
TWISTED HESSIAN ISOGENIES

THINH DANG AND DUSTIN MOODY

Abstract. Elliptic curves are typically defined by Weierstrass
equations. Given a kernel, the well-known Vélu’s formula shows
how to explicitly write down an isogeny between Weierstrass curves.
However, it is not clear how to do the same on other forms of ellip-
tic curves without isomorphisms mapping to and from the Weier-
strass form. Previous papers have shown some isogeny formulas for
(twisted) Edwards, Huff, and Montgomery forms of elliptic curves.
Continuing this line of work, this paper derives an explicit formula
for isogenies between elliptic curves in (twisted) Hessian form.

1. Introduction

An elliptic curve is defined as a nonsingular irreducible projective
curve of genus one, with a specified point on the curve. An elliptic
curve is said to be defined over a field k if the curve is defined over k
and the specified point is k-rational.

Let E be an elliptic curve defined over k with a specified point O.
It is well known that there exist functions x, y ∈ k(E) such that the
rational map φ defined over k by φ = (x : y : 1) is an isomorphism
from E to an elliptic curve in Weierstrass form:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

and φ(O) = (0 : 1 : 0), where a1, a2, . . . , a6 ∈ k ([1, III.3.1]). There-
fore, elliptic curves are typically identified by curves defined by such a
Weierstrass equation with the specified point (0 : 1 : 0).

Let E and E ′ be elliptic curves with specified points O and O′ respec-
tively. An isogeny from E to E ′ is defined as a morphism φ : E → E ′

such that φ(O) = O′. It is a theorem (see [1, III.4.8]) that an isogeny is
also a group homomorphism. As a corollary, the kernel of an isogeny is
a finite subgroup of the domain. Conversely, if F is a finite subgroup of
E, there exists an elliptic curve E ′ and a separable isogeny φ : E → E ′

such that the kernel of φ is F ([1, III.4.12]). Given E and F , Vélu’s
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formula ([2]) shows an explicit expression for φ and E ′, where E and
E ′ are both in Weierstrass form.

However, the Weierstrass equation is only one way to represent an
elliptic curve. Other forms of elliptic curves are possible and have
been proposed, some with applications in cryptography. Examples in-
clude Montgomery curves ([3, 4]), (twisted) Edwards curves ([5, 6, 7]),
Huff curves ([8, 9]), and (twisted) Hessian curves ([10]). The first for-
mulas for isogenies defined directly for non-Weierstrass curves was for
(twisted) Edwards curves and Huff curves [11]. Shortly thereafter, sim-
ilar work [12], [13] showed formulas for computing isogenies on Mont-
gomery curves. In this paper, we derive a formula for isogenies on
twisted Hessian curves and consider the computational cost of com-
puting image points.

Isogenies have found applications in counting the number of points on
an elliptic curve over a finite field (e.g. see [14] and [15]), analyzing the
complexity of elliptic-curve discrete logarithms [16], and cryptographic
constructions (e.g. [17], [18], and [19]). More efficient isogeny formulas
could lead to performance benefits in the above applications.

The organization of the paper is as follows. Section 2 introduces
Hessian curves and their generalization called twisted Hessian curves.
A summary of the point addition formulas on twisted Hessian curves
is included. Section 3 derives formulas for 3-isogenies. Section 4 states
and proves the main result for isogenies with a kernel of size ` 6≡ 0
(mod 3). Finally, Section 5 examines the main formula’s computational
cost of computing image points. Some open problems and directions
for future work are given in Section 6.

