier’s current
private state in a special manner. We first show a three-round augmented black-box
ZK proof for the language graph 3-colorability, denoted G3C. And then we generalize
the construction to a three-round augmented black-box ZK proof for any NP relation
R(x,w) without relying on expensive Karp reductions. The first construction is based
on a family of claw-free permutations, a statistically binding commitment scheme, a
pseudorandom generator, and a hard-core function for the claw-free permutations. The
second construction needs a black-box use of a secure 2PC for a related two-party

4

functionality, where by black-box we mean that the functionality can be programmed to
make only black-box (oracle) access to the relation R. Besides claw-free permutations
and 2PC, the general construction still needs hard-core functions and hash functions.
The constructions will inherit the hardness assumptions required for the constructions
of 2PC, which in case of [31, 11] only require trapdoor permutations while in case of
[33, 20] will require the existence of an oblivious-transfer (OT) protocol.

Our three-round augmented black-box ZK proofs first let the verifier’s challenge
be perfectly hiding from the prover and then the prover’s “commitment” and opened
value can be sent together after the verifier’s “challenge” phase. Since the challenge
is hiding from the prover, the prover cannot obtain the challenge, which guarantees
the soundness of the proof system. However, the augmented black-box simulator can
obtain the verifier’s challenge after the “challenge” phase and complete the simulation
according to the obtained challenge. Our simulator does not need to guess the verifier’s
challenge first, which helps show that our ZK proofs can be made negligibly sound by
directly parallel repetition.

1.2 Related Works

ZK and MPC. Before ZK was introduced, Yao introduced secure 2PC and garbled cir-
cuits (GC) [34]. The general condition of 2PC is the problem of MPC [33, 20, 6], which
requires a set of parties holding private inputs to compute a joint function while preserv-
ing the secrecy of each private input. A line of recent works [31, 32, 18, 11] address the
long standing open problem of obtaining round-optimal secure computation. Recently,
a line of works [28, 30, 27, 16] studies ZK with MPC. There are two main streams of
works using the techniques of 2PC or MPC to obtain real efficient ZK protocols, one
relies on ”MPC-in-the-head” approach [28, 29] while the other relies on garbled circuit
based approach [30].

Negative result on three-round private coin ZK proof. Recently, [14] shows that
three-round private coin (verifier keeps random coins private) ZK proofs against non-
uniform verifiers does not exist under certain assumptions on program obfuscation [5].
The authors define an auxiliary input for the verifier, which is an obfuscation of the fol-
lowing program: upon receiving a message α from the prover, it computes a message β
of the honest verifier using randomness r = PRFk(α). With this obfuscated program,
they implement a compiler for compressing any such ZK proof into a two-round argu-
ment, and they show that a simulator for the three-round proof can be used to construct
a cheating prover for the two-round argument, which breaks the soundness of the two-
round argument. Our result does not contradict the negative results because of special
simulation methods.

1.3 Outline

In section 2, we define the notations and definitions that are used through the paper.
In section 3, we present our three-round augmented black-box ZK proof protocol for
G3C. In section 4, we generalize the construction for G3C to a three-round augmented
black-box ZK proof for any NP relation R(x,w) without relying on expensive Karp
reductions.

5

2 Preliminaries

2.1 Notations
We use n to denote the security parameter. We use [k] for any k ∈ N to denote the
set {1, · · · , k}. For any probabilistic algorithm A(·), A(x) is the result of executing A
with input x and uniformly chosen randomness. We use y = A(x) (or y ← A(x)) to
denote that y is set to A(x). For a set S, we use y∈RS to denote that y is uniformly
chosen from S. For any language L and any instance x ∈ L, we denote by RL the
efficiently computable binary NP relation for L. And for any witnesses w of x ∈ L,
RL(x,w) = 1. We write negl(·) to denote an unspecified negligible function, poly(·)
an unspecified polynomial. We denote by a||b the concatenation of two bit strings a and
b and |a| the length of a. We use “X c

= Y ” to denote that probabilistic distributions X
and Y are computationally indistinguishable. See the definition of hard-core functions,
commitment schemes and two-party computation in Appendix A.

2.2 Claw-Free Permutation
Definition 2.1 Claw-Free Permutation [13]. For an index set I ⊆ {0, 1}∗, a collection
of pairs of functions C = {(fi : Di → Di, gi : Di → Di)|i ∈ I} is a family of
claw-free permutations if:

– There is an efficient sampling algorithm CFGen(1n) which outputs a random in-
dex i ∈ {0, 1}n ∩ I and a pair of trapdoors TK, TK ′.

– There are efficient sampling algorithms which, on input i, output a random x ∈ Di

and a random z ∈ Di. We write x← Di, z ← Di as a shorthand.
– Each fi (resp. gi) is efficiently computable given index i and input x ∈ Di (resp.
z ∈ Di).

– Each fi (resp. gi) is a permutation which is efficiently invertible given the trapdoor
information TK (resp. TK ′) and output y ∈ Di. Namely, using TK (resp. TK ′)
one can efficiently compute (unique) x = f−1i (y) (resp. z = g−1i (y)).

– For any probabilistic algorithm B, define the advantage of B as

AdvCB(n) = Pr[fi(x) = gi(z)|(i, TK, TK ′)← CFGen(1n), (x, z)← B(i)].

IfB runs in time at most t(n) andAdvCB(n) ≥ ε(n), thenB is said to (t(n), ε(n))-
break C. C is said to be (t(n), ε(n))-secure if no adversary B can (t(n), ε(n))-
break it. In the asymptotic setting, we require that the the advantage of any PPT
B is negligible in n. Put differently, it is hard to find a “claw” (x, z) (meaning
fi(x) = gi(z)) without the trapdoors TK, TK ′.

We show one example of claw-free permutation based onRSAmodified from [13].
CFGen(1n) picks two random n/4-bit primes p and q, sets nRSA = pq, φ(nRSA) =
(p − 1)(q − 1), picks random e ∈ Z∗φ(nRSA), sets d = e−1 mod φ(nRSA), picks
a random y∗ ∈ Z∗nRSA and outputs i = (nRSA, e, y

∗), TK = d, TK ′ = d. Here
Di = Z∗nRSA , fi(x) = xe mod nRSA, f−1(y) = yd mod nRSA, gi(z) = y∗ze

mod nRSA, g−1(y) = (y/y∗)d mod nRSA. Finding a claw (x, z) implies y∗ =
(x/z)e mod nRSA, which implies inverting RSA on a random input y. [13] also
shows a construction of claw-free permutations from homomorphic trapdoor permu-
tations, which is a generalization of the RSA-based construction.

6

2.3 Augmented Black-box Zero knowledge

Definition 2.2 Interactive Proof System. A pair of interactive Turing machines 〈P, V 〉
is called an interactive proof system for a language L if machine V is polynomial-time
and the following two conditions hold:

– Completeness: There exists a negligible function c such that for every x ∈ L,

Pr[〈P, V 〉(x) = 1] > 1− c(|x|)

– Soundness: There exists a negligible function s such that for every x /∈ L and every
interactive machine B, it holds that

Pr[〈B, V 〉(x) = 1] < s(|x|)

c(·) is called the completeness error, and s(·) the soundness error.

