
Optimal-Round Preprocessing-MPC via
Polynomial Representation and Distributed

Random Matrix
(Extended abstract)

Dor Bitan1 and Shlomi Dolev2

1 Dept. of Mathematics, Ben-Gurion University of the Negev, Israel,
dorbi@post.bgu.ac.il,

2 Dept. of Computer Science, Ben-Gurion University of the Negev, Israel
dolev@cs.bgu.ac.il

Abstract. We present preprocessing-MPC schemes of arithmetic func-
tions with optimal round complexity, function-independent correlated
randomness, and communication and space complexities that grow lin-
early with the size of the function. We extend our results to the client-
server model and present a scheme which enables a user to outsource the
storage of confidential data to N distrusted servers and have the servers
perform computations over the encrypted data in a single round of com-
munication. We further extend our results to handle Boolean circuits.
All our schemes have perfect passive security against coalitions of up to
N − 1 parties. Our schemes are based on a novel secret sharing scheme,
Distributed Random Matrix (DRM), which we present here. The DRM
secret sharing scheme supports homomorphic multiplications, and, after
a single round of communication, supports homomorphic additions.
Our approach deviates from standard conventions of MPC. First, we
consider a representation of the function f as a multivariate polynomial
(rather than an arithmetic circuit). Second, we divide the problem into
two cases. We begin with solving the non-vanishing case, in which the
inputs are non-zero elements of Fp. In this case, our schemes have space
complexity O(Nnk) and communication complexity O(N2nk), where n
is the size of the input, and k is the number of monomials of the function.
Then, we present several solutions for the general case, in which some of
the secrets can be zero. In these solutions, the space and communication
complexities are either O(N2n2nk) and O(N3n2nk), or O(NnK) and
O(N2nK), respectively, where K is the size of a modified version of f .
K is bounded by the square of the maximal possible size of k.

Keywords: MPC with preprocessing, Correlated randomness, Optimal
round complexity, Homomorphic secret sharing, Perfect security



1 Introduction

Secure multiparty computation (MPC) is an extensively studied field
in cryptography, which discusses the following problem. P1, . . . ,PN are
N parties, s1, . . . , sN are their corresponding secret inputs, and f is some
function of N inputs. The parties wish to find f(s1, . . . , sn), while not re-
vealing to each other any information regarding their secret inputs (except
for what may be deduced from the output). A vast number of papers were
written on that topic in the past four decades based on various assump-
tions [Yao82,GMW87,BOGW88,CCD88,DI05,IKM+13,DNNR17,ABT18].

The scope of this work is perfectly secure schemes. We assume that
the parties are honest-but-curious. In their seminal work, Ben-Or et al.
[BOGW88] showed that, in the plain model, every function can be effi-
ciently computed with perfect passive security by N parties if and only
if an honest majority is assumed. Nevertheless, perfect passive security
against dishonest majority is achievable in the preprocessing model. That
model, first suggested in [Bea97], assumes that the parties engage in an of-
fline preprocessing phase before the secret inputs are known, at which they
obtain (preferably function-independent) correlated randomness (CR),
which is then consumed at the online phase of the protocol.

A round (of communication) is a phase in which each party may
send at most one message to each of the other parties, perform arbi-
trary computations and/or receive at most one message from each of the
other parties, not necessarily in this order [KN06]. Substantial effort has
been spent on finding the minimal number of rounds required for per-
fectly secure MPC, both theoretically and practically. Bar-Ilan and Beaver
[BIB89] were the first to suggest MPC schemes with a constant number
of rounds, followed by further works that attempt to lower bound that
constant number. Theoretically, two rounds are now known to be optimal
for MPC — in the plain or preprocessing model [PR18,DLN19]. Recent
works by [ABT18,GIS18,ACGJ18] present plain-model protocols which
enable MPC in two rounds and which have perfect passive security against
honest majority. Ishai et al. suggested in [IKM+13] preprocessing-model
protocols (hereafter, P-MPC protocols) with two rounds and perfect pas-
sive security against dishonest majority.

Though theoretically, the problem of finding perfectly secure optimal-
round optimal-threshold MPC schemes was resolved both in the plain
([ABT18]) and preprocessing ([IKM+13]) models, practically, the race is
far from being over since there is yet a lot to improve. Particularly, in
the preprocessing model, the space complexity of known solutions is ex-



ponential in the size of the input and N . Reducing the space complexity
of these schemes (even for specific cases) costs in increasing round com-
plexity (or other compromises). To the best of our knowledge, there is no
known P-MPC scheme which enables reducing the space complexity in a
non-trivial case while maintaining two-rounds of communication, perfect
security against dishonest majority, and f -independent CR.

Our main results. We construct the first P-MPC schemes for arith-
metic functions that have communication and space complexity linear in
the size of the function, two-rounds of communication, perfect security
against dishonest majority, and f -independent CR. Our Distributed Ran-
dom Matrix (DRM) two-round P-MPC schemes presented here assume
that f is a polynomial with k monomials,3 and are highly efficient in the
non-vanishing case (NV), in which we assume that all secret inputs are
non-zero elements of Fp. Our NV schemes achieve the following properties.

– Perfect passive security against coalitions of up to N − 1 parties.
– Space complexity O(kNn), where n = dlog pe is the size of the input.
– Total communication complexity O(kN2n).
– Function-independent correlated randomness.
– Optimal round complexity. I.e., two rounds of communication.

We adjust the NV schemes to achieve solutions for the general case,
in which some of the inputs may be zero. Our schemes are based on the
DRM secret sharing scheme, our new homomorphic secret sharing scheme
presented here. We also extend our results to the client-server model and
to Boolean circuits.

Remark 1. Polynomials instead circuits and non-zero inputs.Most
MPC schemes assume that f is given as a circuit, and their communica-
tion and space complexities are analyzed with respect to the size s and
depth d of the circuit. Our schemes assume that f is a polynomial with k
monomials and evaluate each monomial independently. On first sight, this
choice may be unclear since it may induce some computational overhead
comparing to circuits, which have the benefit of enabling re-use of com-
puted mid-values. In order to (asymptotically) compare the performances
of our schemes to those of standard schemes, one should write k in terms
of s and d. Finding the relation between the number of monomials of a
general function and the size and depth of a circuit which computes the
same function has roots in the algebraic analog of the P ?

= NP problem
(suggested by Valiant in [Val79]) and is beyond the scope of this paper.
3 Over finite fields, every function has a polynomial representation.



However, we show here that the polynomials approach may resolve us
from being concerned with d, which is one of the main complexity bottle-
necks in MPC. Second, it is common that MPC schemes assume specific
conditions over the functions (e.g., NC1), but conditions over the inputs
are hardly ever discussed. However, we address the case of non-zero inputs
and achieve a solution for this case with remarkable performances.

Related work. Rivest [Riv99] presented perfectly secure two-party com-
mitment and oblivious transfer (OT) schemes which use CR. Since OT is
known to be complete for MPC [Kil88], combining these results, one ob-
tains a statistically secure MPC scheme. A similar approach was used in
[IPS08] to construct a statistically secure P-MPC scheme, which realizes
any circuit of size s and depth d with communication complexity linear
in s (and polynomial in other parameters), and round complexity O(d).