2. Twisted Hessian Curves

A Hessian curve in projective coordinates is defined by the equation

X3 + Y 3 + Z3 = dXY Z

with 27 − d3 6= 0. The Hessian form of elliptic curves has been stud-
ied, for example, in [20], [21], and [22], to optimize point addition
and scalar multiplication formulas. In addition, as a step towards re-
sistance against side-channel attacks, the Sylvester’s addition formula
(described below) on Hessian curves can also be used for point doubling
and subtraction after a permutation of input coordinates [23]. A gen-
eralization of Hessian curves, called twisted Hessian curves, is defined
by the equation

aX3 + Y 3 + Z3 = dXY Z
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with a(27a − d3) 6= 0. Twisted Hessian curves were used in [10] to
provide a complete unified addition formula and improve efficiency for
point doubling and tripling over fields of arbitrary characteristic. Other
works that tried to optimize arithmetic on (twisted) Hessian curves
include [24], [25], and [26].

Definition 1. A twisted Hessian curve over a field k is a projective
curve H(a, d) defined by the polynomial aX3 +Y 3 +Z3 = dXY Z with
specified point (0 : −1 : 1) in the projective space P(k)2, with a, d ∈ k
and a(27a− d3) 6= 0. If a = 1, the curve is called a Hessian curve.

As an elliptic curve, each twisted Hessian curve must be isomorphic
over k to a curve given by a Weierstrass equation. Over a finite field
of characteristic not equal to 3, we can find an explicit isomorphism
from any twisted Hessian curve to a Weierstrass curve, and conversely,
from any Weierstrass curve with a point of order 3 to a twisted Hessian
curve. Such isomorphisms are given in [10, Theorem 5.3 and 5.4] and
[27].

For convenience, we summarize below the formulas for point addition
on twisted Hessian curves. Let (X1 : Y1 : Z1) and (X2 : Y2 : Z2) be
points on H(a, d). The inverse of (X1 : Y1 : Z1) is

−(X1 : Y1 : Z1) = (X1 : Z1 : Y1).

The (Sylvester) standard addition formula is given by:

X3 = X2
1Y2Z2 −X2

2Y1Z1,

Y3 = Z2
1X2Y2 − Z2

2X1Y1,

Z3 = Y 2
1 X2Z2 − Y 2

2 X1Z1.

If (X3, Y3, Z3) 6= (0, 0, 0), then (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 :
Y3 : Z3). Another addition formula, called rotated addition, is defined
by the formula:

X ′3 = Z2
2X1Z1 − Y 2

1 X2Y2,

Y ′3 = Y 2
2 Y1Z1 − aX2

1X2Z2,

Z ′3 = aX2
2X1Y1 − Z2

1Y2Z2.

If (X ′3, Y
′
3 , Z

′
3) 6= (0, 0, 0), then (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X ′3 :

Y ′3 : Z ′3). The completeness follows because (X3, Y3, Z3) 6= (0, 0, 0) or
(X ′3, Y

′
3 , Z

′
3) 6= (0, 0, 0) by [10, Theorem 4.7].

3. 3-isogenies

In this section, we show how to compute 3-isogenies on twisted Hes-
sian curves, and in the next section, we provide a formula for `-isogenies
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with ` 6≡ 0 (mod 3). To compute an isogeny with kernel of size divisi-
ble by 3, we can write the kernel as an internal product of a subgroup
of size ` not divisible by 3 and one or more subgroups of size 3, and
compose the formulas for each factor.

To derive the result for 3-isogenies, we begin by characterizing all
points of order 3 on a twisted Hessian curve. Let c be a cubic root of
a. It can be easily verified that the point (1 : 0 : −c) and its inverse
(1 : −c : 0) both have order 3. In addition, if ω3 = 1 and ω 6= 1, then
(0 : −ω : 1) and its inverse (0 : 1 : −ω) have order 3. The verification
has been done in [10, Theorem 5.1]. In fact, these are the only points of
order 3 on a twisted Hessian curve. We prove this in the next theorem.

Theorem 1. Let P = (X : Y : Z) 6= (0 : −1 : 1) be a point on H(a, d).
Then P has order 3 if and only if XY Z = 0.

