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Abstract

In this work, we propose the first post-quantum UC-commitment scheme
in the Global Random Oracle Model, where only one non-programmable
random oracle is available. The security of our proposal is based on two
well-established post-quantum hardness assumptions from coding theory:
The Syndrome Decoding and the Goppa Distinguisher. We prove that our
proposal is perfectly hiding and computationally binding. The scheme is
secure against static malicious adversaries.

1 Introduction

One of the most important cryptographic primitive in today’s world are commit-
ment schemes, both in theory and in practice. A commitment scheme involves
two parties, usually called the committer C and the receiver R. C commits to a
message and sends the commitment to R. Later, C may open the commitment
and reveal the message to R, which checks if the opening is a valid one. Two
security properties are required for this primitive: the hiding property, which
means that R is not able to extract information about the message from the
commitment before the opening phase, and the binding property, which means
that C cannot open a different message from the one it has committed before.

This simple, yet powerful, primitive has found numerous applications such
as zero-knowledge proofs, signature schemes, secure multi-party computation,
e-voting or, even, key-exchange. Due to its versatility, a commitment scheme
should be secure, not just per se, but also when composed with the same or
other protocols. Hence, security of commitment should be analyzed in the UC-
framework [Can01], where security under arbitrary composition can be proven.

Commitment schemes can be obtained from oblivious transfer (OT) via a
generic compiler [Kil88]. However, the resulting commitment scheme is too inef-
ficient for practical purposes since it requires a large number of OT executions.
From a practical perspective, explicit constructions for commitment schemes
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are more interesting since they are designed to be more efficient than generic
transformations.

As far as we know, all the explicit constructions for UC-commitment schemes
have their security based on number-theoretic hardness assumptions (e.g., [CF01,
Lin11, CJS14]) and, thus, they can be broken using Shor’s algorithm [Sho97].
With the growing interest in quantum technologies and as we enter the post-
quantum era, it becomes crucial to find post-quantum alternatives to this type
of protocols.

In this work, we address this problem by presenting the first explicit con-
struction for a post-quantum UC-commitment scheme. Our proposal is proven
to be secure in the Global Random Oracle (gRO) model [CJS14]. We prove that
our scheme is perfectly hiding (meaning that even a receiver with unlimited
computational power cannot break the hiding property) and computationally
binding given that the Syndrome Decoding (SD) and the Goppa Distinguisher
(GD) assumptions hold.

1.1 Previous work

Commitment schemes. There is a large amount of work done concerning
UC-commitment schemes [CF01, DN02, HMQ04, Lin11, FLM11, CJS14, Fuj16,
BPRS17]. However, all of these protocols are based on number-theoretic as-
sumptions. Thus, their security is threatened, since Shor’s quantum algorithm
breaks all of these protocols [Sho97].

A UC-commitment scheme must allow extraction and equivocation by the
simulator. These properties are essential to perform the simulation and to prove
security in the UC-framework [CF01]. All of the schemes mentioned above
take advantage of the nice properties inherent to number-theoretic assumptions
to be able to extract and equivocate.1 However, it seems that most of the
techniques used in these schemes cannot be straightforwardly adapted using
post-quantum assumptions. Thus, the task of explicitly constructing a post-
quantum commitment scheme that is both extractable and equivocable is highly
non-trivial.

Post-quantum commitment schemes exist, e.g., [JKPT12], based on the LPN
assumption, and [XXW13], based on the RLWE assumption. However, we are
not aware of any commitment scheme based on post-quantum assumptions and
proven to be secure in the UC-framework.

We remark that commitment schemes can also be obtained from OT [Kil88,
GIKW14], and for which there are UC-secure post-quantum proposals (e.g.,
[PVW08, BDD+17, BDGM18]). However, the resulting commitment scheme is
too inefficient and it just has theoretical value.

UC-commitment schemes are used as building block in the design of a wide
range of applications, and they are known to imply key-exchange [DG03] and
general forms of secure two and multi-party computation [CLOS02].

1For example, the scheme in [Lin11] uses efficient zero-knowledge proofs based on the
discrete-logarithm assumption, and [CJS14] uses a trapdoor version of the famous Pedersen
commitment scheme.
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Global random oracle model. As it is well-known, it is impossible to de-
sign UC-commitment schemes in the plain model [CF01], thus we work on the
Global Random Oracle (gRO) Model. The gRO Model is a more realistic model
where only one global random oracle is available for every party in every exe-
cution of the same, or other, protocol. The notion of a gRO was firstly intro-
duced in [CJS14] to overcome the fact that proofs in the Random Oracle Model
(ROM) [BR93] assume a different random oracle for each execution of the proto-
col. Hence, security under composition may not be guaranteed when we replace
the random oracles by a practical cryptographic hash function (which is usually
the same for every execution of every protocol).

