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Abstract. The LLL algorithm takes as input a basis of a Euclidean lattice, and,
within a polynomial number of operations, it outputs another basis of the same lattice
but consisting of rather short vectors. We provide a generalization to R-modules
contained in Kn for arbitrary number fields K and dimension n, with R denoting the
ring of integers of K. Concretely, we introduce an algorithm that efficiently finds short
vectors in rank-n modules when given access to an oracle that finds short vectors in
rank-2 modules, and an algorithm that efficiently finds short vectors in rank-2 modules
given access to a Closest Vector Problem oracle for a lattice that depends only on K.
The second algorithm relies on quantum computations and its analysis is heuristic.

1 Introduction

The NTRU [HPS98], RingSIS [LM06, PR06], RingLWE [SSTX09, LPR10], Mod-
uleSIS and ModuleLWE [BGV14, LS15] problems and their variants serve as secu-
rity foundations of numerous cryptographic protocols. Their main advantages are
their presumed quantum hardness, their flexibility for realizing advanced crypto-
graphic functionalities, and their efficiency compared to their SIS and LWE coun-
terparts [Ajt96, Reg09]. As an illustration of their popularity for cryptographic de-
sign, we note that 11 out of the 26 candidates at Round 2 of the NIST standard-
ization process for post-quantum cryptography rely on these problems or variants
thereof.3 From a hardness perspective, these problems are best viewed as standard
problems on Euclidean lattices, restricted to random lattices corresponding to mod-
ules over the rings of integers of number fields. Further, for some parametrizations,
there exist reductions from and to standard worst-case problems for such module
lattices [LS15,AD17,RSW18].

Let K be a number field and R its ring of integers. In this introduction, we will
use the power-of-2 cyclotomic fields K = Q[x]/(xd+1) and their rings of integers R =
Z[x]/(xd + 1) as a running example (with d a power of 2). An R-module M ⊂ Kn

is a finitely generated subset of vectors in Kn that is stable under addition and
multiplication by elements of R. As an example, if we consider h ∈ R/qR for some
integer q, the set {(f, g)T ∈ R2 : fh = g mod q} is a module. If h is an NTRU public
key, the corresponding secret key is a vector in that module, and its coefficients
are small. Note that for K = Q and R = Z, we recover Euclidean lattices in Qn.
A first difficulty for handling modules compared to lattices is that R may not be a
Euclidean domain, and, as a result, a module M may not be of the form M =

∑
iRbi

for some linearly independent bi’s in M . However, as R is a Dedekind domain, for

3 See https://csrc.nist.gov/projects/post-quantum-cryptography
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every module M , there exist K-linearly independent bi’s and fractional ideals Ii
such that M =

∑
Iibi (see, e.g., [O’M63, Th. 81:3]). The set ((Ii,bi))i is called a

pseudo-basis of M . A module in Kn can always be viewed as a lattice in Cnd by
mapping elements of K to Cd via the canonical embedding map (for our running
example, it is equivalent to mapping a polynomial of degree < d to the vector of its
coefficients).

Standard lattice problems, such as finding a full-rank set of linearly independent
short vectors in a given lattice, are presumed difficult, even in the context of quan-
tum computations. In order to assess the security of cryptographic schemes based
on NTRU/RingSIS/etc, an essential question is whether the restriction to module
lattices brings vulnerabilities. Putting aside small polynomial speed-ups relying on
the field automorphisms (multiplication by x in our running example), the cryptan-
alytic state of the art is to view the modules as arbitrary lattices, i.e., forgetting the
module structure.

LLL [LLL82] is the central algorithm to manipulate lattice bases. It takes as
input a basis of a given lattice, progressively updates it, and eventually outputs
another basis of the same lattice that is made of relatively short vectors. Its run-
time is polynomial in the input bit-length. For cryptanalysis, one typically relies on
BKZ [SE94] which extends this principle to find shorter vectors at a higher cost.
Finding an analogue of LLL for module lattices has been an elusive goal for at least
two decades, a difficulty being to even define what that would be. Informally, it
should:

• work at the field level (in particular, it should not forget the module structure
and view the module just as a lattice);

• it should find relatively short module pseudo-bases by progressively updating the
input pseudo-basis;

• it should run in polynomial-time with respect to the module rank n and the
bit-lengths of the norms of the input vectors and ideals.

The state of the art is far from these goals. Napias [Nap96] proposed such an algo-
rithm for fields whose rings of integers are norm-Euclidean, i.e., Euclidean for the
algebraic norm. In our running example, this restricts the applicability to d ≤ 4
(see [Cer05, Lez14] for other families of fields). Fieker and Pohst [FP96] proposed
a general-purpose algorithm. However, it was not proved to provide pseudo-bases
consisting of short module vectors, and a cost analysis was provided only for free
modules over totally real fields. Fieker [Fie97, p. 47] suggested to use rank-2 mod-
ule reduction to achieve rank-n module reduction, but there was no follow-up on
this approach. Gan, Ling and Mow [GLM09] described and analyzed an LLL algo-
rithm for Gauss integers (i.e., our running example instantiated to d = 2). Fieker
and Stehlé [FS10] proposed to apply the LLL algorithm on the lattice correspond-
ing to the module to find short vectors in polynomial time and reconstruct a short
pseudo-basis afterwards. More recently, Kim and Lee [KL17] described such an LLL
algorithm for biquadratic fields whose rings of integers are norm-Euclidean, and pro-
vided analyses for the shortness of the output and the run-time. They also proposed
an extension to arbitrary norm-Euclidean rings, still with a run-time analysis but
only conjecturing and experimentally supporting the output quality.
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The rank-2 restriction already captures a fundamental obstacle. The LLL algo-
rithm for 2-dimensional lattices (which is essentially Gauss’ algorithm) is a succession
of divide-and-swap steps. Given two vectors b1,b2 ∈ Q2, the ‘division’ consists in
shortening b2 by an integer multiple of b1. This integer k is the quotient of the
Euclidean division of 〈b1,b2〉 by ‖b1‖2. This leads to a vector b′2. If the latter is
shorter than b1, then b1 and b2 are swapped and a new iteration starts. Crucial to
this procedure is the fact that if the projection of b2 orthogonally to b1 is very small
compared to ‖b1‖, then the division will provide a vector b′2 that is shorter than b1.
When a swap cannot be made, it means that the projection of b2 orthogonally to b1