Let 〈P, V 〉 be an interactive proof system for a languageL. We useNextV (x; ·; ·) to
denote the next message function of an honest V with common input x. ThenNextV (x; ·; ·)
is a public algorithm. Define the message sent by V in the i-th round as

αi = NextV (x; i, β;Ri),

where β is the collection of all received messages andRi is the collection of all random
coins used to produce αi. If the computation of αi involves the random coins chosen
by V before round i, they would be in Ri. Then the current private state state(i)V here
for an honest V consists of Ri and a bit (∆i = 1, which indicates that there is a data
collection Ri satisfying αi = NextV (x; i, β;Ri)). Notice that if αi contains multiple
parts as αi = (αi,1, · · · , αi,poly(n)), then each part αi,j (j ∈ [poly(n)]) can correspond
to a state as state(i,j)V = (Ri,j , ∆i,j = 1) and thus

state
(i)
V = state

(i,1)
V , · · · , state(i,poly(n))V .

We recall the definition of the extended verifier V̂ [26] (an imaginary verifier) for
any honest V . V̂ does the same as V when it interacts with P except that it records
its secret state on the private output tape, the tape V does not have. The next message
function of V̂ , denoted by NextV̂ (x; ·; ·), is defined as follows:(

αi, state
(i)
V

)
← NextV̂ (x; i, β;Ri) ,

where αi = NextV (x; i, β;Ri) is written on V̂ ’s communication output tape, and V ’s
current private state state(i)V = (Ri, ∆ = 1) is written on V̂ ’s private output tape.

For any malicious verifier V ∗, the corresponding extended verifier V̂ ∗ computes αi
with the secret next message function selected by V ∗ and outputs(

αi, state
(i)
V ∗ = (R′i, ∆i = 1)

)

7

if V ∗ knows a data collection R′i such that the public next message function holds:
αi = NextV (x; i, β;R

′
i); otherwise V̂ ∗ outputs (αi, state

(i)
V ∗ = (∆i = 0)). For the

condition αi = (αi,1, · · · , αi,poly(n)), each part αi,j (j ∈ [poly(n)]) corresponds to a
state state(i,j)V = (Ri,j , ∆i,j = 1) or state(i,j)V = (∆i,j = 0).

Let O
V̂ ∗

be the oracle of the next message function of V̂ ∗. Then, when being
queried, O

V̂ ∗
(x, z; ·; ·) first computes

αi = NextV ∗(x, z; i, β;Ri),

where the functionNextV ∗(x, z; ·; ·) is the secret next message function selected by V ∗

and may be different from the public function, and then answers with (αi, state
(i)
V ∗).

Definition 2.3 Augmented Black-box Zero-knowledge Proof. Let 〈P, V 〉 be an inter-
active proof system for a language L. 〈P, V 〉 is called an augmented black-box compu-
tational zero-knowledge proof if for every PPT V ∗, the corresponding extended verifier
is denoted by V̂ ∗, there exists an augmented black-box simulator S with oracle access
to O

V̂ ∗
, such that for any auxiliary input z, it holds for all statement x ∈ L:

1) The probability that SOV̂ ∗ (x, z) fails is at most 1
2 .

2) Under the condition that the augmented black-box simulator does not fail, the view
of V ∗ in the real protocol V iewPV ∗(z)(x) and SOV̂ ∗ (x, z) are computationally in-
distinguishable.

3 Three-round Zero-knowledge Proof for G3C

The language G3C consists of all simple (finite) graphs that can be vertex-colored using
three colors such that no two adjacent vertices are given the same color. Formally, a
graph G = (V,E) (V is the vertices collection and E is the edges collection) is 3-
colorable if there exists a mapping φ : V → {1, 2, 3} such that φ(u) 6= φ(v) for every
(u, v) ∈ E. In this section, we aim to construct a three-round augmented black-box
ZK proof for G3C, which is an NP-complete problem. Our proof system can be made
negligibly sound by polynomial times parallel repetitions.

3.1 Construction

Let Π be a collection of permutations over {1, 2, 3}. Let C = {(fi : Di → Di, gi :
Di → Di)|i ∈ I} with Di = {0, 1}n be a family of claw-free permutations. Let Com
be any statistically binding non-interactive commitment scheme and let Comr(m) de-
note a commitment to m with random coins r. Let h : {0, 1}n → {0, 1}l(n) be any
hard-core function for all functions in C. Let G : {0, 1}l(n) → {0, 1}poly(n) be a pseu-
dorandom generator, where poly(n) > l(n) is fixed according to the construction.

We now describe our zero-knowledge protocol ΠG3C = 〈P, V 〉 for the NP rela-
tion RG3C . The prover and verifier are both given an input G = (V,E) with V =
{1, · · · , n}, |E| = 2k (a polynomial in n). The prover is also given a witness φ (a
mapping φ : V → {1, 2, 3}) for G ∈ G3C.

8

In first step, the prover samples i1, · · · , ik ∈R I and obtains the corresponding
k pairs of claw-free permutations (f j = fij , g

j = gij) and k pairs of trapdoors
(TKfj , TKgj) for (f j , gj) respectively. And the prover sends (f j , gj) for j ∈ [k].

In the challenge phase, the verifier V then chooses a1, · · · , ak ∈R {0, 1}n indepen-
dently, and chooses k bits b1, · · · , bk ∈ {0, 1} at random. And the verifier computes

yj =

{
f j(aj), if bj = 0

gj(aj), if bj = 1

and sends y1, · · · , yk.

To responds, the prover computes a0j = (f j)−1(yj), a
1
j = (gj)−1(yj) with trap-

doors (TKfj , TKgj) respectively for j ∈ [k], and then computes

hbj = h(abj), b ∈ {0, 1}, j ∈ [k].

Then, for any α = (α1, · · · , αk) ∈ {0, 1}k, the prover computes

βα = ⊕j∈[k]h
αj
j = hα1

1 ⊕ · · · ⊕ h
αk
k ,

where ⊕ denotes the exclusive OR operation on the binary coded values. And then, the
prover selects a random permutation π ∈ Π on {1, 2, 3}, sets cols = π(φ(s)) for all
s ∈ V , and computes cs = Comrs(cols) with uniformly randomness rs. Finally, for
every edge in E = {(uα, vα)}α∈{0,1}k (uα, vα ∈ V are the corresponding vertices
of that edge) the prover computes eα = G(βα) ⊕ (coluα , ruα , colvα , rvα) and sends
{cs}s∈V , {eα}α∈{0,1}k .

In the verification phase, the verifier computes {hj = h(aj)}j∈[k], β = ⊕j∈[k]hj ,
sets α = b1 · · · bk, and sets (uα, vα) to be the α-th edge in E, where uα, vα ∈ V are
the corresponding vertices of that edge. And then, the verifier computes

(coluα , ruα , colvα , rvα) = eα ⊕ G(β)

and checks that whether coluα , colvα ∈ {1, 2, 3} are distinct and

cuα = Comruα
(coluα), cvα = Comrvα

(colvα).