The main difference between the gRO Model and the ROM is that, in the
gRO Model, we restrict the observability and the programmability power of the
simulator. More precisely, the simulator is restricted to observe only adversarial
queries (queries made by an adversary and not by a honest party) and it is
not allowed to program the random oracle. Observe that, if the simulator can
program the random oracle, then we can not use the same random oracle in
other executions of the same or other protocols. If we do so, an environment
could distinguish the ideal and the real world executions by just asking the same
queries in two different executions of the protocol, for example. Also, note that
we cannot restrict completely the power of the simulator to observe queries. If we
do so, the simulator has the same power of the parties involved in the protocol
and cannot perform the simulation necessary for security proofs [CJS14] (at
least, in the case of commitment schemes [CDG+18]). Hence, the simulator is
given only the power to observe queries made by an adversary (but not by a
honest party).

By using this security model, the discrepancy between the abstract model
and the practical usage of a protocol is softened, since we can just replace calls
to the gRO by calls to a global cryptographic hash function. This model was
also studied in [CDG+18], where it was called the restricted Observable Global
Random Oracle Model.

Protocols proven to be UC-secure in the gRO Model include number-theoretic
OT and commitment schemes [CJS14, BPRS17], and a two-party computa-
tion scheme [CJS14]. Recall that an UC-commitment scheme should allow
extractability and equivocability by a simulator. The scheme of [CJS14] uses a
trapdoor version of the Pedersen commitment scheme to achieve equivocation.
However, as far as we know, there is no post-quantum analogue of this trapdoor
version of Pedersen commitment. Hence, we have to follow a different strategy.

1.2 Outline of the protocol

The main contribution of this paper is the construction of a post-quantum
UC-commitment scheme. As far as we know, this is the first post-quantum
commitment scheme proven to be secure in the UC-framework, in the gRO
Model.

As mentioned before, to achieve UC-security for the commitment scheme, we
have to construct a commitment scheme such that the simulator in the ideal-
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world execution is able to extract the committed message from a corrupted
committer and it is able to equivocate a commitment. In our scheme, the
committer C queries the gRO on an input that contains the message and this
allows for extractability. On the other hand, equivocation is possible due to the
use of a zero-knowledge proof-of-knowledge (ZKPoK) with the honest-verifier
zero-knowledge (HVZK) property.

More precisely, let B be a public random matrix. The receiver R starts by
sending a matrix A together with the hash of a trapdoor for it. C commits to its
message M by computing c1 = r1A+gRO(M, t)+e1 and c2 = gRO(r1,M, t)A+
r2B + e2 where r1 and r2 are random vectors and e1 and e2 are error vectors.
We can already see that the simulator is able to extract the message by looking
at the queries to gRO and finding the ones that fulfill the conditions.

To open a message, C opens r1,M, t. Then both C and R engage in a
ZKPoK [JKPT12] where C proves that it has a witness for public information
c2 − gRO(r1,M, t)A. In order for the simulator to equivocate in this phase
of the protocol, it extracts the trapdoor for A and finds another r′1 such that
c1−(r′1A+gRO(M ′, t′)) has low Hamming weight. This can be done on polyno-
mial time for certain classes of codes and for an appropriate choice of parameters
(e.g. [CFS01]). Now, the simulator must prove that it has a secret for public in-
formation c2−gRO(r′1,M

′, t′)A (which it does not have). We make R to commit
to the challenge of the ZKPoK using gRO before C sends the first message of the
ZKPoK. In this way, the simulator knows which is the challenge that R is going
to ask and can cheat in the protocol, using the HVZK property of the ZKPoK.
This technique is similar to the one used in [Lin11]. However, since the scheme
of [Lin11] is proven in the CRS model, a dual-mode encryption scheme [PVW08]
is used as a commitment scheme (for technical reasons), while in our scheme, it
is enough to use the gRO as a commitment scheme.

We prove that the scheme is perfectly hiding and computationally binding.
We also prove security against static malicious adversaries in the UC-framework,
in the gRO Model.

Since we base the security of our scheme in well-established code-based as-
sumptions, namely the SD and the GD assumptions, our protocol is considered
to be post-quantum and it is the first explicit construction for UC-commitment
that has this property.

2 Preliminaries

We denote matrices by capital bold letters (e.g., A) and vectors by bold lower-
case letters (e.g., v). If S is a finite set, |S| denotes its cardinality and x←$S
denotes the experiment of choosing an element x uniformly at random from S.
If A is an algorithm, y ← A(x) denotes the experiment of running A on input
x and setting the output to be y. If x is a vector, w(x) denotes its Hamming
weight, that is, the number of coordinates of x which are different from zero. If
A is a matrix, we denote its transpose by AT .

A k-dimensional binary (linear) code C of length n is defined by its generating

4



matrix A ∈ {0, 1}k×n, that is,

C = {c ∈ {0, 1}n : ∃s ∈ {0, 1}k s.t. c = sA},

or by its parity-check matrix H ∈ {0, 1}(n−k)×n, that is,

C = {c ∈ {0, 1}n : HcT = 0}.

The generating and parity-check matrices fulfill the condition HAT = 0.
Throughout this work, let Bn

=ω = {e ∈ {0, 1}n : w(e) = ω} and Bn
≤ω =

{e ∈ {0, 1}n : w(e) ≤ ω}.
In the description of the protocols, we denote by x =? y the experiment

of testing if x and y are equal. If they are not, then the party executing the
experiment aborts the protocol.

A PPT algorithm means a probabilistic polynomial-time algorithm.