is not too small, and hence the basis is of good quality, i.e., somewhat orthogonal and
hence made of somewhat short vectors. What provides the convergence to a short
basis is the Euclideanity of Z. This is why prior works focused on this setup. Put
differently, the crucial property is the fact that the covering radius of the Z lattice
is smaller than 1: this makes it possible to shorten a vector b2 whose projection is
sufficiently small by an appropriate integer multiple such that b′2 becomes smaller
than b1. When we extend to modules, the corresponding lattice becomes R, and its
covering radius has no a priori reason to be smaller than 1 (for our running example,
it is

√
d/2). Even if we allow an infinite amount of time to find an optimal k ∈ R,

the resulting b2−kb1 may still be longer than b1, even if b2 is in the K-span of b1.
This leads us to the following question: does there exist a lattice L depending only
on K such that being able to solve the Closest Vector Problem (CVP) with respect
to L allows to find short bases of modules in K2?

Contributions. The LLL algorithm for Euclidean lattices can be viewed as a way
to leverage the ability of Gauss’ algorithm to reduce 2-dimensional lattice bases, to
reduce n-dimensional lattice bases for any n ≥ 2. We propose extensions to modules
of both Gauss’ algorithm and of its LLL leveraging from 2 to n dimensions, hence
providing a full-fledged framework for LLL-like reduction of module pseudo-bases.

Our first contribution is an oracle-based algorithm which takes as input a pseudo-
basis of a module M ⊂ Kn over the ring of integers R of an arbitrary number field K,
updates it progressively in a fashion similar to the LLL algorithm, and outputs a
pseudo-basis of M . The first output vector is short, and the algorithm runs in time
polynomial in n and the bit-lengths of the norms of the input vectors and ideals. It
makes a polynomial number of calls to an oracle that finds short vectors in rank-2
modules. This oracle-based LLL-like algorithm for modules allows us to obtain the
following result for our running example (see Theorem 3.9 for a general statement).

Theorem 1.1. Let K = Q[x]/(xd + 1) and R = Z[x]/(xd + 1), for d a power of 2.
There is a polynomial-time reduction from finding a (2γ

√
d)2n−1-approximation to

a shortest non-zero vector in modules in Kn (with respect to the Euclidean norm
inherited from mapping an element of Kn to the concatenation of its n coefficient
vectors) to finding a γ-approximation to a shortest non-zero vector in modules in K2.

For example, if n is constant, then the reduction allows to obtain polynomial ap-
proximation factors in modules in Kn from polynomial approximation factors in
modules in K2.

Our second contribution is a heuristic algorithm to find a very short non-zero
vector in an arbitrary module in K2, given access to a CVP oracle with respect to a
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lattice depending only on K. We obtain the following result for our running example
(combine Corollary 4.10 with Lemma 2.5 for a general statement).

Theorem 1.2 (Heuristic). There exists a sequence of lattices Ld and an algo-
rithm A such that the following holds. Algorithm A takes as input a pseudo-basis of
a rank-2 module M ⊂ (Q/(xd + 1))2, and outputs a vector v ∈ M \ {0} that is no

more than 2(log d)
O(1)

longer than a shortest non-zero vector of M . If given access to
an oracle solving CVP in Ld in polynomial time, then it runs in quantum polynomial
time. Finally, for any η > 0, the lattice Ld can be chosen of dimension O(d2+η).

The quantum component of the algorithm is the decomposition of an ideal as the
product of a subset of fixed ideals and a principal ideal with a generator [BS16]. By
relying on [BEF+17] instead, one can obtain a dequantized variant of Theorem 1.2

relying on more heuristics and in which the algorithm runs in 2Õ(
√
d) classical time.

We insist that the result relies on heuristics. Some are inherited from prior works
(such as [PHS19]) and one is new (Heuristic 1 in Section 4). The new heuristic quan-
tifies the distance to Ld of vectors in the real span of Ld that satisfy some properties.
This heuristic is difficult to prove as the lattice Ld involves other lattices that are
not very well understood (the log-unit lattice and the lattice of class group rela-
tions between ideals of small algebraic norms). We justify this heuristic by informal
counting arguments and by some experiments in small dimensions.

Finally, we note that the dimension of Ld is near-quadratic in the degree d of
the field. This is much more than the lattice dimension d of R, but we do not
know how to use a CVP oracle for R to obtain such an algorithm to find short
vectors in rank-2 modules. An alternative approach to obtain a similar reduction
from finding short non-zero vectors in rank-2 modules to CVP with preprocessing
would be as follows: to reach the goal, it suffices to find a short non-zero vector in a
(2d)-dimensional lattice; by using the LLL algorithm and numerical approximations
(see, e.g., [SMSV14]), it is possible to further assume that the bit-size of the inputs
is polynomial in d; by Kannan’s search-to-decision reduction for the shortest vector
problem [Kan87], it suffices to obtain an algorithm that decides whether or not a
lattice contains a non-zero vector of norm below 1; the latter task can be expressed
as an instance of 3SAT, as the corresponding language belongs to NP; finally, 3SAT
reduces to CVP with preprocessing [Mic01]. Overall, this gives an alternative to
Theorem 1.2 without heuristics, but lattices Ld of much higher dimensions (which
still grow polynomially in d).

