
Compact and Scalable Arbitrary-centered
Discrete Gaussian Sampling over Integers

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad

Faculty of Information Technology, Monash University,
{raymond.zhao,ron.steinfeld,amin.sakzad}@monash.edu

Abstract. The arbitrary-centered discrete Gaussian sampler is a fundamental sub-
routine in implementing lattice trapdoor sampling algorithms. However, existing
approaches typically rely on either a fast implementation of another discrete Gaussian
sampler or pre-computations with regards to some specific discrete Gaussian distribu-
tions with fixed centers and standard deviations. These approaches may only support
sampling from standard deviations within a limited range, or cannot efficiently sample
from arbitrary standard deviations determined on-the-fly at run-time.
In this paper, we propose a compact and scalable rejection sampling algorithm by
sampling from a continuous normal distribution and performing rejection sampling
on rounded samples. Our scheme does not require pre-computations related to any
specific discrete Gaussian distributions. Our scheme can sample from both arbitrary
centers and arbitrary standard deviations determined on-the-fly at run-time. In
addition, we show that our scheme only requires a low number of trials close to 2 per
sample on average, and our scheme maintains good performance when scaling up the
standard deviation. We also provide a concrete error analysis of our scheme based on
the Rényi divergence.
Keywords: Lattice-based crypto · discrete Gaussian sampling · implementation ·
efficiency

1 Introduction
The arbitrary-centered discrete Gaussian sampling algorithm is an important subroutine in
implementing lattice trapdoor samplers, which is a fundamental tool employed by lattice-
based cryptography applications such as digital signature [PFH+17] and identity-based
encryption [GPV08, DLP14]. However, previous works focused more on optimising the
lattice trapdoor sampling algorithms, but the implementation details of the arbitrary-
centered discrete Gaussian sampling were not well addressed. Typically, arbitrary-centered
discrete Gaussian sampling approaches need to perform either rejection sampling [DN12,
Kar16, PFH+17, DWZ19, PRR19] or pre-computations related to some specific discrete
Gaussian distributions [MAR17, MW17, MR18]. However, both types of methods have
issues in the implementation: rejection sampling based methods are either slow due to
the large number of trials per sample on average (typically, about 8–10) [DN12], requiring
high precision arithmetic for cryptography applications [Kar16], or relying on a fast
implementation of another discrete Gaussian sampler [PFH+17, DWZ19, PRR19]. On
the other hand, pre-computation based methods consume at least few kilobytes (KB)
of memory to store the tables and have the following limitations: the pre-computation
table size in [MAR17, MR18] grows significantly when scaling up the standard deviation
and this approach cannot support arbitrary standard deviations determined on-the-fly at
run-time, while it is unclear how to efficiently implement the offline phase in [MW17] if
the full algorithm needs to be executed during the run-time.

mailto:raymond.zhao@monash.edu,ron.steinfeld@monash.edu,amin.sakzad@monash.edu

2 Compact and Scalable Arbitrary-centered Discrete Gaussian Sampling over Integers

Recently the rounded Gaussian sampling (i.e. sampling from a continuous normal
distribution and rounding the samples) was adapted by lattice-based digital signatures
[ZCHW17, HLS18]. Compared with a previous discrete Gaussian sampling algorithm
[DDLL13], the rounded Gaussian sampler in [HLS18] showed impressive performance with
regards to the running speed and can be implemented in constant-time. The implementation
in [HLS18] is also notably simple (within less than 40 lines of C++ source code). However,
since it is unclear whether a rounded Gaussian distribution can be directly adapted to
implement a lattice trapdoor, another interesting question is: can one employ the existing
efficient (rounded) continuous Gaussian distribution sampling techniques to implement an
arbitrary-centered discrete Gaussian sampler?

1.1 Contribution
In this paper, we introduce a novel arbitrary-centered discrete Gaussian sampling algorithm
over integers by generalising ideas from [Dev86]. Our scheme samples from a continuous
normal distribution and performs rejection sampling on rounded samples by adapting
techniques from [ZCHW17, HLS18]. Compared to previous arbitrary-centered discrete
Gaussian sampling techniques, our scheme has the following advantages:

• Our sampling algorithm does not require any pre-computations related to a specific
discrete Gaussian distribution or a specific standard deviation, and both the center
and the standard deviation can be arbitrary determined on-the-fly at run-time.

• In addition, we show in Section 4 that our sampling method only requires a low
number of trials close to 2 per sample on average compared to about 8–10 on average
in the rejection sampling with regards to a uniform distribution, and the rejection
rate of our algorithm decreases when scaling up σ. Therefore, our sampling algorithm
is not limited to small σ and can be adapted to sample from larger σ without affecting
the efficiency.

• Since sampling from a continuous normal distribution is a well-studied topic [TLLV07]
and the sampling algorithms are implemented in many existing software libraries
(including the C++11 STL) and hardware devices, one can easily implement our
scheme by employing existing tools.