2.1 Hardness assumptions in coding theory

We present the Syndrome Decoding (SD) problem, which states that it is hard
to decode a linear code chosen uniformly at random. The problem is proven to
be NP-complete in the worst-case [BMvT78].

Definition 1 (Syndrome Decoding). Let n, k, ω ∈ N, H←$ {0, 1}(n−k)×n and
e←$Bn

≤ω. The SDω problem is ε-hard if for every PPT algorithm D we have

Pr
[
e← D(H,HeT )

]
≤ ε.

The SD problem is a classical problem in coding theory and, by now, it is a
well-established problem in code-based cryptography. Although no worst-case
to average-case reduction is known, it is widely believed that, for an appropri-
ate choice of parameters, the problem is hard for any random instance since
the best known classical and quantum attacks still run in exponential time
(e.g. [BJMM12, EKM17, Kir18]).

The following problem is a particular case of the SD problem, which was
presented in [JKPT12].

Definition 2 (Exact Learning Parity with Noise). Let τ ∈]0, 1/2[, n, k, ω ∈ N,
ω = bτne , s←$ {0, 1}k, A←$ {0, 1}k×n and e←$Bn

=ω. The decisional version
of the xLPNτ problem is (n, ε)-hard if for every PPT algorithm D we have∣∣Pr[1← D(A, sA + e)]− Pr[1← D(A, r)]

∣∣ ≤ ε
where r←$ {0, 1}n. The search version of the xLPNτ,k problem is (n, ε)-hard if
for every PPT algorithm D we have

Pr[s← D(A, sA + e)] ≤ ε.

It is easy to see that the xLPN is a particular case of the SD problem, that is,
if we are able to solve the SDω,n problem then we are able to solve the xLPNτ,n,
where ω = bτne.
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The proof of knowledge of [JKPT12]. Recall that a sigma protocol is a
three-round protocol (commitment com, challenge ch and response resp) be-
tween two parties, a prover P and a verifier V. P tries to convince V that some
statement is true. A zero-knowledge proof-of-knowledge (ZKPoK) is a sigma
protocol where P, not only proves that the statement is true, but also proves
that it has a witness for it. Figure 1 presents a scheme of any sigma protocol.

Prover P(x,w) Verifier V(x)

com ← P1(x,w) com

ch ch ← V1

resp ← P2(x,w; com, ch) resp V2(x, com, ch, resp) =? 1

Figure 1: Sigma protocol structure. The value x is public information and w
is usually called the witness. Let ∼ be a relation and R = {(x,w) : x ∼ w}.
A transcript T = (com, ch, resp) is the tuple of messages exchange and we say
that it is valid when V2(x, T ) = 1.

Besides being correct and special sound, a ZKPoK should also be honest-
verifier zero-knowledge (HVZK). This property ensures that no information is
gained by V by looking at a valid transcript. This is usually proved by showing
the existence of a simulator that can generate transcripts that are computation-
ally indistinguishable from transcripts generated by the interaction between P
and V.

We present a ZKPoK where, given a matrix A and a vector y, the prover is
able to prove knowledge of vector s and e such that sA + e = y and e ∈ Bn

=ω.
This protocol was proposed in [JKPT12]. The protocol is presented in Figure 2.

Theorem 3 ([JKPT12]). (P,V)xLPN is a complete, special sound and HVZK
ZKPoK for the relation

RxLPN = {((A,y) , (s, e)) : sA + e = y ∧ w(e) = t} .

The cheating probability of (P,V)xLPN is 2/3. This means that a cheating
prover can still answer correctly for two possible values of the challenge ch. More
precisely, as a consequence of being HVZK, if the prover knows the challenge
beforehand, then it can cheat in the protocol. In this work, we use this property
of (P,V)xLPN in the security proof of the commitment scheme of Section 3.

2.2 On the existence of trapdoors for codes

We present the Goppa Distinguisher (GD) problem, one of the assumptions that
guarantee the security of the McEliece public-key encryption scheme [McE78]
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Prover P(A,y, s, e) Verifier V(A,y)

v←$ {0, 1}k,u←$ {0, 1}n

δ←$S

c0 = Com(δ,a0 = vA + u)

c1 = Com (a1 = δ (u)) c0, c1, c2 ch ←$ {0, 1, 2}

c2 = Com (a2 = δ (u + e)) ch

If ch = 0, Ver(c0, (δ,a0)) =? 1

If ch = 0, resp = (δ,a0,a1) Ver(c1,a1) =? 1

If ch = 1, resp = (δ,a0,a2) resp a0 + δ(a1) ∈? CA

If ch = 2, resp = (a1,a2) If ch = 1, Ver(c0, (δ,a0)) =? 1

Ver(c2,a2) =? 1

a0 + δ(a2) + y ∈? CA
If ch = 2, Ver(c1,a1) =? 1

Ver(c2,a2) =? 1

(a1 + a2) ∈? Bn
=ω

Figure 2: (P,V)xLPN scheme. Let A ∈ {0, 1}k×n, s ∈ {0, 1}k, e ∈ {0, 1}n such
that e ∈ Bn

=ω and let y ∈ {0, 1}n such that sA + e = y. By CA we denote the
code defined by A. Let S be the set of permutations of size n and let (Com,Ver)
be a commitment scheme where Com is the commitment algorithm and Ver is
the opening algorithm.

and several code-based cryptosystems. This problem was firstly assumed to be
hard in [CFS01] in the context of signature schemes.