Ishai et al. suggested in [IKM+13] P-MPC schemes which are based on
One-Time Truth Tables (OTTT), require two-rounds of communication,
use f -dependent CR, and have perfect passive security against dishonest
majority. The communication complexity of their schemes grows linearly
with the input size and the number of parties and is independent of the
function. The space complexity of their schemes, however, is exponential in
the number of parties and the size of the input, regardless of f . This makes
their schemes impractical for large inputs or a large number of parties,
even when considering simple functions. They also suggested schemes with
reduced space complexity, but these schemes require O(d) rounds.

Damgård et al. [DZ13] presented MiniMac, a P-MPC protocol for well-
formed Boolean circuits. Their schemes have statistical active security
against dishonest majority, negligible error probability, constant computa-
tional overhead, and communication complexity linear in s and N . Similar
performances for general circuits are achieved by the TinyTable protocol,
suggested in [DNNR17]. Both the MiniMac and TinyTable protocols have
round complexityO(d). Recent work by Couteau [Cou19] presents P-MPC
schemes for layered Boolean circuits. Their schemes have perfect passive
security against dishonest majority and communication complexity sublin-
ear in s. However, the round complexity of their schemes is O(d/ log log s).

To the best of our knowledge, there is no known P-MPC scheme that
enables evaluation of any function in two rounds of communication with
perfect passive security against dishonest majority and communication
and space complexities that grow linearly with the size of the function.
Several versions of our new DRM two-round MPC schemes are the first
to achieve all these attributes.



Paper organization. In Section 2, we present the DRM secret shar-
ing scheme and discuss its homomorphic properties. Our DRM two-round
MPC schemes are presented in Section 3. In Section 4, we discuss the eval-
uation of Boolean circuits and the client-server model. Conclusions appear
in Section 5. Preliminaries and some extra material appear in Appendix.

2 Distributed Random Matrix Secret Sharing Scheme

In this section, we describe the basic tool of this work, the Distributed
Random Matrix procedure, DRM. DRM employs two other procedures —
Mult.split (which is also used in our schemes to secret-share the inputs)
and Add.split. We begin with Mult.split.

Multiplicative secret sharing procedure. The following procedure is
invoked by party Pi to split si ∈ F×p into N multiplicative secret shares.

Mult.split(p, s,N, i): # {p is prime, s ∈ Fp, N ∈ N, 1 ≤ i ≤ N}
For 1 ≤ j ≤ N, j 6= i:

mj
R← F×p ;

δ ←
∏N
j=1,j 6=imj ;

mi ← s
δ

return (m1, . . . ,mN )

Procedure 1: Mult.split. Given an element s ∈ Fp, the
procedure returns N elements whose product equals s.

Remark 2. Joint zeroness of s and mi. The assignment mi ← s
δ implies

that if s = 0 then mi = 0 and if s 6= 0 then mi 6= 0. All other entries mj

of the output (with j 6= i) are uniformly random non-zero elements of F×p .

Lemma 1. Mult.split is a perfectly-secure multiplicatively-homomorphic
secret sharing scheme for F×p elements with threshold N − 1.

Additive secret sharing procedure. Similarly, given a prime p, an el-
ement s ∈ Fp, and N ∈ N, Add.split returns (γ1, . . . , γN ), a sequence
of additive secret shares of s, as follows: γ1, . . . , γN−1 are uniformly ran-
domly chosen from Fp, and γN is determined to satisfy

∑N
i=1 γi = s. While

Mult.split takes an input i ∈ [N ], Add.split takes no such input.

Lemma 2. Add.split is a perfectly-secure additively-homomorphic se-
cret sharing scheme for Fp elements with threshold N − 1.
The proofs of Lemma 1 and 2 appear in the full version of the paper.



Distributed Random Matrix (DRM) secret sharing procedure.
We now define the procedure DRM. Given a prime p, an element x ∈ Fp
and a natural number N ∈ N, the procedure DRM outputs (the columns
of) a matrix C, a matrix-random-split of x.

DRM(p, s,N): # {p is prime, s ∈ Fp, N ∈ N}
(γ1, . . . , γN )← Add.split(p, s,N);
For 1 ≤ i ≤ N :

(ci1, ci2, . . . , ciN )← Mult.split(p, γi, N, i);
C ← (cij)i,j∈[N ] ∈MN (Fp);
return

(
[C]1, . . . , [C]N

)
Procedure 3: DRM. Given an element s ∈ Fp, the
procedure returns N columns of a matrix C.

Remark 3. Since the i’th row of C is the output of Mult.split on inputs
p, γi, N and i, from Remark 2 it follows that the matrix C may contain
zeroes only on its main diagonal, if any. Namely, cij = 0 =⇒ i = j.

One may readily verify that,
∑N

i=1

∏N
j=1 cij = x. Hence, reconstruction

of a DRM-secret-shared element x from N shares may be performed by
multiplying all the elements in each row of C and summing the products.

We claim that the DRM secret sharing scheme supports an arbitrary
number of homomorphic multiplications by Mult.split-secret-shared non-
zero elements, and, after a single round of communication, it supports an
arbitrary number of homomorphic additions with Add.split secret-shared
elements. To make this claim precise, we define the procedure M2A.

M2A
The procedure is invoked by N parties, P1, . . . ,PN .
Let s ∈ Fp and

(
[C]1, . . . , [C]N

)
= DRM(p, s,N).

Each party Pj is holding [C]j .
Communication round:

For 1 ≤ i, j ≤ N : Pj sends the i’t entry of [C]j to Pi.
Output computation:

For 1 ≤ i ≤ N : Pi computes γi =
∏N
j=1 cij .

M2A. Transforming from supporting
multiplications to supporting additions.

One may readily verify that, following M2A, each party obtains an
additive share of s. Namely,

∑N
i=1 γi = s.



Theorem 1. The procedure DRM is an N -party secret sharing scheme for
Fp elements which has perfect passive security and threshold N − 1. DRM
supports homomorphic multiplications by Mult.split-secret-shared non-
zero elements. Have N parties hold DRM-shares of s ∈ Fp, executing M2A,
the parties obtain additive shares of s. These additive shares of s enable
homomorphic additions with Add.split-secret-shared elements.

The proof of Theorem 1 is omitted from this extended abstract version.

3 The DRM Two-Round MPC Schemes

In this section, we present two-round perfectly secure P-MPC schemes
for arithmetic functions, based on the DRM secret sharing scheme. We
assume that P = {Pj}Nj=1 is a set of N ≥ 2 honest-but-curious parties
which are connected via point-to-point authenticated secure channels. For
ease of presentation, we assume that each party Pj holds a single input
sj ∈ Fp. In general, each party may hold an arbitrary number of secrets.
Let s = (s1, . . . , sN ). The function to be evaluated is f : FNp → Fp, and
its minimal multivariate polynomial representation (see Preliminaries) is:

f(x1, . . . , xN ) =
∑

l=(l1,...,lN )∈L

al · xl11 . . . x
lN
N ,

where L = {0, . . . , p − 1}N and al ∈ Fp. For l ∈ L, let Al = xl11 . . . x
lN
N .

The l’th monomial of f is alAl. The size of the function (i.e., the num-
ber of monomials with al 6= 0) is k, and the size of the input is n = dlog pe.