Technical overview. One of the technical difficulties of extending LLL to modules
is the fact that the absolute value | · | over Q has two canonical generalizations
over K: the trace norm and the algebraic norm. Let (σi)i≤d denote the embedding
of K into C. The trace norm and algebraic norm of x ∈ K are respectively defined
as (

∑
i |σi(x)|2)1/2 and

∏
i σi(x). When K = Q, the only embedding is the identity

map, and both the trace norm and the absolute value of the algebraic norm collapse
to the absolute value. When the field degree is greater than 1, they do not collapse,
and are convenient for diverse properties. For instance, the trace norm is convenient
to measure smallness of a vector over Kn. A nice property is that the bit-size of an
element of R is polynomially bounded in the bit-size of the trace norm (for a fixed
field K). Oppositely, an element in R may have algebraic norm 1 (in this case, it is
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called a unit), but can have arbitrarily large bit-size. On the other hand, the algebraic
norm is multiplicative, which interacts well with determinants. For example, the
determinant of the lattice corresponding to a diagonal matrix over K is simply the
product of the algebraic norms of the diagonal entries (up to a scalar depending only
on the field K). LLL relies on all these properties, that are conveniently satisfied by
the absolute value.

In our first contribution, i.e., the LLL-like algorithm to reduce module pseudo-
bases, we crucially rely on the algebraic norm. Indeed, the progress made by the
LLL algorithm is measured by the so-called potential function, which is a product
of determinants. As observed in prior works [FP96,KL17], using the algebraic norm
allows for a direct generalization of this potential function to module lattices. What
allowed us to go beyond norm-Euclidean number fields is the black-box handling of
rank-2 modules. By not considering this difficult component, we can make do with
the algebraic norm for the most important parts of the algorithm. The trace norm
is still used to control the bit-sizes of the module pseudo-bases occurring during the
algorithm, allowing to extend the so-called size-reduction process within LLL, but is
not used to “make progress”. The black-boxing of the rank-2 modules requires the
introduction of a modified condition for deciding which 2-dimensional pseudo-basis
to consider to “make progress” on the n-dimensional pseudo-basis being reduced.
This condition is expressed as the ratio between 2-determinants, which is compatible
with the exclusive use of the algebraic norm to measure progress. It involves the
coefficient ideals, which was unnecessary in prior works handling norm-Euclidean
fields, as for such fields, all modules can be generated by a basis instead of a pseudo-
basis.

Our algorithm for finding short non-zero vectors in rank-2 modules iterates
divide-and-swap steps like 2-dimensional LLL (or Gauss’ algorithm). The crucial
component is the generalization of the Euclidean division, from Z to R. We are
given a ∈ K \ {0} and b ∈ K, and we would like to shorten b using R-multiples of a.
In the context of a ∈ Q\{0} and b ∈ Q, a Euclidean division provides us with u ∈ Z
such that |b+ ua| ≤ |a|/2. We would like to have an analogous division in R. How-
ever, the ring R may not be Euclidean. Moreover, the covering radius of the ring R
(viewed as a lattice) can be larger than 1, and hence, in most cases, there will not
even exist an element u ∈ R such that ‖b+ au‖ ≤ ‖a‖ (here ‖ · ‖ refers to the trace
norm). In order to shorten b using a, we also allow b to be multiplied by some element
v ∈ R. For this extension to be non-trivial (and useful), we require that v is not too
large (otherwise, one can always take u = b and v = −a for instance, if a, b ∈ R, and
extend this approach for general a, b ∈ K). Hence, we are interested in finding u, v
such that ‖ua + vb‖ ≤ ε‖a‖ and ‖v‖ ≤ C for some ε < 1 and C to be determined
later. Intuitively, if we allow for a large number of such multiples v (proportional
to 1/ε and to the determinant of the lattice corresponding to R, i.e., the square root
of the field discriminant), there should be one such v such that there exists u ∈ R
with ‖vb+ au‖ ≤ ε‖a‖. We do not know how to achieve the result with this heuris-
tically optimal number of v’s and use potentially larger v’s. The astute reader will
note that if we use such a v inside a divide-and-swap algorithm, we may end up
computing short vectors in sub-modules of the input modules. We prevent this from
happening by using the module Hermite Normal Form [BP91,Coh96,BFH17].
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To find u, v such that ‖vb+ au‖ is small, we use the logarithm map Log over K.
For this discussion, we do not need to explain how it is defined, but only that it
“works” like the logarithm map log over R>0. In particular if x ≈ y, then Log x ≈
Log y. We would actually prefer to have the converse property, but it does not
hold for the standard Log over K. In Subsection 4.1, we propose an extension Log
such that Log x ≈ Log y implies that x ≈ y. In our context, this means that we
want to find u, v such that Log v − Log u ≈ Log(b) − Log(a). To achieve this, we
will essentially look for such u and v that are product combinations of fixed small
elements in R. When applying the Log function, the product combinations become
integer combinations of the Log’s of the fixed elements. This gives us our CVP
instance: the lattice is defined using the Log’s of the fixed elements and the target
is defined using Log(b) − Log(a). This description is only to provide intuition, as
reality is more technical: we use the log-unit lattice and small-norm ideals rather
than small-norm elements.

One advantage of using the Log map is that the multiplicative structure of K is
mapped to an additive structure, hence leading to a CVP instance. On the downside,
one needs extreme closeness in the Log space to obtain useful closeness in K (in this
direction, we apply an exponential function). Put differently, we need the lattice
to be very dense so that there is a lattice vector that is very close to the target
vector. This is the fundamental reason why we end up with a large lattice dimension:
we add a large number of Log’s of small-norm ideals to densify the lattice. This
makes the analysis of the distance to the lattice quite cumbersome, as the Gaussian
heuristic gives too crude estimates. For our running example, we have a lattice
of dimension ≈ d2 and determinant ≈ 1, hence we would expect a ‘random’ target
vector to be at distance ≈ d from the lattice. We argue for a distance of at most ≈

√
d

for ‘specific’ target vectors. Finally, we note that the lattice and its analysis share
similarities with the Schnorr-Adleman lattice that Ajtai used to prove NP-hardness
of SVP under randomized reductions [Ajt98,MG02] (but we do not know if there is
a connection).

