
SPAE a mode of operation for AES on low-cost
hardware ∗

Philippe Elbaz-Vincent1, Cyril Hugounenq1 and Sébastien Riou2

1 Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France,
philippe.elbaz-vincent@univ-grenoble-alpes.fr,

cyril.hugounenq@univ-grenoble-alpes.fr
2 Tiempo, 38330 Montbonnot Saint Martin, France, sebastien.riou@tiempo-secure.com

Abstract. We propose SPAE, a single pass, patent free, authenticated encryption
with associated data (AEAD) for AES. The algorithm has been developped to address
the needs of a growing trend in IoT systems: storing code and data on a low cost
flash memory external to the main SOC. Existing AEAD algorithms such as OCB,
GCM, CCM, EAX , SIV, provide the required functionality however in practice
each of them suffer from various drawbacks for this particular use case. Academic
contributions such as ASCON and AEGIS-128 are suitable and efficient however
they require the development of new hardware accelerators and they use primitives
which are not ‘approved’ by governemental institutions such as NIST, BSI, ANSSI.
From a silicon manufacturer point of view, an efficient AEAD which use existing
AES hardware is much more enticing: the AES is required already by most industry
standards invovling symmetric encryption (GSMA, EMVco, FIDO, Bluetooth, ZigBee
to name few). This paper expose the properties of an ideal AEAD for external
memory encryption, present the SPAE algorithm and analyze various security aspects.
Performances of SPAE on actual hardware are better than OCB, GCM and CCM.
Keywords: authenticated encryption with associated data (AEAD), · Nonce Misuse
Resilience · Execute in Place (XIP) · Differential Fault Analysis (DFA) · AES ·
low-cost hardware

1 Introduction and motivations for AEAD on embedded
systems

In the past, most embedded systems would store everything within the internal flash
memory of a microcontroller. As performance and memory requirements increase, the
trend is to use powerful application processors coupled with discrete flash memory chips.
This has great impact on the security of the application and, counter-intuitively, even
when physical attacks are not considered a threat. In a connected world, remote attacks
are typically the most devastating ones so most manufacturers focus on them. The catch
is that remote attacks are possible only once a weakness has been found. As a result
attackers sometimes perform a physical attack as a preliminary step for finding an exploit
[20].

The firmware was stored in a secure internal flash and its confidentiality was a one time
problem: once the firmware was decrypted, it was stored in plain in the internal memory.
Similarly authenticity had to be verified just once before activating a new version of the

∗This work is supported by SECURIOT-2-AAP FUI 23, ANR-15-IDEX-02 and partially supported by
ANR-15-CE39-0002.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems Vol. 0, No.0, pp.1—40,
DOI:XXXXXXXX

mailto:philippe.elbaz-vincent@univ-grenoble-alpes.fr
mailto:cyril.hugounenq@univ-grenoble-alpes.fr
mailto:sebastien.riou@tiempo-secure.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXXX

2 SPAE

firmware. In that setting, the performance of cryptographic operations have no impact on
the performance of the application and very little impact on the battery.

Now that the firmware is stored in external flash, guaranteeing its authenticity and
confidentiality is much more challenging. Those functionalities are typically provided by
the use of an authenticated-encryption with associated-data (AEAD) algorithm and a
secret key stored on-chip. Furthermore the code is executed in XIP mode (eXecute In
Place). This means that the application processor fetches code from the external memory
in much the same way as it would do with an internal memory: it fetches small blocks
to fill just one cache line at a time (typically 256 bytes). The performance of the AEAD
therefore impact directly the application performance and the battery life time. In this
case, the AEAD or at least the underlying block cipher is implemented in hardware.

Besides XIP, a number of microcontroller application also store data in external flash
simply because they need more capacity than the internal flash has. In this case the
performance of the AEAD is less critical but the need for energy efficiency remains. The
AEAD may be implemented fully in software or with some hardware acceleration. In this
context it is desirable to use AES as the core function:

• AES is currently the only symmetric encryption primitive ‘approved’ by NIST, BSI
and ANSSI (Triple DES will be retired in 2023) [19].

• Numerous microcontrollers have AES hardware accelerator built-in. For example
STM32L083RB, LPC18S37JET100, PIC24FJ128GA202, nRF52840.

• In secure elements, the AES accelerator is heavily protected against physical attacks.
There is simply no way of achieving a better trade off between perfomance, security
and power consumption on this type of chips.

Remark 1. The statement about the efficiency of AES on secure elements is just an
observation of what is typically available on those ICs at the time of writing. For the
foreseenable future, low cost means reusing AES as far as smart cards and secure elements
are concerned.

Ideally the AEAD would lend itself to efficient protection against side channel attacks.
This means to avoid using the addition operation, so ARX schemes shall be avoided [10].
In other words, besides AES, the AEAD shall use only operations which are trivial to
mask such as XOR and rotations.

As a result, the properties of the ideal AEAD for external memory encryption are the
following:

• Energy efficiency on small message size (full blocks, 256 bytes typically)

• Fast in single thread setting

• Differential Fault Analysis (DFA) resistance at algorithmic level

• Use only AES, XOR and rotate

• Efficient both in software and hardware implementations against comparable AEAD

Remark 2. A common misconception about AEAD algorithms is the belief that they are
intrisically protected against DFA ([11]). This is not the case for GCM for example: the
tag is computed from the ciphertext so faults injected on AES during decryption are not
detected. One may object that DFA requires the observation of the faulty output and that
the plaintext is available only inside the device. This is certainly the general case however
one cannot assume that plaintext is never sent outside of the device. For example it is
common for firmware to send data such as version numbers unencrypted. This is especially
true of applications with graphic display. We make this point on DFA because the typical

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 3

countermeasure doubles the execution time and energy consumed by a block cipher. The
intrinsic DFA resistance is therefore a desirable property.

The main contribution of this paper is to show that SPAE, which is patent-free, fulfills all
those properties.

First we present a state of the art (section 2), after a description of SPAE (section 3),
a security analysis of the scheme is done (section 4). Then we evaluate its performances
(section 5), we conclude with perspectives and future improvements of our work (section 6).
Finally in the appendix (section 7) there are some test vectors and some design rationale.

In particular, for the security analysis (section 4), we provide results about differential
fault analysis, nonce misuse resilience([3, 4]) authenticity and privacy (theorem 1 and 2)
and arguments on the resilience of our scheme against an attack like the one of Inoue et al.
[24, 35, 25, 23]. (section 4.1.5).

2 State of the art on AEAD mode of operation
An authenticated encryption (AE) scheme is a symmetric-key mechanism with the goal
that the ciphertext protect the privacy and the authenticity of the plaintext. In real-world
applications, not all data should be privacy-protected and it gave rise to the notion of
authenticated-encryption with associated-data (AEAD), which was first introduced by
Rogaway [36]. Since then several families of AEAD schemes have been proposed and
standardized by NIST, IEEE, IETF and ANSI (C12.22). An overview of the state on AE
and AEAD schemes, with discussions of security and privacy aspects, has been given by
Vizár [44]. In practice, we distinguish two kinds of AEAD schemes (idem for AE schemes)
[6]. In a two-pass scheme we make two passes through the data, one aimed at providing
privacy and the other, authenticity. In a one-pass AEAD or AE scheme we make a single
pass through the data, simultaneously doing what is needed to engender both privacy and
authenticity. As we can expect, the computational cost is usually about half that of a
two-pass scheme.
As part of the standard hypothesis, it is considered to be the responsibility of the sender
not to reuse any nonce (often by using a counter). Nevertheless, nonce can still get reused
in AE and AEAD schemes, either due to implementation errors or sophisticated attacks.
Rogaway and Shrimpton [40], introduced the notion of nonce-misuse resistant AE and
AEAD (MRAE) with an associated security model. Their work was seminal for the design
of new AE and AEAD schemes that are robust to improper use or implementation errors.
In the following we list the most frequent AEAD algorithms used in industry and comment
on their energy efficiency and nonce-misuse, assuming the underlying block cipher is AES.

2.1 NIST approved AEAD algorithms
NIST 1 has approved two AEAD algorithms: AES-CCM (800-38C) and AES-GCM (800-
38D).

AES-CCM [18] is a two pass ‘authenticate-then-encrypt’ scheme. As such it is bound to
be about twice slower as a single pass scheme [42]. CCM has been criticized as not being
‘on-line’ [6]: the length of the message must be known at the beginning of the processing.
This is not a problem in the context of external memory encryption.

AES-GCM [30] is also a two pass scheme however the authentication pass use a
dedicated operator ‘GHASH’. As it it shown in section 5 the GHASH operation is typically
slower than AES-128 when implemented in software on microcontrollers. As a result, in
that use case at least, GCM is less power efficient than CCM.

1https://csrc.nist.gov/projects/block-cipher-techniques/bcm/current-modes

https://csrc.nist.gov/projects/block-cipher-techniques/bcm/current-modes

4 SPAE

2.2 CAESAR finalists
The CAESAR competition 2 produced many alternatives to the standard AEAD algorithms,
unfortunately only two among them reuse the full AES: COLM and OCB.

COLM by Andreeva et al. [2] consists of two layers of encryption connected by a linear
mixing layer. Its energy efficiency is therefore similar or worse than classic two pass AEAD
such as CCM.

OCB by Rogaway et al. [28] is a single pass scheme (it is the third version there
was [38, 37]). As such it is intrinsically more energy efficient than two pass schemes. It
has been extensively reviewed by the cryptographic community and has been adopted in
few internet standards. It appears as the most suitable algorithm for external memory
encryption however a non technical issue hampers its use in the industry: it is patented.

2.3 Other prominent AEAD algorithms
Many other AEAD algorithms have been proposed, two stands out: SIV and CHACHA20-
POLY1305. The SIV mode by Rogaway and Shrimpton [41] attracted a lot of attention
due to its advantage of keeping strong confidentiality guarantees in the event of nonce
reuse. It is nevertheless a two pass scheme and therefore is not suitable with respect to
our energy efficiency constraint.

The schemes CHACHA20 and POLY1305 both by Bernstein [8] [7] are often combined
to provide authenticated encryption. They are praised for their high efficiency in software
implementations. As CHACHA20 is an ARX scheme, it is difficult to protect against side
channel attacks [10]. All the efficiency advantage that CHACHA20 has over AES are
likely to vanish after the addition of side channel countermeasures so we do not consider it
further.

The mode of operation SAEB by Naito et al. [31] is a single pass scheme but has
recommended parameters that makes it equivalent to a two pass scheme and since it is
patented it is not used in the industry.

2.4 Comparison between the AEAD schemes
We summarize below the properties and operations count for the different schemes afore-
mentioned which use AES. We include SPAE and CSPAE, our proposal, for comparison.

Table 1: Comparison of selected AEAD schemes

Name Non trivial operations count Consequence of Nonce reuse
EAX [6] (2m+a+4)Ek Xor of plaintexts revealed
CCM [18] (2m+a+2)Ek Xor of plaintexts revealed
SAEB [31] (2m+a+2)Ek (with parameters used in [31, § 6]) Equality of first blocks revealed
SIV [41] (2m+a+1)Ek Equality of message revealed
CLOC [26] (2m+a+1)Ek Equality of blocks revealed

GCM [30] (m+1)Ek + (m+a+1)GHASH • Forgeability
• Xor of plaintexts revealed

OCB [28] (m+a+2)Ek + (m+a+1)Inc • Forgeability
• Equality of blocks revealed

SPAE (m+a+2)Ek Equality of first blocks revealed
CSPAE (m+a+2)Ek Equality of first blocks revealed

2https://competitions.cr.yp.to/caesar.html, final portfolio announced February, 20, 2019.

https://competitions.cr.yp.to/caesar.html

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 5

Notations: m (length of message, in blocks), a (length of associated data, in blocks), Ek
(the encryption scheme with the key k), GHASH (multiplication in F128), Inc (the ‘inc’

operation defined in OCB).

In the next section we will present the SPAE and CSPAE schemes and will show that
they are the fastest modes in single thread setting. In case of nonce reuse, only SIV
provides better confidentiality.

3 The SPAE and CSPAE modes of operations
In order to combine energy efficiency and protection against improper use or implementation
errors, our new scheme will need to be one-pass and provide some level of nonce-misuse
resistance (no forgeability, no key recovery, see section 4.1.6). We will describe it for a
general block cipher even if we have for application AES in mind. Furthermore, only
elementary binary operations should be used in order to contain the energy consumption
and facilitate the countermeasures. We will start by an outline of the basic operations
needed by the scheme.

3.1 Elementary Operations
We denote by x the bitwise complement of x, ⊕ is the bitwise XOR and ∧ is the bitwise
AND. We denote by a << b the left shifting of a by b bits, the least significant bits being
filled with 0, we denote a||b as the concatenation of a and b. We write integer variable
names using this style: intname. We write block names using this style: BLOCKNAME.
HSWAP (a) denotes the swap of the left half with the right half within a block.