Proof. Suppose XY Z = 0. If X = 0, by the defining equation of
H(a, d), it follows that P = (0 : −ω : 1) where ω3 = 1. When ω 6= 1,
then (0 : −ω : 1) has order 3. If Y = 0, we must have P = (1 : 0 : −c)
where c3 = a, and (1 : 0 : −c) has order 3. Similarly, if Z = 0, then
P = (1 : −c : 0) has order 3.

For the converse, suppose P has order 3 and XY Z 6= 0. By the
rotated addition law,

2P = (X(Z3 − Y 3) : Z(Y 3 − aX3) : Y (aX3 − Z3))

= −P = (X : Z : Y ).

So Z3 − Y 3 = Y 3 − aX3 = aX3 − Z3 6= 0.
Consider two cases, depending on the characteristic of k. Suppose

first that k has characteristic 6= 3. Then,

2(Y 3 − aX3) = (Z3 − Y 3) + (aX3 − Z3) = aX3 − Y 3,

which implies aX3 − Y 3 = 0. This is a contradiction. Alternatively,
if k has characteristic 3, then Z3 − Y 3 = aX3 − Z3, which implies
aX3 = 2Z3+2Y 3. Substituting this into aX3+Y 3+Z3 = dXY Z gives
d = 0, sinceXY Z is assumed to be nonzero. Therefore, a(27a−d3) = 0,
and this contradicts the definition of H(a, d).

�

We now turn to formulas for 3-isogenies of twisted Hessian curves.
As seen in the proof, a kernel of size 3 is either generated by (0 : −ω : 1)
with ω3 = 1 and ω 6= 1 or by (1 : −c : 0) with c3 = a. First, we consider
3-isogenies with their kernel generated by (0 : −ω : 1). Such a map
can be obtained by composing the 3-isogeny given in [10, Theorem
5.4] from a twisted Hessian curve to a Weierstrass curve of the form
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Y 2Z + a1XY Z + a3Y Z
2 = X3 with the isomorphism given in [10,

Theorem 5.4] between such a Weierstrass curve and a twisted Hessian
curve. The result of such composition is stated in Theorem 2.

Theorem 2. Let ω3 = 1 and ω 6= 1. The map

(X : Y : Z) 7→ (XY Z : aX3 + ω2Y 3 + ωZ3 : aX3 + ωY 3 + ω2Z3)

is an isogeny from H(a, d) to H(d3 − 27a, 3d) with the kernel

〈(0 : −ω : 1)〉 = 〈(0 : −ω2 : 1)〉 = {(0 : −1 : 1), (0 : −ω : 1), (0 : −ω2 : 1)}.

Proof. We leave the straightforward verification to the reader. �

Next, we consider 3-isogenies with kernel generated by the point
(1 : −c : 0), where c3 = a. The only formula for such isogenies that
we are aware of is given in [28, Proposition 4] for Hessian curves over
characteristic 3. We restate the result here.

Theorem 3. Let k have characteristic 3. The map σ : H(1, d3
i+1

) →
H(1, d3

i
) defined by

σ(X : Y : Z) = (d2·3
i

XY Z : Y 2Z +X2Y +XZ2 : XY 2 +X2Z + Y Z2)

is an isogeny. Moreover, f : H(1, d3
i
) → H(1, d3

i+1
) defined by f(X :

Y : Z) = (X3 : Y 3 : Z3) is an isogeny, and f ◦σ(P ) = 3P for each P on

H(k, 1, d3
i+1

). The kernel of σ is {(0 : −1 : 1), (−1 : 1 : 0), (−1 : 0 : 1)}.
We generalize Theorem 3 to 3-isogenies on twisted Hessian curves

H(a, d) over any characteristic with kernel 〈(1 : −c : 0)〉, where c3 = a.