The verifier accepts the proof only if the check succeeds. The protocol is depicted in
Figure 1.

9

P (G,φ) V (G)
1. Sample i1, · · · , ik ∈R I , and
obtain (f j = fij , g

j = gij)
with trapdoors (TKfj , TKgj)
for j ∈ [k].

{(f j , gj)}j∈[k]−−−−−−−−−−−→
1. Choose a1, · · · , ak ∈R {0, 1}n

and b1, · · · , bk ∈R {0, 1}.
2. For j ∈ [k], compute
yj = f j(aj) if bj = 0,
otherwise yj = gj(aj).

{yj}j∈[k]←−−−−−−−
1. For j ∈ [k], compute with

trapdoors (TKfj , TKgj):
a0j = (f j)−1(yj),
a1j = (gj)−1(yj).

2. For b ∈ {0, 1}, j ∈ [k]:
compute hbj = h(abj).

3. For α ∈ {0, 1}k, compute
βα = ⊕j∈[k]h

αj
j .

4. Choose a random permutation
π on {1, 2, 3} and rs, set
cols = π(φ(s)) for all s ∈ V ,
and compute cs with rs as
cs = Comrs(cols).

5. For every edge in E, compute
eα := G(βα)⊕

(coluα , ruα , colvα , rvα)

{cs}s∈V−−−−−−−−−→
{eα}α∈{0,1}k

1. Compute hj = h(aj)
for j ∈ [k], and β = ⊕j∈[k]hj .

2. Set α = b1 · · · bk and (uα, vα)
to be the α-th edge in E.

3. Compute
(coluα , ruα , colvα , rvα)

= eα ⊕ G(β).
4. Check whether
coluα , colvα ∈ {1, 2, 3},
coluα 6= colvα ,
cuα = Comruα

(coluα),
cvα = Comrvα

(colvα).
5. Accept iff the check succeeds.

Figure 1. Three-round ZK protocol ΠG3C

10

Theorem 3.1 Assuming the existences of pseudorandom generators, a family C of
claw-free permutations on {0, 1}n, statistically binding non-interactive commitment
schemes, and hard-core functions for all functions in C, the construction of ΠG3C in
Figure 1 is an augmented black-box zero-knowledge proof.

Proof. Completeness. If the prover holding witness and the verifier execute the proto-
col honestly, the verifier will obtain (coluα , ruα , colvα , rvα) hiding in eα, which are the
committed colors and randomness used in cuα , cvα . Since the prover holding witness
behaves honestly, coluα and colvα must be distinct. Hence then, the verifier will accept
the proof.

Soundness. From the property of permutations on {0, 1}n, for any received yj ∈
{0, 1}n (j ∈ [k]), a malicious prover can invert both f j and gj on yj with corresponding
trapdoors and obtain a0j , a

1
j . Hence then, the prover cannot predict that which value in

{a0j , a1j} is the one used by the verifier to compute yj . This perfectly hides the challenge
α = (b1, · · · , bk)-th edge chosen by the verifier from the prover.

And since G = (V,E) /∈ G3C, for any mapping φ : V → {1, 2, 3}, there would be
at least one edge, of which the two vertices are in same color. And then no matter how
the prover behaves, from the statistically binding property of the commitment scheme,
for the colors of the vertices committed in {cols}s∈V , there would still be at least one
edge, of which the two vertices are in same color. Therefore, the soundness error is no
more than 1− |E|−1.

Augmented black-box zero-knowledge. Fix any statement G ∈ G3C, for any
PPT verifier V ∗, the corresponding extended verifier is denoted by V̂ ∗ (see subsection
2.3), and let O

V̂ ∗
denote the oracle of the next message function of V̂ ∗. Since zero-

knowledge property is required against any PPT verifier, we consider that any PPT (dis-
tinguishing) algorithm providing auxiliary input to the verifier is a part of the verifier
algorithm. Hence then, we assume that the auxiliary input given to the verifier cannot be
computed by any PPT algorithm (this assumption keeps for the proofs of other proto-
cols). Then our result will not contradict [14], since the obfuscated program used as an
auxiliary input in [14] can be computed by the PPT verifier of the two-round argument
(see subsection 1.2).

Then, for any auxiliary input z that either is an empty string or cannot be computed
by any PPT algorithm, the augmented black-box simulator SOV̂ ∗ (G, z, 1n) proceeds as
follows:

1. On input G = (V,E) where V = {1, · · · , n}, |E| = 2k, sample i1, · · · , ik ∈R I
and obtain the corresponding k pairs of claw-free permutations (f j = fij , g

j =
gij) and k pairs of trapdoors (TKfj , TKgj) for (f j , gj) respectively.

2. Choose random coins rV ∗ , invokeO
V̂ ∗

(G, z; ·; ·) with (2, rV ∗ , {(f j , gj)}j∈[k]) and
obtain {yj}j∈[k] and V ∗’s current private state {(bj , aj , ∆j)}j∈[k].
I.e., if ∆j = 1, yj = f j(aj) when bj = 0 and yj = gj(aj) when bj = 1; if
∆j = 0, aj = ⊥, bj = 0 if yj is computed from f j and bj = 1 if yj is computed
from gj , otherwise bj = ⊥.

3. If ⊥ /∈ {bj}j∈[k]:
– compute hj = h(aj) for j ∈ [k], and then compute βb1,··· ,bk = ⊕j∈[k]hj ;

11

– let u, v ∈ V denote the two vertices corresponding to the (b1, · · · , bk)-th edge
in E, select colu 6= colv ∈ {1, 2, 3}, and set cols = 1 for s ∈ V and s 6= u, v;

– compute cs = Comrs(cols) with randomness rs for s ∈ V ;
– compute eb1,··· ,bk = G(βb1,··· ,bk)⊕(colu, ru, colv, rv) and select random eα ∈
{0, 1}l′(n) (l′(n) = 2(|rs|+ |cols|)) for α ∈ {0, 1}k and α 6= (b1, · · · , bk).

If ⊥ ∈ {bj}j∈[k]: set cols = 1 for s ∈ V , compute cs = Comrs(cols) with
randomness rs for s ∈ V , and select random eα ∈ {0, 1}l

′(n) (l′(n) = 2(|rs| +
|cols|)) for α ∈ {0, 1}k.

4. Output (G, rV ∗ , {(f j , gj)}j∈[k], {cs}s∈V , {eα}α∈{0,1}k).

Now we show that the output of SOV̂ ∗ (G, z, 1n) is computational indistinguishable
with the real protocol view V iewPV ∗(z)(G) of V ∗. This follows from the hiding property
of the commitment scheme Com and the properties of the claw-free permutations, the
hard-core function h and the pseudorandom generator G.