3.2 Inputs and outputs of the scheme
We denote by bs the bit size of blocks used in this scheme, it is > 128. ml and adl represent
the message (resp. associated data) length in bits. P is the plaintext, it is composed
of m = (ml+bs−1)

bs blocks Pi of size bs. A is the associated data used to authenticate the
ciphered text, it is composed of a = (adl+bs−1)

bs blocks Ai of size bs. C is the ciphertext, it is
composed of m blocks Ci of size bs. TAG is the authentication tag generated for the message,
it is of bit size ts 6 bs. TAGnull is the authentication tag generated for an empty message
with associated data. NONCE is a value used only once for initiating SPAE encryption of
size bs. K is the secret key used of size bs. EK is the cryptographic primitive used in the
scheme it should be able to take as input a key K, a block of size bs and outputs a block of
size bs.

3.3 Internal data of the scheme
We use a total of 9 internal variables of size bs. Three variables PTi, CTi and MT for the
encryption part of the scheme. The first two are intialised before the encryption of the
message and updated during this one and MT is produced at the end of the encryption of
the message. We use the variables ATi in order to update the processing of associated data.
IT and PADINFO are used for the production of the TAG, KN is a secret key derived from K
used all along the encryption part and the production of the TAG and 1bs is a constant
with all bits set to 1. As a result x⊕ 1bs = x

3.4 Diagrammatic description of SPAE and CSPAE
The two schemes only differ by the computation of KN, PT0 and CT0. The below diagrams
don’t show those computations and apply equally to both schemes. The figure 1 illustrates

6 SPAE

the encryption of a message with three blocks of plaintext and three blocks of associated
data. The decryption of such cyphertext is shown in figure 2. In figure 3 is shown the
authentication of two blocks of associated data.

Figure 1: Encryption with SPAE with a = 3 and m = 3

Figure 2: Decryption with SPAE with a = 3 and m = 3

Figure 3: Authentication of two blocks of associated data with SPAE

3.5 Algorithmic description of SPAE and CSPAE
Both algorithms require an initialization state which is different. CSPAE avoids to call
E with different keys and could be considered as a tweakable block cipher as defined in

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 7

[29] whereas SPAE does not fit this definition. This is done at the expense of turning the
static call to E into a dynamic one, i.e. a call which depends on NONCE. Further details on
the choices made for the initial values are in section 7.4. Only the ‘Init’ algorithm differs
between SPAE (algorithm 1) and CSPAE (algorithm 2).

Algorithm 1 InitSPAE (SPAE version)
Require: K the secret key, NONCE a nonce
Ensure: PT0 and CT0and KN
1: CT0 ← EK(K)
2: PT0 ← K⊕ CT0
3: KN← K⊕ NONCE
4: return (PT0, CT0, KN)

Algorithm 2 InitCSPAE (CSPAE version)
Require: K the secret key, NONCE a nonce
Ensure: PT0 and CT0and KN
1: CT0 ← EK(NONCE⊕ K)
2: PT0 ← NONCE⊕ K⊕ CT0
3: KN← K
4: return (PT0, CT0, KN)

Now we present algorithms used to process input data and produce output.

Algorithm 3 ComputeTag
Require: a > 0, A0...Aa−1 associated data blocks of size bs, K the secret key, PTm, CTm

and KN
Ensure: TAG
1: AT← 0
2: for i ∈ 0, · · · , a− 1 do
3: AT← EK(AT⊕ Ai)
4: end for
5: if m = 0 then
6: MT← 1bs ⊕ K
7: else
8: MT← HSWAP (CTm)⊕ PTm
9: end if
10: PADINFO← PadInfo(ml, adl)
11: IT← AT⊕ MT
12: TAG← EKN(IT⊕ PADINFO)
13: if m = 0 then
14: TAG← TAG⊕ PTm
15: else
16: TAG← TAG⊕ CTm
17: end if
18: return TAG

8 SPAE

The function PadInfo(ml, adl) is computed as below(in the applied case of bs = 128):

(ml) 7→mp = ml ∧ ((1 << 64)− 1)
(adl) 7→adp = adl ∧ ((1 << 64)− 1)
(mp) 7→mp32 = mp ∧ ((1 << 32)− 1)
(adp) 7→adp32 = adp ∧ ((1 << 32)− 1)

(mp, adp, adp32) 7→TMP = ((adp >> 32)⊕ (adp32 << 32))⊕mp
(mp32, adp32, TMP) 7→PADINFO = (TMP << 64)⊕ (adp32 << 32)⊕mp32

We now give a description of the two main algorithms 4 and 5 for encryption and
decryption. The subscript s denotes the choice between the schemes SPAE and CSPAE.

Algorithm 4 EncryptAndAuthenticates
Require: P a stream of message blocks, K a secret key, NONCE a nonce,and A a stream of
associated data blocks

Ensure: (C, TAG) a stream of ciphered blocks followed by TAG;
(PT, CT, KN)← Inits(NONCE, K)
for i ∈ 0, · · · ,m− 1 do

TMP← EKN(PT⊕ Pi)
Ci ← TMP⊕ CT
CT← CT⊕ PT
PT← Pi ⊕ TMP

end for
TAG← ComputeTag(A, K, PT, CT, KN)
return (C0||...||Cm−1, TAG)

Algorithm 5 DecryptAndAuthenticates
Require: C a stream of ciphered blocks, TAG, and the values used to produce them: the
key K, the nonce NONCE and the associated data A;

Ensure: The message P or Failure
(PT, CT, KN)← Inits(NONCE, K)
for i ∈ 0, · · · ,m− 1 do

TMP← CT⊕ Ci
CT← CT⊕ PT
Pi ← PT⊕DKN(TMP)
PT← Pi ⊕ TMP

end for
TAGTEST← ComputeTag(A, K, PT, CT, KN)
if TAGTEST = TAG then
return (P0||...||Pm−1)

end if
return Failure

Like in any AEAD algorithm, the decryption shall check equality of TAGTEST and TAG
before returning any Pi. If the test fails, it shall return nothing besides Failure.

3.6 Padding
Padding is supported for both the message and the associated data. During encryption,
the last block is padded by appending ‘0’ bits until bs is reached. The original length

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 9

informations are encoded in PADINFO which contributes to the computation of TAG. This
TAG would be the only difference between the processing of one message padded by the
algorithm and one by the user. Note that although the length informations are processed
by the algorithm, they are not recoverable from the ciphertext. This means that the
decryption algorithm expects to be called with correct length informations and that it is
up to the user to ensure a method of doing so.

3.7 Design Rationale
The purpose of the HSWAP operation and the redundant encoding of PADINFO is to
prevent DFA attack on the Dkn operations during decryption (see 4.2).

The TAGnull equation is required in order to avoid the 0 value for the TAG. Indeed the
HSWAP operation is transparent to all symmetric values, in those cases and if a = 0 and
m = 0, the TAG equation for the general case would then lead to 0. It is therefore needed
to have a special equation for TAGnull:

TAGnull = PT0 ⊕ EKN(AT0 ⊕ K⊕ FF⊕ PADINFO)
= K⊕ EK(K)⊕ EK⊕NONCE(K⊕ FF) (SPAE)
= NONCE⊕ K⊕ EK(K⊕ NONCE)⊕ EK⊕NONCE(K⊕ FF) (CSPAE)

Moreover the value of the TAGnull being computed with a secret value used only here
(k = K⊕ 1bs), permits to not give to the attacker new relations between the TAGnull and
other variables of the scheme in other mode.

The recommended value for ts is bs. Implementations are free to reduce ts by selecting
any part of the TAG, all selections of a given number of bits will result in the same security
level.

As in all the usages for AEAD, there is no method of early abort implemented in SPAE.
This choice protects SPAE against side channel attacks like the one of [1].

4 Security analysis of SPAE
First we recall some classical definitions. We denote by K a finite space called the key
space, N a finite space called the nonce space,M⊂ {0, 1}∗ the message space, C ⊂ {0, 1}∗
the ciphertext space and, A ⊂ {0, 1}∗ the associated data space. A block cipher is a
deterministic algorithm E : K× {0, 1}bs → {0, 1}bs with bs > 1. We denote EK(.) = E(K, .)
and we require that it is a permutation for all K ∈ K. Let D = E−1 be the map from
K × {0, 1}bs to {0, 1}bs defined by DK(Y) = D(K, Y) = X with X being the unique point
such that EK(X) = Y .

The encryption algorithm E takes a tuple (K, N,A,M) ∈ K ×N ×A×M and returns
deterministically, either a ciphertext C = EN,AK (M) ∈ C ⊂ {0, 1}∗ or the distinguished
value Failure. We denote by a the number of blocks Ai of associated data and by m the
number of blocks Pi of message.

The decryption algorithm D takes a tuple (K, N,A,C) ∈ K ×N ×A× C and returns
deterministically, either Failure or a string M = DN,AK (C) ∈ M ⊂ {0, 1}∗. We require
that DN,AK (C) = M for any string C = EN,AK (M) and that E and D return Failure if they
are provided an input outside of K × N × A ×M or K × N × A × C. We require that
|EN,AK (M)| = |EN,AK (M ′)| when |M | = |M ′|, when the value of |EN,AK (M)| = |M |+ τ we
call τ the tag length of the scheme.

We denote Π = (K, E ,D) an AE scheme. Given an adversary A, we denote, following
[29, 2.2], [3, Definition 1,2] and [4], the resilience advantage AdvprivΠ (A) = Pr[K ←$ K :
AEK(.,.,.) ⇒ 1]− Pr[A$(.,.,.) ⇒ 1] where queries of $(N,A,M) return a uniformly random

10 SPAE

string of length |EN,AK (M)|. A is allowed to asks queries with the same NONCE (i.e. the
same first component) but the attacker should respect the NONCE uniqueness only when
the attacker tries to distinguish EK from $. The attacker is also not allowed to ask a query
outside of N ×A×M. Repeating a query isn’t allowed too. Authenticity resilience, is
denoted by AdvauthΠ = Pr[K ←$ K : AEK(.,.,.)forges] where forges means that the adversary
outputs a value (N,A,C) ∈ N × A × C such that DN,AK (C) 6= Failure and there was no
prior request (N,A,M) such that it returned C and N has not been used twice with
EK(., ., .).

The nonce resilience is a notion to ensure that encryption/decryption done with different
nonces are independant sucht that the information obtained with nonce reused for a certain
NONCE is not useful for another NONCE.
Remark 3. We will make the assumption all along this document that the NONCE used are
known and chosed by the attacker, the reuse of NONCE are limited as stated above.

We denote by σe the total number of request to EKN in the scheme to process message
blocks, σa the total number of request to EK in the scheme to process associated data
blokcs. We have for SPAE/CSPAE σa + σe + 2 requests for the encryption functions
EKN, EK for the requests (N i, Ai,M i). The two extra calculations are the computation for
the TAG and CT0, this last one is always the same for SPAE and could be computed only
once.

First we do a structural analysis of SPAE (4.1) to show that the schemes reveals no
information about the blockcipher and we evaluate its authenticity(theorem 1). Then we
give a Differential Fault Analysis (4.2) and we conclude with an analysis of the privacy
(4.4).

4.1 Structural analysis of SPAE
A cryptanalysis of the scheme would start by trying to get the key K which is direct from
KN. Therefore having the more information available about the use of EKN is a prerequisite
to cryptanalyse this scheme who could present some flaw since it uses only XOR operations
outside of the usage of a blockcipher E.

We will therefore show what information we could get from the structure of the scheme
and the relation between the variables used.

4.1.1 Analysis of the internal variables (Passive attacks)

Since the internal variables PTi, CTi are used to mask the inputs and outputs of EKN, it is
relevant to see how they are related, how we can get their values and what information we
could get from them.

This analysis is made in a context of some passive attack where the attacker just put
in input plaintexts (Pi) and associated datas (Ai) and observe the outputs Ci, TAG.

Proposition 1. Under the assumption that the attacker has access to all the Pi, Ci;

• the knowledge of PTj and CTj−1 are equivalent,

• the knowledge of PTj and CTj−1 does not bring more knowledge about the internal
variables of the scheme.

Proof. The first claim is a consequence of the following equalities CTj−1 = Cj−1⊕EKN(Pj−1⊕
PTj−1) = Cj−1 ⊕ PTj ⊕ Pj−1.

The proof is straightforward and consists to explore the relations we have between
the internal variables and show that we got to know at some points internal variables
such as CTj−3, CTj+1, PTj+2, PTj−2 which we could not have a hint on their values from the
assumptions made.

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 11

Remark 4. If we know PTj , CTj+1 then we can compute CTj = PTj ⊕ CTj+1.
Therefore we study here the knowledge of a pair of values PTi, CTi.

Proposition 2. Under the assumption that the attacker knows all the Pi, Ci for i ∈ [0,m],
if the attacker knows PTr, CTr for some r ∈ [0,m] then the attacker can deduce all possible
value PTj , CTj. Therefore the attacker is able to compute CT1 = KN⊕ NONCE.