Theorem 4. The rational map

φ =
(
XY Z : c2X2Z + cXY 2 + Y Z2 : c2X2Y + cXZ2 + Y 2Z

)
.

is an isogeny from H(a, d) to H(A,D), where c3 = a,

A = d2c+ 3dc2 + 9a and D = d+ 6c

with kernel

〈(1 : −c : 0)〉 = 〈(1 : 0 : −c)〉 = {(0 : −1 : 1), (1 : −c : 0), (1 : 0 : −c)}.
Proof. Let f = xy, g = c2x2 + cxy2 + y, and h = c2x2y + cxz2 + y2 be
the dehomogenized coordinate maps. Also let A and D be as given in
the theorem statement. Then,

Af 3 + g3 + h3 −Dfgh = (ax3y3 − cdx2y2 + ax3 + y3)(ax3 + y3 + 1− dxy).

This shows that the range of the rational map φ is indeed H(A,D). It
remains to check that the kernel is as claimed. Let P = (X : Y : Z)
and suppose φ(P ) = (0 : −1 : 1), then XY Z = 0.
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(1) If X = 0, then Y Z2 = −Y 2Z, i.e. Z = −Y and P = (0 : −1 :
1).

(2) If Y = 0, then c2X2Z = −cXZ2, i.e. cX = −Z and P = (1 :
0 : −c).

(3) If Z = 0, then cXY 2 = −c2X2Y , i.e. Y = −cX and P = (1 :
−c : 0).

Conversely, by straightforward calculation, we see that φ(P ) = (0 :
−1 : 1) for each such P . �

4. Isogenies of degree `, where ` 6= 3

In this section we look at the `-isogeny formulas, where ` 6= 3.
One approach for obtaining such an `-isogeny between twisted Hes-
sian curves is to compose the isogeny given by Vélu’s formula with iso-
morphisms to and from Weierstrass curves. This approach, however,
doesn’t lead to a simple formula. Moreover, the resulting codomain
twisted Hessian curve is dependent on the choice of point of order 3
on the codomain Weierstrass curve produced by Vélu’s formula. We
prove our main twisted Hessian isogeny result as follows.

Theorem 5. Let F = {(0 : −1 : 1)} ∪ {(si : ti : 1)}ni=1 be a finite
subgroup of H(a, d) of size ` = n + 1, where ` is not divisible by 3.
Then, F is the kernel of an isogeny from H(a, d) to H(A,D) defined
by

φ(P ) =

(∏
R∈F

X(P +R) :
∏
R∈F

Y (P +R) :
∏
R∈F

Z(P +R)

)
.

where A = a` and

D =
(1− 2n)d+ 6

∑n
i=1 1/(siti)∏n

i=1 si
.

Note that in the equation for φ, for each point P + R, the choice of
representative of P + R in projective coordinates does not affect the
result φ(P ). Also, by Theorem 1, siti 6= 0 for each i ∈ {1, 2, . . . , n}.

Proof. We start by writing down a rational form of the map φ given in
the theorem, which is derived from the standard addition formula. Let

φY :=
y

x

∏
i

xy − siti
s2i y − tix2

and φZ :=
1

x

∏
i

t2ix− siy2

s2i y − tix2
.

That is, φ(x : y : 1) = (1 : φY : φZ). Define

G = A+ φ3
Y + φ3

Z −DφY φZ ∈ k(H),
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where A,D ∈ k are to be determined.
Our goal is show that G = 0 for A,D ∈ k as stated in the theorem.

To this end, by Proposition [1, II.1.2], it suffices to show that G has
no poles and G(Q) = 0 for some Q on H. By the definitions of φY

and φZ , if P is a pole of G, then X(φ(P )) = 0, which is equivalent to
X(P + R) = 0 for some R ∈ F . Let Q = P + R. From the formula of
φ, it can be seen that φ is invariant under translation by any point in
F . So φ(P ) = φ(Q) and X(Q) = 0. Therefore, if G has a pole at some
point P , then G also has a pole at some point Q with X(Q) = 0. By
subsituting X = 0 into the defining equation of H, we find that the
only points Q with X(Q) = 0 are {(0 : −ω : 1) | ω3 = 1}.