Impact. Recent works have showed that lattice problems restricted to ideals of some
cyclotomic number fields can be quantumly solved faster than for arbitrary lattices,
for some ranges of parameters [CDW17], and for all number fields with not too
large discriminant, if allowing preprocessing that depends only on the field [PHS19].
Recall that ideal lattices are rank-1 module lattices. Our work can be viewed as a
step towards assessing the existence of such weaknesses for modules of larger rank,
which are those that appear when trying to cryptanalyze cryptosystems based on
the NTRU, RingSIS, RingLWE, ModuleSIS and ModuleLWE problems and their
variants.

Similarly to [CDW17, PHS19], our results use CVP oracles for lattices defined
in terms of the number field only (i.e., defined independently of the input mod-
ule). In [CDW17, PHS19], the weaknesses of rank-1 modules stemmed from two
properties of these CVP instances: the lattices had dimension quasi-linear in the
log-discriminant (quasi-linear in the field degree, for our running example), and
either the CVP instances were easy to solve [CDW17], or approximate solutions
sufficed [PHS19] and one could rely on Laarhoven’s CVP with preprocessing algo-
rithm [Laa16]. In our case, we need (almost) exact solutions to CVP instances for
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which we could not find any efficient algorithm, and the invariant lattice has a di-
mension that is more than quadratic in the log-discriminant (in the field degree,
for our running example). It is not ruled out that there could be efficient CVP al-
gorithms for such lattices, maybe for some fields, but we do not have any lead to
obtain them.

As explained earlier, CVP with preprocessing is known to be NP-complete, so
there always exists a fixed lattice allowing to solve the shortest vector problem in
lattices of a target dimension. However, the dimension of that fixed lattice grows as
a high degree polynomial in the target dimension. The fact that we only need near-
quadratic dimensions (when the log-discriminant is quasi-linear in the field degree)
may be viewed as a hint that finding short non-zero vectors in rank-2 modules
might be easier than finding short non-zero vectors in arbitrary lattices of the same
dimension.

Finally, our first result shows the generality of rank-2 modules towards finding
short vectors in rank-n modules for any n ≥ 2. The reduction allows to stay in the
realm of polynomial approximation factors (with respect to the field degree) for any
constant n. This tends to back the conjecture that there might be a hardness gap
between rank-1 and rank-2 modules, and then a smoother transition for higher rank
modules.

Notations. For two real valued functions f and g, we write f(x) = Õ(g(x)) if and
only if there exists some constant c > 0 such that f(x) = O(g(x) · | log g(x)|c). By
abuse of notations, we write O(xαpoly(log x)) as Õ(xα) even if α = 0. We let Z,Q,R,
and C denote the sets of integers, rational, real, and complex numbers, respectively.
For x ∈ C, we let x̄ denote its complex conjugate. We use lower-case (resp. upper-
case) bold letters for vectors (resp. matrices). For vectors xi = (xij)j for i ≤ k, we
write (x1‖ . . . ‖xk) to denote the vector obtained by concatenation. By default, the
matrices are written with column vectors.

For a vector x = (xi)i ∈ Cn, we write ‖x‖i for i ∈ {1, 2,∞} to denote `i-norm,
and we typically omit the subscript when i = 2. For a lattice Λ ⊂ Rn, we let ρ(Λ)
denote the covering radius with respect to Euclidean norm.

2 Preliminaries

In this section, we first recall some necessary algebraic number theory background
and discuss some computational aspects. We then extend Gram-Schmidt orthogo-
nalization to matrices over number fields. In this section, we assume that the reader
is somehow familiar with the algebraic notions used in this article and in previ-
ous works. For more details on these mathematical objects, we refer the reader
to [Neu99, Chapter 1] for algebraic number theory questions, to [Hop98] for any-
thing related to modules and to [PHS19] where the same techniques were used in a
simpler setting.

2.1 Algebraic background

Number fields. We let K be a number field of degree d and KR = K ⊗Q R.
A number field comes with r1 real embeddings and 2r2 complex embeddings σi’s,
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where r1 + 2r2 = d. The field norm is defined as N (x) =
∏
i≤d σi(x) and the field

trace is Tr(x) =
∑

i≤d σi(x). The canonical embedding of K is then defined as

σ(x) ∈ Rr1 × C2r2 , where σr1+i(x) = σr1+r2+i(x) for 1 ≤ i ≤ r2. The field trace
then induces a Hermitian inner product over KR whose associated Euclidean norm
is ‖x‖ = (

∑
1≤i≤d |σi(x)|2)1/2 for x ∈ KR. We also define ‖x‖∞ = maxi∈[d] |σi(x)|.

In this work, elements of K are identified to their canonical embeddings. From
this perspective, the set KR is also identified to {y ∈ Rr1×C2r2 : ∀i ≤ r2 , yr1+r2+i =
yr1+i} (the embedding map σ provides a ring isomorphism between KR and the latter
subspace of Rr1 ×C2r2). We write K×R for the subset of vectors in KR with non-zero
entries (it forms a group, for component-wise multiplication). We also write K+

R for
the subset of vectors in KR with non-negative (real) coefficients. For x ∈ KR, we let x̄
refer to the element of KR obtained by complex conjugation of every coordinate.4

We can also define a square-root
√
· : K+

R → K+
R by taking coordinate-wise square

roots.

We let R be the ring of integers of K. It is a free Z-module of rank d, and can
be seen as a lattice via the canonical embedding. The discriminant ∆K of K is then
the squared volume of R, i.e., ∆K = det((σi(xj))ij)

2 for any Z-basis (xi)i≤d of R.
We will often use the inequality log∆K ≥ Ω(d) to simplify cost estimates.

We let R× = {u ∈ R | ∃ v ∈ R : uv = 1} denote the group of units of R. Dirich-
let’s unit theorem states that R× is isomorphic to the Cartesian product of a finite
cyclic group (formed by the roots of unity contained in K) with the additive group
Zr1+r2−1. We define Log : K×R → Rd by Log(x) = (log(|σ1(x)|), . . . , log(|σd(x)|))T .
Let E = {x ∈ Rd | ∀r1 ≤ i ≤ r2 : xi = xi+r2}. We have Log(K×R ) ⊆ E. We also
define H = {x ∈ Rd :

∑
i∈[d] xi = 0} and 1 = (1, . . . , 1)T , which is orthogonal to H

in Rd. The set Λ = {Log(u) : u ∈ R×} is a lattice, called “log-unit” lattice. It has
rank r1 + r2 − 1, by Dirichlet’s units theorem and is full rank in E ∩H. Further, its
minimum satisfies λ1(Λ) ≥ (ln d)/(6d2) (see [FP06, Cor. 2]).