Proof. From Cr = CTr ⊕ EKN(Pr ⊕ PTr) we get the value EKN(Pr ⊕ PTr) from it we deduce
PTr+1 = EKN(Pr⊕PTr)⊕Pr, we get CTr+1 = PTr⊕CTr. At this point we get the pair of values
PTr+1, CTr+1. Now we look for the preceding values, we got EKN(Pr−1⊕PTr−1) = PTr⊕Pr−1,
we then deduce CTr−1 = Cr−1 ⊕ EKN(Pr−1 ⊕ PTr−1), we now got the preceding couple
PTr−1 = CTr−1 ⊕ CTr, CTr−1. We apply those knowledge recursively to get all the pairs
PT`, CT`.

4.1.2 Analysis of collection of tuples (X, EK(X))

Since any attack against the key K would start with collecting images of the application of
EKN on some constants known and sometimes chosen, we first start with some remarks
studying the security of the cryptosystem against some attacks on EKN. Moreover the
recents attacks on OCB2[37] by Inoue et al. [24, 35, 25, 23] show that it is important to
hide tuple X,EKN(X).

Corollary 1. The knowledge of a pair X,EKN(X) from a direct observation of Pi, Ci, TAG, TAGnull
is protected by the knowledge of pairs PTi, CTi.

Proof. There are two usages of EKN along the schemes, the ones in the encryption part and
the ones in the creation of the TAG. In the encryption part we got Ci = CTi⊕EKN(Pi⊕ PTi),
thus the knowledge of a pair (X,EKN(X)) is protected by the knowledge of PTi, CTi.

For the authentication part, we have TAG = CTm ⊕ EKN(PADINFO ⊕ ATa ⊕ PTm ⊕
HSWAP (CTm)), thus to know a pair of values (X,EKN(X)) the attacker has to know the
couple of PTm, CTm making the assumption that ATa = AT0 = 0, otherwise the attacker
would have to know EK(X) for some block X.

Finally we have TAGnull = PT0 ⊕EKN(ATa ⊕ K⊕ PADINFO) here again the attacker has
to know values which imply to know PT0, CT0 among other values to be able to extract a
pair of values (X,EKN(X)).

Corollary 2. Under the assumptions that the attacker knows all the Pi, Ci for i ∈ [0,m],
respect the NONCE uniqueness and format of the inputs. Then the attacker could not predict
a computation of EKN(X) on a block X before a direct output of EKN in the scheme except
if the attacker knows one of the pair PTi, CTi.

Proof. Since the change of NONCE affects the key KN in SPAE and the internal variables used
in the application of EKN of SPAE and CSPAE we work with a single NONCE usage. If the
attacker is able to make an application of EKN on same unknown blocks this means that in
the encryption part he is able to compute Pi, Pj for i, j ∈ [0,m] such that Pi⊕PTi = Pj⊕PTj
if we develop this equality, supposing without loss of generality that j > i, then we got
some equality:

PTi ⊕ Pi ⊕ Pj = Pj−1 ⊕ EKN(Pj−1 ⊕ EKN(...Pi ⊕ EKN(PTi ⊕ Pi))).

Solving this equality means that the attacker is able to compute successive preimages of
PTi xored with some data. Therefore such an attack is not possible even with knowing PTi
since the attacker has not been given knowledge on EKN (corollary 1).

For the usage of EKN in producing the TAG there is in addition to the secrecy provided
by the unique use of KN the secrecy coming from the internal variables PT, CT (depending

12 SPAE

of the value of m) moreover there are operations such as HSWAP which are exclusive to
TAG computation.

For known block X since for the inputs of the applications of EKN before a direct output
there is always an internal variable (dependant of the NONCE) used it is not possible to
determine the inputs on which EKN is applied.

From proposition 2, knowing a pair PTi, CTi imply to know every pair of values PTj , CTj
and KN.

Remark 5. If an attacker knows all the Pi, Ci for i ∈ [0,m] and a pair EKN(PTj⊕Pj), PTj⊕Pj
then the attacker is able to deduce the value of KN from PTj , CTj using proposition 2.

4.1.3 Attack with reuse of outputs

Now we look at some attacks that would replay some output of the scheme (i.e. some Ci)
in the inputs (i.e. some Pi) such attack should be taken into account since it could imply
some serious security break.

Proposition 3. Under the assumption that the attacker knows all the Pi, Ci, TAG, TAGnull
the attacker is not able to adapt the values of the Pj , Pj+1 to get one of the PTi or CTi.

Proof. Since it is equivalent to know every couple of PTi, CTi by proposition 2, we study
the ability of an attacker to adapt the values of P0, P1 to get some valuable knowledge on
the scheme using also the knowledge of TAG. The proof is a straightforward analysis of the
different variables: TAG, TAGnull, CT0, CT1 and their eventual links with the blocs Pi, with
the aim to get in the end a couple of internal variables PTi, CTi.

4.1.4 Authenticity

In this section we will present bounds for the advantage an adversary has against the
scheme. To simplify this analysis we make the assumptions that PADINFO = 0. We first
look at all the values used to compute the TAG.

Proposition 4. By the design of the scheme ATa takes all the possible value.

Proof. Since EK is supposed to be a permutation then EK(ATa−1 ⊕ Aa) = ATa should take
all the possible values.

Therefore we will make the assumption that there is no additional data since it does
not bring restriction to the values taken by the TAG. We study now the values taken by
CTm, PTm.

Lemma 1. The values taken by CTm+1 and PTm+1 are in a set of size lower bounded by
the codomain of the function x 7→ x⊕ EKN(x).

Proof. Since the PTi are made recursively by the formula PTi = Pi−1 ⊕EKN(PTi−1 ⊕ Pi−1)
we have the values taken by PTi which are in a set of size of this codomain. The following
values, taking PTi−1 as a constant value, are thus in a set of at least of size of the codomain.
Since CTm+1 = PTm ⊕ CTm we get the result.

We now analyze the possible values for the TAG = EKN(PTm ⊕ HSWAP (CTm) ⊕
PADINFO)⊕ CTm.

Corollary 3. Under the assumption that there is no additional data the values taken by
the TAG are lower bounded by the codomain of the function x 7→ x⊕ EKN(x).

We remind that we work with the notion of authenticity resilience following [3, Definition
2] and [4].

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 13

Theorem 1. If the adversary asks q queries then AdvauthΠ 6 1
Γ−q with Γ the size of the

codomain of the function x 7→ x⊕ EKN(x) for TAG and AdvauthΠ 6 1
2ts−q for TAGnull.

Proof. We analyze the ability of the adversary to forge a TAG that will pass the verification.
We remind that TAG = EKN(IT⊕ PADINFO)⊕ CTm.

Thus even if the attacker knows IT, the attacker needs to know the image of EKN applied
to IT which is not possible in this setting by the corollary 1. The analysis of the knowledge
of IT has been made in the proof of corollary 1 and is not possible in this context. We
conclude with the corollary 3.

For TAGnull = PT0 ⊕EKN(ATa ⊕ K⊕ PADINFO) since the attacker has not been given any
pair of (X,EKN(X)) by corollary 1 then the attacker is not able to compute such a value
on a new null message even if the attacker would know PT0 and ATa ⊕ K.

Thus the attacker has a chance of success of 1
Γ−q for forging a TAG and 1

2ts−q for forging
a TAGnull.

A good resilience of the scheme against TAG forgery is important to avoid attack in
decryption mode. Indeed a decryption of (NONCE, C,A, TAG) will give substantial informa-
tions only if the computed TAG with the data in input C,A will match the TAG in input,
otherwise the algorithm will output the distinguished value Failure.

The only interest to do an attack on the decryption part of the scheme would be to
make some NONCE replay and get some new pair (Pi, Ci) in addition to the ones obtained
in encryption mode.

Such an attack need to get at the end a valid TAG. Thus at some point it is needed
that some intermediate PTi get the same value that the one used to get the original TAG.
Thus such an attack reduce to the ones in proof of corollary 2 in term of complexity for
the attacker.

An attack like the one in [43] is not possible in this context since any value in the
message is always xored with internal values before and after the application of the block
encryption function.

4.1.5 Resilience against an attack like the one of Inoue et al. [24, 35, 25, 23]

In this subsection we highlight the properties that permit to say that this scheme should
be resilient against an attack like the one of [24, 35, 25, 23].

A good interaction between XEX and XE As stated in [23] "the vulnerabilities
of OCB2 stem from a bad interaction of the XE and XEX components" here in our scheme
we always use a XEX (that is to say a Xor Encrypt Xor) on the messages blocks and on
the TAG.

Diffculties to increase knowledge In the attack of [24, 35, 25, 23] there was the
possibility to increase the knowledge of pairs X,EK(X) through repeated use of the schemes.
Here there are two cases to analyse the values PT, CT used to mask the encryption function.
• In SPAE they are derived from the function x 7→ Ex(x) therefore there is only the

pair K, EK(K) of interest in the scheme and moreover EK is only used (except PT0, CT0
obviously) for the associated data for which their applications are internal data (AT).

• In CSPAE the use of EK is done through all the scheme however to know a pair
of PT, CT associated to a particular NONCE they need to know the key K to use the
couple (X ⊕ K, EK(X)).

TAG forgery In [24, 35, 25, 23] they manage to forge a TAG since the operations used
for the TAG were done earlier in the scheme, here HSWAP and ⊕K are used just for the
production of the TAG therefore to produce a valid TAG the attacker should be able to
predict the application of those functions on unknown internal variables. Moreover (in a
NONCE respecting setting) the attacker should not be able to predict a replay of an input
of Ek (corollary 2).

14 SPAE

4.1.6 NONCE misuse

Our scheme is not MRAE secure as in [41, Definition 5]. It fails this definition because of online
encryption as stated in [22]. In effect our scheme ciphering (N, P0||...||Pi||Pi+1||..||Pm, A)
and ciphering (N, P0||...||Pi||P′i+1||..||P′m, A) will output for those inputs the same first
C0||...||Ci but a different TAG.

Proposition 5. The NONCE replay does not permit the attacker to know the input/output
of some EKN in the scheme.

Proof. There are two cases to analyse, the message processing and the production of
the TAG. For the message processing by design of the scheme we are not able to get the
input/output of EKN since for the input there is the adding of internal variable PTi and for
the output there is the adding of the internal variable CTi, the NONCE replays only permits
to repeat those values. The reasoning is similar for the TAG.

We remind that the NONCE resilience (following [3, 4]) is the ability of the schemes SPAE
and CSPAE to do not reveal informations on the scheme with NONCE reuse. Therefore a
consequence of proposition 5 is the NONCE resilience of the schemes since the NONCE reuse
will not bring information on the key K which is the only relevant information for an
analysis on encryption with other NONCE.
Remark 6. The adversary can do some differential attack on EK using NONCE replay with the
differentiated input Pi0 observing the resulting differential output Ci0 = CTi0 ⊕ EKN(PTi0 ⊕
Pi0).

Those differential attacks have some limitations due to the fact that the scheme is a
propagating scheme. We could use this differential attack only on one encryption of block,
the following operations of the scheme would be very difficult to analyze since they would
imply at least the composition of several applications of EKN on the differentiated inputs.

The same can be done for the TAG by doing input differences on the PADINFO.
By design of the scheme the NONCE replay/misuse does not affect the processing of

associated data.
Remark 7. The computation of KN = K⊕ NONCE in the design of the SPAE scheme forces
the user to choose an encryption function E resilient againts related key attacks like the
ones of [13, 12]. Therefore, as stated in the work of Biryukov and Nikolic [14] :"this also
means that AES-128 is secure against straightforward related-key attacks after 6 rounds",
AES-128 is a good choice for block cipher in SPAE.

4.2 Differential Fault Analysis
A differential fault analysis ([11]) consists in the production of a pair of output produced
from the same inputs and key of E (or D) with one of the output produced with a faulty
execution the other one in a normal execution. DFA attacks are relevant to smart card
and other highly secure chips. In this context it is assumed that the implementation has
the means to enforce nonce uniqueness for encryption.
Remark 8. This section discuss only DFA, other kind of fault attacks have been published
but are not avoided by SPAE and CPAE [16] [17].

4.2.1 Associated data processing

Associated data blocks are processed using EK. Both in encryption and decryption, those
computation can be done without DFA countermeasures for the simple reason that their
outputs, the ATi values, are kept as internal variables.

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 15

4.2.2 Initialisation

The internal variables PT0 and CT0 can be attacked in SPAE, since there is no usage of
the NONCE for their computation. The aim of such an attack is to observe those faulty
computations directly, but in our scheme those computations are either xored with other
data such as EKN(P0 ⊕ PT0) (or DKN(P0 ⊕ PT0) in decryption) or processed through EKN (or
DKN in decryption). Therefore it is not necessary (relatively to DFA) to protect the EK
operation producing PT0 and CT0.