2 Preliminaries
Let ρc,σ (x) = exp

(
− (x− c)2

/2σ2
)
be the (continuous) Gaussian function with center

c and standard deviation σ. We denote the continuous Gaussian (normal) distribution
with center c and standard deviation σ by N

(
c, σ2), which has the probability density

function ρc,σ(x)/
(
σ
√

2π
)
. We denote the discrete Gaussian distribution on integer lattices

with center c and standard deviation σ by: Dc,σ (x) = ρc,σ (x) /S, where S = ρc,σ (Z) =∑
k∈Z ρc,σ (k) is the normalisation factor. We omit the center in notations (i.e. ρσ(x) and

Dσ(x)) if the center is zero. In addition, we denote the uniform distribution on set S
by U(S). Sampling from a distribution P is denoted by x ←↩ P. We define bxe as the
nearest integer to x ∈ R. We denote Z+ as the integer set {1, . . . ,∞} and Z− as the
integer set {−∞, . . . ,−1}, respectively. Also, for a lattice Λ and any ε ∈ R+, we denote
the smoothing parameter ηε(Λ) as the smallest s ∈ R+ such that ρ1/(s√2π)

(
Λ∗ \

{
~0
})
≤ ε,

where Λ∗ is the dual lattice of Λ: Λ∗ = {~w ∈ Rn : ∀~x ∈ Λ, ~x · ~w ∈ Z} [Pei10]. An upper
bound on ηε (Z) is given by [Pei10]: ηε(Z) ≤

√
ln(2 + 2/ε)/π.

Theorem 1 (Adapted from [Pei10], Lemma 2.4). For any ε ∈ (0, 1) and c ∈ R, if
σ ≥ ηε (Z), then ρc,σ (Z) = [(1− ε) / (1 + ε) , 1] · ρσ (Z), and ρσ (Z) is approximately∫∞
−∞ ρσ(x) dx = σ

√
2π.

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 3

Definition 1 (Relative Error). For two distributions P and Q such that Supp(P) =
Supp(Q), the relative error between P and Q is defined as:

∆(P||Q) = max
x∈Supp(P)

|P(x)−Q(x)|
Q(x) .

Definition 2 (Rényi Divergence [BLL+15, Pre17]). For two discrete distributions P and
Q such that Supp(P) ⊆ Supp(Q), the Rényi divergence (RD) of order α ∈ (1,+∞) is
defined as:

Rα(P||Q) =

 ∑
x∈Supp(P)

P(x)α

Q(x)α−1

 1
α−1

.

Theorem 2 (Relative Error Bound, Adapted from [Pre17], Lemma 3 and Eq. 4). For
two distributions P and Q such that Supp(P) = Supp(Q), we have:

Rα(P||Q) ≤
(

1 + α(α− 1) · (∆ (P||Q))2

2(1−∆ (P||Q))α+1

) 1
α−1

.

The right-hand side is asymptotically equivalent to 1 + α · (∆ (P||Q))2
/2 as ∆(P||Q)→ 0.

In addition, if a cryptographic search problem using M independent samples from Q
is (λ + 1)-bit secure, then the same problem sampling from P will be λ-bit secure if
R2λ(P||Q) ≤ 1 + 1/(4M).

3 Previous Work
In this section, we review previous techniques of sampling from Dc,σ with an arbitrary
center c.

3.1 Rejection Sampling
The classic rejection sampling algorithm [von51, DN12] can sample from an arbitrary-
centered discrete Gaussian distribution. To sample from Dc,σ, one can sample x ←↩
U ([c− τσ, c+ τσ] ∩ Z) and accept x with probability ρc,σ(x) as the output, where τ is the
tail-cut factor (typically, about 10–12). However, this method is slow as the number of trials
is 2τ/

√
2π on average (about 8–10 for typical τ). Recently an algorithm sampling exactly

from Dc,σ without floating-point arithmetic was presented by [Kar16], which also has a
lower rejection rate compared to the classic rejection sampling algorithm. However, this
algorithm relies on high precision integer arithmetic to satisfy the precision requirements
in cryptography applications.

To reduce the rejection rate, recent works performed rejection sampling with regards
to some distributions much closer to Dc,σ compared to a uniform distribution:

• The Falcon signature [PFH+17] and its constant-time variant [PRR19] adapted a
rejection sampling method with regards to bimodal Gaussians: to sample from
Dc,σ where c ∈ [0, 1], one can choose some σ′ ≥ σ and sample x ←↩ D+

σ′ (i.e.
the discrete Gaussian distribution Dσ′ restricted to the domain Z+ ∪ {0}). The
algorithm computes x′ = b + (2b − 1) · x where b ←↩ U ({0, 1}). The authors of
[PFH+17, PRR19] showed that x′ has a bimodal Gaussian distribution close to
the target distribution. The algorithm then accepts x′ with probability C(σ) ·
exp

((
x2/

(
2σ′2

))
−
(

(x′ − c)2
/
(
2σ2))) as the output, where the scaling factor

C(σ) = min(σ)/σ when sampling from multiple σ. This scheme has the average

4 Compact and Scalable Arbitrary-centered Discrete Gaussian Sampling over Integers

acceptance rate C(σ) · ρc,σ (Z) / (2ρσ′ (Z+)), which is proportional to min(σ)/σ′
[PFH+17, PRR19]. However, if the application needs to sample from different σ, the
acceptance probability is high only when min(σ) and max(σ) are sufficiently close.
This is not an issue in the Falcon signature, since the parameters in Falcon implies
σ′ is very close to max(σ) and min(σ)/max(σ) ≈ 0.73 [PRR19]. However, if the gap
between min(σ) and max(σ) is large, since σ′ ≥ max(σ), this algorithm might have
a low acceptance rate1.