Ideals. A fractional ideal I of K is an additive subgroup of K which is also stable
by multiplication by any element of R, and such that xI ⊆ R for some x ∈ Z \ {0}.
Any non-zero fractional ideal is also a free Z-module of rank d, and can therefore
be seen as a lattice in KR using the canonical embedding: such lattices are called
ideal lattices. The product IJ of two fractional ideals I and J is the fractional
ideal generated by all elements xy with x ∈ I and y ∈ J . Any non-zero fractional
ideal I is invertible, i.e., there exists a unique ideal I−1 = {x ∈ K : xI ⊆ R}
such that II−1 = R. When I ⊆ R, it is said to be an integral ideal. An integral
ideal p is said to be prime if whenever p = IJ with I and J integral, then either
I = p or J = p. For any g ∈ K, we write 〈g〉 = gR the smallest fractional ideal
containing g, and we say that it is a principal ideal. The quotient of the group of
non-zero fractional ideals (for ideal multiplication) by the subgroup consisting in
principal ideals is the class group ClK . Its cardinality hK is called the class number.
Under the GRH, there is a set of cardinality ≤ log hK = Õ(log∆K) of prime ideals

4 Observe that even if complex conjugation might not be well defined over K (i.e., the element x̄
might not be in K even if x is), it is however always defined over KR. In this article, complex
conjugation will only be used on elements of KR, and we make no assumption that K should be
stable by conjugation.
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of norms ≤ 12 log2∆K that generates ClK (see, e.g., [PHS19, Se. 2.3]). We also will

use the bound hK · (detΛ) ≤ 2Õ(log∆K) (see, e.g., [PHS19, Se. 2.4]).

The algebraic norm N (I) of an integral ideal I is its index as a subgroup of R,

and is equal to det(σ(I))/∆
1/2
K . The algebraic norm of a prime ideal is a power of

a prime number. For a principal ideal, we also have N (〈g〉) = |N (g)|. The norm
extends to fractional ideals using N (I) = N (xI)/|N (x)|, for any x ∈ R \ {0} such
that xI ⊆ R. We have N (IJ) = N (I)N (J) for all fractional ideals I, J .

Lemma 2.1 ( [BS96, Th. 8.7.4]). Assume the GRH. Let πK(x) be the number of
prime integral ideals of K of norm ≤ x. Then there exists an absolute constant C
(independent of K and x) such that |πK(x)− li(x)| ≤ C ·

√
x(d log x+log∆K), where

li(x) =
∫ x
2

dt
ln t ∼

x
lnx .

Module lattices and their geometry. In this work, we call (R-)module any
set of the form M = I1b1 + . . .+ Inbn, where the Ij ’s are non-zero fractional ideals
of R and the bj ’s are KR-linearly independent5 vectors in Km

R , for some m > 0.
The tuple of pairs ((I1,b1), . . . , (In,bn)) is called a pseudo-basis of M , and n is
its rank. Note that the notion of rank of a module is usually only defined when
the module has a basis (i.e., is of the form M = Rb1 + . . . + Rbn, with all the
ideals equal to R). In this article, we consider an extension of the definition of rank,
defined even if the module does not have a basis, as long as it has a pseudo-basis.
In particular, fractional ideals are rank-1 modules contained in K, and sets of the
form α · I for α ∈ K×R and a non-zero fractional ideal I are rank-1 modules in KR.
We refer to [Hop98] for a thorough study of R-modules, and concentrate here on the
background necessary to the present work.

Two pseudo-bases ((I1,b1), . . . , (In,bn)) and ((J1, c1), . . . , (Jn, cn)) represent
the same module if and only if there exists U = (uij)i,j ∈ Kn×n invertible such
that C = B · U; we have uij ∈ IiJ

−1
j and u′ij ∈ JiI

−1
j for all i, j and for U′ =

(u′ij)i,j := U−1. Here, the matrix B is the concatenation of the column vectors bi

(and similarly for C). If n > 0, we define detKR M = det(B
>

B)1/2 ·
∏
i Ii. It is

an R-module in KR. Note that it is a module invariant, i.e., it is identical for all
pseudo-bases of M .

We extend the canonical embedding to vectors v = (v1, . . . , vm)T ∈ Km
R by defin-

ing σ(v) as the vector of Rdm obtained by concatenating the canonical embeddings
of the vi’s. This extension of the canonical embedding maps any module M of rank n
to a (dn)-dimensional lattice in Rdm. We abuse notation and use M to refer to both
the module and the lattice obtained by applying the canonical embedding.

The determinant of a module M seen as a lattice is detM = ∆
n/2
K ·N (detKR M).

This matches with the module determinant definition from [FS10, Se. 2.3]. Since
det(M) 6= 0, this shows in particular that the diagonal coefficients rii of the R-
factor are invertible in KR (otherwise, one of their embedding would be 0 and so
would be their norm).

5 The vectors bj ’s are said to be KR-linearly independent if and only if there is no non-trivial ways
to write the zero vector as a KR-linear combination of the bj ’s. Because KR is a ring and not a
field, this definition is stronger than requiring that none of the bj ’s is in the span of the others.
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We consider the following inner products for a,b ∈ Km
R :

〈a,b〉KR =
∑
i∈[m]

aibi ∈ KR and 〈a,b〉 = Tr(
∑
i∈[m]

aibi) ∈ C.