Definition 4 (Goppa Distinguisher). Let n, k ∈ N such that k < n. Let
Gop(n, k) be an algorithm that outputs a matrix defining a binary Goppa code
of size n× k. The GD is ε-hard, if for every PPT algorithms D, we have

|Pr [1← D(A) : A← Gop(n, k)]− Pr
[
1← D(A) : A←$ {0, 1}k×n

]
| ≤ ε.

Although the problem can be solved for codes with high rate (that is, when
k ≈ n) [FGUO+11], the GD problem is assume to be computationally hard in the
general case, since the best known attack still has exponential runtime [LS01].

The following lemma guarantees the existence of code-based trapdoors (also
called decoding algorithms).

Lemma 5 ([CFS01]). Let n, k, ω ∈ N such that k < n. There exists an algorithm
GenTdH that receives as input n, k and ω and outputs a pair (H, td) where
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H ∈ {0, 1}(n−k)×n is a matrix and td is a trapdoor for H with the following
properties:

• There is an algorithm DecodeH that takes as input td and a word z ∈
{0, 1}n−k. It outputs either e, if zT = HeT and w(e) ≤ ω, or a message
error ⊥, otherwise;

• There is a non-negligible number of words z in {0, 1}n−k for which DecodeH(z, td)
does not output a message error ⊥;

• H is indistinguishable from a uniformly chosen matrix U from {0, 1}(n−k)×n
given that the GD problem is hard.

From this lemma, we can derive the following corollary. It states that, if
we have a trapdoor for parity-check matrices, then we also have a trapdoor for
generating matrices.

Corollary 6. Let n, k, ω ∈ N such that k < n. There exists an algorithm GenTd
that receives as input n, k and ω and outputs a pair (A, td) where A ∈ {0, 1}k×n
is a matrix and td is a trapdoor for A with the following properties:

• There is an algorithm DecodeA that takes as input td and a word c ∈
{0, 1}n. It outputs either s, if c = sA + e for some s ∈ {0, 1}k and
w(e) ≤ ω, or a message error ⊥, otherwise;

• There is a non-negligible number of words c in {0, 1}n for which DecodeA(c, td)
does not output a message error ⊥;

• A is indistinguishable from a uniformly chosen matrix U from {0, 1}k×n
given that the GD problem is hard.

Proof. Let (H, td)← GenTdH. Consider A to be the generating matrix associ-
ated with H. That is, consider A such that HAT = 0 and DecodeA to be the
algorithm that takes td and c as input and does the following:

1. It computes HcT = yT ;

2. It computes e′ = DecodeH(td,y);

3. If e′ =⊥, it outputs ⊥;

4. Else, it outputs c′ = c− e′.

Note that, if c is of the form sA + e, where e is a error vector, then HcT =
H(sA)T + HeT = HeT , the DecodeH algorithm outputs e and the procedure
DecodeA outputs c′ = sA. Else, if c is not of the form sA + e, then the
procedure DecodeA outputs an error message ⊥.

If there is a non-negligible number of words y ∈ {0, 1}n−k for which DecodeH
does not output a message error ⊥, then there is also a non-negligible number
of words c ∈ {0, 1}n such that DecodeA does not output a message error ⊥.
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If H is indistinguishable from a uniform matrix in {0, 1}(n−k)×n, then A is
also indistinguishable from a uniform matrix in {0, 1}k×n. To see this, assume
that we can distinguish A from a uniformly chosen matrix. Then we can con-
struct a distinguisher algorithm for H, which contradicts the assumption.

Recently, a new code-based trapdoor function was presented in [DAST18]. It
has the same properties as the one presented in Lemma 6. The only difference is
that this trapdoor is not based on the GD assumption but rather on the hardness
of distinguish generalized admissible codes (U,U + V) from uniformly chosen
codes.

Observe that the construction of Section 3 works with any code-based trap-
door function fulfilling the conditions of Lemma 6. However, for simplicity, we
explicitly use the trapdoor function of [CFS01], based on the GD assumption.
The reason for using trapdoor functions based on the GD assumption in our
construction is that its security well-study (or, at least, it is more studied than
other code-based distinguisher assumptions). We do not care about its effi-
ciency, since the trapdoor is only used in the security proof, as long as it runs
in polynomial time.

Let ω be the error decoding capability of the code defined by H. In order to
be able to use the trapdoor in polynomial time, ω must be chosen well below the
Gilbert-Varshamov bound [CFS01, DAST18]. Hence, 2ω is still much smaller
than the Gilbert-Varshamov bound. In this work, we assume the hardness of
the SD2ω, where ω is the decoding capability of the code H, and which is widely
assumed to be hard in the average-case [DAST18].