• A recent work [DWZ19] extended the binary sampling algorithm from the BLISS
signature [DDLL13] to support non-zero arbitrary centers. For any center c ∈ R,
sampling from Dc,σ is equivalent to sampling from DcF ,σ + bcc, where cF = c−bcc ∈
[0, 1) is the fractional part of c. In addition, for 1/2 ≤ cF < 1, sampling from
DcF ,σ is equivalent to sampling from 1 − Dc′

F
,σ where c′F = 1 − cF ∈ (0, 1/2]. A

modified binary sampling scheme [DWZ19] can then be adapted to sample from
Dc′

F
,σ with any c′F ∈ (0, 1/2], in which the average number of trials is upper-bounded

by:
(
σ2/

(
σ0σ − σ2

0
))
·
(
ρσ0 (Z+) /

(
σ
√
π/2− 1

))
, where σ0 =

√
1/ (2 ln 2) is a fixed

parameter used by the binary sampling algorithm [DDLL13, DWZ19] and σ = kσ0
for some k ∈ Z+. This upper-bound is about 1.47 for large σ [DWZ19].

3.2 TwinCDT

The authors of [MAR17, MR18] suggested a variant of the Cumulative Distribution Table
(CDT) method [Dev86] with multiple pre-computed tables. These algorithms will have
two phases: online and offline. To be more specific, for c ∈ [0, 1), during the offline phase,
the algorithm pre-computes multiple CDT of Di/n,σ, where i ∈ {0, . . . , n− 1} and n ∈ Z+

is sufficiently large. During the online phase, the algorithm picks a sample generated from
either Dbn(c−bcc)c/n,σ or Ddn(c−bcc)e/n,σ as the output. Although the algorithm is very
fast compared to other approaches, however, σ is fixed during the offline computation
and thus this algorithm cannot support sampling from Dc,σ with both arbitrary c and σ
determined on-the-fly at run-time. Another issue is that the pre-computation table size
grows significantly when scaling up σ (see Table 2 in Section 5) and therefore the algorithm
is not scalable.

3.3 Convolution

A recursive convolution sampling scheme for Dc,σ was presented in [MW17] as follows:
suppose the center c has k fractional bits. Let σ0 = σ/

√∑k−1
i=0 2−2i. One can sample

xk ←↩ Dck,σ0 where ck = 2k−1 · c, then use yk = 2−k+1 · xk to round c to a new center
c′ = c − yk with k′ = k − 1 fractional bits. Set c = c′ and k = k′ in the next iteration
until k = 0, and

∑k
i=1 yi will be a sample distributed as Dc,σ. The authors of [MW17]

separated this algorithm into an online phase and an offline phase, where the offline
phase will generate samples xi in batch and the online phase will compute the linear
combinations of xi for 1 ≤ i ≤ k. The online phase is very fast and can be implemented
in constant-time. However, for implementations where both sampling from Dci,σ0 and
computing the linear combinations need to be carried during the run-time, it is unclear
how to efficiently implement the Dci,σ0 sampling algorithm in constant-time (which is
another discrete Gaussian sampler supporting a small amount of centers ci). The offline
batch sampler also consumes significant amount of memory (see Table 2 in Section 5).

1One may employ different implementations for different σ, similar to the implementation of Falcon.

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 5

Algorithm 1 Adapted from [Dev86], pg. 117, ch. 3
Input: Standard deviation σ ∈ R+.
Output: A sample z distributed as Pr [X = z] = c · exp

(
− (|z|+ 1/2)2

/
(
2σ2)).

1: function Sampler(σ)
2: Sample x←↩ N

(
0, σ2).

3: Sample r ←↩ U ([0, 1)).
4: Let Y = (|bxe|+ 1/2)2 − x2.
5: if r < exp

(
−Y/

(
2σ2)) then

6: Let z = bxe.
7: else
8: goto 2.
9: end if
10: return z.
11: end function

4 Proposed Algorithm

In the textbook [Dev86], the author defined a variant of the discrete Gaussian distribution
as Pr [X = z] = c · exp

(
− (|z|+ 1/2)2

/
(
2σ2)), where z ∈ Z and c is the normalisation

constant, i.e.

Pr [X = z] ∝
{
ρ−1/2,σ(z) z ≥ 0,
ρ1/2,σ(z) z < 0.

A rejection sampling algorithm (see Algorithm 1) was provided by [Dev86] with rejection
probability less than (2/σ) ·

√
2/π for such a distribution, which is fast for large σ.

Here we generalise Algorithm 1 to sample from Dc,σ(z). By removing the absolute value
and replacing the fixed center −1/2 with a generic center c in Algorithm 1, we observe
that Y ′ = (bxe+ c)2 − x2 ≥ 0 when (c ≥ 1/2, x ≥ 0) or (c ≤ −1/2, x < 0). Therefore, we
can replace Y with Y ′ and perform a similar rejection sampling to Algorithm 1 when
sampling from Dc,σ(z) for some c and z = bxe. To extend Algorithm 1 to support all
c ∈ R and z ∈ Z, we first compute cI = bce and cF = cI − c, where cF ∈ [−1/2, 1/2].
Then we can sample from D−cF ,σ instead, since Dc,σ = D−cF ,σ + cI . To sample from
D−cF ,σ for all cF ∈ [−1/2, 1/2], we shift the center of the underlying continuous normal
distribution, i.e. sampling y ←↩ N

(
±1, σ2), and perform a rejection sampling over z = bye

with acceptance rate exp
(
−Y ′′/

(
2σ2)) where Y ′′ = (bye+ cF)2 − (y ∓ 1)2 (we also need

to ensure Y ′′ ≥ 0 before performing this rejection sampling). The sampling algorithm for
D−cF ,σ is presented in Algorithm 2. Note that the output of Algorithm 2 is restricted to
the domain Z\{0}. Therefore, the algorithm needs to output 0 with probability D−cF ,σ(0).
We present the full algorithm in Algorithm 3. Since both Algorithm 2 and Algorithm 3
do not require pre-computations related to σ, our scheme can support arbitrary standard
deviations determined on-the-fly at run-time in addition to arbitrary centers.