Note that we have 〈v,v〉KR ∈ K
+
R , as all σi(〈v,v〉KR)’s are non-negative. For v ∈

Km
R , we define ‖v‖KR =

√
〈v,v〉KR and ‖v‖ =

√
Tr(〈v,v〉KR) =

√
〈v,v〉. Observe

that ‖v‖ correspond to the Euclidean norm of v when seen as a vector of dimension
dm via the canonical embedding. We extend the infinity norm to vectors v ∈ Km

R
by ‖v‖∞ = maxi∈[m] ‖vi‖∞, where v = (v1, . . . , vm). We also extend the algebraic
norm to vectors v ∈ Km

R by setting N (v) := N (‖v‖KR). For m = 1, we see that
N (v) = |N (v)|. By the arithmetic-geometric inequality, we have

√
d ·N (a)1/d ≤ ‖a‖

for a ∈ Km
R . Observe also that for any vector v = (v1, . . . , vm)T ∈ KR, we have

N (v) ≥ maxi(N (vi)), because for any embedding σj , it holds that |σj(v1v1 + · · ·+
vmvm)| = |σj(v1)|2 + · · ·+ |σj(vm)|2 ≥ maxi |σj(vi)|2.

We define the module minimum λ1(M) as the norm of a shortest non-zero ele-
ment of M with respect to ‖·‖. Our module-LLL algorithm will rely on the algebraic
norm rather than the Euclidean norm. For this reason, we will also be interested
to the minimum λN1 (M) = inf(N (v) : v ∈ M \ {0}). We do not know if this min-
imum is always reached for some vector v ∈ M , but we can find an element of M
whose algebraic norm is arbitrarily close to λN1 (M). The following lemma provides
relationships between λ1(M) and λN1 (M).

Lemma 2.2. For any rank-n module M , we have:

d−d/2λ1(M)d∆
−1/2
K ≤ λN1 (M) ≤ d−d/2λ1(M)d ≤ nd/2∆1/2

K N (detKRM)1/n.

Proof. Let s ∈ M \ {0} of minimal Euclidean norm. By the arithmetic-geometric
inequality, we have N (s) ≤ d−d/2‖s‖d. By Minkowski’s theorem applied to the
canonical embedding of M , we have ‖s‖ ≤

√
nd · (detM)1/(nd). Using the equal-

ity detM = ∆
n/2
K N (detKR M) allows to obtain the last two inequalities. Next, for

any s ∈ M \ {0}, Minkowski’s theorem applied to the lattice σ(R · s) gives us

λ1(M) ≤ λ1(R · s) ≤
√
d ·∆1/2

K · N (s)1/d. The last inequality follows by definition of
the infimum. ut

2.2 Computing over rings

In this work, we assume that we know a LLL-reduced Z-basis (r1, . . . , rd) of R,
with respect to ‖ · ‖. Note that computing a Z-basis of R is, in the worst-case, an
expensive task (see, e.g., [Coh95, Se. 6.1]). Once such a basis is known, applying
the LLL algorithm to it has a bit-complexity that is polynomial in log∆K and
max log ‖ri‖. Note that the spanned lattice and the positive definite quadratic form
may not be integral, but LLL-reduction can be performed by taking approximations
to a polynomially bounded precision, because a lower bound for λ1(R) is known (we
have λ1(R) ≥ 1). We refer to [Buc94, SMSV14] for LLL-reduction of non-integral
lattices.

Representing elements and ideals. For computations, elements of R can be
represented as integer linear combinations of such a LLL-reduced Z-basis of R. The
following lemma provides a bound for the involved integer coefficients.
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Lemma 2.3 ( [FS10, Le. 2]). Let (ri)i≤d be a Z-basis of R that is LLL-reduced
with respect to ‖ · ‖. For all x =

∑
xiri ∈ K, we have maxi |xi| ≤ 23d/2‖x‖.

We will also use the fact that maxi ‖ri‖ ≤ (4d)d/2∆
1/2
K , which is implied by the

facts that maxi ‖ri‖ is no more than 2d times longer than the last minimum of R (by
LLL-reducedness), by Minkowski’s second theorem, and the lower bound λ1(R) ≥ 1.

An ideal can be represented by a Z-basis (bi)i≤d with the bi’s belonging to K.
The following lemma can be used in combination with Lemma 2.3 to bound the bit-
size of a representation of an ideal. The proof follows from the fact that detσ(I) =√
∆KN (I) and from standard LLL-reduction inequalities [LLL82, p. 518].

Lemma 2.4. Let (bi)i≤d be a Z-basis of a fractional ideal I ⊂ K that is LLL-reduced

with respect to ‖ · ‖. Then
∏
i ‖bi‖ ≤ 2d

2 ·
√
∆K · N (I).

This lemma implies that an ideal can be represented in size polynomial in log∆K ,
logN (xI), and log x where x is the smallest positive integer such that xI ⊆ R.

Computations with an oracle. In Section 4, we will assume that we have access
to an oracle for the Closest Vector Problem, for lattices related to K. For example,
we will assume that we can solve CVP for the lattice corresponding to R, with
respect to ‖ · ‖. This lattice has dimension d.

In a similar vein, we will use the following adaptation from [PHS19, Th. 3.4], to
find short elements in rank-1 modules.

Lemma 2.5 (Heuristic). There exists a lattice LK (that only depends on K and
has dimension Õ(log∆K)) such that, given an oracle access to an algorithm that
solves CVP for LK , the following holds. There exists a heuristic quantum polynomial-
time algorithm that takes as input an ideal I of K and any α ∈ K×R , and outputs
x ∈ αI \ {0} such that

‖x‖∞ ≤ c · |N (α)|1/d · N (I)1/d,

where c = 2Õ(log |∆|)/d. In particular, we have ‖x‖∞ ≤ c · |N (x)|1/d.

The result assumes GRH and Heuristic 4 from [PHS19]. The quantum computa-
tion performed by the algorithm derives from [BS16] and consists in computing the
log-unit lattice, finding a small generating set ([pi])i of the class group ClK of K,
and decomposing the class [I] of I in ClK in terms of that generating set. These
quantum computations can be replaced by classical ones (e.g., [BF14,BEF+17]), at
the expense of increased run-times and additional heuristic assumptions.