Let P = (0 : −ω : 1) with ω3 = 1. We’ll show that P is not a pole of
G for some A and D in k and hence by the arguments in the preceding
paragraph, G has no pole at all and thus is constant.

First, we assume that the characteristic of k is not 3. Then, a uni-
formizer for k[H]P is x (by [29, Theorem 1 of Section 3.2]). We need
the following facts:

• k[H]P is a discrete valuation ring (by [1, Proposition II.1.1]).
• k[H]P has a unique maximal ideal MP := {q ∈ k[H]P | q(P ) =

0} ([29, Section 2.4]).
• k(H) is the field of quotients of k[H]P .
• The field k is a subring of k[H]P , and the map b 7→ b+Mp from
k to k[H]p/MP is a field isomorphism.

We can conclude that the function that maps each element in k(H)
to its Laurent series expansion in k((x)) is a one-to-one ring homo-
morphism [29, Problem 2.32]. We write f =

∑r
i=m cix

i where m ∈ Z
and r ∈ Z ∪ {∞} to mean that f has the Laurent series expansion∑r

i=m cix
i.

Next, we find the series expansion of y in terms of x. The order of
y at P is ordP (y) = 0, since y is defined and is nonzero at P . Thus y
has a power series expansion y =

∑∞
i=0 cix

i. As ax3 + y3 + 1 − dxy is
zero in k(H) and the function that maps each element in k(H) to its
Laurent series expansion is a one-to-one ring homomorphism,

ax3 + (
∞∑
i=0

cix
i)3 + 1− dx(

∞∑
i=0

cix
i) = 0.

Since y − c0 vanishes at P , we have c0 = −ω. Then, solving for c1 and
c2 gives

y = −ω − d

3ω
x+O(x3).
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In the remainder of the proof, we use the definition S :=
∏n

i=1 si, and
since −(si : ti : 1) = (si/ti : 1/ti : 1), we have

n∏
i=1

ti = 1,
∑
i

t2i
si

=
∑
i

1

siti
, and

∑
i<j

t2i t
2
j

sisj
=
∑
i<j

1

sisjtitj
.

Moreover, we also use the following formula for the product of power
series:
n∏

i=1

c
(0)
i +c

(1)
i z + c

(2)
i z2 +O(z3)

=
n∏

i=1

c
(0)
i +

( n∏
i=1

c
(0)
i

)( n∑
i=1

c
(1)
i

c
(0)
i

)
z

+
( n∏

i=1

c
(0)
i

)( n∑
i=1

c
(2)
i

c
(0)
i

+
n∑

1≤i<j≤n

c
(1)
i c

(1)
j

c
(0)
i c

(0)
j

)
z2 +O(z3).

Substitution into G, with some additional simplifying yields

G = G−3x
−3 +G−2x

−2 +G−1x
−1 +O(1),

where

G−3 = 0,

G−2 =
ω

S3

(
(2n− 1)d− 6

n∑
i=1

1

siti
+DS

)
,

G−1 =
ω2d

3S3

(
(2n− 1)d− 6

n∑
i=1

1

siti
+DS

)
.

Hence, G−2 = G−1 = 0 if

D =
(1− 2n)d+ 6

∑n
i=1

1
siti

S
;

i.e. G has no pole and thus is constant.
Finally, we consider the case when k has characteristic 3. In partic-

ular, x is not a uniformizer for k[H]P . Instead, ω = 1, and u = y + 1
is a uniformizer for k[H]P . Since x is defined and vanishes at P , i.e.
ordP (x) ≥ 1, x has a power series expansion x =

∑∞
i=0 biu

i with b0 = 0.
Hence,

a(
∞∑
i=0

biu
i)3 + (u− 1)3 + 1− d(

∞∑
i=0

biu
i)(u− 1) = 0.



TWISTED HESSIAN ISOGENIES 9

Solving for b1, b2, . . . , we get

x = −1

d
(u3 + u4 + · · ·+ u8) +

a− d3

d4
(u9 + · · ·+ u14) +O(u15).