Theorem 3. The output z sampled by Algorithm 2 is distributed as D−cF ,σ (Z \ {0}). The
output of Algorithm 3 is distributed as Dc,σ(Z).

Proof. When b = 0, y is distributed as N
(
−1, σ2). For step 11 in Algorithm 2, we have

Y1 = (bye+ cF)2 − (y + 1)2 ≥ 0 for any cF ∈ [−1/2, 1/2] when y ≤ −1/2. Therefore,
the rejection condition exp

(
−Y1/

(
2σ2)) ∈ (0, 1]. Let z0 = bye. We have the output

6 Compact and Scalable Arbitrary-centered Discrete Gaussian Sampling over Integers

Algorithm 2 D−cF ,σ (Z \ {0}) sampler
Input: Center cF ∈ [−1/2, 1/2]. Standard deviation σ ∈ R+.
Output: A sample z distributed as D−cF ,σ restricted to the domain Z \ {0}.
1: function RoundingSampler(cF , σ)
2: Sample x←↩ N (0, 1).
3: Sample b←↩ U ({0, 1}).
4: if b = 0 then
5: Let y = σ · x− 1.
6: if y > −1/2 then
7: goto 2.
8: end if
9: Sample r ←↩ U ([0, 1)).
10: Let Y1 = (bye+ cF)2 − (y + 1)2.
11: if r < exp

(
−Y1/

(
2σ2)) then

12: Let z = bye.
13: else
14: goto 2.
15: end if
16: else
17: Let y = σ · x+ 1.
18: if y < 1/2 then
19: goto 2.
20: end if
21: Sample r ←↩ U ([0, 1)).
22: Let Y2 = (bye+ cF)2 − (y − 1)2.
23: if r < exp

(
−Y2/

(
2σ2)) then

24: Let z = bye.
25: else
26: goto 2.
27: end if
28: end if
29: return z.
30: end function

Algorithm 3 Dc,σ (Z) sampler
Input: Center c ∈ R. Standard deviation σ ∈ R+. Normalisation factor S = ρc,σ (Z) ≈

σ
√

2π.
Output: A sample distributed as Dc,σ (Z).
1: function RoundingSamplerFull(c, σ)
2: Let cI = bce and cF = cI − c.
3: Sample r ←↩ U ([0, 1)).
4: if r < exp

(
−c2

F /
(
2σ2)) /S then

5: Let z′ = 0.
6: else
7: Let z′ = RoundingSampler (cF , σ).
8: end if
9: return z′ + cI .
10: end function

distribution:

Pr [z = z0] ∝
∫ z0+1/2

z0−1/2
exp

(
− (y + 1)2

2σ2

)
· exp

(
− (z0 + cF)2 − (y + 1)2

2σ2

)
dy

=
∫ z0+1/2

z0−1/2
exp

(
− (z0 + cF)2

2σ2

)
dy (1)

= ρ−cF ,σ (z0) .

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 7

In this case, the distribution of z = z0 is D−cF ,σ restricted to the domain Z− (due to the
rejection of y to (−∞,−1/2]).

Similarly, when b = 1, y is distributed as N
(
1, σ2). For step 23 in Algorithm 2, we

have Y2 = (bye+ cF)2 − (y − 1)2 ≥ 0 for any cF ∈ [−1/2, 1/2] when y ≥ 1/2. Therefore,
the rejection condition exp

(
−Y2/

(
2σ2)) ∈ (0, 1]. Let z0 = bye. We have the output

distribution:

Pr [z = z0] ∝
∫ z0+1/2

z0−1/2
exp

(
− (y − 1)2

2σ2

)
· exp

(
− (z0 + cF)2 − (y − 1)2

2σ2

)
dy

=
∫ z0+1/2

z0−1/2
exp

(
− (z0 + cF)2

2σ2

)
dy (2)

= ρ−cF ,σ (z0) .

In this case, the distribution of z = z0 is D−cF ,σ restricted to the domain Z+ (due to
the rejection of y to [1/2,∞)). Therefore, the output z in Algorithm 2 is distributed as
D−cF ,σ restricted to the domain Z \ {0}.

In Algorithm 3, the probability Pr [z′ = 0] = exp
(
−c2

F /
(
2σ2)) /S = D−cF ,σ(0). There-

fore, variable z′ is distributed as D−cF ,σ(Z). Since c = cI − cF , we have the output z′ + cI
distributed as Dc,σ(Z).

Theorem 4. For σ ≥ ηε (Z), the expected number of trials M in Algorithm 2 has the
upper bound:

M ≤ 1 + ε

1− ε ·
σ
√

2π
σ
√
π/2− 1

.

If σ is much greater than
√

2/π, then M ≤ 2 +O(ε).