In CSPAE the internal variables PT0 and CT0 cannot be attacked since they use different
NONCE for their computation.

4.2.3 SPAE Encryption

Each AEAD encryption use a different NONCE and therefore a different KN. As all outputs
are produced using EKN, DFA is not possible using outputs belonging to two different calls
to the encryption.

The final EKN used to compute TAG is a special case: a kind of advanced DFA is possible
on it. For example a fault injected on the last round of AES will typically impact only a
single byte. The attacker can guess the error pattern by submitting variations of the faulty
TAG to the decryption. A successful guess will result in a successful decryption while all
other guesses will result in Failure. We nevertheless consider it a likely attack scenario
since the guess can be limited to 8 bits. To avoid such attack, an implementation need to
protect the final EKN step used to compute TAG.

To conclude in SPAE encryption only the call to E used for the production of the TAG
need DFA countermeasure.

4.2.4 CSPAE Encryption

In CSPAE, KN = K so the reasoning done for SPAE does not hold. As all inputs to EKN
are secret values depending on NONCE, the attacker cannot get a faulty output and a fault
free output of EKN with the same input. Within the same AEAD encryption, the attacker
cannot attempt a DFA because the attacker is not able to get two EKN calls with the same
input as discussed in corollary 2.

To conclude in CSPAE encryption only the call to E used for the production of the
TAG need DFA countermeasure.

4.2.5 SPAE and CSPAE Decryption

In decryption the nonce is in the control of the attacker, as a result the reasoning used
for the encryption does not hold. The decryption protects EK, EKN and DKN computations
nevertheless by leveraging the tag verification.

The approach is to compute TAG from all the outputs of EK, EKN and DKN computations.
Thanks to this approach, a fault injected in EK, EKN or DKN computations always propagates
to TAG and therefore the decryption outputs only Failure rather than faulty plain-text.

This approach has some limitations as seen in 4.2.3, 4.2.4 an implementation needs to
protect the final EKN step used to compute TAG.

Now we focus on more sophisticated DFA attacks where the attacker wants to cancel
out in the scheme the errors induced before the production of the TAG while getting faulty
plaintexts. A fault on the first DKN propagates to the tag via the PTi and Pi, and, depending
on the number of blocks, via CTm. Propagation via CTm depends on the number of blocks
because the error cancels out every two blocks. For example the error applied on the first
computation of DKN would be in CT2 but would disappear in CT3 since it is also present in
PT2. At this point it will still propagate further via PT2 to P2 and then PT3.

16 SPAE

This error cancellation phenomenon is the reason for the introduction of the HSWAP
operation. Thanks to the HSWAP operation, any non symmetrical error present in both
PTm and CTm does not cancel out and propagates to IT. Even if there is a cancellation of
error, there is the xor of CTm just before the output of the TAG, in this case the attacker
could try to guess the fault by brute force on the faulty value of TAG. The propagation
of DFA errors to IT is crucial: it ensures that the resulting faulty TAG cannot be easily
guessed. Since IT goes through a call to EKN, even if a single bit is corrupted the resulting
TAG will be impractical to guess.

Faults injected on the penultimate DKN operation propagates only via PTm. On its way
to TAG, the error pattern is xored with PADINFO. An attacker could attempt to manipulate
PADINFO in such a way that it would cancel out the error pattern. We mitigate this by
formatting PADINFO in a redundant way that it is unable to cancel typical fault patterns
on the late AES rounds. Appendix 7.3 gives more details.

To conclude, in SPAE and CSPAE decryption, at most one call to E need DFA
countermeasures, all other computations of EK, EKN and DKN do not.

4.3 Side channel analysis
SPAE and CSPAE do not provide side channel attacks resistance however they are easy to
protect when the AES implementation is already protected, which is the typical situation
on secure element or secure subsystems. By ‘easy to protect’ we mean that boolean
masking can be used without significantly impacting performances.

4.4 Analysis of the privacy
Now that we have studied different possibilities to attack the scheme we study the resilience
privacy of the cryptosystem (following [3, Definition 1] and [4]).

First we state a result concerning the number of queries of E we have to take into
account for this analysis of the privacy.
Remark 9. The relevant number of queries of EK/EKN in SPAE and CSPAE for the
processing of associated data blocks for an analysis of the privacy is dependant of the
equality between EK and EKN. Therefore, in this analysis we will work with them as
different functions when K 6= KN.

Lemma 2. The relevant number of queries of E in SPAE for the processing of message
blocks for an analysis of the privacy is the number of queries with the same NONCE since
the functions EKN, DKN have their key changed with the NONCE.

As mentionned as a consequence of proposition 5 the ability for the attacker to do some
NONCE replay except for the one attacked won’t give advantages to the attacker however
we will mention it’s usage in the theorem with the mention "NONCE resilience".

Theorem 2. For an adversary, respecting the NONCE resilience, who asks 1 (respec-
tively q) query (N0, A0,M0) (respectively (N i, Ai,M i)) that entails σe (respectively σce)
blockcipher calls of EKN on message blocks, σa blockcipher calls of EK with non null as-
sociated data, then AdvprivSPAE 6 max

(
1.5(σe+1)(σe)

2bs , 1.5(σa)(σa−1)
2bs

)
(respectively AdvprivCSPAE 6

1.5(σc
e+σa+q)(σc

e+σa+q−1)
2bs).

Proof. This proof involves a game playing argument followed by a case-analysis of some
collision probabilities as in the proof of [28, lemma 3].

• Game 1: the adversary A asks the encryption of q queries (N i, Ai,M i), the response
to each uses of EKN is stored;

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 17

• Game 2: we return a response to each internal query to EKN by a randomly and
uniformly chosen element from Fn2 with n = bs;

• Game 3: we simulate a perfect 2bs cipher.

For SPAE there are some separations since EKN and EK are different functions. The advan-
tage of A in distinguishing game 2 and 3 is at most max(0.5(σe + 1)(σe)/2bs, 0.5(σa)(σa −
1)/2bs)) for SPAE and 0.5(σce + σca + q)(σce + σca + q − 1)/2bs for CSPAE. We have thus to
focus on the distinction between game 1 and game 2 because we want the attacker to not
being able to distinguish game 1 and game 3.

In game 1, we propose to respond to the internal queries (implied by the choice of the
adversary) by uniform and random elements of Fn2 . If we have already given an output to
another previous input asked then we should sample a new output, a majoration for the
probability of this occurring is max(0.5(σe + 1)(σe)/2bs, 0.5(σa + 1)(σa)/2bs) for SPAE
and 0.5(σce + σa + q)(σce + σa + q − 1)/2bs for CSPAE.

Another bad setting is when we have to produce an output to a previously asked input
we must in this case answer according to the previous output produced we are here in a
bad setting where we couldn’t just sample uniformly as in game 2 a random element of Fn2 .

We have to majorate the probability of this occurrence with the inputs of game 1 which
are not directly related to the input of Ek. Without loss of generality we suppose that
PADINFO = 0. We can not have predictible collisions for the attackers in the inputs of
EKN, EK by the corollary 2 (we exclude the obvious cases with associated data). There
are 2 cases to analyze the ones in the computation of EK(Pi ⊕ PTi), EK(ATi ⊕ Ai) and the
computation of EK(IT) = Ek(ATa ⊕ PTm ⊕ HSWAP (CTm)) which we simplify for the
analysis by EK(IT) = Ek(AT⊕ PT⊕ CT).

The first one corresponds to a case where the values Ai, Pi are chosen freely. We
remind that PTj = EKN(PTj−1 ⊕ Pj−1)⊕ Pj−1 (ATi = EK(ATi−1 ⊕ Ai−1)) thus their values
are determined by the adversary and the choices made by the oracle. We want therefore to
majorate the probability that Pi = PTj ⊕Pj ⊕PTi there are σe such values. We have also to
take into account possible equalities with ATi ⊕ Ai. For SPAE the choices made for ATi are
taken into account separately. For CSPAE we have to take into account that the equality
Pi ⊕ PTi = ATj ⊕ Aj could occurs therefore we work with a set of size σce + σca values.

The second one (the values PTi, ATi, CTi) corresponds to the case where the inputs PT, CT
values are all results of previously random chosen images of EK. Therefore we majorate
the probability of EK, EKN called on the same inputs of max(σe+1(σe)

2 , σa(σa−1)
2)× 1

2bs for
SPAE and σc

e+σa+q(σc
e+σa+q−1)
2 × 1

2bs for CSPAE.
The case of the TAGnull has been excluded for obvious reasons.

Corollary 4. To obtain a level of security of 280 with a bs of 128 for SPAE we should
limit the usage of a NONCE to 232 blocks. We obtain a similar result with CSPAE but for
the key K.

Therefore if a lot of data should be used with a single key, more than 239 bytes, then it
is safer to use SPAE with different NONCE otherwise CSPAE can be used. For example in
CAESAR[9] the number of bytes should be greater than 216 and for NIST competition on
lightweight cryptography [33] it should be greater than 250 − 1.

5 Performances
In this section we will present performances of SPAE and compare it to other AE schemes.
All implementations are released as an open source project.

18 SPAE

5.1 Benchmark within MbedTLS on ARM-CortexM4
We inserted SPAE code within the MbedTLS benchmarking project hosted on github.com/wolfeidau/mbedtls.
We included three versions:

• SMALL: uses a compact AES implementation, the same used in the ARM-CortexM0
benchmark, see next section.

• FAST: uses the AES from mbedtls, it is a Tbox implementation. This is the
implementation which shall be compared against GCM and CCM in this benchmark
since they all use the same AES implementation.

• MMCAU: uses the ‘MMCAU’ accelerator present in K64F MCUs [34]. The SPAE
part remains C code, so there is still room for improvement.

This benchmark uses 1024 bytes message without associated data. This confirms that
in software implementations on MCUs, SPAE performances are much higher than GCM
and CCM. ASCON128 is faster than SPAE in pure software however SPAE can leverage
existing AES accelerators to perform even faster.

Table 2: MbedTLS benchmark on FRDM-K64F board, 1024 bytes messages

Algorithm AES implementation Kbytes/s cycles/byte
AES-SPAE-128 MMCAU 3101 37.8
ASCON128 - 1760 66.6
AES-SPAE-128 FAST 1141 102.9
AES-SPAE-128 SMALL 546 215.1
AES-CCM-128 FAST 476 246.8
AES-GCM-128 FAST 401 293.0

5.2 Benchmark on ARM-CortexM0
We used the cifra library (github.com/ctz/cifra) to get performances of GCM, CCM and
OCB mode on ARM-CortexM0 (STM32L011 more precisely). This library uses an AES
based on byte oriented ‘Sbox’ instead of the 32 bit oriented ‘Tbox’ implementation (like
in the CortexM4 benchmark). Due to this the cycles per byte reported here are rather
high. Note however that ‘Tbox’ implementation is rarely used on those devices due to the
size of the look up tables: 8KB (STM32L011 has 16KB of flash). All software have been
compiled using gcc 7.3.1 and ‘-Os’ optimization level.

Table 3: Performance to encrypt and authenticate a 16 bytes message

clock cycles cycles/byte
SPAE 18.2K 1140
CCM 42.0K 2627
OCB 43.0K 2689
GCM 65.6K 4100

The results are unusual but make sense once we take into account the following:

• GCM’s GHASH is slower in software than AES128 on ARM-CortexM0.

• The benchmark is on a message of 16 bytes, as a result the efficientcy of OCB
compared to CCM is not apparent.

https://github.com/wolfeidau/mbedtls/tree/master/test/example-benchmark
https://github.com/ctz/cifra

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 19

6 Conclusion and perspectives
We described SPAE and CSPAE, two AEAD algorithms highly suitable for usage in
low-cost embedded systems as shown by their performances against other comparables
AEAD. We analyzed their security and established proofs for the most common use cases
in nonce resilience setting for its security and authenticity.

It would be interesting to see the effective resilience of the scheme against physical
attacks and against deep learning based attacks. It is a future work to propose an evaluation
for nonce-based authenticated encryption following the security definition in [21, 32, 39].

A follow up work would be to see if SPAE could be used with other block ciphers,
SM4[15] for example. This cipher is also hardware accelerated and side channel protected
on some secure element. Its security against related key attacks has been analyzed in [45]
and therefore it is known to repect remark 7.

The performance benchmark could be completed by including other AEAD based on
AES such as SAEB [31].

An interesting work is to take into account in the security analysis the various imple-
mentation practices for NONCE generation as exposed in [5] and which violate remark 3.
The evaluation of the security bounds if a fresh random number is used instead of a true
NONCE is also something worth investigating since this is a popular practice in real world
implementations.

This work is supported by SECURIOT-2-AAP FUI 23, ANR-15-IDEX-02 and partially
supported by ANR-15-CE39-0002.

20 SPAE

References
[1] Martin R Albrecht, Kenneth G Paterson, and Gaven J Watson. Plaintext recovery

attacks against SSH. In 2009 30th IEEE Symposium on Security and Privacy, pages
16–26. IEEE, 2009.