We begin with the database-oriented (DBO) versions of the DRM two-
round MPC scheme, and then present the one-time secrets (OTS) versions.
The DBO versions involve a secret sharing stage as a part of the prepro-
cessing phase. This stage creates a virtual database shared among the
parties and enables any function to be evaluated over that database. The
result of the evaluation may be added to the database for future use. The
OTS versions of the scheme involve no secret sharing stage. Each of the
DBO and OTS versions includes four schemes. The first scheme solves the
non-vanishing (NV) case, in which the secrets are assumed to be non-zero.
The second solves the general case, where some of the inputs may be zero,
by embedding Fp in a larger field, Fq. The larger field is taken such that f
is q-bounded (qB, see Preliminaries). The last two schemes are the input-
splitting (IS) schemes, which solve the general case for p 6= 2 and p = 2,
by splitting each secret to a sum of two elements. Overall, we obtain eight
DRM two-round MPC schemes: DBO-NV, DBO-qB, DBO-IS, DBO-IS2,
OTS-NV, OTS-qB, OTS-IS, and OTS-IS2. We begin with DBO-NV.



The DBO-NV scheme. DBO-NV may be invoked by N parties to find
f(s) assuming that all inputs are non-zero.

DBO-NV
Preprocessing phase.
Correlated randomness. For each non-zero monomial alAl of f ,
each party Pj obtains a DRM-share [C(l)]j of 1 ∈ Fp. Each C(l) is a
matrix-random-split of 1 ∈ Fp.

Secret sharing. Each party Pi secret-shares si using Mult.split. The
shares si1, . . . , siN of si are distributed such that Pj receives sij .
Online phase.
Eval. 1. For each monomial alAl of f , each party Pj computes:

α
(l)
j =

N∏
i=1

sliij · [C
(l)]j .

Com. 1. For i, j ∈ [N ], Pj sends the i’th entry of each α(l)
j to Pi.

Eval. 2. For each monomial alAl of f , each party Pi computes:

U
(l)
i = al

N∏
j=1

(
α
(l)
j

)
i
.

Com. 2. Each party Pi sends yi =
∑

l U
(l)
i to all other parties.

Output reconstruction. Each party computes
∑N

i=1 yi.

Theorem 2. DBO-NV is a two-round N -party P-MPC scheme for arith-
metic functions over non-zero inputs which has perfect correctness, perfect
passive security, threshold N − 1, communication complexity O(N2nk),
space complexity O(Nnk), and f -independent CR.
The proof of Theorem 2 appears in Appendix B.

The DBO-qB scheme. DBO-qB solves the general case by embedding Fp
in a larger field, Fq, and using DBO-NV as a subroutine. The larger field Fq
is chosen to satisfy the condition that f is q-bounded (see Preliminaries).
The embedding is performed as follows. For sj ∈ Fp, let σj denote the
minimal positive integer such that σj ≡ sj (mod p). Let s̃j ≡ σj (mod q)
the Fq correspondent of sj in the q world. Let s̃ = (s̃1, . . . , s̃N ). Now,
let f̃ : FNq → Fq denote the function corresponding to f in the q-world.
That is, f̃ is obtained from f by replacing the leading coefficients of the
(non-zero) monomials with their q-world correspondents. DBO-qB may
be invoked by the parties to find f(s).



DBO-qB
Calling DBO-NV. Use DBO-NV to find ỹ = f̃(s̃) ∈ Fq.

Computing p-world output. Let σ denote the minimal positive integer
such that σ ≡ ỹ (mod q), and let y ≡ σ (mod p). Output y.

Theorem 3. DBO-qB is a two-round N -party P-MPC scheme for arith-
metic functions which has perfect correctness, perfect passive security,
threshold N −1, communication complexity O(kN3n2n), space complexity
O(kN2n2n), and f -independent CR.

The proof of Theorem 3 appears in Appendix C. DBO-qB solves the
general case by replacing Fp elements with Fq elements, hence the factor
2n. DBO-IS and DBO-IS2, which we now present, avoid the 2n factor.
Instead, these schemes replace f with a K-monomials version of it.

The DBO-IS scheme. DBO-IS solves the general case by splitting each
input to a sum of two non-zero elements, and replacing f with the split-
inputs version of f (see Preliminaries). Let ϕ : F2N

p → Fp the split-inputs
version of f . If p 6= 2, DBO-IS may be invoked by the parties to find f(s).

DBO-IS
Each party Pj arbitrarily picks αj , βj ∈ F×p such that sj = αj + βj .
Use DBO-NV to find y = ϕ(α1, . . . , αN , β1, . . . , βN ). Output y.

Theorem 4. DBO-IS is a two-round N -party P-MPC scheme for Fp
functions (p 6= 2) which has perfect correctness, perfect passive security,
threshold N−1, f -independent CR, communication complexity O(N2nK),
and space complexity O(NnK), where K is the number of monomials of
the split-inputs version of f .

The proof of Theorem 4 appears in the full version of the paper. We
note that, since f is a polynomial of N variables, k ≤ pN , and since ϕ is
a polynomial of 2N variables, K ≤ p2N = (pN )2.

The DBO-IS2 scheme. In F2, 1 cannot be written as a sum of two non-
zero elements. This is the reason for the requirement p 6= 2 in Theorem 4.
DBO-IS2 solves the case p = 2 by embedding F2 in F3 and using DBO-IS
as a subroutine. The embedding is performed as follows. The elements
0, 1 ∈ F2 are identified with 0, 1 ∈ F3. For sj ∈ F2 let sj denote the
F3 correspondent of sj . F2 operations are identified with F3 operations
as follows. F2-multiplication is identified with F3-multiplication, and F2-
addition is identified with Add : F2

3 → F3, Add(x, y) = x + y + xy. Let



f : FN3 → F3 denote the F3 correspondent of f . That is, f is obtained from
f by replacing the F2-operations ‘·’ and ‘+’ of f with the F3-operations
‘·’ and ‘Add’. The parties may invoke DBO-IS2 to find f(s).

DBO-IS2
Use DBO-IS to find y = f(s1, . . . , sN ). Output y.

Theorem 5. DBO-IS2 is a two-round N -party P-MPC scheme for arith-
metic functions over F2 which has perfect correctness, perfect passive se-
curity, threshold N − 1, f -independent CR, communication complexity
O(N2nK), and space complexity O(NnK), where K is the number of
monomials of the split-input version of the F3 correspondent of f .
The proof of Theorem 5 appears in the full version of the paper.

The OTS versions of the DRM two-round MPC schemes. We give
a general description of the OTS versions of the DRM two-round MPC
schemes. A full description of the schemes appears in the full version of
the paper. The OTS-NV scheme is obtained from DBO-NV by omitting
the secret sharing stage, and replacing Eval. 1 of DBO-NV with:
Eval. 1. For each monomial of f , each party Pj computes α(l)

j = s
lj
j [C

(l)]j .

The schemes OTS-qB, OTS-IS and OTS-IS2 are constructed by us-
ing OTS-NV as a subroutine, similarly to the way DBO-qB, DBO-IS and
DBO-IS2 are constructed (by using DBO-NV as a subroutine), and have
similar attributes and performances (see Appendix D).

4 Extensions

The client-server model. Assume N ≥ 2 honest-but-curious servers
and m ≥ 1 users, with a fully connected network of servers, and a connec-
tion channel between each user to each server. Let each of the users and
servers hold an arbitrary number of secret inputs in Fp. The DRM single-
round client-server schemes enable the users to securely outsource the
storage of their private inputs to the servers and have the servers evaluate
any function over the entire collection of inputs in a single round of com-
munication. The client-server-NV scheme solves the non-vanishing case as
follows. At the preprocessing phase, each input-holder Mult.split-shares
her inputs among all servers, and the users provide the servers with N
DRM-shares of 1 ∈ Fp for each monomial of the function. The online phase
is invoked by the servers and is similar to that of DBO-NV, except for
Com. 2, in which the servers send the additive shares of the result to



the users (and not to one another). The general case is solved using the
qB or IS approach. Our client-server schemes are perfectly secure against
coalitions of up to N − 1 honest-but-curious servers. Full description of
them appears in the full version of the paper. In Appendix E, we discuss
a method for harnessing the client-server scheme for self-generation of CR.