The lemma can be derived from [PHS19, Th. 3.4] by replacing Laarhoven’s CVPP
algorithm [Laa16] by an exact CVPP oracle. In [PHS19], the CVPP algorithm is
used with a target vector t derived from the decomposition of [I] on the [pi]’s and
the logarithm Log(g) of an element g ∈ K. To obtain the statement above, we
replace Log(g) by Log(g ·α) = Log(g) + Log(α). The last lemma statement ‖x‖∞ ≤
c|N (x)|1/d comes from the observation that |N (x)| ≥ N (α) · N (I) (which holds
because x belongs to αI \ {0}).
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2.3 Gram-Schmidt orthogonalization

We extend Gram-Schmidt Orthogonalization from matrices over the real numbers
to matrices over Km

R . For (b1, . . . ,bn) ∈ Km×n
R such that b1, . . . ,bn are KR-linearly

independent, we define b∗1 = b1 and, for 1 < i ≤ n:

b∗i = bi −
∑
j<i

µijb
∗
j with ∀j < i : µij =

〈bi,b∗j 〉KR

〈b∗j ,b∗j 〉KR

.

It may be checked that 〈b∗i ,b∗j 〉 = 0 for i 6= j, and that b∗i = argmin(‖bi −∑
j<i yjbj‖ | ∀j : yj ∈ KR).

We also extend the QR-factorization to matrices overKR. We define rii = ‖b∗i ‖KR

for i ≤ n, rij = µjirii when i < j, and rij = 0 when i > j. We then have B = Q ·R,
where Q ∈ Km×n

R is the matrix whose columns are the b∗i /‖b∗i ‖KR ’s and R = (rij)ij .

Note that Q
T
Q = Id and that R is upper-triangular with diagonal coefficients

in K+
R .

The following lemma provides relationships between some module invariants and
the QR-factorization.

Lemma 2.6. Let M ⊂ Km
R be a module with pseudo-basis ((Ii,bi))i≤n. Let R be the

R-factor of B. Then, we have detKR M =
∏
i riiIi and detM = ∆

n/2
K

∏
iN (riiIi).

Further, for any vector v ∈ Km
R and fractional ideal I ⊂ K such that 0 ( vI ⊆ M ,

it holds that N (v) · N (I) ≥ miniN (riiIi). This implies in particular that λN1 (M) =
infs∈M\{0}N (s) ≥ miniN (riiIi).

Proof. Recall that we have detKR M = (det B
>

B)1/2 ·
∏
i Ii. Using the QR-decom-

position (and in particular the facts that Q
T
Q = Id and that R is upper-triangular

with diagonal coefficients in K+
R ), this rewrites as detKR M = (det R

>
R)1/2 ·

∏
i Ii =∏

i riiIi. The equality detM = ∆
n/2
K N (detKR M) leads to the first statement.

For the second statement, note that for any v ∈ Km
R in the KR-span of M (or,

equivalently, in the KR-span of the columns of B), we have ‖QT
v‖KR = ‖v‖KR and

so N (Q
T
v) = N (v). Also, if 0 ( vI ⊆ M for a non-zero fractional ideal I, then

Q
T
vI 6= 0 is contained in the module M ′ spanned by the pseudo-basis ((Ii, ri))i≤n,

where the ri’s are the columns of R. Let us define v′ = Q
T
v. We write v′ =

∑
xiri.

Note that the xi’s do not necessarily belong to the ideals Ii, because v′ does not
necessarily belongs to M ′. Consider i0 = max(i|∀j > i : xj = 0) (such a i0 exists
since v′ 6= 0). Because the matrix R is upper triangular and v′I ⊆ M ′, we know
that xi0ri0,i0I ⊆ ri0,i0Ii0 , and, in particular, that N (xi0ri0,i0I) ≥ N (ri0,i0Ii0) ≥
miniN (riiIi) (because xi0ri0,i0I 6= {0}). We conclude using the fact that N (v) =
N (v′) ≥ N (xi0ri0,i0) (because xi0ri0,i0 is the i0-th coefficient of v′).

The lower bound on λN1 (M) follows by taking v ∈ M , I = R and letting N (v)
tend to λN1 (M). ut

In this work, we will mostly rely on QR-factorization. It carries the same in-
formation as Gram-Schmidt orthogonalization, but allows for simpler explanations.
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However, from a computational perspective, the R-factor may be difficult to repre-
sent exactly even for modules contained in Km, because of the square roots appear-
ing in its definition. This difficulty is circumvented by computing the Gram-Schmidt
orthogonalization instead, and using it as a means to represent the R-factor.

Computing Gram-Schmidt orthogonalizations. We first note that the Gram-
Schmidt coefficients may not belong to K even if the pseudo-basis does. To explain
how to exactly represent the Gram-Schmidt orthogonalization, we need to backtrack
a little to operations in K. As seen before (in Lemma 2.3), an element x in R is
represented by a vector in Zd storing the coefficients of x with respect to a LLL-
reduced basis (ri)i≤d of R (for ‖ · ‖). Multiplication between x1, x2 ∈ R is performed
thanks to a table (of O(d3) integers) storing the representations of each term rirj
for all i, j ≤ d. An element x in K is represented by a pair (xnum, xden) ∈ R2 such
that x = xnum/xden (and both xnum and xden are themselves represented by vec-
tors on Zd, as explained above). All the above enables additions, multiplications
and divisions in K. Now, when computing the Gram-Schmidt orthogonalization, we
will make use of complex conjugation in KR (as we use a Hermitian inner prod-
uct). Recall that for x ∈ KR, the element x̄ ∈ KR is obtained by coordinate-wise
complex conjugation of its embedding vector. We define R and K as the subsets
of KR obtained by applying this operator to the elements of R and K, respectively.
These elements can be represented using the r̄i’s rather than the ri’s. We also de-
fine RR = {yx : y ∈ R, x ∈ R}. Every element x ∈ RR can be expressed as an
integer combination of the d2 elements rirj (for i, j ≤ d), and this vector in Zd2 is
used to represent x. The bit-size of an element in RR is the bitsize of this vector
in Zd2 . The multiplication table for R allows to perform multiplication in RR.