[2] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Mennink,
Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. Submission to CAESAR compe-
tition: COLM v1, 2015.

[3] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting authenticated encryption
robustness with minimal modifications. In Annual International Cryptology Conference,
pages 3–33. Springer, 2017.

[4] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Reconciling
ae robustness notions. In IMA International Conference on Cryptography and Coding,
pages 94–111. Springer, 2015.

[5] Mihir Bellare, Ruth Ng, and Björn Tackmann. Nonces are noticed: Aead revisited.
Cryptology ePrint Archive, Report 2019/624, 2019. https://eprint.iacr.org/
2019/624.

[6] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX Mode of Operation,
2004. https://www.iacr.org/archive/fse2004/30170391/30170391.pdf.

[7] Daniel J. Bernstein. The Poly1305-AES Message-Authentication Code. In Fast
Software Encryption, pages 32–49. Springer Berlin Heidelberg, 2005.

[8] Daniel J. Bernstein. ChaCha, a variant of Salsa20, 2008.

[9] Daniel J. Bernstein. Caesar: Competition for authenticated encryption: Security,
applicability, and robustness, 2014.

[10] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche1, and Ronny Van
Keer. Why Keccak is not ARX, 2007.

[11] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings, volume
1294 of Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

[12] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-
192 and AES-256. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 1–18. Springer, 2009.

[13] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and related-key
attack on the full AES-256. In Annual International Cryptology Conference, pages
231–249. Springer, 2009.

[14] Alex Biryukov and Ivica Nikolić. Automatic search for related-key differential charac-
teristics in byte-oriented block ciphers: application to aes, camellia, khazad and others.
In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 322–344. Springer, 2010.

[15] Whitfield Diffie and George Ledin (translators). Sms4 encryption algorithm for
wireless networks. Cryptology ePrint Archive, Report 2008/329, 2008. https://
eprint.iacr.org/2008/329.

http://www.isg.rhbnc.ac.uk/~kp/SandPfinal.pdf
http://www.isg.rhbnc.ac.uk/~kp/SandPfinal.pdf
https://competitions.cr.yp.to/round3/colmv1.pdf
https://competitions.cr.yp.to/round3/colmv1.pdf
https://lirias.kuleuven.be/retrieve/513126
https://lirias.kuleuven.be/retrieve/513126
https://eprint.iacr.org/2019/624
https://eprint.iacr.org/2019/624
https://www.iacr.org/archive/fse2004/30170391/30170391.pdf
https://www.iacr.org/archive/fse2004/30170391/30170391.pdf
http://cr.yp.to/mac.html
http://cr.yp.to/chacha/
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/caesar-call.html
https://keccak.team/2017/not_arx.html
https://link.springer.com/content/pdf/10.1007/978-3-642-10366-7_1.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-10366-7_1.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-03356-8_14.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-03356-8_14.pdf
https://eprint.iacr.org/2008/329
https://eprint.iacr.org/2008/329

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 21

[16] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and Florian
Mendel. Statistical fault attacks on nonce-based authenticated encryption schemes.
Cryptology ePrint Archive, Report 2016/616, 2016. https://eprint.iacr.org/
2016/616.

[17] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Florian
Mendel, and Robert Primas. Sifa: Exploiting ineffective fault inductions on symmetric
cryptography. Cryptology ePrint Archive, Report 2018/071, 2018. https://eprint.
iacr.org/2018/071.

[18] Morris Dworkin. Recommendation for block cipher modes of operation: The CCM
mode for authentication and confidentiality. Technical report, National Institute of
Standards and Technology, 2004.

[19] Allen Roginsky (NIST) Elaine Barker (NIST). Sp 800-131a rev. 2 - transitioning the
use of cryptographic algorithms and key lengths, 2019. https://csrc.nist.gov/
publications/detail/sp/800-131a/rev-2/final.

[20] fail0verflow. How to pwn a PS4, 2016. https://fail0verflow.com/media/
33c3-slides/#/5.

[21] Shay Gueron and Yehuda Lindell. GCM-SIV: Full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 109–119. ACM, 2015.

[22] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár. Online
authenticated-encryption and its nonce-reuse misuse-resistance. In Annual Cryptology
Conference, pages 493–517. Springer, 2015.

[23] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Poettering. Cryptanal-
ysis of ocb2: Attacks on authenticity and confidentiality. In Alexandra Boldyreva and
Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 3–31,
Cham, 2019. Springer International Publishing.

[24] Akiko Inoue and Kazuhiko Minematsu. Cryptanalysis of OCB2. Cryptology ePrint
Archive, Report 2018/1040, 2018. https://eprint.iacr.org/2018/1040.

[25] Tetsu Iwata. Plaintext Recovery Attack of OCB2. Cryptology ePrint Archive, Report
2018/1090, 2018. https://eprint.iacr.org/2018/1090.

[26] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. Cloc: Authenti-
cated encryption for short input. Cryptology ePrint Archive, Report 2014/157, 2014.
https://eprint.iacr.org/2014/157.

[27] Auguste Kerckhoffs. "La cryptographie militaire" Journal des sciences militaires, 1883.
vol. IX, pp. 5–83, January 1883, pp. 161–191, February 1883.

[28] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In International Workshop on Fast Software Encryption, pages
306–327. Springer, 2011.

[29] Moses Liskov, Ronald L Rivest, and David Wagner. Tweakable block ciphers. Journal
of cryptology, 24(3):588–613, 2011.

[30] David A. McGrew and John Viega. The security and performance of the galois/counter
mode of operation (full version). Cryptology ePrint Archive, Report 2004/193, 2004.
https://eprint.iacr.org/2004/193.

https://eprint.iacr.org/2016/616
https://eprint.iacr.org/2016/616
https://eprint.iacr.org/2018/071
https://eprint.iacr.org/2018/071
https://csrc.nist.gov/CSRC/media/Publications/sp/800-38c/archive/2004-05-12/documents/sp800-38c.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-38c/archive/2004-05-12/documents/sp800-38c.pdf
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final
https://fail0verflow.com/media/33c3-slides/#/5
https://fail0verflow.com/media/33c3-slides/#/5
https://fail0verflow.com/media/33c3-slides/#/5
https://dl.acm.org/citation.cfm?id=2813613
https://dl.acm.org/citation.cfm?id=2813613
https://eprint.iacr.org/2018/1040.pdf
https://eprint.iacr.org/2018/1040
https://eprint.iacr.org/2018/1090.pdf
https://eprint.iacr.org/2018/1090
https://eprint.iacr.org/2014/157
https://www.petitcolas.net/kerckhoffs/
http://web.cs.ucdavis.edu/~rogaway/papers/ae.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ae.pdf
https://link.springer.com/content/pdf/10.1007/s00145-010-9073-y.pdf
https://eprint.iacr.org/2004/193

22 SPAE

[31] Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. Saeb: A
lightweight blockcipher-based aead mode of operation. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pages 192–217, 2018.

[32] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsider-
ing generic composition. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 257–274. Springer, 2014.

[33] NIST. NIST Lightweight Cryptography Standardization Process, 2019.

[34] NXP. K64 Sub-Family Reference Manual, 2017.

[35] Bertram Poettering. Breaking the confidentiality of OCB2. Cryptology ePrint Archive,
Report 2018/1087, 2018. https://eprint.iacr.org/2018/1087.

[36] Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings
of the 9th Annual Conference on Computer and Communications Security (CCS-9),
pages 98–107. ACM, 2002.

[37] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 16–31. Springer, 2004.

[38] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A Block-cipher Mode of
Operation for Efficient Authenticated Encryption. ACM Trans. Inf. Syst. Secur.,
6(3):365–403, aug 2003.

[39] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-
wrap problem. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 373–390. Springer, 2006.

[40] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-
wrap problem. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, pages 373–390, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[41] Phillip Rogaway and Thomas Shrimpton. The SIV Mode of Operation for Deter-
ministic Authenticated-Encryption (Key Wrap) and Misuse-Resistant Nonce-Based
Authenticated-Encryption, 2007.

[42] Phillip Rogaway and David Wagner. A Critique of CCM, 2003. http://web.cs.
ucdavis.edu/~rogaway/papers/ccm.pdf.

[43] Serge Vaudenay. Security Flaws Induced by CBC Padding—Applications to SSL,
IPSEC, WTLS... In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 534–545. Springer, 2002.

[44] Damian Vizár. The state of the authenticated encryption. Tatra Mountains Mathe-
matical Publications, 67:167–190, 09 2016.

[45] Jian Zhang, Wenling Wu, and Yafei Zheng. Security of sm4 against (related-key)
differential cryptanalysis. In Information Security Practice and Experience, pages
65–78, 2016.

https://link.springer.com/content/pdf/10.1007/978-3-642-55220-5_15.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-55220-5_15.pdf
https://csrc.nist.gov/Projects/Lightweight-Cryptography/
https://www.nxp.com/docs/en/reference-manual/K64P144M120SF5RM.pdf
https://eprint.iacr.org/2018/1087.pdf
https://eprint.iacr.org/2018/1087
https://link.springer.com/content/pdf/10.1007/978-3-540-30539-2_2.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-30539-2_2.pdf
http://doi.acm.org/10.1145/937527.937529
http://doi.acm.org/10.1145/937527.937529
https://link.springer.com/content/pdf/10.1007/11761679_23.pdf
https://link.springer.com/content/pdf/10.1007/11761679_23.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ccm.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ccm.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ccm.pdf
https://link.springer.com/content/pdf/10.1007/3-540-46035-7_35.pdf
https://link.springer.com/content/pdf/10.1007/3-540-46035-7_35.pdf

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 23

7 Appendix
7.1 SPAE-AES128 test vectors

m=0,a=0
SPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message =
associated data =

PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
MT = b’fffffffffffffffffffffffffffffffe’
IT = b’fffffffffffffffffffffffffffffffe’

PADINFO = b’00000000000000000000000000000000’
authentication tag = b’6b52a86d2741165af5ad9b4694d978e7’
out = b’6b52a86d2741165af5ad9b4694d978e7’

m=0,a=1
SPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message =
associated data = b’00000000000000000000000000000006’

PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
MT = b’fffffffffffffffffffffffffffffffe’
IT = b’ecead8da623868a66d1b4402faef1604’

PADINFO = b’00000000800000000000000080000000’
authentication tag = b’840fa2e1542e22a1146b8ccb4f98410f’
out = b’840fa2e1542e22a1146b8ccb4f98410f’

m=1,a=0
SPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’00000000000000000000000000000003’
associated data =

PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
P0 = b’00000000000000000000000000000003’
C0 = b’731bdd384f415c11081d08ecdc3efe5d’
PT1 = b’d2654251abb3069a8e3dbc43a4d00331’
CT1 = b’00000000000000000000000000000001’
MT = b’d2654251abb3069b8e3dbc43a4d00331’
IT = b’d2654251abb3069b8e3dbc43a4d00331’

PADINFO = b’80000000000000008000000000000000’
authentication tag = b’8f11c2f7f934270ebbd7c3033fbbabef’
out = b’731bdd384f415c11081d08ecdc3efe5d8f11c2f7f934270

↪→ ebbd7c3033fbbabef’

24 SPAE

m=2,a=0
SPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 000000000000004’
associated data =

PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
P0 = b’00000000000000000000000000000003’
C0 = b’731bdd384f415c11081d08ecdc3efe5d’
PT1 = b’d2654251abb3069a8e3dbc43a4d00331’
CT1 = b’00000000000000000000000000000001’
P1 = b’00000000000000000000000000000004’
C1 = b’d454792a75871ce616511d13983f9681’
PT2 = b’d454792a75871ce616511d13983f9684’
CT2 = b’d2654251abb3069a8e3dbc43a4d00330’
MT = b’5a69c569d1571fd6c4345f42338c901e’
IT = b’5a69c569d1571fd6c4345f42338c901e’

PADINFO = b’00010000000000000001000000000000’
authentication tag = b’773ff95c3282ff9ea8794295685191ea’
out = b’731bdd384f415c11081d08ecdc3efe5dd454792a75871ce61

↪→ 6511d13983f9681773ff95c3282ff9ea8794295685191ea’

m=3,a=0
SPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’
associated data =

PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
P0 = b’00000000000000000000000000000003’
C0 = b’731bdd384f415c11081d08ecdc3efe5d’
PT1 = b’d2654251abb3069a8e3dbc43a4d00331’
CT1 = b’00000000000000000000000000000001’
P1 = b’00000000000000000000000000000004’
C1 = b’d454792a75871ce616511d13983f9681’
PT2 = b’d454792a75871ce616511d13983f9684’
CT2 = b’d2654251abb3069a8e3dbc43a4d00330’
P2 = b’00000000000000000000000000000005’
C2 = b’406d307c0f1f9a95878e7bb968108aaa’
PT3 = b’9208722da4ac9c0f09b3c7faccc0899f’
CT3 = b’06313b7bde341a7c986ca1503cef95b4’
MT = b’0a64d37d984309bb0f82fc8112f493e3’
IT = b’0a64d37d984309bb0f82fc8112f493e3’