Proof. By Theorem 3, when b = 0, we have the output probability density function
f(y) = ρ−cF ,σ (bye) /ρ−cF ,σ (Z−) and the input probability density function g(y) =
ρ−1,σ(y)/

(
σ
√

2π
)
. The expected number of trials can be written as:

M = max f(y)
g(y) = max

(
ρ−cF ,σ (bye)
ρ−1,σ(y) · σ

√
2π

ρ−cF ,σ (Z−)

)
.

We have:

ρ−cF ,σ (bye)
ρ−1,σ(y) =

exp
(
− (bye+ cF)2

/
(
2σ2))

exp (−(y + 1)2/ (2σ2)) = exp
(
− (bye+ cF)2 − (y + 1)2

2σ2

)
≤ 1.

Therefore,

M ≤ σ
√

2π
ρ−cF ,σ (Z−) ≤

1 + ε

1− ε ·
σ
√

2π
ρσ (Z−) ≤

1 + ε

1− ε ·
σ
√

2π
σ
√
π/2− 1

,

where the second inequality follows from Theorem 1, and the third inequality follows from
ρσ (Z−) = ρσ (Z− ∪ {0})− 1 and the sum-integral comparison:

ρσ
(
Z− ∪ {0}

)
≥
∫ 0

−∞
ρσ(x) dx = σ

√
π/2.

Similarly, when b = 1, we have the output probability density function
f(y) = ρ−cF ,σ (bye) /ρ−cF ,σ (Z+) and the input probability density function g(y) =
ρ1,σ(y)/

(
σ
√

2π
)
. The expected number of trials can be written as:

8 Compact and Scalable Arbitrary-centered Discrete Gaussian Sampling over Integers

M = max f(y)
g(y) = max

(
ρ−cF ,σ (bye)
ρ1,σ(y) · σ

√
2π

ρ−cF ,σ (Z+)

)
.

We have:

ρ−cF ,σ (bye)
ρ1,σ(y) =

exp
(
− (bye+ cF)2

/
(
2σ2))

exp (−(y − 1)2/ (2σ2)) = exp
(
− (bye+ cF)2 − (y − 1)2

2σ2

)
≤ 1.

Therefore,

M ≤ σ
√

2π
ρ−cF ,σ (Z+) ≤

1 + ε

1− ε ·
σ
√

2π
ρσ (Z+) ≤

1 + ε

1− ε ·
σ
√

2π
σ
√
π/2− 1

,

where the second inequality follows from Theorem 1, and the third inequality follows from
ρσ (Z+) = ρσ (Z+ ∪ {0})− 1 and the sum-integral comparison:

ρσ
(
Z+ ∪ {0}

)
≥
∫ ∞

0
ρσ(x) dx = σ

√
π/2.

When σ is much greater than
√

2/π, σ
√
π/2 is much greater than 1. Thus,

M ≤ 1 + ε

1− ε ·
σ
√

2π
σ
√
π/2− 1

= 2 ·
σ
√
π/2

σ
√
π/2− 1

· 1 + ε

1− ε ≤ 2 +O(ε).

We now analyse the relative error of Algorithm 2 here. Let the absolute error of the
continuous Gaussian sample x be ex: x′ = x+ e, where x′ is the actual sample, x is the
ideal sample, and the error |e| ≤ ex. We denote the actual distribution by Pactual and the
ideal distribution by Pideal. Since the variable y might be rounded to an incorrect integer
due to the error from x when y is close to the boundaries z0 ± 1/2 [HLS18], we have:

∆ (Pactual||Pideal) = max
∣∣∣∣Pactual

Pideal
− 1
∣∣∣∣

= max
z0

∣∣∣∣∣∣
∫ z0+1/2+σex
z0−1/2−σex exp

(
− (z0 + cF)2

/
(
2σ2)) dy

ρ−cF ,σ (z0) − 1

∣∣∣∣∣∣ (by (1), (2), and y = σx± 1)

= max
z0

∣∣∣∣ (1 + 2σex) · ρ−cF ,σ (z0)
ρ−cF ,σ (z0) − 1

∣∣∣∣
= 2σex.

By Theorem 2, for λ-bit security, we need:

R2λ (Pactual||Pideal) ≤ 1+ 1
4M =⇒ 1+2λ· (∆ (Pactual||Pideal))2

2 ≤ 1+ 1
4M =⇒ ex ≤

1
4σ
√
λM

.

4.1 Precision Analysis
To avoid sampling a uniformly random real r with high absolute precisions at rejection steps
11 and 23 in Algorithm 2, and step 4 in Algorithm 3, we adapt the comparison approach
similar to [ZSS18]. Assume an IEEE-754 floating-point value f ∈ (0, 1) with (δf + 1)-bit
precision is represented by f =

(
1 +mantissa · 2−δf

)
· 2exponent, where integer mantissa

has δf bits and exponent ∈ Z−. To check r < f , one can sample rm ←↩ U
(
{0, 1}δf+1),

re ←↩ U
(
{0, 1}l

)
, and check rm < mantissa+ 2δf and re < 2l+exponent+1 instead for some

l such that l + exponent+ 1 ≥ 0.
Here we analyse the precision requirement of re. We have the following theorem for

the worst-case acceptance rate in Algorithm 2:

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 9

Theorem 5. Assume x ∈ [−τ, τ] and y ∈ [−τσ − 1, τσ + 1]. In worst case, step 11 in
Algorithm 2 has the acceptance rate:

p1 ≥ exp
(
− (−2τσ + cF − 3/2) (cF − 3/2)

2σ2

)
,

and step 23 in Algorithm 2 has the acceptance rate:

p2 ≥ exp
(
− (2τσ + cF + 3/2) (cF + 3/2)

2σ2

)
.