2.3 UC-security and the Global random oracle model

The Universal Composability (UC) framework of Canneti [Can01] guarantees
security of a protocol under arbitrary composition. Let π be a protocol and let F
be an ideal functionality that implement the same cryptographic primitive. Let
E be an environment that oversees both executions of the real-world protocol π
and of the ideal-world functionality F . We say that π is secure if no environment
can distinguish the real-world execution from the ideal-world execution.

The Global Random Oracle. The notion of a Global Random Oracle gRO
was firstly introduced in [CJS14]. We present its definition as in [CJS14]. As
mentioned in the introduction, the gRO is available to every party. However,
contrarily to the ROM, the simulator will only be able to observe to adversarial
queries, that is, queries made by an adversary.
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gRO functionality

Parameters: a range D of size `(κ) and a list F̄ of ideal function-
alities.
Upon receiving a query x from a party P = (pid, sid) or from an
adversary A do:

• If (x, v) ∈ Q, return v to P;

• Else, v←$ {0, 1}`(κ), store (x, v) in Q and return v to P.

• Parse x as (s, x′). If sid 6= s, add (s, x′, v) to Q|sid.

Upon receiving a request from an ideal functionality in the list F̄ ,
with SID sid, return the list Q|sid.

Let IDEALF,S,E denote the distribution of the output of the environment E
after the ideal-world execution of F with adversary S and EXEC

GgRO
π,A,E denote the

output of E after the real-world execution of π with adversary A where every
party has access to the ideal functionality gRO. Security in the gRO-hybrid
model is defined as follows.

Definition 7 ([CJS14]). Let π be a protocol with n parties involved and an
adversary A. We say that π UC-realizes F in the GgRO-hybrid model if for every
PPT adversary A there is a PPT simulator S such that for all PPT environments
E ,

IDEALF,S,E ≈ EXEC
GgRO
π,A,E

where F is an ideal functionality.

In this work, we consider only static malicious adversaries. That is, adver-
saries that may deviate in any arbitrary way from the protocol. However, parties
involved in the protocol are corrupted before the beginning of the protocol and
remain like that until the end.

Some remarks regarding the gRO. The gRO Model assumes the existence
of a single global random oracle, available to every party. However, we remark
that, from this single global random oracle (which outputs strings of a given
size `(κ)), we can create other global random oracles with the output size that
we want. For example, if we want a global random oracle gRO′ with output
size 2`(κ), we can define gRO′(x) = (gRO(x)||gRO(x+ 1)) where || is the con-
catenation of binary strings. Note that, since the output of gRO is completely
random, then so it is the output of gRO′. Throughout this work, the size of
the output of gRO is specified in each case. When it is not explicit, then we
consider the size of the output to be `(κ).

The commitment ideal functionality. We present the ideal commitment
functionality Ftcom, as presented in [CJS14].
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Ftcom functionality

Commitment phase: Upon receiving (sid, commit,C,R,M) from
C, Ftcom stores (sid,M) and sends (sid, receipt,C,R) to R. It ignores
future commit messages from C with the same sid.

Opening phase: Upon receiving (sid, reveal,C,R) from C, Ftcom

checks whether it has recorded (sid, commit,C,R,M). If so, returns
(sid, reveal,C, Rs,M) to R and halts.

When the adversary S asks for the list Q|sid, with session ID sid,
Ftcom obtains it from GgRO and sends it to S.

We define the security properties for a commitment scheme: binding and
hiding properties. A binding commitment scheme is a scheme such that a com-
mitment cannot be opened to two different messages. A hiding commitment
scheme is a scheme that hides the message from the receiver. We say that a
scheme is perfectly hiding if the former holds for any adversary (not necessarily
running in polynomial time).

3 UC-commitment scheme

Consider two parties, a committer C and a receiver R. Suppose that C wants to
commit to a message M of size λ.

Let (Pε,Vε)xLPN, where Pε = (Pε1,P
ε
2) and Vε = (Vε1,V

ε
2) be the sigma-

protocol (P,V)xLPN repeated O(1/ε) in order to obtain a negligible soundness
error of ε.

Public parameters. Let n, k, k′, ω ∈ N such that n > k and n > k′, B ∈
{0, 1}n×k′ be a public matrix uniformly chosen at random and let gRO be the
ideal Global Random Oracle. Here, λ is the size of the message M .

Commitment phase. Both parties, the committer C and the receiver R, are
activated by their inputs. They proceed as follows:

1. R generates (A, td)← GenTd(n, k, ω). It chooses a random string u1 and
queries gRO on (sid,R, td, u1) setting the output to y1. It sends (sid,A, y1)
to C.

2. Upon receiving (sid,A, y) from R, C it chooses r1←$ {0, 1}k and r2←$ {0, 1}k′

and two error vectors e1, e2←$Bn
=ω. It chooses a random string t1 and

queries gRO on (sid,C,M, t1) setting the output to x1 ∈ {0, 1}n. It com-
putes

c1 = r1A + x1 + e1.
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Next, it queries gRO on (sid,C, r1,M, t1), using the same random string
t1, setting the output to x2 ∈ {0, 1}k

′
. It computes

c2 = x2A + r2B + e2.

It sends (sid, c1, c2) to R.

A scheme can be found in Figure 3.