PADINFO = b’80010000000000008001000000000000’
authentication tag = b’a4d864382672b6abbfeb80563bbfefa1’
out = b’731bdd384f415c11081d08ecdc3efe5dd454792a75871ce61

↪→ 6511d13983f9681406d307c0f1f9a95878e7bb968108aaaa4d864382672b6abbfeb
↪→ 80563bbfefa1’

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 25

m=3,a=1
SPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’
associated data = b’00000000000000000000000000000006’

PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
P0 = b’00000000000000000000000000000003’
C0 = b’731bdd384f415c11081d08ecdc3efe5d’
PT1 = b’d2654251abb3069a8e3dbc43a4d00331’
CT1 = b’00000000000000000000000000000001’
P1 = b’00000000000000000000000000000004’
C1 = b’d454792a75871ce616511d13983f9681’
PT2 = b’d454792a75871ce616511d13983f9684’
CT2 = b’d2654251abb3069a8e3dbc43a4d00330’
P2 = b’00000000000000000000000000000005’
C2 = b’406d307c0f1f9a95878e7bb968108aaa’
PT3 = b’9208722da4ac9c0f09b3c7faccc0899f’
CT3 = b’06313b7bde341a7c986ca1503cef95b4’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
MT = b’0a64d37d984309bb0f82fc8112f493e3’
IT = b’1971f45805849ee29d66477c17e47a19’

PADINFO = b’80010000800000008001000080000000’
authentication tag = b’b2d2286e176bbe8120af02dd378a22f0’
out = b’731bdd384f415c11081d08ecdc3efe5dd454792a75871ce61

↪→ 6511d13983f9681406d307c0f1f9a95878e7bb968108aaab2d2286e176bbe8120af
↪→ 02dd378a22f0’

m=3,a=2
SPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’
associated data = b’0000000000000000000000000000000600000000000000000

↪→ 000000000000007’
PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
P0 = b’00000000000000000000000000000003’
C0 = b’731bdd384f415c11081d08ecdc3efe5d’
PT1 = b’d2654251abb3069a8e3dbc43a4d00331’
CT1 = b’00000000000000000000000000000001’
P1 = b’00000000000000000000000000000004’
C1 = b’d454792a75871ce616511d13983f9681’
PT2 = b’d454792a75871ce616511d13983f9684’
CT2 = b’d2654251abb3069a8e3dbc43a4d00330’
P2 = b’00000000000000000000000000000005’
C2 = b’406d307c0f1f9a95878e7bb968108aaa’
PT3 = b’9208722da4ac9c0f09b3c7faccc0899f’

26 SPAE

CT3 = b’06313b7bde341a7c986ca1503cef95b4’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
MT = b’0a64d37d984309bb0f82fc8112f493e3’
IT = b’d1c6176d657e03dddfab787d7c7145f9’

PADINFO = b’80010000000100008001000000010000’
authentication tag = b’baf2944c6cf3b3a0883a024b23f34fec’
out = b’731bdd384f415c11081d08ecdc3efe5dd454792a75871ce61

↪→ 6511d13983f9681406d307c0f1f9a95878e7bb968108aaabaf2944c6cf3b3a0883a
↪→ 024b23f34fec’

m=3,a=3
SPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’
associated data = b’0000000000000000000000000000000600000000000000000

↪→ 00000000000000700000000000000000000000000000008’
PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
P0 = b’00000000000000000000000000000003’
C0 = b’731bdd384f415c11081d08ecdc3efe5d’
PT1 = b’d2654251abb3069a8e3dbc43a4d00331’
CT1 = b’00000000000000000000000000000001’
P1 = b’00000000000000000000000000000004’
C1 = b’d454792a75871ce616511d13983f9681’
PT2 = b’d454792a75871ce616511d13983f9684’
CT2 = b’d2654251abb3069a8e3dbc43a4d00330’
P2 = b’00000000000000000000000000000005’
C2 = b’406d307c0f1f9a95878e7bb968108aaa’
PT3 = b’9208722da4ac9c0f09b3c7faccc0899f’
CT3 = b’06313b7bde341a7c986ca1503cef95b4’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
AT3 = b’7152d55728d8c03e547ab64cd21531fa’
MT = b’0a64d37d984309bb0f82fc8112f493e3’
IT = b’7b36062ab09bc9855bf84acdc0e1a219’

PADINFO = b’80010000800100008001000080010000’
authentication tag = b’6606f31a266516b3f3c57529ef402421’
out = b’731bdd384f415c11081d08ecdc3efe5dd454792a75871ce61

↪→ 6511d13983f9681406d307c0f1f9a95878e7bb968108aaa6606f31a266516b3f3c5
↪→ 7529ef402421’

SPAE - decryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’731bdd384f415c11081d08ecdc3efe5dd454792a75871ce61

↪→ 6511d13983f9681406d307c0f1f9a95878e7bb968108aaa’
associated data = b’0000000000000000000000000000000600000000000000000

↪→ 00000000000000700000000000000000000000000000008’
PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 27

P0 = b’00000000000000000000000000000003’
C0 = b’731bdd384f415c11081d08ecdc3efe5d’
PT1 = b’d2654251abb3069a8e3dbc43a4d00331’
CT1 = b’00000000000000000000000000000001’
P1 = b’00000000000000000000000000000004’
C1 = b’d454792a75871ce616511d13983f9681’
PT2 = b’d454792a75871ce616511d13983f9684’
CT2 = b’d2654251abb3069a8e3dbc43a4d00330’
P2 = b’00000000000000000000000000000005’
C2 = b’406d307c0f1f9a95878e7bb968108aaa’
PT3 = b’9208722da4ac9c0f09b3c7faccc0899f’
CT3 = b’06313b7bde341a7c986ca1503cef95b4’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
AT3 = b’7152d55728d8c03e547ab64cd21531fa’
MT = b’0a64d37d984309bb0f82fc8112f493e3’
IT = b’7b36062ab09bc9855bf84acdc0e1a219’

PADINFO = b’80010000800100008001000080010000’
authentication tag = b’6606f31a266516b3f3c57529ef402421’
provided tag = b’6606f31a266516b3f3c57529ef402421’
out = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’

m=3,a=3 padded
SPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000409’
associated data = b’0000000000000000000000000000000600000000000000000

↪→ 0000000000000070a0b’
PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
P0 = b’00000000000000000000000000000003’
C0 = b’731bdd384f415c11081d08ecdc3efe5d’
PT1 = b’d2654251abb3069a8e3dbc43a4d00331’
CT1 = b’00000000000000000000000000000001’
P1 = b’00000000000000000000000000000004’
C1 = b’d454792a75871ce616511d13983f9681’
PT2 = b’d454792a75871ce616511d13983f9684’
CT2 = b’d2654251abb3069a8e3dbc43a4d00330’
P2 = b’09000000000000000000000000000000’
C2 = b’804fcc83143603242c36fe10cab4de85’
PT3 = b’5b2a8ed2bf8505bea20b42536e64ddb5’
CT3 = b’06313b7bde341a7c986ca1503cef95b4’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
AT3 = b’d23963e8cabeaa4a76899b5f5e3ee58d’
MT = b’c3462f82836a900aa43a7928b050c7c9’
IT = b’117f4c6a49d43a40d2b3e277ee6e2244’

PADINFO = b’08010000100100000801000010010000’
authentication tag = b’5c2209f570ef626cb211725de2a9af06’

28 SPAE

out = b’731bdd384f415c11081d08ecdc3efe5dd454792a75871ce61
↪→ 6511d13983f9681804fcc83143603242c36fe10cab4de855c2209f570ef626cb211
↪→ 725de2a9af06’

SPAE - decryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’731bdd384f415c11081d08ecdc3efe5dd454792a75871ce61

↪→ 6511d13983f9681804fcc83143603242c36fe10cab4de85’
associated data = b’0000000000000000000000000000000600000000000000000

↪→ 0000000000000070a0b’
PT0 = b’a17e9f69e4f25a8b8620b4af78eefd6e’
CT0 = b’a17e9f69e4f25a8b8620b4af78eefd6f’
P0 = b’00000000000000000000000000000003’
C0 = b’731bdd384f415c11081d08ecdc3efe5d’
PT1 = b’d2654251abb3069a8e3dbc43a4d00331’
CT1 = b’00000000000000000000000000000001’
P1 = b’00000000000000000000000000000004’
C1 = b’d454792a75871ce616511d13983f9681’
PT2 = b’d454792a75871ce616511d13983f9684’
CT2 = b’d2654251abb3069a8e3dbc43a4d00330’
P2 = b’09000000000000000000000000000000’
C2 = b’804fcc83143603242c36fe10cab4de85’
PT3 = b’5b2a8ed2bf8505bea20b42536e64ddb5’
CT3 = b’06313b7bde341a7c986ca1503cef95b4’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
AT3 = b’d23963e8cabeaa4a76899b5f5e3ee58d’
MT = b’c3462f82836a900aa43a7928b050c7c9’
IT = b’117f4c6a49d43a40d2b3e277ee6e2244’

PADINFO = b’08010000100100000801000010010000’
authentication tag = b’5c2209f570ef626cb211725de2a9af06’
provided tag = b’5c2209f570ef626cb211725de2a9af06’
out = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000409’

SPAE - encryption
key = b’000102030405060708090a0b0c0d0e0f’
nonce = b’000102030405060708090a0b0c0d0e0f’
message =
associated data =

PT0 = b’0a9509b6456bf642f9ca9e53ca5ee455’
CT0 = b’0a940bb5416ef045f1c39458c653ea5a’
MT = b’fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0’
IT = b’fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0’

PADINFO = b’00000000000000000000000000000000’
authentication tag = b’0a52cf639cf84370fe50b76d60eff179’
out = b’0a52cf639cf84370fe50b76d60eff179’

SPAE - encryption
key = b’000102030405060708090a0b0c0d0e0f’
nonce = b’000102030405060708090a0b0c0d0e0f’
message = b’000102030405060708090a0b0c0d0e0f’

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 29

associated data = b’000102030405060708090a0b0c0d0e0f’
PT0 = b’0a9509b6456bf642f9ca9e53ca5ee455’
CT0 = b’0a940bb5416ef045f1c39458c653ea5a’
P0 = b’000102030405060708090a0b0c0d0e0f’
C0 = b’9f7562a92c45ee0719ef6b6586554360’
PT1 = b’95e06b1f692e1845e025f5364c0ba735’
CT1 = b’000102030405060708090a0b0c0d0e0f’
AT1 = b’0a940bb5416ef045f1c39458c653ea5a’
MT = b’9de961146523164ae024f735480ea132’
IT = b’977d6aa1244de60f11e7636d8e5d4b68’

PADINFO = b’80000000800000008000000080000000’
authentication tag = b’b524324d75cef37f1f2bc1ad2b242db8’
out = b’9f7562a92c45ee0719ef6b6586554360b524324d75cef37f1

↪→ f2bc1ad2b242db8’

SPAE - encryption
key = b’000102030405060708090a0b0c0d0e0f’
nonce = b’000102030405060708090a0b0c0d0e0f’
message = b’000102030405060708090a0b0c0d0e0f10111213141516171

↪→ 8191a1b1c1d1e1f’
associated data = b’000102030405060708090a0b0c0d0e0f10111213141516171

↪→ 8191a1b1c1d1e’
PT0 = b’0a9509b6456bf642f9ca9e53ca5ee455’
CT0 = b’0a940bb5416ef045f1c39458c653ea5a’
P0 = b’000102030405060708090a0b0c0d0e0f’
C0 = b’9f7562a92c45ee0719ef6b6586554360’
PT1 = b’95e06b1f692e1845e025f5364c0ba735’
CT1 = b’000102030405060708090a0b0c0d0e0f’
P1 = b’101112131415161718191a1b1c1d1e1f’
C1 = b’80df406383afdf4ef689443e2c82916b’
PT2 = b’90cf507393bfcf5ee699542e3c92817b’
CT2 = b’95e1691c6d2b1e42e82cff3d4006a93a’
AT1 = b’0a940bb5416ef045f1c39458c653ea5a’
AT2 = b’68e2c19fa9096698ae35d29b54b0c601’
MT = b’78e3af4ed3b9666473783d3251b99f39’
IT = b’10016ed17ab000fcdd4defa905095938’

PADINFO = b’00010000f800000000010000f8000000’
authentication tag = b’60dc7498e5e41a0ad07bd975ed5e97a3’
out = b’9f7562a92c45ee0719ef6b658655436080df406383afdf4ef

↪→ 689443e2c82916b60dc7498e5e41a0ad07bd975ed5e97a3’

SPAE - encryption
key = b’000102030405060708090a0b0c0d0e0f’
nonce = b’000102030405060708090a0b0c0d0e0f’
message = b’000102030405060708090a0b0c0d0e0f10111213141516171