Proof. For b = 0 and y ≤ −1/2, we have the acceptance rate p1 = exp
(
−Y1/

(
2σ2)) at

step 11 in Algorithm 2 where:

Y1 = (bye+ cF)2 − (y + 1)2

= (y + δ + cF)2 − (y + 1)2 (bye = y + δ where δ ∈ [−1/2, 1/2])
= (2y + δ + cF + 1) (δ + cF − 1)
≤ (−2τσ + cF − 3/2) (cF − 3/2) . (when δ = −1/2 and y = −τσ − 1)

Similarly, for b = 1 and y ≥ 1/2, we have the acceptance rate p2 = exp
(
−Y2/

(
2σ2)) at

step 23 in Algorithm 2 where:

Y2 = (bye+ cF)2 − (y − 1)2

= (y + δ + cF)2 − (y − 1)2 (bye = y + δ where δ ∈ [−1/2, 1/2])
= (2y + δ + cF − 1) (δ + cF + 1)
≤ (2τσ + cF + 3/2) (cF + 3/2) . (when δ = 1/2 and y = τσ + 1)

Let ∆ ≤ 1/2 be the maximum relative error of the right hand side computations at
rejection steps 11 and 23 in Algorithm 2, and step 4 in Algorithm 3. For exp

(
−Y1/

(
2σ2))

at step 11 in Algorithm 2, we have:

exponent1 ≥
⌊

log2

(
(1−∆) · exp

(
− Y1

2σ2

))⌋
≥
⌊
−1− (−2τσ + cF − 3/2) (cF − 3/2)

2σ2 · log2 e

⌋
(by Theorem 5 and ∆ ≤ 1/2)

≥
⌊
−1− 2τσ + 2

σ2 · log2 e

⌋
. (when cF = −1/2)

Similarly, for exp
(
−Y2/

(
2σ2)) at step 23 in Algorithm 2, we have:

exponent2 ≥
⌊

log2

(
(1−∆) · exp

(
− Y2

2σ2

))⌋
≥
⌊
−1− (2τσ + cF + 3/2) (cF + 3/2)

2σ2 · log2 e

⌋
(by Theorem 5 and ∆ ≤ 1/2)

≥
⌊
−1− 2τσ + 2

σ2 · log2 e

⌋
. (when cF = 1/2)

10 Compact and Scalable Arbitrary-centered Discrete Gaussian Sampling over Integers

For exp
(
−c2

F /
(
2σ2)) /S at step 4 in Algorithm 3, we have:

exponent3 ≥
⌊

log2

(
(1−∆) · exp

(
− c2

F

2σ2

)
/S

)⌋
≥
⌊
−1− 1

8σ2 · log2 e− log2

(
σ
√

2π
)⌋

. (when cF = ±1/2 and ∆ ≤ 1/2)

Therefore, we have:

exponent ≥ min
{⌊
−1− 2τσ + 2

σ2 · log2 e

⌋
,

⌊
−1− 1

8σ2 · log2 e− log2

(
σ
√

2π
)⌋}

.

Since the probability Pr [−τ ≤ x ≤ τ] = erf
(
τ/
√

2
)
for x ←↩ N (0, 1), to ensure 1 −

Pr [−τ ≤ x ≤ τ] ≤ 2−λ, we need τ ≥
√

2 · erf−1 (1− 2−λ
)
. Therefore, for λ = 128 and

σ ∈
[
2, 215], we have τ ≥ 13.11, exponent ≥ −21, and thus l ≥ 20, i.e. re needs to have at

least 20 bits.

5 Performance
We perform benchmarks of Algorithm 3 with fixed σ and random arbitrary centers. The
scheme2 is implemented by using the double precision i.e. δf = 52. We employ the Box-
Muller continuous Gaussian sampler [ZCHW17, HLS18] implemented by using the VCL
library [Fog], which provides ex ≤ 248 [HLS18]. We use the AES256 counter mode with
hardware AES instructions (AES-NI) to generate the randomness in our implementations.
We provide both the non-constant time reference implementation and the constant-time
implementation (note that the rejection rate in the constant-time implementation may
still reveal σ due to Theorem 4). For the non-constant time reference implementation,
we use the exp(x) from the C library, which provides about 50-bit precision [PFH+17],
while for the constant-time implementation, we adapt the techniques from [ZSS18] with
about 45-bit precision. To compare with [MR18], we select σ = {2, 4, 8, 16, 32}, and to
compare with [MW17, DWZ19], we choose σ = 215. From the error analysis in Section 4,
for σ ∈

[
2, 215] and λ = 128, we have M ≤ 254.

The benchmark is carried on as follows: we use g++ 9.1.1 to compile our implementa-
tions with the compiling options -O3 -march=native enabled. The benchmark is running
on an Intel i7-7700K CPU at 4.2GHz, with the Hyperthreading and the Turbo Boost
disabled. We generate 1024 samples (with a random arbitrary center per sample) for 1000
times and measure the consumed CPU cycles. Then we convert the CPU cycles to the
average number of samples per second for the comparison purpose with previous works.