Precision-Complexity tradeoff. It is well known that circuits may be
approximated using polynomials [DOdS15]. These approximation polyno-
mials may be generated in such a way that they disagree with the original
function on a small set of inputs, and have a relatively small size. Approx-
imation polynomials suggest a tradeoff in our schemes between precision
and complexity. Assume N parties wish to evaluate f over their private
inputs, where the size of the minimal multivariate polynomial represen-
tation of f is k. The parties may replace f with a polynomial g which
approximates f , where g has k′ monomials, k′ < k. Evaluating g on their
inputs, the parties obtain an approximated result in reduced communi-
cation and space costs. Note that, in some scenarios, approximate results
are used to preserve data privacy (e.g., in differential privacy), and hence,
the reduction in precision may be desired due to other considerations.

Evaluation of Boolean formulas. Our schemes may be used to per-
form MPC of Boolean formulas by working in F2. A True Boolean value
is 1 ∈ F2 and a False Boolean value is 0 ∈ F2. Boolean operations may be
identified with field operations in the following way. The ∧ operation is
identified with F2 multiplication, the ⊕ operation with F2 addition, and
the ¬ operation with adding 1 in F2. The ∨ operation of two literals is
identified with x+y+xy, where x and y are the elements of F2 correspond-
ing to the literals. Then, given a Boolean formula ϕ over Boolean literals
b1, . . . , bM ∈ {True, False}, one can use DBO-qB to perform MPC of ϕ
by taking the F2 correspondents s1, . . . , sM ∈ F2 of b1, . . . , bM . Evalua-
tion of the Boolean formula ϕ : {True, False}M → {True, False} will be
implemented using the polynomial ϕ̃ : FM2 → F2, obtained by replacing
Boolean operations and literals with their F2 correspondents.

For example, consider the following scenario. Three millionaires wish
to find out which of them is the wealthiest, while not revealing to each
other any further information regarding the number of millions they pos-
sess. Denote the three millionaires by P1,P2,P3, and the number of mil-
lions they possess by s1, s2, s3, respectively. For simplicity, assume each si
is a positive integers between 1 and 10 (other cases may be solved simi-
larly). Let f : F3

11 → F11 the function that returns (a) 0, if x1 = x2 = x3;
(b) i, if xi is larger (as an integer) than the two other variables; (c) i+j+1,



if xi = xj (where i 6= j) and xi, xj are both larger (as integers) than the
other variable. The minimal multivariate polynomial representation of f
is given in Appendix F. To find who of them is the wealthiest, the parties
may invoke DBO-NV to evaluate f(x1, x2, x3) at (s1, s2, s3).

5 Conclusions

In this paper, we have suggested P-MPC schemes that support evalu-
ation of any function with perfect passive security against dishonest ma-
jority, optimal round complexity, and space complexity that grows lin-
early with the size of the function. We began with the construction of
an N − 1-out-of-N perfectly secure secret sharing scheme which supports
homomorphic multiplications with non-zero elements of a finite field Fp.
We showed how the parties may efficiently generate additive shares of the
secret from multiplicative shares of it in a single round of communication,
thus enabling homomorphic additions with elements of Fp. This secret
sharing scheme was then used to construct a perfectly secure two-round
P-MPC scheme for arithmetic functions, assuming the inputs are non-zero
elements of Fp. We suggested solutions for the general case based on two
different approaches. The first approach looks on the inputs as elements
of a larger field, Fq, and replace zero inputs with p ∈ Fq. The second ap-
proach splits each secret to a sum of two non-zero elements. We extended
our schemes to the client-server model. Solutions for the case of evaluating
Boolean formulas were also suggested here. The case of active security was
not discussed in this work, and is to be adequately addressed in future
work.

The round complexity of our schemes is optimal. To emphasize the
importance of round-efficiency, we note that, while processing information
becomes faster as technology improves, the time that it takes to transmit
information between two distant places is strongly limited by the speed of
light. Assume a need to perform MPC over inputs held by parties which
reside in distant places, perhaps outside of earth, and let T denote the
time it takes to process the computations for evaluation of f using our
schemes. If the distance between parties is such that, sending messages
between parties takes more time than T , then our optimal-round schemes
will outperform any scheme with non-optimal round complexity.

Lastly, we believe that our new methods and construction suggest an
alternative approach to MPC, which may inspire other works in this field
and may be found to have further implications in other fields as well.
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A Preliminaries

We recall some linear algebra and MPC notations and definitions and
define several terms and concepts used throughout the paper. We use Fp
to denote the finite field containing p elements (where p is prime), Fkp
to denote the k-dimensional vector space over Fp, and F×p to denote the
multiplicative group of Fp. (F×p )k is the set of k-tuples over F×p , with the
operations ‘+’ and ‘·’ for Fp entry-wise addition and scalar multiplica-
tion, respectively. The notation ‘∗’ stands for entrywise multiplication,
and ‘||’ for concatenation. We use Mn(Fp) to denote the set of square
matrices of order n over Fp. N is the set of natural numbers. For n ∈ N,
[n] = {1, . . . , n}. If α is a k-tuple then (α)i is the i’th entry of α. If C is
a matrix then [C]i is the i’th column of C. We denote by x R← A the pro-
cess of assigning to the variable x a uniformly random element of the set A.

Security of MPC schemes. The security of an MPC protocol is for-
malized and proved through the Ideal world vs. Real world paradigm.
We briefly overview the general idea. Let P = {Pj}Nj=1 a set of N par-
ties and assume that each party Pj is holding a secret value sj in some
domain Rj . Assume that the parties wish to find f(s1, . . . , sn), where
f : R1 × · · · × RN → R, while not revealing to each other any informa-
tion regarding their secret inputs, except for what may be deduced from
f(s1, . . . , sN ). In an ideal world, the parties could have found a trusted
entity, Ted, to whom they will all tell their private inputs and from whom
they will receive the output. Ted will perform the computation on their
behalf and promise to keep their secrets safe.

In the real world, such a trusted entity is hard to find. And hence, the
parties may attempt to perform the computation themselves by following
an MPC protocol π. Informally, to consider π secure for computing f , it
should have the property that by following it, the parties gain no informa-
tion regarding the secret inputs of other parties that they could not have
learned by following the ideal world solution. We also consider the case in
which a subset T ⊆ P of the parties join forces in an adversarial attempt
to gain information regarding the secret inputs of parties in T = P − T .
Informally, we would say that π is secure for computing f with threshold
t if it holds that, for every T ⊆ P with |T | ≤ t, the parties in T gain no
more information regarding {si}Pi∈T from π than they would have got
from the real world solution. π leaks no more information than Ted if all
the information obtained from π may be computed from the information
received from Ted only. To formalize that, we define viewj to be the ran-
dom variable indicating sj and all the messages that Pj receives through



the execution of π, including the results of random choices that Pj makes.
Recall that all parties are honest-but-curious, and hence, they follow the
instructions of π. That leads us to

Definition 1. Perfect correctness and perfect passive security of π.
Let f a function, t ∈ N, and π be an N -party protocol for computing f . We
say that π realizes f with perfect correctness and perfect passive security
with threshold t if (a) by executing π, all parties learn y = f(s1, . . . , sN ),
and (b) for every adversarial coalition of honest-but-curious parties T ⊆ P
with |T | ≤ t there exists a simulator — a probabilistic algorithm Sim —
which on inputs y and {sj}Pj⊆T , its output is identically distributed to
viewT = {viewj}Pj∈T .