↪→ 8191a1b1c1d1e1f’
associated data = b’000102030405060708090a0b0c0d0e0f10111213141516171

↪→ 8191a1b1c1d1e1f’
PT0 = b’0a9509b6456bf642f9ca9e53ca5ee455’
CT0 = b’0a940bb5416ef045f1c39458c653ea5a’
P0 = b’000102030405060708090a0b0c0d0e0f’
C0 = b’9f7562a92c45ee0719ef6b6586554360’

30 SPAE

PT1 = b’95e06b1f692e1845e025f5364c0ba735’
CT1 = b’000102030405060708090a0b0c0d0e0f’
P1 = b’101112131415161718191a1b1c1d1e1f’
C1 = b’80df406383afdf4ef689443e2c82916b’
PT2 = b’90cf507393bfcf5ee699542e3c92817b’
CT2 = b’95e1691c6d2b1e42e82cff3d4006a93a’
AT1 = b’0a940bb5416ef045f1c39458c653ea5a’
AT2 = b’3cf456b4ca488aa383c79c98b34797cb’
MT = b’78e3af4ed3b9666473783d3251b99f39’
IT = b’4417f9fa19f1ecc7f0bfa1aae2fe08f2’

PADINFO = b’00010000000100000001000000010000’
authentication tag = b’697844f03d7e73f226d888d556f53058’
out = b’9f7562a92c45ee0719ef6b658655436080df406383afdf4ef

↪→ 689443e2c82916b697844f03d7e73f226d888d556f53058’

7.2 CSPAE-AES128 test vectors

m=0,a=0
CSPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message =
associated data =

PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
MT = b’fffffffffffffffffffffffffffffffe’
IT = b’fffffffffffffffffffffffffffffffe’

PADINFO = b’00000000000000000000000000000000’
authentication tag = b’0bec7271c5d3f69c28d934da38f0ac8c’
out = b’0bec7271c5d3f69c28d934da38f0ac8c’

m=0,a=1
CSPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message =
associated data = b’00000000000000000000000000000006’

PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
MT = b’fffffffffffffffffffffffffffffffe’
IT = b’ecead8da623868a66d1b4402faef1604’

PADINFO = b’00000000800000000000000080000000’
authentication tag = b’74600b9d86873ce2999a6928ed9ac152’
out = b’74600b9d86873ce2999a6928ed9ac152’

m=1,a=0
CSPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’00000000000000000000000000000003’

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 31

associated data =
PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
P0 = b’00000000000000000000000000000003’
C0 = b’af06863bfe5ab6f4d07ef32afba1baea’
PT1 = b’7f07f972c337e1984ed92642c9a845f1’
CT1 = b’00000000000000000000000000000003’
MT = b’7f07f972c337e19b4ed92642c9a845f1’
IT = b’7f07f972c337e19b4ed92642c9a845f1’

PADINFO = b’80000000000000008000000000000000’
authentication tag = b’69d6f0bbc6c56a135b4cb34b6752c7bd’
out = b’af06863bfe5ab6f4d07ef32afba1baea69d6f0bbc6c56a135

↪→ b4cb34b6752c7bd’

m=2,a=0
CSPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 000000000000004’
associated data =

PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
P0 = b’00000000000000000000000000000003’
C0 = b’af06863bfe5ab6f4d07ef32afba1baea’
PT1 = b’7f07f972c337e1984ed92642c9a845f1’
CT1 = b’00000000000000000000000000000003’
P1 = b’00000000000000000000000000000004’
C1 = b’ecd2adc6b87c84f9a9f079b100f5bc96’
PT2 = b’ecd2adc6b87c84f9a9f079b100f5bc91’
CT2 = b’7f07f972c337e1984ed92642c9a845f2’
MT = b’a20b8b8471d4c10bd6f780c3c3c25d09’
IT = b’a20b8b8471d4c10bd6f780c3c3c25d09’

PADINFO = b’00010000000000000001000000000000’
authentication tag = b’de39ac5f602ef05afc8729933de7b8be’
out = b’af06863bfe5ab6f4d07ef32afba1baeaecd2adc6b87c84f9a

↪→ 9f079b100f5bc96de39ac5f602ef05afc8729933de7b8be’

m=3,a=0
CSPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’
associated data =

PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
P0 = b’00000000000000000000000000000003’
C0 = b’af06863bfe5ab6f4d07ef32afba1baea’
PT1 = b’7f07f972c337e1984ed92642c9a845f1’
CT1 = b’00000000000000000000000000000003’
P1 = b’00000000000000000000000000000004’

32 SPAE

C1 = b’ecd2adc6b87c84f9a9f079b100f5bc96’
PT2 = b’ecd2adc6b87c84f9a9f079b100f5bc91’
CT2 = b’7f07f972c337e1984ed92642c9a845f2’
P2 = b’00000000000000000000000000000005’
C2 = b’38d4e578462b696ca7aed596e3fd14e3’
PT3 = b’47d31c0a851c88f4e977f3d42a555114’
CT3 = b’93d554b47b4b6561e7295ff3c95df963’
MT = b’a0fa43f94c4171977aa2a760511e3475’
IT = b’a0fa43f94c4171977aa2a760511e3475’

PADINFO = b’80010000000000008001000000000000’
authentication tag = b’ddbd5c3f4573463da81445b8cc221bea’
out = b’af06863bfe5ab6f4d07ef32afba1baeaecd2adc6b87c84f9a

↪→ 9f079b100f5bc9638d4e578462b696ca7aed596e3fd14e3ddbd5c3f4573463da814
↪→ 45b8cc221bea’

m=3,a=1
CSPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’
associated data = b’00000000000000000000000000000006’

PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
P0 = b’00000000000000000000000000000003’
C0 = b’af06863bfe5ab6f4d07ef32afba1baea’
PT1 = b’7f07f972c337e1984ed92642c9a845f1’
CT1 = b’00000000000000000000000000000003’
P1 = b’00000000000000000000000000000004’
C1 = b’ecd2adc6b87c84f9a9f079b100f5bc96’
PT2 = b’ecd2adc6b87c84f9a9f079b100f5bc91’
CT2 = b’7f07f972c337e1984ed92642c9a845f2’
P2 = b’00000000000000000000000000000005’
C2 = b’38d4e578462b696ca7aed596e3fd14e3’
PT3 = b’47d31c0a851c88f4e977f3d42a555114’
CT3 = b’93d554b47b4b6561e7295ff3c95df963’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
MT = b’a0fa43f94c4171977aa2a760511e3475’
IT = b’b3ef64dcd186e6cee8461c9d540edd8f’

PADINFO = b’80010000800000008001000080000000’
authentication tag = b’bf5292625deaa4a645b78d47902ef71f’
out = b’af06863bfe5ab6f4d07ef32afba1baeaecd2adc6b87c84f9a

↪→ 9f079b100f5bc9638d4e578462b696ca7aed596e3fd14e3bf5292625deaa4a645b7
↪→ 8d47902ef71f’

m=3,a=2
CSPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’
associated data = b’0000000000000000000000000000000600000000000000000

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 33

↪→ 000000000000007’
PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
P0 = b’00000000000000000000000000000003’
C0 = b’af06863bfe5ab6f4d07ef32afba1baea’
PT1 = b’7f07f972c337e1984ed92642c9a845f1’
CT1 = b’00000000000000000000000000000003’
P1 = b’00000000000000000000000000000004’
C1 = b’ecd2adc6b87c84f9a9f079b100f5bc96’
PT2 = b’ecd2adc6b87c84f9a9f079b100f5bc91’
CT2 = b’7f07f972c337e1984ed92642c9a845f2’
P2 = b’00000000000000000000000000000005’
C2 = b’38d4e578462b696ca7aed596e3fd14e3’
PT3 = b’47d31c0a851c88f4e977f3d42a555114’
CT3 = b’93d554b47b4b6561e7295ff3c95df963’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
MT = b’a0fa43f94c4171977aa2a760511e3475’
IT = b’7b5887e9b17c7bf1aa8b239c3f9be26f’

PADINFO = b’80010000000100008001000000010000’
authentication tag = b’8896a7c8d4d6e585753fbecf68d12e69’
out = b’af06863bfe5ab6f4d07ef32afba1baeaecd2adc6b87c84f9a

↪→ 9f079b100f5bc9638d4e578462b696ca7aed596e3fd14e38896a7c8d4d6e585753
↪→ fbecf68d12e69’

m=3,a=3
CSPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’
associated data = b’0000000000000000000000000000000600000000000000000

↪→ 00000000000000700000000000000000000000000000008’
PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
P0 = b’00000000000000000000000000000003’
C0 = b’af06863bfe5ab6f4d07ef32afba1baea’
PT1 = b’7f07f972c337e1984ed92642c9a845f1’
CT1 = b’00000000000000000000000000000003’
P1 = b’00000000000000000000000000000004’
C1 = b’ecd2adc6b87c84f9a9f079b100f5bc96’
PT2 = b’ecd2adc6b87c84f9a9f079b100f5bc91’
CT2 = b’7f07f972c337e1984ed92642c9a845f2’
P2 = b’00000000000000000000000000000005’
C2 = b’38d4e578462b696ca7aed596e3fd14e3’
PT3 = b’47d31c0a851c88f4e977f3d42a555114’
CT3 = b’93d554b47b4b6561e7295ff3c95df963’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
AT3 = b’7152d55728d8c03e547ab64cd21531fa’
MT = b’a0fa43f94c4171977aa2a760511e3475’
IT = b’d1a896ae6499b1a92ed8112c830b058f’

34 SPAE

PADINFO = b’80010000800100008001000080010000’
authentication tag = b’1b2c40d4b921b5fea3a2c773367276b3’
out = b’af06863bfe5ab6f4d07ef32afba1baeaecd2adc6b87c84f9a

↪→ 9f079b100f5bc9638d4e578462b696ca7aed596e3fd14e31b2c40d4b921b5fea3a2
↪→ c773367276b3’

CSPAE - decryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’af06863bfe5ab6f4d07ef32afba1baeaecd2adc6b87c84f9a

↪→ 9f079b100f5bc9638d4e578462b696ca7aed596e3fd14e3’
associated data = b’0000000000000000000000000000000600000000000000000

↪→ 00000000000000700000000000000000000000000000008’
PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
P0 = b’00000000000000000000000000000003’
C0 = b’af06863bfe5ab6f4d07ef32afba1baea’
PT1 = b’7f07f972c337e1984ed92642c9a845f1’
CT1 = b’00000000000000000000000000000003’
P1 = b’00000000000000000000000000000004’
C1 = b’ecd2adc6b87c84f9a9f079b100f5bc96’
PT2 = b’ecd2adc6b87c84f9a9f079b100f5bc91’
CT2 = b’7f07f972c337e1984ed92642c9a845f2’
P2 = b’00000000000000000000000000000005’
C2 = b’38d4e578462b696ca7aed596e3fd14e3’
PT3 = b’47d31c0a851c88f4e977f3d42a555114’
CT3 = b’93d554b47b4b6561e7295ff3c95df963’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
AT3 = b’7152d55728d8c03e547ab64cd21531fa’
MT = b’a0fa43f94c4171977aa2a760511e3475’
IT = b’d1a896ae6499b1a92ed8112c830b058f’

PADINFO = b’80010000800100008001000080010000’
authentication tag = b’1b2c40d4b921b5fea3a2c773367276b3’
provided tag = b’1b2c40d4b921b5fea3a2c773367276b3’
out = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000400000000000000000000000000000005’

m=3,a=3 padded
CSPAE - encryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000409’
associated data = b’0000000000000000000000000000000600000000000000000

↪→ 0000000000000070a0b’
PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
P0 = b’00000000000000000000000000000003’
C0 = b’af06863bfe5ab6f4d07ef32afba1baea’
PT1 = b’7f07f972c337e1984ed92642c9a845f1’
CT1 = b’00000000000000000000000000000003’
P1 = b’00000000000000000000000000000004’

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 35

C1 = b’ecd2adc6b87c84f9a9f079b100f5bc96’
PT2 = b’ecd2adc6b87c84f9a9f079b100f5bc91’
CT2 = b’7f07f972c337e1984ed92642c9a845f2’
P2 = b’09000000000000000000000000000000’
C2 = b’a5405b16f5db2622e1c90deba9f25963’
PT3 = b’d347a26436ecc7baaf102ba9605a1c91’
CT3 = b’93d554b47b4b6561e7295ff3c95df963’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
AT3 = b’d23963e8cabeaa4a76899b5f5e3ee58d’
MT = b’346efd97ffb13ed93cc57f1d1b1179f0’
IT = b’e6579e7f350f94934a4ce442452f9c7d’

PADINFO = b’08010000100100000801000010010000’
authentication tag = b’e6b45ced002704ca27ac396b78007bd9’
out = b’af06863bfe5ab6f4d07ef32afba1baeaecd2adc6b87c84f9a