Note that in characteristic 3, by the definition of twisted Hessian curves,
d 6= 0. Then,

xy − siti
s2i y − tix2

=
ti
si

(1 + x+ x2) + (
ti
si
− 1

ds2i
)(x3 + x4 + x5)

+ (
ti
si
− 1

ds2i
− t2i
d2s3i

)(x6 + x7 + x8) +O(x9),

and

t2ix− siy2

s2i y − tix2
=

1

si
(1− x) +

t2i
ds2i

(x3 − x4)

+ (
t2i
s2i
− ti
d2s3i

)(x6 − x7) +O(x9).

Hence,

n∏
i=1

xy − siti
s2i y − tix2

= U0 + U1u+ · · ·+ U8u
8 +O(u9),

where

Ui =
1

S

((
n+ i− 1

i

)
+

(
n+ i− 4

i− 3

)∑
i

−1

dsiti

+
1

2

(
n+ i− 7

i− 6

)(∑
i

−1

dsiti

)2
+

(
n+ i− 7

i− 6

)∑
i

− 1

2d2s2i t
2
i

− ti
d2s2i

)
,

and ∏
i

t2ix− siy2

s2i y − tix2
= V0 + V1u+ · · ·+ V8u

8 +O(u9),

where

Vi =
(−1)i

S

((
n

i

)
−
(

n

i− 3

)∑
i

t2i
dsi

+
1

2

(
n

i− 6

)(∑
i

t2i
dsi

)2
+

(
n

i− 6

)∑
i

− ti
d2s2i

+
t2i
si
− t4i

2d2s2i

)
.

In the above, we define
(
p
q

)
= 0 if q < 0. One can verify the Ui and Vi

by straightforward induction on n. Substitution into G and simplifying
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(remember k has characteristic 3) using the identities:∑
i

t2i
si

=
∑
i

1

siti
and

∑
i

t4i
s2i

=
∑
i

1

s2i t
2
i

,

gives

G = G−6u
−6 +G−3u

−3 +O(1),

where

G−6 =
d2(d+ dn+ 2DS)

2S3
and G−3 =

d2(d+ dn5 + 2DS)

S3
.

In characteristic 3, we have n5 = n for integers n. Therefore, if

D =
−d− dn

2S
=

(1− 2n)d

S
,

then G−6 = G−3 = 0 and G is constant.
We note that if G(Q) = 0 for some Q, then G = 0. Next, we find

A ∈ k such that G vanishes at Q = (1 : −c : 0) ∈ H where c3 = a. By
[10, Theorem 4.1], i.e. (X : Y : Z) + (1 : −c : 0) = (Y : cZ : c2X),

φ(Q) =

(∏
R∈F

X(Q+R) :
∏
R∈F

Y (Q+R) :
∏
R∈F

Z(Q+R)

)

=

(∏
R∈F

Y (R) : c`
∏
R∈F

Z(R) : c2`
∏
R∈F

X(R)

)

=

(∏
R∈F

Y (R)/Z(R) : c` : 0

)
= (−1 : c` : 0).

So G(Q) = A− c3` = A− a`. Solving G(Q) = 0 for A gives A = a`.
It remains to check that the kernel of φ is indeed F . It’s clear that

φ(P ) = (0 : −1 : 1) if P ∈ F . For the converse, suppose φ(P ) = (0 :
−1 : 1). Then X(Q) = 0 where Q = P + R for some R ∈ F . So
Q = (0 : −1 : 1) or Q = (0 : −ω : 1) for some ω 6= 1 such that ω3 = 1.
If Q = (0 : −1 : 1), P = −R ∈ F . Else, by [10, Theorem 4.6],

φ(Q) = φ(0 : −ω : 1) = (0 : −ω` : 1) 6= (0 : −1 : 1)

since 3 - `. However, this contradicts φ(Q) = φ(P ) = (0 : −1 : 1).
That concludes the proof. �
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5. Cost of computing image points

In this section, we examine the computational complexity of the
isogeny formula in Theorem 5. We do so by counting the number of
multiplications (denoted by M), squarings, (denoted by S), and inver-
sions (denoted by I). Since the rotated addition formula is complete if
a is not a cube, we use the rotated addition formula in this section.