Correlated Randomness (CR). In the preprocessing model, we as-
sume that π may include an offline preprocessing phase in which the par-
ties obtain correlated randomness. That is, each party Pj obtains a secret
random binary string string Rj ∈ {0, 1}r such that R = R1|| . . . ||RN is a
D-distributed element of {0, 1}rN , where D is some predefined public dis-
tribution over {0, 1}rN independent of the inputs. If D is also independent
of f , we say that π uses f -independent CR.

We consider two ways of obtaining CR. The first involves a trusted
initializer which provides the parties with the random strings Rj . We
stress that there is a fundamental difference between the trusted entity
Ted mentioned earlier in the ideal world solution to the trusted initializer
that we consider now. While Ted receives the actual secret inputs from
the parties and performs the computation in their behalf, the trusted ini-
tializer remains utterly oblivious to the secret inputs as the CR phase
takes place before the secret inputs are known. Considering the presence
of a trusted initializer seems quite natural because whenever we engage
in digital communication, we use the services of a trusted server, which
provides authentication for the communicating parties. That server might
as well provide the parties with CR. The second way of obtaining CR
requires the parties running some offline protocol to generate and store
correlated random strings.

Minimal multivariate polynomial representation. Any function f :
FNp → Fp can be represented as a multivariate polynomial. This rep-
resentation may be obtained, for example, by solving a system of linear
equations as in the example in Appendix F. The fact that xp ≡ x (mod p)
implies that for a given f : FNp → Fp there are infinitely many polyno-
mial representations of it. Given a function f , we assign f with a minimal



multivariate polynomial representation of it. That is, the representation of
f as a multivariate polynomial with the degree of each variable being at
most p− 1. We denote this polynomial by Qf and assign f with Qf as its
minimal multivariate polynomial representation. Throughout the paper,
we abuse notation and write f instead of Qf for the sake of readability.
Whenever a function f : FNp → Fp is discussed, we assume that f is given
with its minimal multivariate polynomial representation. We write

f(x1, . . . , xN ) =
∑

l=(l1,...,lN )∈L

al · xl11 . . . x
lN
N , (1)

where L = {0, . . . , p−1}N and al ∈ Fp. For l = (l1, . . . , lN ) ∈ L, we denote
xl11 . . . x

lN
N by Al. We refer to alAl as the l’th monomial of f . If al is zero,

then alAl is a zero monomial. Otherwise, alAl is a non-zero monomial.

q-Bounded functions. Let s = (s1, . . . , sN ) ∈ FNp . One can compute
f(s) by performing operations in Fp according to a representation of f as
a multivariate polynomial. The same result is obtained if one computes
f(s) over the positive integers and then takes the result modulo p. For-
mally, for each entry sj of s let aj denote the minimal positive integer
such that aj ≡ sj (mod p). Then, performing the computation over the
aj ’s using integer operations we obtain an integer result f(s)N, such that
f(s)N ≡ f(s) (mod p). If q is a prime number such that for every s ∈ FNp ,
computation of f(s) over the integers yields an integer result, f(s)N, which
is smaller than q, then f is q-bounded. In practice, we look for the mini-
mal prime q for which f is q-bounded, which is the first prime larger than
f(p, . . . , p)N. It always holds that f is q-bounded for q ≥ pNp.

The Split-Input version of f . Let f as in (1), and ϕ : F2N
p → Fp be

the function obtained from f by replacing each variable xi of f with the
sum of two variables, zi and wi, as follows:

ϕ(z1 . . . , zN , w1, . . . , wN ) =
∑
l∈L

al · (z1 + w1)
l1 · · · (zN + wN )

lN

=
∑
λ∈Λ

bλ · zλ11 · · · z
λN
N · wλN+1

1 · · ·wλ2NN ,
(2)

where λ = (λ1, . . . , λ2N ), Λ = {0, 1, . . . , p − 1}2N , and bλ ∈ Fp. ϕ is the
split-input version of f .

Let αi, βi ∈ Fp (1 ≤ i ≤ N). If for every i ∈ [N ] it holds that si =
αi + βi, then f(s1, . . . , sN ) = ϕ(α1, . . . , αN , β1, . . . , βN ).



B Proof of Theorem 2

Security. Let h ∈ [N ] and denote by Th = P − {Ph} the adversarial
coalition of size N − 1 which contains all parties except for Ph. W.l.o.g,
we assume that h = N . We construct Sim as follows. Given {sj}j∈[N−1]
and y = f(s1, . . . , sN ), the simulator chooses a uniformly random element
from the set of possible values of sN . Formally, let

E =
{
a
∣∣f(s1, . . . , sN−1, a) = y

}
⊆ Fp,

and pick a uniformly randomly element s′N of E. Then, Sim simulates the
actions of all N parties according to the instructions of DBO-NV for N
parties with secrets s1, . . . , sN−1, s′N , and outputs the simulated view of
the first N − 1 parties. By Lemma 1, for every secret, any subset of N − 1
shares is uniformly distributed over FN−1p , and hence, so is the part of
the view of Th that is viewed at the secret sharing stage. In Com. 1, each
message received by Th is some non-zero element

∏N
m=1 s

lm
m,j , multiplied

by some ci,j . Since, those ci,j ’s are uniformly random non-zero elements,
and multiplication by non-zero elements in Fp is a bijection, the part of
the view of Th that is viewed at Com. 1 is uniformly distributed. The last
message obtained by Th from PN at Com. 2 is a function of the input y and
the additive shares held by Th. We conclude that, given s1, . . . , sN−1 and y,
the view of Th is uniformly distributed over the domain of possible views.
Now, since the parties are honest-but-curious, they follow the instructions
of DBO-NV, and hence, the simulated view output by Sim is identically
distributed to viewTh .

Correctness. The correctness of the scheme follows from the fact that
N∑
i=1

yi =
∑
l

N∑
i=1

U
(l)
i =

∑
l

N∑
i=1

al

N∏
j=1

(αj)i =
∑
l

al

N∑
i=1

N∏
j=1

(
sl11j . . . s

lN
Nj ·[C

(l)]j
)
i

=
∑
l

al

N∑
i=1

(
sl11 . . . s

lN
N ·

N∏
j=1

c
(l)
ij

)
=
∑
l

al · sl11 . . . s
lN
N ·

N∑
i=1

γ
(l)
i ,

where γ(l)i denotes the product c(l)i1 . . . c
(l)
in . Since each C(l) is a matrix-

random-split of 1, we have
∑N

i=1 γ
(l)
i = 1 and hence,

∑N
i=1 yi = f(s1, . . . , sN ).

Communication complexity. We inspect the online phase of the scheme.
By construction, the scheme requires two rounds. The total number of
bits communicated, is O(N2kn). Indeed, in Com. 1, each of the N parties
sends N messages, where each message is a k-tuple, and each entry of



that k-tuple is an Fp element. That is a total of N2kn bits. In Com. 2,
each party sends a single Fp element to all other parties, i.e., a total of
Nn bits. All in all, N2kn+Nn bits are communicated.