Committer C Receiver R

(A, td)← GenTd(n, k, ω)

r1 ←$ {0, 1}k, r2 ←$ {0, 1}k
′ (sid, y1) y1 ← gRO(td)

e1, e2 ← Bn
=ω

x1 ← gRO(sid,M),x2 ← gRO(sid, r1,M)

c1 ← r1A + x1 + e1
(sid, c1, c2)

c2 ← x2A + r2B + e2

Figure 3: Commitment phase. The nonce t1 and u1 are omitted

Opening phase. To open a message M , the parties proceed as follows.

1. R first chooses ch ← Vε1, consistent with the challenges from the (Pε,Vε)xLPN
protocol. It chooses a random string u2 and queries gRO on (sid,R, ch, u2)
setting the output to y2. It sends (sid, y2) to C.

2. Upon receiving (sid, y2) from R, C computes com ← Pε1 ((B, r2B + e2) , r2),
a commitment of (Pε,Vε)xLPN for public information (B, r2B + e2) and se-
cret information r2. It chooses a random string t3 and queries (sid,C, com, r2B+
e2, t3) to gRO setting the output to x3. It sends (sid, x3) to R.

3. Upon receiving (sid, x3) from C, R reveals td and ch by sending (sid, td, u1, ch, u2)
to C.

4. Upon receiving (sid, td, u1, ch, u2) from R, C checks that the opening td, t1
is consistent with y1 and that ch, t2 is consistent with y2. It does this by
querying gRO on (sid,R, td, u1) and on (sid,R, ch, u2), setting the output to
y′1 and to y′2 (respectively) and by checking if y1 = y′1 and if y2 = y′2. If any
of these tests fails, C aborts the protocol. Otherwise, it computes resp ←
Pε2 ((B, r2B + e2) , r2; com, ch) and sends (sid, r1,M, t1, t3, com, resp) to R.

Upon receiving (sid, r1,M, t1, t3, com, resp) from C, R sets T = (com, ch, resp).
It queries gRO on (sid,C,M, t1) and on (sid,C, r1,M, t1) and sets the out-
put to x′1 and to x′2 respectively. It also queries gRO on (sid, com, c2 −
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x′2A, t3) and sets the output to x′3. It checks if x3 = x′3, if w(c1 − (r1A +
x′1)) ≤ ω and if Vε2(c2 − x′2A, T ) = 1. If any of these tests fail, R outputs
0. Else, it accepts the opening and outputs 1.

A scheme of the opening phase is presented in Figure 4.

Opening phase

Committer C Receiver R

ch ← Vε
1

com ← Pε
1 ((B, r2B + e2) , r2) (sid, y2) y2 ← gRO(sid, ch)

x3 ← gRO(sid, com, r2B + e2) (sid, x3)

(sid, td, ch)

y′1 ← gRO(sid, td)

y′2 ← gRO(sid, ch) x′1 ← gRO(sid,M)

y1 =? y
′
1 , y2 =? y

′
2

(sid, r1,M, com, resp) x′2 ← gRO(sid, r1,M)

resp ← Pε
2 ((B, r2B + e2) , r2; com, ch) x′3 ← gRO(sid, com, c2 −Ax2)

x3 =? x
′
3

c1 − (r1A + x′1)) ∈? Bn
≤ω

Vε
2(c2 − x′2A, T ) =? 1

Figure 4: Opening phase. The nonce t1, t3, u1 and u2 are omitted.

4 Security

In this section, we prove the security of the scheme. We also present the simu-
lation required to guarantee universal composability.

4.1 Committer’s and receiver’s privacy

Let α be the size of the random string t1.

Theorem 8. Suppose that α = λ + n. The commitment scheme is perfectly
hiding and computationally binding in the gRO-model, given that the SD2ω and
GD assumptions hold.

Proof. We begin by proving the hiding property. Then we prove the binding
property for our scheme.
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Perfectly hiding property. The commitment corresponds to c1 = r1A +
x1 + e1 and c2 = x2A + r2B + e2, where x1 ← gRO(sid,M, t1) and x2 ←
gRO(sid, r1,M, t2). This means that the message is hidden by the random oracle.

We prove that the probability of an adversary to find M is negligible, even
when it has unlimited computational power. To this end, we prove that, given
an output y of gRO, the probability that the output of a query of the form
(sid,C,M, t1) is y is negligible for every message M and random t1, if the size
of t1 is equal to the size of M plus the size of y.

Let Sy be the random variable that corresponds to the number of fixed size
x such that y ← gRO(x), where x is of the form (sid,M, t) where M is a fixed
message of size λ, t has size α and y has size n. We have that Sy =

∑
t Bert(2

n)
where Ber denotes a Bernoulli distribution for each t. Hence, the expected value
of Sy is E(Sy) = 2α2−n.

By the Chernoff-Hoeffding inequality (and considering the relative distance),
we have

Pr [|Sy/E(Sy)− 1| ≥ δ] ≤ γe−2
α.δ2

where γ is some constant. Consider δ to be 2−α/4, so that the distance between
Sy and E(Sy) is negligible.

Taking the union bound for every y and for every M , we get

Pr
[
∃M∃y : |Sy/E(Sy)− 1| ≥ 2−α/4

]
≤ γ2λ+ne−2

α.δ2 .