We analyze the computations of a prover as follows. Firstly, since it is hard to find
a “claw” of (f j , gj) for every j ∈ [k], the verifier V ∗ knows at most one of a0j , a

1
j

such that yj = f j(a0j) = gj(a1j). For any unknown abj (b ∈ {0, 1}, j ∈ [k]), the value
h(abj) ∈ {0, 1}l(n) is indistinguishable with a random value in {0, 1}l(n), which is guar-
anteed by the property of the hard-core function h. Then the βα computed with a such
h(abj) is indistinguishable with a random value in {0, 1}l(n). And thus from the property
of the pseudorandom generator G, the eα computed with a such βα is indistinguishable
with a random value in {0, 1}l′(n), where l′(n) = 2(|rs| + |cols|). From the hiding
property of the commitment scheme Com, the commitments of {cols}s∈V made by the
prover are indistinguishable with those made by the simulator.

We analyze the computations of the simulator as follows. If the verifier V ∗ knows a
preimage for each yj (j ∈ [k]), V ∗ does choose an challenge edge and wants to check
whether the colors of the two vertices corresponding to that edge are different. In this
case, the simulator would obtain the challenge (b1, · · · , bk)-th edge in E and commit
the corresponding two vertices to different colors. This would convince V ∗ as the prover
does. Notice that if the private coins of computing each yj is hiding from the verifier, it
is similar to the above condition of unknown abj (b ∈ {0, 1}, j ∈ [k]).

Therefore, we have V iewPV ∗(z)(G)
c
= SOV̂ ∗ (G, z, 1n). ut

3.2 Construction with Negligible Soundness Error

We show our three-round ZK proof protocol constructed in Figure 1 can be made neg-
ligibly sound by parallel repetitions.

Theorem 3.2 Assuming the existences of pseudorandom generators, a family C of
claw-free permutations on {0, 1}n, statistically binding non-interactive commitment
schemes, and hard-core functions for all functions in C, then construction of ΠG3C

in Figure 1 is an augmented black-box zero-knowledge proof. Furthermore, the pro-
tocol obtained from p(n) = n · 2k (2k is the number of edges in the graph) parallel
repetitions of ΠRL is an augmented black-box zero-knowledge proof with soundness
error 2−Ω(n).

12

Proof. The completeness follows from the completeness of each execution of the basic
three-round protocol ΠG3C . The verifier accepts the proof if and only if each execution
of the basic three-round protocol ΠG3C is accepted. Then the soundness error is (1 −
2−k)n·2

k

.
Augmented black-box zero-knowledge. The proof follows from the proof of Theo-

rem 3.1, which implies that the indistinguishability is obtained from the hiding property
of the commitment scheme Com and the properties of the claw-free permutations, the
hard-core function h and the pseudorandom generator G. See the full proof in Appendix
B. ut

4 General Construction for Any NP Relation

As previously stated, the purpose of this section is to obtain a three-round augmented
black-box ZK proof for any NP relation RL(x,w), where L is any language in NP.
Besides, we show our ZK proof can be made negligibly sound by directly parallel rep-
etition.

Loosely speaking, the strategy of our augmented black-box ZK proof is to let the
verifier’s challenge be perfectly hiding from the prover and computationally binding for
the verifier. After the challenge phase, the verifier obtain the prover’s “commitment”
and the opened value corresponding to the chosen challenge from the last message
sent by the prover. The verifier accepts the proof if the opened value corresponding to
the chosen challenge is consistent with the “commitment”. However, the augmented
black-box simulator can obtain the verifier’s challenge after the “challenge” phase and
complete the simulation according to the obtained challenge. Our simulator does not
need to guess the verifier’s challenge first, which helps show that our ZK proof can be
made negligibly sound by directly parallel repetition.

Concretely, the “commitment” is the transcript between two parties in a secure semi-
honest 2PC protocol for F (x,w0, w1) = RL(x,w0 ⊕ w1), where the wb (b ∈ {0, 1})
holding by party Pb is chosen by the prover with w for x ∈ L such that w0 ⊕ w1 = w.
The verifier obtains the opened value wb, rb corresponding to the challenge b, where rb
is the random value sued by Pb.

4.1 Construction

Let x denote a statement in an NP language L, associated with relation RL, and let
F be the following function corresponding to RL: F (x,w0, w1) = RL(x,w0 ⊕ w1),
where ⊕ here denotes bitwise exclusive-or of two strings (both of the same length). We
view F as an two-party functionality specified by x, where x is a public input known to
both players,wb (b ∈ {0, 1}) is a private input of player Pb. Then we letΠF = (P0, P1)
denote a two-party protocol that privately realizes F with perfect correctness.

Let C = {(fi : Di → Di, gi : Di → Di)|i ∈ I} with Di = {0, 1}n be a family of
claw-free permutations. Let H = {Hs : {0, 1}∗ → {0, 1}k(n)}s∈{0,1}n be a family of
hash functions. For an arbitrary one-way function f on {0, 1}n, letBf (a, r) = 〈a, r〉 be
the Goldreich-Levin hard-core predicate for the function g(a, r) = (f(a), r). Then, for

13

l = l(n) independent one-way functions f1, · · · , f l on {0, 1}n, the function Hf (a, r)
defined as follows is a hard-core function for g(a, r) = (f(a), r):

Hf (a1, · · · , al, r1, · · · , rl) = (Bf1(a1, r1), · · · , Bf l(al, rl)),

where a = a1, · · · , al, r = r1, · · · , rl are uniformly distributed over {0, 1}nl, and
f(a) = f1(a1), · · · , f l(al). This can be proven with the following sequence of hybrid
distributions.

h0 = f(a), Hf (a, r) = f(a), (Bf1(a1, r1), · · · , Bf l(al, rl)),

hi = f(a), (Bf1(a1, r1), · · · , Bf l−i(al−i, rl−i), Ui), i ∈ [l],

where Ui is uniformly distributed over {0, 1}i and hl = f(a), Ul. Let |f(a)| = k, then
hi−1 and hi only differ in the (k + l − i+ 1)-th bit. The (k + l − i+ 1)-th bit of hi−1
is a hard-core predicate while the (k + l − i + 1)-th bit of hi is a random bit. Then,
to prove that the function Hf (a, r) is a hard-core function for g(a, r) = (f(a), r) is to
prove that h0

c
= hl. On the contrary, if h0 and hl are distinguishable, there must exist an

i ∈ [l] such that hi−1 and hi are distinguishable, which breaks the unpredictability (see
definition A.1) of the Goldreich-Levin hard-core predicate Bf l−i+1(al−i+1, rl−i+1) for
the function

gl−i+1(al−i+1, rl−i+1) = (f l−i+1(al−i+1), rl−i+1).

Hence then, the function Hf (a, r) is a hard-core function for g(x, r) = (f(x), r).
We now describe our zero-knowledge protocol ΠRL = 〈P, V 〉 for the NP-relation

RL. The prover and verifier are both given an input x and they both have a black-box
access to the 2PC protocol ΠF . The prover is also given a witness w for x ∈ L.