In general, the computational cost depends on many factors, for
example, how the points are represented: projective, affine, or both
(mixed), whether we want to avoid inversions entirely, or how the co-
ordinate maps are represented (e.g. polynomials or rational functions).
Here, we mainly focus on the purely projective case with coordinate
maps given by homogeneous polynomials of the same degree, and the
purely affine case with coordinate maps given by rational functions.

For simplicity, we assume that the size of the kernel is odd. We let
the kernel be

F = {O} ∪ {Ri}si=1 ∪ {−Ri}si=1

= {(0 : −1 : 1)} ∪ {(αi : βi : γi)}si=1 ∪ {(αi : γi : βi)}si=1.

We separate the computation into two phases: processing the kernel
points and computing the image of an input point. By the rotated
addition formula, (X : Y : Z) + (αi : βi : γi) = (X ′ : Y ′ : Z ′) where

X ′ = XZγ2i − Y 2αiβi,

Y ′ = Y Zβ2
i −X2aαiγi,

Z ′ = XY aα2
i − Z2βiγi,

and (X : Y : Z) + (αi : γi : βi) = (X ′′ : Y ′′ : Z ′′) where

X ′′ = XZβ2
i − Y 2αiγi,

Y ′′ = Y Zγ2i −X2aαiβi,

Z ′′ = XY aα2
i − Z2βiγi.

For processing the kernel, we can pre-compute

α2
i , aα

2
i , β

2
i , γ

2
i , αiβi, aαiβi, αiγi, aαiγi, βiγi,
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for all i, which takes 3sS + 6sM . Computing an image point(
X

s∏
i=1

(XZγ2i − Y 2αiβi)(XZβ
2
i − Y 2αiγi) :

Y
s∏

i=1

(Y Zβ2
i −X2aαiγi)(Y Zγ

2
i −X2aαiβi) :

Z
( s∏

i=1

XY aα2
i − Z2βiγi

)2)
then takes 3S for (XZ, Y Z,XY ), 3S for (X2, Y 2, Z2), 6sM for the
x-coordinate, 6sM for the y-coordinate, and 3sM + 1S for the z-
coordinate. In total, computing an image point takes (15s+3)M +4S.

In affine coordinates, let

F = {(0,−1)} ∪ {(αi, βi)}si=1 ∪ {(αi/βi, 1/βi)}si=1,

and the formula then becomes

(x, y) 7→
(
x

s∏
i=1

(x− αiβiy
2)(β2

i x− αiy
2)

(aα2
ixy − βi)2

, y
s∏

i=1

(β2
i y − aαix

2)(y − aαiβix
2)

(aα2
ixy − βi)2

)
.

For processing the kernel, we pre-compute

aα2
i , β

2
i , αiβi, aαiβi

which takes 2sS + 3sM . Computing an image point then takes (12s+
1)M + 3S + I. We do not claim these operation counts are optimal.

For comparison, consider the isogeny formula from [11] for Edwards
curves. The authors reported the cost of (6s+ 1)M + 2S + I in affine
coordinates or (6s+3)M +4S in projective coordinates, for computing
an image point. However, in each case, up to sI were required for
processing the kernel. We can do better. Suppose the kernel is

F = {(0 : 1 : 1)} ∪ {(αi : βi : γi)}si=1 ∪ {(−αi : βi : γi)}si=1.