The benchmark results of our scheme are shown in Table 1 (in the format of mean ±
standard deviation). We also summarise the performance of previous works in Table 2.
Since previous works [MW17, MR18, DWZ19] measured the number of generated samples
per second running on CPUs with different frequencies, we scale all the numbers to be
based on 4.2GHz3. In addition, since some previous works [MW17, MR18] require pre-
computations to implement the sampling schemes, we summarise the pre-computation
memory storage consumptions in Table 2. Because the TwinCDT method [MR18] provided
different tradeoffs between the running speed and the pre-computation storage consumption,
we show all 3 different sampling speeds and the corresponding pre-computation storage
consumptions for each σ from [MR18]. Note that although our sampling scheme does not
require pre-computations, however, the exp(x) implementation typically consumes a small

2Our implementation is available at https://github.com/raykzhao/gaussian_ac
3Since the authors of [MW17] did not provide the CPU frequency, we scale the benchmark results

(online+offline) of the variant implemented by [DWZ19] instead.

https://github.com/raykzhao/gaussian_ac

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 11

Table 1: Number of Samples per Second for Our Scheme with Fixed σ at 4.2GHz (with
λ = 128).

σ Ref. (×106) Constant-time (×106)
2 10.33± 0.18 8.96± 0.16
4 11.57± 0.18 10.87± 0.15
8 11.95± 0.17 11.61± 0.13
16 12.14± 0.16 12.00± 0.12
32 12.19± 0.15 12.21± 0.11

215 11.70± 0.13 11.57± 0.09

Table 2: Summary of Previous Works for Fixed σ at 4.2GHz (with λ = 128).

σ Num. of samples (×106/sec) Pre-computation storage (KB)
2 [MR18] 51.01/62.45/76.43 1.4/4.6/46
4 [MR18] 45.50/56.44/69.09 1.9/6.3/63
8 [MR18] 37.70/53.31/63.51 3/10/100

16 [MR18] 31.29/37.63/52.29 5.2/17/172
32 [MR18] 34.38/39.76/42.60 9.5/32/318

215 [MW17] 1.78 25.4

4–220 [DWZ19] ≈ 16.3 −4

amount of memory to store the coefficients of the polynomial approximation. For example,
the polynomial approximation of the exp(x) in our constant-time implementation (adapted
from [ZSS18]) has degree 10 with double precision coefficients, and therefore it consumes
(10 + 1) · 8 = 88 bytes.

From Table 1, our scheme has good performance for both small and large σ (11.65×106

samples per second for the non-constant time reference implementation and 11.20× 106

samples per second for the constant-time implementation on average). In particular, our
scheme has better performance for large σ since the number of trials becomes lower by
Theorem 4 (note that the performance for σ = 215 is slightly slower than σ = 32 in
Table 1 due to the larger l used by the rejection comparison steps, i.e. more randomness
is required). The overhead introduced by the constant-time implementation is at most
13.33% in our benchmarks.

For σ ∈ [2, 32], although the TwinCDT method [MR18] is 2.5x–7.3x faster than our
reference implementation, however, this method requires a pre-computation with at least
1.4 KB memory consumption to store the CDT, while our scheme only requires at most
several hundred bytes if considering all the polynomial approximation coefficients (including
those functions used by the Box-Muller continuous Gaussian sampler). When scaling
up σ, the TwinCDT method [MR18] also costs much larger amount of memory (the
pre-computation storage size increases by a factor of 6.7–6.9 when σ changes from 2 to
32), and the performance becomes significantly worse (the number of samples per second
decreases by 32.6–44.3% when σ changes from 2 to 32). In contrary, the pre-computation
storage of our scheme is independent of σ and only relies on the precision requirements.
Our scheme is also scalable and maintains good performance even for large σ = 215. In
addition, for applications sampling from various σ such as [DLP14], one sampler subroutine
implemented by using our scheme is able to serve all σ since the implementation does not
require any pre-computations depending on σ, while the TwinCDT method [MR18] needs
to pre-compute a different CDT for each σ.

4The base sampler and the Bernoulli sampler may require pre-computations depending on the imple-
mentation techniques.

12 Compact and Scalable Arbitrary-centered Discrete Gaussian Sampling over Integers

Compared with [MW17] (online+offline) for σ = 215, our constant-time implementation5

achieves better performance in terms of both timing (6.5x faster) and pre-computation
storage (the implementation in [MW17] requires about 42 KB to implement the Knuth-Yao
[KY76] offline batch sampler). Although our reference implementation is about 28.5%
slower than [DWZ19], on the other hand, our scheme does not rely on any discrete Gaussian
sampler implementations and the constant-time implementation perspective of [DWZ19]
is unclear.

6 Conclusion
In conclusion, we generalise the idea from [Dev86] and present a compact and scalable
arbitrary-centered discrete Gaussian sampling scheme over integers. Our scheme performs
rejection sampling on rounded samples from a continuous normal distribution, which does
not rely on any discrete Gaussian sampling implementations. We show that our scheme
maintains good performance for σ ∈

[
2, 215] and needs no pre-computations related to

any specific σ, which is suitable to implement applications that requires sampling from
multiple different σ. In addition, we provide concrete rejection rate and error analysis of
our scheme.