Our first step in constructing a ZK proof involves the prover P emulating “in-her-
head” the execution of ΠF on input (x,w0, w1) by first sampling w0 and w1 at random
such thatw0⊕w1 = w, and this involves choosing randomness r0, r1 for the two players
respectively and running the protocol. We assume that the shorter one in {r0, r1} is
padded to the same length as the other with 0. Based on this execution, the prover
prepares the transcript τ between the two players and two values m0 = w0||r0,m1 =
w1||r1, and sets k = |m0| = |m1|, l = 2k. Then, the prover samples i1, · · · , il ∈R I
and obtain the corresponding l pairs of claw-free permutations (f j = fij , g

j = gij)
and l pairs of trapdoors (TKfj , TKgj) for (f j , gj) respectively. And the prover sends
(f j , gj) for j ∈ [l].

In the challenge phase, the verifier V then chooses a1, · · · , al ∈R {0, 1}n inde-
pendently, sets a = (a1, · · · , al), and chooses b ∈ {0, 1} at random. And the verifier
computes yj = f j(aj) if b = 0, otherwise computes yj = gj(aj), and sends y1, · · · , yl.

To responds to the challenge, the prover computes a0j = (f j)−1(yj) and a1j =

(gj)−1(yj) with trapdoors (TKfj , TKgj) respectively for j ∈ [l]. Then, the prover
chooses r1f , · · · , rlf , r1g , · · · , rlg ∈R {0, 1}n independently, sets the values

a0 = (a01, · · · , a0l), a1 = (a11, · · · , a1l), rf = (r1f , · · · , rlf), rg = (r1g , · · · , rlg),

14

P (x,w) V (x)
1. Choose w0, w1 at random
such that w0 ⊕ w1 = w.

2. Emulate “in-her-head”
the execution of ΠF on input
(x,w0, w1) with randomness
r0, r1 for P0, P1.

3. m0 = w0||r0, m1 = w1||r1,
k = |m0| = |m1|,
l = 2k, and let τ be the
transcript between P0, P1.

4. Sample i1, · · · , il ∈R I ,
obtain (f j = fij , g

j = gij)
and trapdoors (TKfj , TKgj).

{(f j , gj)}j∈[l]−−−−−−−−−−→
1. Choose a1, · · · , al ∈R {0, 1}n
b ∈R {0, 1}, set a = (a1, · · · , al).

2. For j ∈ [l], compute yj = f j(aj)
if b = 0, otherwise yj = gj(aj).

{yj}j∈[l]←−−−−−−
1. For j ∈ [l], compute with

trapdoors (TKfj , TKgj):
a0j = (f j)−1(yj),
a1j = (gj)−1(yj).

And set a0 = (a01, · · · , a0l),
a1 = (a11, · · · , a1l).

2. Choose rjf , r
j
g ∈R {0, 1}n

for j in [l], and set
rf = (r1f , · · · , rlf),
rg = (r1g , · · · , rlg).

3. Choose two random hash
functions Hs0 , Hs1 fromH.

4. Compute
c0 = Hs0(Hf (a

0, rf))⊕m0,
c1 = Hs1(Hg(a

1, rg))⊕m1,

τ, c0, c1, rf , rg,−−−−−−−−−−−→
Hs0 ,Hs1

1. If b = 0, compute
m0 = Hs0(Hf (a, rf))⊕ c0;
If b = 1, compute
m1 = Hs1(Hg(a, rg))⊕ c1.

2. Check if τ is consistent with the
randomness and input in mb by
emulating Pb and Pb outputs 1
in the case that Pb has an output.

3. Accept iff the check succeeds.
Figure 2. Three-round ZK protocol ΠRL

15

and defines

f(a0) = (f1(a01), · · · , f l(a0l)), f ′(a0, rf) = (f(a0), rf),

g(a1) = (g1(a11), · · · , gl(a1l)), g′(a1, rg) = (g(a1), rg).

Then, the prover obtains Hf (a
0, rf) for f ′(a0, rf) and Hg(a

1, rg) for g′(a1, rg) as
defined above, where |Hf (a

0, rf)| = |Hg(a
1, rg)| = l = 2k. The prover chooses two

random hash functions Hs0 , Hs1 from H = {Hs : {0, 1}∗ → {0, 1}k(n)}s∈{0,1}n ,
which map an arbitrary string in {0, 1}2k to a string in {0, 1}k, and sets

c0 = Hs0(Hf (a
0, rf))⊕m0 = Hs0(〈a01, r1f 〉, · · · , 〈a0l , rlf 〉)⊕m0,

c1 = Hs1(Hg(a
1, rg))⊕m1 = Hs1(〈a11, r1g〉, · · · , 〈a1l , rlg〉)⊕m1,

and sends τ, c0, c1, rf , rg, Hs0 , Hs1 , where τ is obtained in the first step.
In the verification phase, the verifier computes m0 = Hs0(Hf (a, rf)) ⊕ c0 if b =

0, otherwise the verifier computes m1 = Hs1(Hg(a, rg)) ⊕ c1, and then checks if
the transcript τ is consistent with the randomness and input in mb by emulating the
corresponding party Pb. In the case that Pb has an output, the verifier checks that Pb
outputs 1. The verifier accepts if the check succeeds. The protocol ΠRL = 〈P, V 〉 is
depicted in Figure 2.

Theorem 4.1 Assuming the existences of claw-free permutations on {0, 1}n, hash func-
tions, and secure semi-honest two-party computation protocols, the construction of
ΠRL in Figure 2 is an augmented black-box zero-knowledge proof.

Proof. Completeness. If the prover holding witness and the verifier execute the proto-
col honestly, the verifier will obtain mb = wb||rb, the check of consistency between τ
andmb will succeed, and Pb will output 1 in the case that Pb has an output. Hence then,
the verifier will accept the proof.

Soundness. From the property of permutations on {0, 1}n, for any received yj ∈
{0, 1}n (j ∈ [l]), a malicious prover can invert both f j and gj on yj with corresponding
trapdoors and obtain a0j , a

1
j . Hence then, the prover cannot predict that which value in

{a0 = (a01, · · · , a0l), a1 = (a11, · · · , a1l)} is the one used by the verifier to compute
{yj}j∈[l]. This perfectly hides the challenge bit b ∈ {0, 1} chosen by the verifier from
the prover.

From the perfect correctness of the secure semi-honest 2PC protocol ΠF , a mali-
cious prover cannot provide randomness and input for both parties that are consistent
with τ since that would imply that ΠF computes an incorrect output for a false state-
ment x 6∈ L, and violates the perfect correctness of ΠF . Therefore, the soundness error
is no more than 1/2.

Augmented black-box zero-knowledge. Let (S0, S1) be the simulation algorithms
for the views of two parties in ΠF .Fix any statement x ∈ L, for any verifier V ∗, the
corresponding extended verifier is denoted by V̂ ∗ (see subsection 2.3), and let O

V̂ ∗
de-

note the oracle of the next message function of V̂ ∗. Then, for any auxiliary input z that
either is an empty string or cannot be computed by any PPT algorithm, the augmented
black-box simulator SOV̂ ∗ (x, z, 1n, 1l) proceeds as follows:

16

1. On input 1l, choose i1, · · · , il ∈R I , and obtain the corresponding l pairs of claw-
free permutations (f j = fij , g

j = gij) and l pairs of trapdoors (TKfj , TKgj) for
(f j , gj) respectively.