The isogeny is

(x : y : z) 7→
(
x

s∏
i=1

β2
i γ

4
i x

2z2 − α2
i γ

4y2z2 :

y

s∏
i=1

β2
i γ

4
i y

2z2 − α2
i γ

4
i x

2z2 :

z

s∏
i=1

β2
i γ

4
i z

4 − d2α2
iβ

4
i x

2y2
)
.
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For processing the kernel, one can compute β2
i γ

4
i , α

2
i γ

4, and d2α2
iβ

4
i , for

all i, with (5s+1)S+4sM . For computing the image point, x2z2, y2z2,
x2y2, and z4, take 3M and 4S. If the characteristic is not 2, we can com-
pute each pair of 2(β2

i γ
4
i x

2z2 − α2
i γ

4y2z2) and 2(β2
i γ

4
i y

2z2 − α2
i γ

4
i x

2z2)
for the x and y coordinates with only 2M using the identities:

2(ax− by) = (a− b)(x+ y) + (a+ b)(x− y) and

2(ay − bx) = (a− b)(x+ y)− (a+ b)(x− y).

Each factor β2
i γ

4
i z

4−d2α2
iβ

4
i x

2y2 in the z coordinate takes 2M , and let
cost(2s) be the cost of computing 2s. Multiplication of all the factors
in the x and y coordinates takes 2sM , and multiplication of the factors
in the z coordinate including 2s takes (s + 1)M . Therefore, the total
cost of computing an image point is 4S + (7s+ 1)M + cost(2s).

Similarly, in affine coordinates, we can compute the Edwards isogeny
map

(x, y) 7→

(
x

s∏
i=1

β2
i x

2 − α2
i y

2

β2
i − d2α2

iβ
4
i x

2y2
, y

s∏
i=1

β2
i y

2 − α2
ix

2

β2
i − d2α2

iβ
4
i x

2y2

)
using (3s+ 1)S + 2sM for processing the kernel and (6s+ 1)M + 2S +
I + cost(2s).

The formula for Huff curves from the same paper [11] doesn’t seem to
have an efficient expression when projectivized, so we will not analyze
that here and hence use the analysis from the original paper.

Figure 1 summarizes the comparison. We obtained the cost for Vélu’s
formula by straightforward counting. We note that computing the
image point of an isogeny seems to be fastest on the Edwards model
of elliptic curves. The twisted Hessian isogeny formulas in this paper
are roughly about the same cost as using Velu’s formula on Weierstrass
curves.

6. Conclusion

In this work we looked at computing isogenies between elliptic curves
represented as twisted Hessian curves. There still exist other models of
curves for which direct isogeny formulas are not known, such as Jacobi
quartics and Jacobi intersections [30, 31]. It would be interesting to
see if simple isogeny formulas exist for these models. We note that the
original Velu isogeny formulas are expressed as a sum, while the more
recent Edwards, Hessian, and Montgomery formulas all involve a prod-
uct of expressions involving the kernel points. Is there a multiplicative
version of Velu’s formulas? Or additive expressions for isogenies of the
alternate models of elliptic curves?
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Formula Process
Operations

S M I Others

Twisted Hessian (projective)
kernel 3s 6s
input point 4 15s+ 3

Twisted Hessian (affine)
kernel 2s 3s
input point 3 12s+ 1 1

Edwards (projective)
kernel 5s+ 1 4s
input point 4 7s+ 1 cost(2s)

Edwards (affine)
kernel 3s+ 1 2s
input point 2 6s+ 1 1 cost(2s)

Huff (affine)
kernel 2s+ 2 2s
input point 2 6s− 2 2

Vélu’s
kernel s 9s
input point 1 13s+ 1 1

Figure 1. A comparison of isogeny computation costs
for various models of elliptic curves. For each formula,
the first row shows the number of operations for process-
ing the kernel and the second row shows the number of
operations dependent on input point.

We leave it as future work to further optimize the formulas presented.
This would include finding efficient formulas for low degree isogenies,
such as 2-isogenies and 3-isogenies, of twisted Hessian curves. Low de-
gree isogenies are used in post-quantum cryptographic isogeny schemes,
and if optimized formulas can be found, it may lead to implementing
these isogeny cryptosystems using twisted Hessian curves.
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