The performance of our scheme heavily relies on the underlying continuous Gaussian
sampling algorithm. However, the Box-Muller sampler [ZCHW17, HLS18] employed in our
implementation does not have the fastest sampling speed compared to other algorithms
according to a survey [TLLV07]. The main reason behind the choice of the continuous
Gaussian sampler in our implementation is because the Box-Muller sampler is very simple
to implement in constant-time [HLS18]. If the side-channel perspective is not a concern, one
may employ other more efficient non-constant time algorithms from the survey [TLLV07]
to achieve a faster implementation of our scheme.

References
[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Stein-

feld. Improved security proofs in lattice-based cryptography: Using the rényi
divergence rather than the statistical distance. In ASIACRYPT (1), volume
9452 of Lecture Notes in Computer Science, pages 3–24. Springer, 2015.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In CRYPTO (1), volume 8042 of Lecture
Notes in Computer Science, pages 40–56. Springer, 2013.

[Dev86] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag,
New York, NY, USA, 1986.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based
encryption over NTRU lattices. In ASIACRYPT (2), volume 8874 of Lecture
Notes in Computer Science, pages 22–41. Springer, 2014.

[DN12] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling using lazy
floating-point arithmetic. In ASIACRYPT, volume 7658 of Lecture Notes in
Computer Science, pages 415–432. Springer, 2012.

[DWZ19] Yusong Du, Baodian Wei, and Huang Zhang. A rejection sampling algorithm
for off-centered discrete gaussian distributions over the integers. SCIENCE
CHINA Information Sciences, 62(3):39103:1–39103:3, 2019.

5Here we compare the performance of constant-time implementation because the implementation in
[MW17] is constant-time.

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 13

[Fog] Agner Fog. VCL C++ vector class library. https://www.agner.org/
optimize/vectorclass.pdf. Accessed: 2019-08-01.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In STOC, pages 197–206. ACM,
2008.

[HLS18] Andreas Hülsing, Tanja Lange, and Kit Smeets. Rounded gaussians - fast
and secure constant-time sampling for lattice-based crypto. In Public Key
Cryptography (2), volume 10770 of Lecture Notes in Computer Science, pages
728–757. Springer, 2018.

[Kar16] Charles F. F. Karney. Sampling exactly from the normal distribution. ACM
Trans. Math. Softw., 42(1):3:1–3:14, 2016.

[KY76] D. Knuth and A. Yao. Algorithms and Complexity: New Directions and Recent
Results, chapter The complexity of nonuniform random number generation.
Academic Press, 1976.

[MAR17] Carlos Aguilar Melchor, Martin R. Albrecht, and Thomas Ricosset. Sampling
from arbitrary centered discrete gaussians for lattice-based cryptography. In
ACNS, volume 10355 of Lecture Notes in Computer Science, pages 3–19.
Springer, 2017.

[MR18] Carlos Aguilar Melchor and Thomas Ricosset. CDT-based gaussian sampling:
From multi to double precision. IEEE Trans. Computers, 67(11):1610–1621,
2018.

[MW17] Daniele Micciancio and Michael Walter. Gaussian sampling over the integers:
Efficient, generic, constant-time. In CRYPTO (2), volume 10402 of Lecture
Notes in Computer Science, pages 455–485. Springer, 2017.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In
CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 80–97.
Springer, 2010.

[PFH+17] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier lattice-based compact signa-
tures over NTRU. https://falcon-sign.info/, 2017. Accessed: 2018-10-31.

[Pre17] Thomas Prest. Sharper bounds in lattice-based cryptography using the rényi
divergence. In ASIACRYPT (1), volume 10624 of Lecture Notes in Computer
Science, pages 347–374. Springer, 2017.

[PRR19] Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Simple, fast and
constant-time gaussian sampling over the integers for falcon. Sec-
ond PQC Standardization Conference, https://csrc.nist.gov/CSRC/
media/Events/Second-PQC-Standardization-Conference/documents/
accepted-papers/rossi-simple-fast-constant.pdf, 2019. Accessed:
2019-08-13.

[TLLV07] David B. Thomas, Wayne Luk, Philip Heng Wai Leong, and John D. Villasenor.
Gaussian random number generators. ACM Comput. Surv., 39(4):11, 2007.

https://www.agner.org/optimize/vectorclass.pdf
https://www.agner.org/optimize/vectorclass.pdf
https://falcon-sign.info/
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf

14 Compact and Scalable Arbitrary-centered Discrete Gaussian Sampling over Integers

[von51] John von Neumann. Various techniques used in connection with random digits.
In A.S. Householder, G.E. Forsythe, and H.H. Germond, editors, Monte Carlo
Method, pages 36–38. National Bureau of Standards Applied Mathematics
Series, 12, Washington, D.C.: U.S. Government Printing Office, 1951.

[ZCHW17] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, and William Whyte. NIST PQ
submission: pqNTRUSign a modular lattice signature scheme. https://www.
onboardsecurity.com/nist-post-quantum-crypto-submission, 2017. Ac-
cessed: 2019-08-01.

[ZSS18] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. FACCT: fast, compact,
and constant-time discrete gaussian sampler over integers. IACR Cryptology
ePrint Archive, 2018:1234, 2018.

https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission

	Introduction
	Contribution

	Preliminaries
	Previous Work
	Rejection Sampling
	TwinCDT
	Convolution

	Proposed Algorithm
	Precision Analysis

	Performance
	Conclusion