2. Choose random coins rV ∗ , invoke O
V̂ ∗

(x, z; ·; ·) with (2, rV ∗ , {(f j , gj)}j∈[l]) and
obtain {yj}j∈[l] and V ∗’s current private state {b, {(bj , aj , ∆j)}j∈[l]}.
I.e., bj = 0 if yj = f j(aj) or yj is computed from f j and bj = 1 if yj = gj(aj)
or yj is computed from gj , otherwise bj = ⊥; if {bj}j∈[l] 6= {⊥}, b ∈ {0, 1} is the
majority of {bj}j∈[l] − {⊥}, otherwise b = ⊥; if bj = b and yj is computed from
aj with the function according to b, ∆j = 1; otherwise ∆j = 0 and aj = ⊥.

3. If b = ⊥, reset b to be a random bit in {0, 1}. Compute a0j = (f j)−1(yj) and

a1j = (gj)−1(yj) with trapdoors (TKfj , TKgj) respectively for j ∈ [l]. And set
a0 = (a01, · · · , a0l), a1 = (a11, · · · , a1l).

4. Choose wb at random, invoke the simulation algorithm Sb for the view of Pb with
(wb, 1), and obtain V iewΠFb = {wb, rb,m1, · · · ,mt}.

5. Compute the whole transcript τ between P0, P1 by emulating Pb with V iewΠFb .
Choose w1−b, r1−b at random and set m0 = w0||r0,m1 = w1||r1, where |m0| =
|m1| = k and k = l/2.

6. Choose rjf , r
j
g ∈R {0, 1}n for j in [l], and set rf = (r1f , · · · , rlf), rg = (r1g , · · · , rlg).

Choose two random hash functions Hs0 , Hs1 fromH and compute

c0 = Hs0(Hf (a
0, rf))⊕m0, c1 = Hs1(Hg(a

1, rg))⊕m1,

where the functions f, g,Hf , Hg are defined as above.
7. Output (x, rV ∗ , {(f j , gj)}j∈[l], τ, c0, c1, rf , rg, Hs0 , Hs1).

Now we show that the output of SOV̂ ∗ (x, z, 1n, 1l) is computational indistinguish-
able with the real protocol view V iewPV ∗(z)(x) of V ∗. Firstly, since it is hard to find
a “claw” of (f j , gj) for every j ∈ [l], the verifier V ∗ knows at most one of a0j , a

1
j ,

then the inner product mod 2 of the other one and a random value can form a hard-
core of the corresponding function. As a result, the verifier knows at most one of
Hf (a

0, rf), Hg(a
1, rg). According to the unpredictability of a hard-core predicate,

if V ∗ does not know a0j or a1j for j ∈ [l], the bit of Hf (a
0, rf), Hg(a

1, rg) pro-
duced from a0j or a1j looks random. And then the verifier knows at most one of v0 =

Hs0(Hf (a
0, rf)), v1 = Hs1(Hg(a

1, rg)), while the other one is indistinguishable from
a random value for the verifier according to the property of the hash function.

The simulator and the prover differ in the way to choose w0, w1 and the way to
produce the transcript τ of the 2PC protocol. However, no matter interacting with a
prover or a simulator, V ∗ can only know vb while v1−b is indistinguishable from a
random value, where b ∈ {0, 1} is actually chosen by V ∗, then V ∗ can only obtain
mb = vb⊕cb while c1−b is still indistinguishable from a random value. Besides, (τ,mb)
of the 2PC protocol ΠF produced by the prover and that produced by the simulator are
indistinguishable while no PPT algorithm can obtainm1−b from (τ,mb), which follows
from the privacy of ΠF . Notice that if the private coins of computing each yj is hiding
from the verifier, it is similar to the above condition of unknown abj (b ∈ {0, 1}, j ∈ [l]).

17

In a word, the indistinguishability of SOV̂ ∗ (x, z, 1n, 1l) and V iewPV ∗(z)(x) follows
from the privacy of the 2PC protocol ΠF and the properties of the hash functions, the
hard-core functions and the claw-free permutations. ut

4.2 Construction with Negligible Soundness Error

We show our three-round ZK proof protocol constructed in Figure 2 can be made neg-
ligibly sound by any polynomial times parallel repetitions. See the proof in Appendix
C.

Theorem 4.2 Assuming the existences of claw-free permutations on {0, 1}n, hash func-
tions, and secure semi-honest two-party computation protocols, then ΠRL described
above is an augmented black-box zero-knowledge proof. Furthermore, the protocol ob-
tained from p(n) parallel repetitions ofΠRL is an augmented black-box zero-knowledge
proof with soundness error 2−p(n).

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In FOCS, pages 106-115, 2001.
2. Blum, M.: How to prove a theorem so no one else can claim it. In Proceedings of the Interna-

tional Congress of Mathematicians, 1986, pages 1444-1451.
3. Bitansky, N., Brakerski, Z., Kalai, Y., Paneth, O., Vaikuntanathan, V.: 3-message zero knowl-

edge against human ignorance. In: TCC 2016-B, pp. 57-83.
4. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way

functions. In: STOC 2014, pp. 505-514.
5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the

(im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 1-18. Springer, Heidelberg (2001).

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault- tolerant distributed computation. In Proc. of 20th STOC, pages 1-10, 1988.

7. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: A paradigm for keyless hash
functions. In: STOC 2018: 671-684.

8. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004, pp. 273-289.

9. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero knowledge. In: TCC 2012. pages
189-207.

10. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and application to
resettable cryptography. In STOC 2013, pages 241-250.

11. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-party
computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.): TCC 2017, pp. 678-
710.

12. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions. In Memoriam: Bernard
M. Dwork 1923-1998. Journal of the ACM, 50(6):852-921, 2003.

13. Dodis, Y., Reyzin, L.: On the power of claw-free permutations. In: Cimato, S. et al. (eds.):
SCN 2002, LNCS 2576, pp. 55-73, 2003.

14. Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-knowledge
proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, LNCS 10822, pp. 3-33, 2018.

18

15. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM
Journal on Computing, 25(1):169-192, 1996.

16. Ganesh, C., Kondi, Y., Patra, A., Sarkar, P.: Efficient adaptively secure zero-knowledge from
garbled circuits. In: Abdalla, M., Dahab, R. (eds.): PKC 2018, LNCS 10770, pp. 499-529, 2018.

17. Goldreich, O., Levin, L.A.: Hard-core predicates for any one-way function. In 21st ACM
Symposium on the Theory of Computing, pages 25-32, 1989.

18. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of
secure computation. In: Fischlin, M., Coron, J-S. (eds) EUROCRYPT 2016, pages 448-476.

19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof sys-
tems. SIAM J. Comput., 18(1):186-208, 1989.

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness
theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pages 218-229.
ACM Press, May 1987.

21. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all
languages in np have zero-knowledge proof systems. J. ACM, 38(3):691-729, 1991. (FOCS
1986, pages 174-187)

22. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J.
Cryptology, 7(1):1-32, 1994.

23. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In CRYPTO
1998, pages 408-423.

24. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security of Fiat-
Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402,
pp. 224-251. Springer, Cham (2017).

25. Lepinski, M.: On the Existence of 3-Round Zero-Knowledge Proofs. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2002)

26. Hongda, L., Dongxue, P., Peifang, N.: Augmented black-box simulation and zero knowledge
argument for NP. https://eprint.iacr.org/eprint-bin/search.pl

27. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party computation. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, pages 397-429.

28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty
computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21-30. ACM Press, June
2007

29. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty
computation. SIAM J. Comput., 39(3):1121-1152, 2009.

30. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits: how to
prove non-algebraic statements efficiently. In: CCS 2013, pp. 955-966 (2013)

31. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In CRYPTO 2004,
pages 335-354.

32. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation.
In: Gennaro, R., Robshaw, M. (eds) CRYPTO 2015, pages 339-358.

33. Yao, A. C-C.: How to generate and exchange secrets (extended abstract). In 27th FOCS,
pages 162-167. IEEE Computer Society Press, October 1986.

34. Yao, A. C-C.: Protocols for secure computations (extended abstract). In FOCS, pages 160-
164. IEEE Computer Society, 1982.

A Definitions.

We show the definitions used in our constructions.

19

A.1 Hard-Core Functions

Definition A.1 Hard-Core Predicate. A polynomial-time-computable predicate func-
tion b : {0, 1}∗ → {0, 1} is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm A, every positive polynomial p(·), and all sufficiently large
n:

Pr[A(F (Un) = B(Un))] < 1/2 + 1/p(n),

where Un is uniformly distributed over {0, 1}n. We call it as the unpredictability of a
hard-core predicate.

Theorem A.1 Goldreich-Levin Hard-Core Predicate. Let f be an arbitrary one-way
function, and let g be defined by g(x, r) = (f(x), r), where |x| = |r|. Let b(x, r) =
〈x, r〉 denote the inner product mod 2 of the binary vectors x and r. Then the predicate
b is a hard-core of the function g [17].

Definition A.2 Hard-Core Function. Let h : {0, 1}∗ → {0, 1}∗ be a polynomial-time-
computable function satisfying |h(x)| = |h(y)| for all |x| = |y|, and let l(n) = |h(1n)|.
The function h is called a hard-core of a function f if for every PPT algorithmD, every
positive polynomial p(·), and all sufficiently large n:

|Pr[D((F (Xn), h(Xn)) = 1]− Pr[D((F (Xn), Rl(n)) = 1] < 1/p(n),

where Xn and Rl(n) are two independent random variables, the first uniformly dis-
tributed over {0, 1}n and the second uniformly distributed over {0, 1}l(n).

A.2 Commitment Schemes

Definition A.3 Commitment Schemes. A commitment scheme (Com,Open) executed
between two parties (a committer and a receiver) consists of two phases, the commit
phase and the open phase.

– Commit Phase. The committer takes as input a message m ∈ {0, 1}∗ and chooses
a random r ∈ {0, 1}∗. The committer then computes c := Comr(m) and sends it
to the receiver.

– Open Phase. The committer reveals the messagem committed and the randomness
r used in the commit phase. And the receiver verifies Open(c,m, r) = m.

A commitment scheme (Com,Open) is secure if it is binding and hiding. A statistically
binding commitment scheme requires the following properties.

– Statistically Binding. For any (possibly unbounded) committer, he can reveal a
commitment of m to another message m′ 6= m with negligible probability.

– Computationally Hiding. For every m0,m1 ∈ {0, 1}∗, Com(m0) and Com(m1)
are computationally indistinguishable.

20

A.3 Two-Party Computation

Definition A.4 Semi-honest Two-Party Computation. A secure semi-honest two-party
computation protocol Πf (P1, P2) is a protocol (executed between P1 and P2) securely
realizing an two-party functionality f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗. Con-
cretely, P1 holding input w1 and P2 holding input w2 (|w1| = |w2|), both wish to
obtain the output of f(w1, w2) by executing the protocolΠf (P1, P2) with the following
property.

– Privacy. The view of P1 (resp., P2) during an execution ofΠf (P1, P2) on (w1, w2),
V iewΠ1 (w1, w2) (resp., V iewΠ2 (w1, w2)), consists of (w1, r,m1, . . . ,mt) (resp.,
(w2, r,m1, . . . ,mt)), where r represents the outcome of P1’s (resp., P2’s) internal
coin tosses, and mi represents the i-th message it has received. For a deterministic
functionality f , we say that Πf (P1, P2) privately computes f if there exist PPT
algorithms, denoted S1 and S2, such that

{S1(w1, f(w1, w2))}w1,w2∈{0,1}∗
c
= {V iewΠ1 (w1, w2)}w1,w2∈{0,1}∗ ,

{S2(w2, f(w1, w2))}w1,w2∈{0,1}∗
c
= {V iewΠ2 (w1, w2)}w1,w2∈{0,1}∗ ,

where |w1| = |w2|.

B Proof of Theorem 3.2.

Theorem 3.2. Assuming the existences of pseudorandom generators, a family C of
claw-free permutations on {0, 1}n, statistically binding non-interactive commitment
schemes, and hard-core functions for all functions in C, then construction of ΠG3C

in Figure 1 is an augmented black-box zero-knowledge proof. Furthermore, the pro-
tocol obtained from p(n) = n · 2k (2k is the number of edges in the graph) parallel
repetitions of ΠRL is an augmented black-box zero-knowledge proof with soundness
error 2−Ω(n).

Proof. The completeness follows from the completeness of each execution of the basic
three-round protocol ΠG3C . The verifier accepts the proof if and only if each execution
of the basic three-round protocol ΠG3C is accepted. Then the soundness error is (1 −
2−k)n·2

k

.
Augmented black-box zero-knowledge. Fix any statement G ∈ G3C, for any

PPT verifier V ∗, the corresponding extended verifier is denoted by V̂ ∗ (see subsection
2.3), and let O

V̂ ∗
denote the oracle of the next message function of V̂ ∗. Then, for

any auxiliary input z that either is an empty string or cannot be computed by any PPT
algorithm, the augmented black-box simulator SOV̂ ∗ (G, z, 1n) proceeds as follows:

1. On input G = (V,E) where V = {1, · · · , n}, |E| = 2k, for d ∈ [p(n)], sample
id,1, · · · , id,k ∈R I and obtain the corresponding p(n) ·k pairs of claw-free permu-
tations (fd,j = fid,j , g

d,j = gid,j) and k pairs of trapdoors (TKfd,j , TKgd,j) for
(fd,j , gd,j) respectively.

21

2. Choose random coins rV ∗ , invoke O
V̂ ∗

(G, z; ·; ·) with

(2, rV ∗ , {(fd,j , gd,j)}d∈[p(n)],j∈[k])

and obtain {yd,j}d∈[p(n)],j∈[k] and V ∗’s current private state

{(bd,j , ad,j , ∆d,j)}j∈[k],d∈[p(n)].