Space complexity. How many bits of CR are required? At the preprocessing
phase, for each monomial of f , each party obtains a single column of an
order-N Fp-valued square matrix. That is a total of kNn bits obtained by
each party. Hence, the space complexity of the scheme is O(kNn). �

C Proof of Theorem 3

Since all q-world inputs are non-zero elements of Fq, security of DBO-qB
follows from that of DBO-NV. Correctness follows from that of DBO-NV
and the fact that f is q-bounded. By construction, the round complexity
is two. Now, in DBO-qB, all the messages and the CR are Fq elements.
At the worst case, q ≈ ppN , and hence, the number of bits required for
each element is dlog qe ≈ log

(
ppN

)
= pN log p = 2log pN log p = nN2n.

Since the number of messages and amount of CR remains unchanged,
the exact space and communication complexities of DBO-qB are obtained
from those of DBO-NV by replacing n with nN2n. �

D From the full version of the paper — OTS schemes

Theorem 6. OTS-NV is a two-round N -party P-MPC scheme for arith-
metic functions over non-zero inputs which has perfect correctness, perfect
passive security, threshold N − 1, communication complexity O(N2nk),
space complexity O(Nnk), and f -independent CR.
Theorem 7. OTS-qB is a two-round N -party P-MPC scheme for arith-
metic functions which has perfect correctness, perfect passive security,
threshold N −1, communication complexity O(kN3n2n), space complexity
O(kN2n2n), and f -independent CR.
Theorem 8. OTS-IS is a two-round N -party P-MPC scheme for Fp func-
tions (p 6= 2) which has perfect correctness, perfect passive security, thresh-
old N − 1, f -independent CR, communication complexity O(N2nK), and
space complexity O(NnK), where K is the number of monomials of the
split-inputs version of f .
Theorem 9. OTS-IS2 is a two-round N -party P-MPC scheme for arith-
metic functions over F2 which has perfect correctness, perfect passive se-
curity, threshold N − 1, f -independent CR, communication complexity
O(N2nK), and space complexity O(NnK), where K is the number of
monomials of the split-input version of the F3 correspondent of f .



E Bootstrapping DRM

The schemes described above may be bootstrapped to enable the users
generate the CR themselves. To jointly generate a matrix random split
of 1 ∈ Fp, let each party Pi, 1 ≤ i ≤ N − 1 randomly choose N − 1
uniformly random non-zero elements c1,i, . . . , ci−1,i, ci+1,i, . . . , cN,i of Fp
and another uniformly element cii of Fp (which may be zero). Let PN
choose N − 1 uniformly random Non-zero elements c1,N , . . . , cN−1,N of
Fp. Now, let f : FN2−1

p → Fp such that

f(c11, . . . , cN,N−1) =
1−

∑N−1
i=1

∏N
j=1 cij∏N−1

j=1 cjN
.

For 1 ≤ j ≤ N−1 let c′jN = 1
cjN

. The function f may be written as an
N -monomials polynomial by replacing the c′i,js with their corresponding
Fp inverses c′i,j ’s. Then, invoke the client-server scheme (qB version) where
PN plays the role of the user and P1, . . . ,PN−1 play the role of the servers.
At the end of the protocol PN obtains theN ’th entry of an appropriate DRM
share of 1 ∈ Fp. This way, the parties may generate the CR themselves. We
note that, using such self-made CR induces leakage of some information
in face of coalitions that contain PN .

F Polynomial representation of comparison function

To find the polynomial representation of the millionaire-comparison
function f defined in Section 4, we solve the F11-system of 113 linear
equations with 113 variables al, where l = (l1, l2, l3) ∈ {0, 1, . . . , 10}3:∑

l

al0
l10l20l3 = f(0, 0, 0),

...∑
l

al10
l110l210l3 = f(10, 10, 10).

(3)

We obtain: f(x, y, z) = x10+7x2y+6x4y+7x6y+9x8y+3x9y+10x10y+4xy2+
10x3y2+x5y2+8x7y2+3x8y2+5x9y2+x2y3+2x4y3+7x6y3+3x7y3+7x8y3+5xy4+
9x3y4+6x5y4+3x6y4+8x7y4+10x2y5+5x4y5+3x5y5+2x6y5+4xy6+4x3y6+3x4y6+
9x5y6 +3x2y7 +3x3y7 +3x4y7 +2xy8 +3x2y8 +4x3y8 +3xy9 +6x2y9 +2y10 + xy10 +
7x10y10 +3x2z+ x4z+3x6z+7x8z+8x9z+9x10z+8xyz+9x3yz+3x4yz+2x5yz+
10x6yz+5x7yz+5x8yz+10x9yz+8x10yz+7y2z+3x2y2z+7x3y2z+8x4y2z+2x5y2z+
5x7y2z+10x8y2z+10x9y2z+4x10y2z+6xy3z+ x2y3z+3x3y3z+4x4y3z+6x5y3z+
3x6y3z+7x7y3z+x9y3z+7x10y3z+6y4z+4x2y4z+7x3y4z+x4y4z+2x5y4z+9x6y4z+
x8y4z+9x9y4z+5x10y4z+6xy5z+10x2y5z+7x3y5z+x4y5z+5x5y5z+2x6y5z+x7y5z+
7x8y5z+4x9y5z+6x10y5z+7y6z+2x2y6z+7x3y6z+3x4y6z+8x5y6z+x6y6z+6x7y6z+