↪→ 9f079b100f5bc96a5405b16f5db2622e1c90deba9f25963e6b45ced002704ca27ac
↪→ 396b78007bd9’

CSPAE - decryption
key = b’00000000000000000000000000000001’
nonce = b’00000000000000000000000000000002’
message = b’af06863bfe5ab6f4d07ef32afba1baeaecd2adc6b87c84f9a

↪→ 9f079b100f5bc96a5405b16f5db2622e1c90deba9f25963’
associated data = b’0000000000000000000000000000000600000000000000000

↪→ 0000000000000070a0b’
PT0 = b’d0017f493d6d576c9ea7d5683209ff1b’
CT0 = b’d0017f493d6d576c9ea7d5683209ff18’
P0 = b’00000000000000000000000000000003’
C0 = b’af06863bfe5ab6f4d07ef32afba1baea’
PT1 = b’7f07f972c337e1984ed92642c9a845f1’
CT1 = b’00000000000000000000000000000003’
P1 = b’00000000000000000000000000000004’
C1 = b’ecd2adc6b87c84f9a9f079b100f5bc96’
PT2 = b’ecd2adc6b87c84f9a9f079b100f5bc91’
CT2 = b’7f07f972c337e1984ed92642c9a845f2’
P2 = b’09000000000000000000000000000000’
C2 = b’a5405b16f5db2622e1c90deba9f25963’
PT3 = b’d347a26436ecc7baaf102ba9605a1c91’
CT3 = b’93d554b47b4b6561e7295ff3c95df963’
AT1 = b’131527259dc7975992e4bbfd0510e9fa’
AT2 = b’dba2c410fd3d0a66d02984fc6e85d61a’
AT3 = b’d23963e8cabeaa4a76899b5f5e3ee58d’
MT = b’346efd97ffb13ed93cc57f1d1b1179f0’
IT = b’e6579e7f350f94934a4ce442452f9c7d’

PADINFO = b’08010000100100000801000010010000’
authentication tag = b’e6b45ced002704ca27ac396b78007bd9’
provided tag = b’e6b45ced002704ca27ac396b78007bd9’
out = b’0000000000000000000000000000000300000000000000000

↪→ 00000000000000409’

CSPAE - encryption
key = b’000102030405060708090a0b0c0d0e0f’
nonce = b’000102030405060708090a0b0c0d0e0f’

36 SPAE

message =
associated data =

PT0 = b’c6a13b37878f5b826f4f8162a1c8d879’
CT0 = b’c6a13b37878f5b826f4f8162a1c8d879’
MT = b’fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0’
IT = b’fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0’

PADINFO = b’00000000000000000000000000000000’
authentication tag = b’7525d79334164e254cba038b814d9c20’
out = b’7525d79334164e254cba038b814d9c20’

CSPAE - encryption
key = b’000102030405060708090a0b0c0d0e0f’
nonce = b’000102030405060708090a0b0c0d0e0f’
message = b’000102030405060708090a0b0c0d0e0f’
associated data = b’000102030405060708090a0b0c0d0e0f’

PT0 = b’c6a13b37878f5b826f4f8162a1c8d879’
CT0 = b’c6a13b37878f5b826f4f8162a1c8d879’
P0 = b’000102030405060708090a0b0c0d0e0f’
C0 = b’732b2b535f23f219b6ffc139248d2dc2’
PT1 = b’b58b1267dca9af9cd1b94a508948fbb4’
CT1 = b’00000000000000000000000000000000’
AT1 = b’0a940bb5416ef045f1c39458c653ea5a’
MT = b’b58b1267dca9af9cd1b94a508948fbb4’
IT = b’bf1f19d29dc75fd9207ade084f1b11ee’

PADINFO = b’80000000800000008000000080000000’
authentication tag = b’0a1315ef625aedc8e354116928defef3’
out = b’732b2b535f23f219b6ffc139248d2dc20a1315ef625aedc8e

↪→ 354116928defef3’

CSPAE - encryption
key = b’000102030405060708090a0b0c0d0e0f’
nonce = b’000102030405060708090a0b0c0d0e0f’
message = b’000102030405060708090a0b0c0d0e0f10111213141516171

↪→ 8191a1b1c1d1e1f’
associated data = b’000102030405060708090a0b0c0d0e0f10111213141516171

↪→ 8191a1b1c1d1e’
PT0 = b’c6a13b37878f5b826f4f8162a1c8d879’
CT0 = b’c6a13b37878f5b826f4f8162a1c8d879’
P0 = b’000102030405060708090a0b0c0d0e0f’
C0 = b’732b2b535f23f219b6ffc139248d2dc2’
PT1 = b’b58b1267dca9af9cd1b94a508948fbb4’
CT1 = b’00000000000000000000000000000000’
P1 = b’101112131415161718191a1b1c1d1e1f’
C1 = b’b85c0d5fa953bf572a125c9479b2e862’
PT2 = b’a84d1f4cbd46a940320b468f65aff67d’
CT2 = b’b58b1267dca9af9cd1b94a508948fbb4’
AT1 = b’0a940bb5416ef045f1c39458c653ea5a’
AT2 = b’68e2c19fa9096698ae35d29b54b0c601’
MT = b’79f4551c340e52f4878054e8b90659e1’
IT = b’111694839d07346c29b58673edb69fe0’

PADINFO = b’00010000f800000000010000f8000000’
authentication tag = b’6918ce72c046c8e5159254cfe2065600’

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 37

out = b’732b2b535f23f219b6ffc139248d2dc2b85c0d5fa953bf572
↪→ a125c9479b2e8626918ce72c046c8e5159254cfe2065600’

CSPAE - encryption
key = b’000102030405060708090a0b0c0d0e0f’
nonce = b’000102030405060708090a0b0c0d0e0f’
message = b’000102030405060708090a0b0c0d0e0f10111213141516171

↪→ 8191a1b1c1d1e1f’
associated data = b’000102030405060708090a0b0c0d0e0f10111213141516171

↪→ 8191a1b1c1d1e1f’
PT0 = b’c6a13b37878f5b826f4f8162a1c8d879’
CT0 = b’c6a13b37878f5b826f4f8162a1c8d879’
P0 = b’000102030405060708090a0b0c0d0e0f’
C0 = b’732b2b535f23f219b6ffc139248d2dc2’
PT1 = b’b58b1267dca9af9cd1b94a508948fbb4’
CT1 = b’00000000000000000000000000000000’
P1 = b’101112131415161718191a1b1c1d1e1f’
C1 = b’b85c0d5fa953bf572a125c9479b2e862’
PT2 = b’a84d1f4cbd46a940320b468f65aff67d’
CT2 = b’b58b1267dca9af9cd1b94a508948fbb4’
AT1 = b’0a940bb5416ef045f1c39458c653ea5a’
AT2 = b’3cf456b4ca488aa383c79c98b34797cb’
MT = b’79f4551c340e52f4878054e8b90659e1’
IT = b’450003a8fe46d8570447c8700a41ce2a’

PADINFO = b’00010000000100000001000000010000’
authentication tag = b’5135faad34fa275762e1dc2399a40705’
out = b’732b2b535f23f219b6ffc139248d2dc2b85c0d5fa953bf572

↪→ a125c9479b2e8625135faad34fa275762e1dc2399a40705’

38 SPAE

7.3 Rational behind the encoding of PADINFO
As explained in 4.2, the redundant encoding of PADINFO has been made to prevent the use
of it to cancel out an error pattern introduced by a fault injection before it reaches the
final EKN operation. We made the choice of the encoding assuming that E is AES. It does
not mean that this encoding is inneficient for other block ciphers, it just means that it is
adequate for AES.

7.3.1 Faults on the penultimate round of AES

A fault in the sbox 0 in the penultimate round of AES could disturb byte 0 and 5 which
are easy to cancel out via PADINFO, but the fault would also disturb bytes 10 and 15.
Setting a non zero value on byte 15 using PADINFO means feeding between 256 and 264 bits
to the algorithm. Clearly such approach is impractical on embedded systems.

7.3.2 Faults on the last round of AES

A fault on the last round of AES could disturb a single byte. The encoding of PADINFO
make also such single byte modification difficult: changing the length of the message
changes at least two bytes, the same goes for associated data. Changing both the message
and the associated data length can achieve a single byte change however it requires feeding
232 bits. This is a costly proposition for a guess trial of a fault pattern which provide only
limited information about the key. High value targets can choose to limit both the ml and
adl to 232, in this case it is simply not possible to achieve single byte change in PADINFO.

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 39

7.4 Rational behind the initial values
The security proofs of the scheme rely on the secrecy of PT0 and CT0. Clearly PT0 and CT0
shall be different since CT1 = PT0 ⊕ CT0 and that the security proofs of the scheme also
rely on CT1 being secret (see for example proposition 1). To follow Kerckhoffs’s principle
[27], the only option is to derive them from the secret key input.

One easy solution would be to simply consider them as additional key bits, so for
SPAE-AES-128 we would have a 3*128 bits key (the implementation shall then reject to
execute when PT0 == CT0). System architect may well make this choice in the end however
we felt it is desirable to limit the key material to the block cipher key so that SPAE can
be used as a drop in replacement of some other AEAD in existing applications.

Another easy solution is to encrypt a constant, the firsts digit of π for example, two
times:

CST = 0x243f6a8885a308d313198a2e03707344
CT0 = EK(CST)
PT0 = EK(EK(CST))

(1)

Since the calls to E do not depends on NONCE, they can therefore be precomputed. With
NONCE = 0 and a = 0, this would give the following equations for C0, PT1, CT1 and TAGnull:

C0 = EKN(EK(EK(CST))⊕ P0)⊕ EK(CST)
CT1 = EK(EK(CST))⊕ EK(CST)
PT1 = EKN(EK(EK(CST))⊕ P0)⊕ P0

TAGnull = EK(EK(CST))⊕ EK(K⊕ FF)

(2)

Nothing cancels out completly so this is a fine solution.
Even though the calls to E can be precomputed, in practice the application may not

do so. For example if the only permanent on-chip storage is a small OTP memory in
which the bits are counted, PT0 and CT0 will be computed at least at each boot or even at
each AEAD call. This makes this solution not ideally suited for low cost applications. We
therefore searched for a solution with a single call to E.

As a reminder, the chosen equations for PT0 and CT0 are the following:

CT0 = EK(K)
PT0 = EK(K)⊕ K

(3)

Since the call to E does not depends on NONCE, it can therefore be precomputed. With
NONCE = 0 and a = 0, this gives the following equations for C0, PT1, CT1 and TAGnull:

C0 = EKN(EK(K)⊕ K⊕ P0)⊕ EK(K)
CT1 = EK(K)⊕ K⊕ EK(K)

= K

PT1 = EKN(EK(K)⊕ K⊕ P0)⊕ P0

TAGnull = PT0 ⊕ EK(AT0 ⊕ K⊕ FF⊕ PADINFO)
= K⊕ EK(K)⊕ EK(K⊕ FF)

(4)

Nothing cancels out completly so this is a fine solution. The fact that CT1 = K is somewhat
unfortunate but we did not find any way to exploit this so far. If there is an attack
exploiting this relation, SPAE and CSPAE could still be used with the more expensive
alternatives for initial values that we described in this section.
Remark 10. It can be pointed out that in the computation of EK(K) with E = AES128 we
always have at the end of the first round of AES the null constant. In this case this is

40 SPAE

not a problem because we use AES here merely to derive a secret from another one. The
full security level of AES is not required for this operation, we could have used GCM ’s
GHASH or even a CRC instead of AES. For the performance of the scheme we highlight
the fact that we choose to present a scheme which uses an optimised primitive and thus
using another function to derive those constants would have impact on the performances
or the cost of the implementation. The storage of constants (such as π) which could be a
solution to this fact has also drawbacks in the context of memory constrained embedded
systems.

Philippe Elbaz-Vincent, Cyril Hugounenq and Sébastien Riou 41

Nonce Misuse Resilience, Execute in Place (XIP), Differential Fault Analysis (DFA),
AES, low-cost hardware„

	Introduction and motivations for AEAD on embedded systems
	State of the art on AEAD mode of operation
	NIST approved AEAD algorithms
	CAESAR finalists
	Other prominent AEAD algorithms
	Comparison between the AEAD schemes

	The SPAE and CSPAE modes of operations
	Elementary Operations
	Inputs and outputs of the scheme
	Internal data of the scheme
	Diagrammatic description of SPAE and CSPAE
	Algorithmic description of SPAE and CSPAE
	Padding
	Design Rationale

	Security analysis of SPAE
	Structural analysis of SPAE
	Differential Fault Analysis
	Side channel analysis
	Analysis of the privacy

	Performances
	Benchmark within MbedTLS on ARM-CortexM4
	Benchmark on ARM-CortexM0

	Conclusion and perspectives
	Appendix
	SPAE-AES128 test vectors
	CSPAE-AES128 test vectors
	Rational behind the encoding of PADINFO
	Rational behind the initial values