By hypothesis, consider α = λ + n. We conclude that the relative distance
between Sy and E(Sy) is at most 1/2(λ+β)/4, except with negligible probability.

Binding property. Suppose that C is able to find c1 and c2, given A and y1,
such that it is able to open different messages. That is, C is able to interact with
R following the opening phase of the protocol such that R accepts the opening
for two different messages. This situation is sketched below:

1. R sends y2;

2. C sends x3;

3. R sends td, ch, u1, u2;

4. C sends com, resp ,r1, M , s,
t1, t3.

1. R sends y2;

2. C sends x′3;

3. R sends td, ch, u1, u2;

4. C sends com ′, resp′, r′1, M ′,
s′, t′1, t′3.

Since R accepts both openings as valid ones, they must fulfill the following
conditions:

1. w(c1 + r1A + x1) ≤ ω, T = (com, ch, resp) is a valid transcript for public
information (B, c2 + x2) and x3 = gRO(sid, c2 + x2, com);

2. w(c1+r′1A+x′1) ≤ ω, T ′ = (com ′, ch, resp′) is a valid transcript for public
information (B, c2 + x′2) and x′3 = gRO(sid, c2 + x′2, com ′)
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where x1 = gRO(sid,M, t1), x2 = gRO(sid, r1,M, t1), x′1 = gRO(sid,M ′, t′1) and
x2 = gRO(sid, r′1,M

′, t′1).
Therefore, we have that

(r1 + r′1)A + (e1 + e′1) = x1 + x′1.

Let r1 + r′1 = r̃, e1 + e′1 = ẽ and x1 + x′1 = x̃. Rewriting the equation, we have

r̃A + ẽ = x̃,

where x̃ is chosen uniformly at random from {0, 1}n and w(ẽ) ≤ 2ω. By the
SD2ω, the probability that the receiver finds r̃ and ẽ for a random x̃ is negligible.
Else, the receiver would be able to solve the SD2ω for random instances.

Also, by the soundness of the (Pε,Vε)xLPN protocol, we have

x2A + r2B + e2 = x′2A + r′2B + e′2

where x2 ← gRO(r1,M, t1), x′2 ← gRO(r′1,M
′, t′1) and e2, e

′
2 ∈ Bn

=ω, except
with negligible probability. This means that the word

(
A|B

)(x2 + x′2
r2 + r′2

)
has Hamming weight less or equal than 2ω. Let CA be the code defined by the
generating matrix A and CB the code defined by B. By definition of CA, every
c ∈ CA has Hamming weight greater than 2ω, otherwise we could not be able to
some words of the form y = c+ẽ where c ∈ CA and ẽ ∈ Bn

ω. Moreover, if d ∈ CB
then d has Hamming weight greater than 2ω, except with negligible probability,

by the Gilbert-Varshamov bound [MS77]. We conclude that

(
x2 + x′2
r2 + r′2

)
= 0,

except with negligible probability. Therefore, x2 = x′2 and r2 = r′2, except with
negligible probability. So, if it is infeasible to find collisions for gRO, then it is
infeasible to open two different messages in the opening phase.

4.2 UC-security

In this section, we prove that the scheme is secure in the UC-framework.

Theorem 9. The commitment scheme presented securely UC-realizes Fcom

against static malicious adversaries in the GgRO-hybrid model, given that the
SD2ω and GD assumptions hold.

Proof. Let A be an adversary in the real-world, S be an adversary in the ideal-
world, called the simulator, and E be any environment. As usual, the commu-
nication between A and E is simulated by S by forwarding messages from one
party to the other.

The trivial cases where the adversary corrupts both parties and when it does
not corrupt any party can be simulated by S. When A corrupts both parties,
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S just runs A internally and let it generate all the messages. When A does not
corrupt any party, S generates all the messages from C and R, following the
protocol and forwarding every message to A.

We now show how to construct the simulator when A corrupts only one of
the parties.

Simulation when only the committer C is corrupted by A. Here, S
controls R and tries to extract C’s input.

Commitment phase. The simulator S follows the protocol honestly by
generating (A, td) ← GenTd(n,m, ω) and sending (sid,A, y1) to C where
y1 is the output of gRO when queried on (sid, td, u1).

Let Q|sid be the list of queries to gRO by any party with sid that does not
pertain that session ID. Upon receiving (sid, c1, c2), S checks if there are
two queries of the form (sid,C,M, t1) (with output x1) and (sid,C, r1,M, t1)
such that w(c1 + r1A + x1) ≤ ω. If there is such a query and it is unique,
S sets M ′ = M . Else, it sets M ′ = 0λ.

The simulator S sends the message (sid, commit,C,R,M) to Ftcom.

Opening phase. The simulator S follows the protocol honestly, control-
ling R. If S accepts the opening of M∗ after interacting with C, S checks
if M∗ = M . If so, it sends the message (sid, reveal,C,R) to Ftcom. Else, it
aborts the execution.