4x8y6z+3x9y6z+4x10y6z+8xy7z+3x2y7z+9x3y7z+6x4y7z+x5y7z+5x6y7z+4x7y7z+
5x8y7z+x9y7z+7x10y7z+9y8z+10xy8z+5x2y8z+7x3y8z+x4y8z+4x5y8z+4x6y8z+
6x7y8z+x8y8z+9x9y8z+2x10y8z+2y9z+xy9z+3x2y9z+x3y9z+2x4y9z+4x5y9z+
8x6y9z+x7y9z+2x8y9z+6x9y9z+10x10y9z+10y10z+8x2y10z+4x3y10z+10x4y10z+
5x5y10z + 8x6y10z + 4x7y10z + 4x8y10z + 8x9y10z + 8xz2 + 9x3z2 + 2x5z2 + 5x7z2 +
8x8z2+10x9z2+4yz2+x2yz2+6x3yz2+3x5yz2+6x6yz2+x7yz2+7x8yz2+7x9yz2+
7x10yz2+10xy2z2+7x3y2z2+x5y2z2+7x6y2z2+5x7y2z2+7x8y2z2+x10y2z2+10y3z2+
10xy3z2 + x2y3z2 + 7x4y3z2 + 5x5y3z2 + 10x6y3z2 + 3x7y3z2 + 10x8y3z2 + 2x9y3z2 +
x10y3z2 + 10xy4z2 + 2x3y4z2 + 6x4y4z2 + 5x5y4z2 + 10x6y4z2 + 10x7y4z2 + x8y4z2 +
7x9y4z2+9x10y4z2+y5z2+xy5z2+8x2y5z2+8x4y5z2+6x5y5z2+10x6y5z2+9x7y5z2+
3x8y5z2 +5x9y5z2 +10x10y5z2 +3xy6z2 +10x2y6z2 +9x3y6z2 +2x4y6z2 +10x5y6z2 +
2x6y6z2+3x7y6z2+3x8y6z2+9x9y6z2+9x10y6z2+8y7z2+6xy7z2+6x2y7z2+5x3y7z2+
10x4y7z2 + 2x5y7z2 + 3x6y7z2 + 8x8y7z2 + 6x9y7z2 + 3x10y7z2 + 2y8z2 + 10xy8z2 +
10x3y8z2 +7x4y8z2 +3x5y8z2 +10x6y8z2 +8x7y8z2 +6x8y8z2 +4x9y8z2 +2x10y8z2 +
5y9z2+8xy9z2+2x2y9z2+9x3y9z2+4x4y9z2+6x5y9z2+5x7y9z2+5x8y9z2+6x9y9z2+
4x10y9z2+3xy10z2+2x3y10z2+6x4y10z2+9x5y10z2+3x6y10z2+6x7y10z2+4x9y10z2+
7x10y10z2+2x2z3+4x4z3+3x6z3+8x7z3+3x8z3+3xyz3+5x2yz3+8x4yz3+7x5yz3+
6x6yz3 +3x7yz3 +4x8yz3 +10x9yz3 +3x10yz3 + y2z3 +4xy2z3 +6x2y2z3 +2x4y2z3 +
4x5y2z3 + 9x6y2z3 + 9x7y2z3 + x8y2z3 + 4x9y2z3 + 10x10y2z3 + 8xy3z3 + 8x3y3z3 +
3x4y3z3+7x5y3z3+3x6y3z3+6x8y3z3+3x10y3z3+2y4z3+4xy4z3+3x2y4z3+10x3y4z3+
9x4y4z3+2x5y4z3+x8y4z3+9x10y4z3+9xy5z3+9x2y5z3+4x3y5z3+9x4y5z3+4x6y5z3+
8x7y5z3+4x8y5z3+2x9y5z3+7y6z3+2xy6z3+7x2y6z3+6x5y6z3+8x6y6z3+6x8y6z3+
5x9y6z3+4x10y6z3+2y7z3+xy7z3+6x2y7z3+x4y7z3+8x5y7z3+3x6y7z3+5x7y7z3+
x8y7z3+10x9y7z3+3x10y7z3+7y8z3+4xy8z3+3x2y8z3+9x4y8z3+x5y8z3+8x6y8z3+
6x7y8z3 + 3x8y8z3 + 2x9y8z3 + 2x10y8z3 + 8xy9z3 + 2x2y9z3 + 6x3y9z3 + 2x4y9z3 +
7x5y9z3 + x6y9z3 + 6x7y9z3 + 2x8y9z3 + 7x9y9z3 + 8x10y9z3 + 7xy10z3 + 9x2y10z3 +
7x4y10z3+8x5y10z3+8x6y10z3+2x7y10z3+10x9y10z3+10xz4+7x3z4+x5z4+8x6z4+
5x7z4 + 5yz4 + 8xyz4 + 3x2yz4 + 3x3yz4 + 8x4yz4 + 10x6yz4 + 5x7yz4 + 10x8yz4 +
7x9yz4+6x10yz4+6xy2z4+3x3y2z4+10x4y2z4+9x5y2z4+8x6y2z4+x7y2z4+5x8y2z4+
4x9y2z4+3x10y2z4+9y3z4+7xy3z4+9x2y3z4+6x3y3z4+3x4y3z4+4x5y3z4+10x7y3z4+
10x8y3z4 + 9x9y3z4 + 2x10y3z4 + 4xy4z4 + 3x2y4z4 + 8x3y4z4 + 3x6y4z4 + 4x8y4z4 +
5x10y4z4+6y5z4+8xy5z4+5x2y5z4+2x3y5z4+7x5y5z4+7x6y5z4+3x7y5z4+3x8y5z4+
9x9y5z4+5x10y5z4+2y6z4+5xy6z4+9x2y6z4+7x5y6z4+4x6y6z4+7x7y6z4+8x8y6z4+
5x9y6z4 + 4x10y6z4 + 8y7z4 + 5xy7z4 + 3x2y7z4 + 10x3y7z4 + 8x4y7z4 + 10x5y7z4 +
9x6y7z4 + 8x7y7z4 + 9x8y7z4 + 8x9y7z4 + x10y7z4 + 8xy8z4 + 4x2y8z4 + 5x3y8z4 +
8x5y8z4 + 9x6y8z4 + 4x7y8z4 + 8x8y8z4 + 9x9y8z4 + 5x10y8z4 + 9xy9z4 + 9x2y9z4 +
9x3y9z4 + 10x4y9z4 + 6x5y9z4 + 7x6y9z4 + 3x7y9z4 + 8x8y9z4 + 10x9y9z4 + xy10z4 +
5x2y10z4 +4x3y10z4 +10x5y10z4 +4x6y10z4 +9x7y10z4 +7x8y10z4 +9x2z5 +10x4z5 +
8x5z5+4x6z5+10xyz5+8x2yz5+9x3yz5+9x4yz5+9x5yz5+5x6yz5+10x7yz5+3x8yz5+
7x9yz5+x10yz5+10y2z5+9xy2z5+4x2y2z5+5x3y2z5+4x4y2z5+x6y2z5+7x7y2z5+
8x8y2z5 + 10x9y2z5 + x10y2z5 + 10xy3z5 + 4x2y3z5 + x3y3z5 + 7x4y3z5 + 9x6y3z5 +
3x7y3z5+3x8y3z5+9x9y3z5+3x10y3z5+5y4z5+7xy4z5+8x2y4z5+9x3y4z5+4x6y4z5+
4x7y4z5+8x8y4z5+3x9y4z5+6x10y4z5+2y5z5+2xy5z5+5x2y5z5+4x4y5z5+4x6y5z5+
7x8y5z5+5x10y5z5+2y6z5+3xy6z5+3x2y6z5+5x3y6z5+x4y6z5+7x6y6z5+5x7y6z5+
4x8y6z5+3x9y6z5+7x10y6z5+8xy7z5+9x2y7z5+9x3y7z5+x4y7z5+5x5y7z5+x6y7z5+
10x7y7z5 +7x8y7z5 +2x9y7z5 +8x10y7z5 +7xy8z5 +2x2y8z5 +10x3y8z5 +7x4y8z5 +
5x6y8z5 + 4x7y8z5 + 9x8y8z5 + 5x9y8z5 + 10xy9z5 + 5x2y9z5 + 10x3y9z5 + 5x4y9z5 +
8x5y9z5 + 4x6y9z5 + 6x7y9z5 + x8y9z5 + 6xy10z5 + 2x2y10z5 + 3x3y10z5 + x4y10z5 +
6x5y10z5+10x6y10z5+x7y10z5+8xz6+8x3z6+8x4z6+7x5z6+4yz6+xyz6+10x2yz6+