I.e., if ∆d,j = 1, yd,j = fd,j(ad,j) when bd,j = 0 and yd,j = gd,j(ad,j) when
bd,j = 1; if ∆d,j = 0, ad,j = ⊥, bd,j = 0 if yd,j is computed from fd,j and
bd,j = 1 if yd,j is computed from gd,j , otherwise bd,j = ⊥.

3. For d ∈ [p(n)]:
if ⊥ /∈ {bd,j}j∈[k],

– compute hd,j = h(ad,j) for j ∈ [k], and then compute

βbd,1,··· ,bd,k = ⊕j∈[k]hd,j ;

– let u, v ∈ V denote the two vertices corresponding to the (bd,1, · · · , bd,k)-th
edge in E, select colu,d 6= colv,d ∈ {1, 2, 3}, and set cols,d = 1 for s ∈ V and
s 6= u, v;

– compute cs,d = Comrs,d(cols,d) with randomness rs,d for s ∈ V ;
– compute ebd,1,··· ,bd,k = G(βbd,1,··· ,bd,k)⊕ (colu,d, ru,d, colv,d, rv,d) and select

random eα,d ∈ {0, 1}l
′(n) (l′(n) = 2(|rs,d| + |cols,d|)) for α ∈ {0, 1}k and

α 6= (bd,1, · · · , bd,k).
If⊥ ∈ {bd,j}j∈[k]: set cols,d = 1 for s ∈ V , compute cs,d = Comrs,d(cols,d) with
randomness rs,d for s ∈ V , and select random eα∈,d{0, 1}l

′(n) (l′(n) = 2(|rs,d|+
|cols,d|)) for α ∈ {0, 1}k.

4. Output

(G, rV ∗ , {(fd,j , gd,j)}d∈[p(n)],j∈[k], {cs,d}s∈V,d∈[p(n)], {eα,d}α∈{0,1}k,d∈[p(n)]).

The proof of the indistinguishability between SOV̂ ∗ (G, z, 1n) and V iewPV ∗(z)(G)
follows from the proof of Theorem 3.1, which implies that the indistinguishability is
obtained from the hiding property of the commitment scheme Com and the properties
of the claw-free permutations, the hard-core function h and the pseudorandom generator
G. ut

C Proof of Theorem 4.2.

Theorem 4.2. Assuming the existences of claw-free permutations on {0, 1}n, hash
functions, and secure semi-honest two-party computation protocols, thenΠRL described
above is an augmented black-box zero-knowledge proof. Furthermore, the protocol ob-
tained from p(n) parallel repetitions ofΠRL is an augmented black-box zero-knowledge
proof with soundness error 2−p(n).

22

Proof. The completeness follows from the completeness of each execution of the basic
three-round protocol ΠRL . The verifier accepts the proof if and only if each execution
of the basic three-round protocol ΠRL is accepted. Then the soundness error is 2−p(n).

Augmented black-box zero-knowledge. Let (S0, S1) be the simulation algorithms
for the views of two parties in ΠF . Fix any statement x ∈ L, for any PPT verifier
V ∗, the corresponding extended verifier is denoted by V̂ ∗ (see subsection 2.3), and let
O
V̂ ∗

denote the oracle of the next message function of V̂ ∗. Then, for any auxiliary
input z that either is an empty string or cannot be computed by any PPT algorithm, the
augmented black-box simulator SOV̂ ∗ (x, z, 1n, 1l) proceeds as follows:

1. On input 1l, for d ∈ [p(n)], choose id1, · · · , idl ∈R I , and obtain the corresponding
p(n) · l pairs of claw-free permutations (fd,j = fidj , g

d,j = gidj) and p(n) · l pairs

of trapdoors (TKfd,j , TKgd,j) for (fd,j , gd,j) respectively.

2. Choose random coins rV ∗ , invoke O
V̂ ∗

(x, z; ·; ·) with

(2, rV ∗ , {(fd,j , gd,j)}d∈[p(n)],j∈[l])

and obtain {yd,j}d∈[p(n)],j∈[l] and V ∗’s current private state

{bd, {(bd,j , ad,j , ∆d,j)}j∈[l]}d∈[p(n)].

I.e., bd,j = 0 if yd,j = fd,j(ad,j) or yd,j is computed from fd,j and bd,j = 1 if
yd,j = gd,j(ad,j) or yd,j is computed from gd,j , otherwise bd,j = ⊥; for d ∈ [p(n)],
if {bd,j}j∈[l] 6= {⊥}, bd ∈ {0, 1} is the majority of {bd,j}j∈[l] − {⊥}, otherwise
bd = ⊥; if bd,j = bd and yd,j is computed from ad,j with the function according to
bd, ∆d,j = 1; otherwise ∆d,j = 0 and ad,j = ⊥.

3. For d ∈ [p(n)], if bd = ⊥, reset bd to be a random bit in {0, 1}. And then compute
a0d,j = (fd,j)−1(yd,j) and a1d,j = (gd,j)−1(yd,j) with trapdoors (TKfd,j , TKgd,j)

respectively for d ∈ [p(n)], j ∈ [l]. Set a0d = (a0d,1, · · · , a0d,l), a1d = (a1d,1, · · · , a1d,l).
4. For d ∈ [p(n)], choose wdbd at random, invoke the simulation algorithm Sbd for the

view of Pbd with (wdbd , 1), and obtain V iewΠF ,dbd
= {wdbd , r

d
bd
,md,1, · · · ,md,t}.

5. Compute the whole transcript τd between P0, P1 by emulating Pbd with V iewΠF ,dbd
.

Choose wd1−bd , r
d
1−bd at random and set md

0 = wd0 ||rd0 ,md
1 = wd1 ||rd1 , where

|md
0| = |md

1| = k and k = l/2.
6. Choose rd,jf , rd,jg ∈R {0, 1}n for d ∈ [p(n)], j in [l], and set

rdf = (rd,1f , · · · , rd,lf), rdg = (rd,1g , · · · , rd,lg).

For d ∈ [p(n)], choose two random hash functions Hd
sd,0

, Hd
sd,1

, compute

cd0 = Hd
sd,0

(Hfd(a
0
d, r

d
f))⊕md

0, c
d
1 = Hd

sd,1
(Hgd(a

1
d, r

d
g))⊕md

1

The functions fd, gd, Hfd , Hgd are defined in a similar way as f, g,Hf , Hg defined
above.

23

7. Output

(x, rV ∗ , {(fd,j , gd,j)}d∈[p(n)],j∈[l], {τd, cd0, cd1, rdf , rdg , Hd
sd,0

, Hd
sd,1
}d∈[p(n)]).

The proof of the indistinguishability between SOV̂ ∗ (x, z, 1n, 1l) and V iewPV ∗(z)(x)
follows from the proof of Theorem 4.1, which implies that the indistinguishability is ob-
tained from the privacy of the 2PC protocolΠF and the properties of the hash functions,
the hard-core functions and the claw-free permutations.