The ideal-world and real-world execution differ only when S aborts when it
should not abort. This happens only if C is able to open a message M∗ different
from the message M that S sends to Ftcom. This may happen when:

1. There are no queries in Q|sid of the form (sid,C,M, t1) and (sid,C, r1,M, t1)
that fulfill w(c1 + r1A + x1) ≤ ω, but S accepts the opening of C;

2. There are several queries in Q|sid of the form (sid,C,M, t1) and (sid,C, r1,M, t1)
that fulfill w(c1 + r1A + x1) ≤ ω, but S accepts the opening of C;

3. There are such queries and they are unique, but C opens a different M∗

than M .

The probability of the event in 1 is negligible, since C would have to find
an opening that fulfill w(c1 + r1A + x1) ≤ ω. As we have seen in the proof
of Lemma 8, this happens with negligible probability for PPT algorithms. The
probability of the event in 2 is also negligible, by the proof of the previous
theorem. The third event happens with negligible probability by the binding
property of the scheme.

We conclude that both executions are indistinguishable from the point-of-
view of E , except with negligible probability. Hence, the protocol is secure in
the UC-framework against a corrupted C.
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Simulation when only the receiver R is corrupted by A. Here, S controls
C and commits to a message (for example 0λ). After receiving a message from
the ideal functionality, S has to open the received message to R. This process
is usually called equivocation.

Commitment phase. Upon receiving a message (sid, receipt,C,R) from
Ftcom, S follows the protocol honestly committing to the message 0λ, for
example. That is, upon receiving A and y1 from R, it computes c1 =
r1A + x1 + e1 and c2 = x2A + r2B + e2, where x1 ← gRO(sid,C, 0λ, t1)
and x2 ← gRO(sid,C, r1, 0

λ, t1), and sends (sid, c1, c2) to R.

Opening phase. Upon receiving a message (sid, reveal,C,R,M) from
Ftcom, S asks the list Q|sid from Ftcom to gRO. It checks if there is a
query whose output is equal to y1. If there is such a query, let us say
(sid,R, td, u1), and if td is a trapdoor for A, it sets td′ = td. Else, it sets
td′ =⊥.

If td′ 6=⊥, it sets x1 ← gRO(sid,C,M, t′1), where t′1 is a random string,
and finds r′1 such that r′1A+e′1 = c1 +x′1 using td′. If this fails, it chooses
another random string t′1 and tries again. it repeats the process until it
is successful. Observe that this task can be done in polynomial time by
Corollary 6.

Upon receiving (sid, y2) from R, S checks if there is a query of the form
(sid,R, w, u2) in Q|sid such that its output is y2. If there is, it sets ch ′ = w,
else it chooses ch ′ ← Vε1. It computes com for public information (B, c̃2)
where c̃2 = c2 + x2A and x2 ← gRO(sid,C, r′1,M, t′1) such that it can
create valid transcripts (with challenge ch ′), even without knowing the
secret. Observe that, since the cheating probability of a dishonest prover
in (Pε,Vε)xLPN is 2/3, then S can always find such com. It queries gRO on
x3 ← (sid,C, c̃2, com). If S was not able to find r′1 (because td′ =⊥) then,
it chooses x3 at random. It sends (sid, x3) to R.

Upon receiving (sid, td, u1, ch, u2) from R, S checks if ch = ch ′. If not,
then it aborts the protocol. If td′ 6=⊥, S follows the protocol as the honest
C would do from this point on. Else if td′ =⊥, it chooses random values
for r1, t1, t3 and sends them (together with M, com, resp) as the opening.

The real-world and the ideal-world executions differ only when:

1. S is not able to extract a valid trapdoor for matrix A and R sends td such
that it is a valid trapdoor for A and its output by gRO is y1. In this
case, S has a negligible probability of completing the protocol with a valid
opening for M ;

2. S aborts when ch 6= ch ′.

The probability of S accepting the opening of td as a valid one is negligible
since it is the probability of R finding collisions for gRO. Hence, S (controlling
C) will abort the execution before sending the last message (corresponding to
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the opening of r1, M , t1, t3, com and resp), except with negligible probability.
Moreover, the probability of the event 2 happening is also negligible, by the
gRO assumption.

We conclude that both executions are indistinguishable from the point-of-
view of E , except with negligible probability. Hence, the protocol is secure in
the UC-framework against a corrupted R.

5 Conclusion

We proposed the first ever post-quantum UC-commitment scheme in the global
random oracle. The security of our proposal is based on the Syndrome Decoding
and on the Goppa Distinguisher assumptions, two well-established assumptions
in post-quantum cryptography.

Our proposal is proven to be perfectly hiding, meaning that even an all-
powerful receiver is not able to find the message that the committer is commit-
ting to, before the opening phase, and (computationally) binding.

The scheme is proven secure in the UC-framework against static malicious
adversaries. However, it seems that the scheme cannot be proven secure against
adaptive malicious adversaries, that is, adversaries that may corrupt parties
after the beginning of the execution of the scheme. To see this, note that the
simulator has access only to adversarial queries made to gRO. However, if an
adversary is allowed to corrupt after the beginning, the simulator may not have
enough information to perform the simulation. More precisely, the necessary
queries to perform the simulation can be made by a honest party and, thus, the
simulator does not have access to them.

We leave as future work to develop a post-quantum UC-commitment scheme
secure against adaptive malicious adversaries.
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