3x3yz6 +9x4yz6 +6x5yz6 +10x6yz6 + x7yz6 +7x8yz6 +6x9yz6 +7x10yz6 +5xy2z6 +
2x2y2z6 + 7x3y2z6 + 3x4y2z6 + x5y2z6 + 8x7y2z6 + 4x8y2z6 + 2x9y2z6 + 6x10y2z6 +
4y3z6+6xy3z6+6x2y3z6+8x3y3z6+2x5y3z6+3x6y3z6+8x7y3z6+5x8y3z6+4x9y3z6+
7x10y3z6+2y4z6+10xy4z6+x2y4z6+8x4y4z6+4x5y4z6+4x7y4z6+10x8y4z6+6x9y4z6+
6x10y4z6+9y5z6+9xy5z6+3x2y5z6+7x3y5z6+x4y5z6+7x5y5z6+10x6y5z6+4x7y5z6+
10x8y5z6 + 9x9y5z6 + 8xy6z6 + 9x2y6z6 + 9x3y6z6 + 7x4y6z6 + 2x5y6z6 + 5x7y6z6 +
5x8y6z6 +10x9y6z6 +5x10y6z6 +6xy7z6 +2x2y7z6 +8x3y7z6 +3x4y7z6 +10x5y7z6 +
7x8y7z6 + 2x9y7z6 + 10xy8z6 + x2y8z6 + 6x3y8z6 + 2x4y8z6 + 6x5y8z6 + 10x6y8z6 +
x7y8z6 + 2x8y8z6 + 3xy9z6 + 8x2y9z6 + 10x3y9z6 + 9x4y9z6 + 5x5y9z6 + 6x6y9z6 +
8x7y9z6+3xy10z6+8x2y10z6+3x3y10z6+8x4y10z6+7x5y10z6+6x2z7+8x3z7+6x4z7+
8x2yz7+7x3yz7+6x4yz7+10x5yz7+10x6yz7+7x7yz7+10x8yz7+10x9yz7+3x10yz7+
3y2z7+4xy2z7+7x2y2z7+2x3y2z7+x4y2z7+4x5y2z7+8x6y2z7+3x8y2z7+x9y2z7+
8x10y2z7+2y3z7+3xy3z7+8x2y3z7+x4y3z7+3x5y3z7+3x6y3z7+6x7y3z7+6x8y3z7+
x9y3z7+7x10y3z7+3y4z7+3x2y4z7+5x4y4z7+7x5y4z7+8x6y4z7+5x8y4z7+4x9y4z7+
6x10y4z7 + 8xy5z7 + 2x2y5z7 + 9x3y5z7 + 8x4y5z7 + 10x5y5z7 + 7x6y5z7 + 2x8y5z7 +
7x9y5z7 + 7x10y5z7 + 5xy6z7 + 2x2y6z7 + 5x4y6z7 + 6x5y6z7 + 6x6y6z7 + 10x7y6z7 +
10x8y6z7 + 5x9y6z7 + 10xy7z7 + 7x3y7z7 + 3x4y7z7 + x5y7z7 + 9x6y7z7 + 5x7y7z7 +
3x8y7z7+5xy8z7+9x2y8z7+5x3y8z7+7x4y8z7+5x5y8z7+7x6y8z7+8xy9z7+6x2y9z7+
10x3y9z7+6x4y9z7+5x5y9z7+3x6y9z7+7xy10z7+5x2y10z7+10x3y10z7+8x4y10z7+
10x5y10z7+4xz8+8x2z8+8x3z8+2yz8+4xyz8+8x2yz8+7x3yz8+10x4yz8+8x5yz8+
7x6yz8 + x7yz8 + 10x8yz8 + 7x9yz8 + 9x10yz8 + 2y2z8 + 5xy2z8 + 4x2y2z8 + x3y2z8 +
6x4y2z8 + 8x5y2z8 + 7x6y2z8 + 3x7y2z8 + 7x9y2z8 + 8x10y2z8 + 4y3z8 + 3x2y3z8 +
5x3y3z8 + 4x4y3z8 + 8x5y3z8 + 9x6y3z8 + 5x7y3z8 + 10x9y3z8 + 5x10y3z8 + 8xy4z8 +
10x2y4z8 +2x3y4z8 +7x4y4z8 +7x5y4z8 + x6y4z8 +6x7y4z8 +10x8y4z8 +9x10y4z8 +
4xy5z8+2x2y5z8+7x3y5z8+x4y5z8+4x5y5z8+x6y5z8+7x7y5z8+8x8y5z8+4x9y5z8+
10xy6z8 + 8x2y6z8 + 8x3y6z8 + 3x4y6z8 + 7x5y6z8 + 4x6y6z8 + 9x7y6z8 + 6xy7z8 +
9x2y7z8 + 10x3y7z8 + 2x4y7z8 + 2x5y7z8 + x6y7z8 + 8x7y7z8 + 8xy8z8 + 5x2y8z8 +
8x3y8z8+x4y8z8+7x5y8z8+9x6y8z8+9xy9z8+7x3y9z8+x4y9z8+10x5y9z8+7xy10z8+
x2y10z8 + 6x3y10z8 + 4x4y10z8 + 8xz9 + x2z9 + 2yz9 + 3xyz9 + 4x2yz9 + 10x3yz9 +
4x4yz9 + 7x5yz9 + 5x6yz9 + 10x7yz9 + 4x8yz9 + 5x9yz9 + 8x10yz9 + 6y2z9 + xy2z9 +
4x2y2z9 + 7x3y2z9 + 9x4y2z9 + x5y2z9 + 6x6y2z9 + 10x7y2z9 + 9x8y2z9 + 10x9y2z9 +
3x10y2z9 + 8xy3z9 + 9x2y3z9 + x3y3z9 + 2x4y3z9 + 8x5y3z9 + 7x6y3z9 + 4x7y3z9 +
10x8y3z9 +2x9y3z9 +9x10y3z9 +2xy4z9 +6x2y4z9 +9x4y4z9 +8x5y4z9 +10x6y4z9 +
5x7y4z9 + 9x8y4z9 + 10xy5z9 + 6x2y5z9 + 4x3y5z9 + 2x4y5z9 + 5x5y5z9 + 4x7y5z9 +
7x8y5z9 + 8xy6z9 + 10x2y6z9 + 6x3y6z9 + 6x5y6z9 + 2x6y6z9 + 6x7y6z9 + 8xy7z9 +
5x2y7z9+6x3y7z9+x4y7z9+9x5y7z9+9x6y7z9+2xy8z9+x2y8z9+7x3y8z9+6x5y8z9+
4xy9z9 +3x2y9z9 +8x3y9z9 +x4y9z9 +4xy10z9 +2x2y10z9 +x3y10z9 +3z10 +2xz10 +
6x10z10+yz10+3xyz10+4x2yz10+8x3yz10+5x4yz10+10x5yz10+4x6yz10+8x7yz10+
2x8yz10+4x9yz10+3x10yz10+7xy2z10+10x2y2z10+x3y2z10+8x4y2z10+10x5y2z10+
5x6y2z10+3x7y2z10+4x8y2z10+3x9y2z10+4xy3z10+10x2y3z10+8x3y3z10+9x4y3z10+
8x5y3z10+4x6y3z10+5x7y3z10+x8y3z10+2x9y3z10+6xy4z10+2x2y4z10+2x3y4z10+
6x4y4z10+5x5y4z10+6x6y4z10+2x8y4z10+5xy5z10+x2y5z10+6x4y5z10+7x5y5z10+
6x6y5z10+4x7y5z10+7xy6z10+2x2y6z10+7x3y6z10+8x4y6z10+10x5y6z10+6x6y6z10+
4xy7z10+8x2y7z10+9x3y7z10+5x4y7z10+3x5y7z10+9xy8z10+10x2y8z10+4x3y8z10+
6x4y8z10 + 2xy9z10 + 2x2y9z10 + 3x3y9z10 + 5y10z10 + 6xy10z10 + 4x2y10z10.