Lemma 2.7. Let b1, . . . ,bn ∈ Km be K-linearly independent. Then the coefficients
of the b∗i ’s and µij’s can be written as fractions of elements in RR whose bit-sizes are
polynomially bounded with respect to maxi(log x+log ‖xbi‖), where x is the smallest
positive integer such that xbi ∈ Rm for all i.

Proof. Without loss of generality, we assume that the bi’s belong to Rm. Let di =

det(B
T
i Bi) with Bi = (b1, . . . ,bi) for i ≤ n. Then, by a direct adaptation of [LLL82,

p. 523], we have di ∈ RR, di−1b
∗
i ∈ (RR)m and djµij ∈ RR for all j < i. This implies,

using Lemma 2.3, that the coefficients of the b∗i ’s and the µij ’s can be written as
fractions of elements in RR with di−1 and dj as denominator, respectively. Going
down to the expressions in terms of integer combinations in the ri’s, rj ’s and rjri’s,
it may be checked that these numerators and denominators are sums and products
of a polynomial number of terms xiri and xjrj , where each xi and xj is an integer.
Further, by Lemma 2.3, each such integer is polynomially bounded with respect
to maxi log ‖bi‖. This allows to complete the proof. ut

For lattices, if we have a basis and a full-rank family of short vectors, then
we can efficiently obtain a basis of the lattice whose Gram-Schmidt vectors are
no longer than those of the full-rank family of short vectors. This was generalized
to modules in [FS10], relying on the extension to modules of the Hermite Normal
Form [BP91,Coh96,BFH17].
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Lemma 2.8 ( [FS10, Th. 4]). There exists an algorithm that takes as inputs a
pseudo-basis ((Ii,bi))i≤n of a module M ⊂ Km

R and a full-rank set of vectors (si)i≤n
of M and outputs a pseudo-basis ((Ji, ci))i≤n such that ci ∈M and c∗i = s∗i for all i.
If M ⊂ Km, then it terminates in polynomial-time.

Note that the condition that ci ∈M implies that R ⊆ Ji, for all i.

3 LLL-reduction of module pseudo-bases

LLL-reduction of lattice bases is defined in terms of Gram-Schmidt orthogonalization
(or, equivalently, QR-factorization). A basis is said LLL-reduced if two conditions are
satisfied. The first one, often referred to as size-reduction condition, states that any
off-diagonal coefficients rij of the R-factor should have a small magnitude compared
to the diagonal coefficient rii on the same row. The second one, often referred to as
Lovász’ condition, states that the 2-dimensional vector (ri,i, 0)T is no more than 1/δ
times longer than (ri,i+1, ri+1,i+1)

T , for some parameter δ < 1. The size-reduction
condition allows to ensure that the norms of the vectors during the LLL execution
and at its completion stay bounded. More importantly, in combination with Lovász’
condition, it makes it impossible for ri+1,i+1/ri,i to be arbitrarily small (for an LLL-
reduced basis). The latter is the crux of both the LLL output quality and its fast
termination.

3.1 An LLL algorithm for module lattices

When extending to rings, the purpose of the size-reduction condition is better ex-
pressed in terms of the Euclidean norm ‖ · ‖, whereas the bounded decrease of
the rii’s is better quantified in terms of the algebraic norm N (·). This discrep-
ancy makes the definition of a LLL-reduction algorithm for modules difficult. In
this section, we circumvent this difficulty by directly focusing on the decrease of
the rii’s, deferring to later sections the handling of the rank-2 modules of pseudo-
bases ((Ii, (ri,i, 0)T ), (Ii+1, (ri,i+1, ri+1,i+1)

T )). We also defer to later the bounding
of bit-sizes.

Definition 3.1 (LLL-reducedness of a pseudo-basis). A module pseudo-basis
((Ii,bi))i≤n is called LLL-reduced with respect to a parameter αK ≥ 1 if, for all i < n,
we have:

N (ri+1,i+1Ii+1) ≥
1

αK
· N (ri,iIi), (3.1)

where R = (ri,j)i,j refers to the R-factor of the matrix basis B.

We first explain that LLL-reduced pseudo-bases are of interest, and we will later
discuss their computation (for some value of αK).

Lemma 3.2. Assume that ((Ii,bi))i≤n is an LLL-reduced pseudo-basis of a mod-
ule M . Then:

N (I1)N (b1) ≤ α(n−1)/2
K · (N (detKRM))1/n,

N (I1)N (b1) ≤ αn−1K · λN1 (M).
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Proof. From (3.1), we obtain N (I1)N (b1) ≤ αiKN (ri,iIi) for all i ≤ n. Taking the

product over all i’s gives (N (I1)N (b1))
n ≤ α

n(n−1)/2
K N (detKR M), by Lemma 2.6.

The proof of the first inequality can be completed by taking the n-th root. The second
inequality can be obtained by combining the last claim of Lemma 2.6 with (3.1). ut

Our LLL algorithm for modules is very similar to the one over the integers. The

Algorithm 3.1 LLL-reduction over K
Input: A pseudo-basis ((Ii,bi))i≤n of a module M ⊂ Km.
Output: An LLL-reduced pseudo-basis of M .
1: while there exists i < n such that αK · N (ri+1,i+1Ii+1) < N (ri,iIi) do
2: Define Mi as the rank-2 module spanned by ((Ii,ai), (Ii+1,ai+1)), with ai = (rii, 0)T

and ai+1 = (ri,i+1, ri+1,i+1)T ;
3: Find si ∈Mi \ {0} such that N (si) ≤ γd · λN1 (Mi);
4: Set si+1 = ai if it is linearly independent with si, and si+1 = ai+1 otherwise;
5: Call the algorithm of Lemma 2.8 with ((Ii,ai), (Ii+1,ai+1)) and (si, si+1) as inputs, and let

((I ′i,a
′
i), (I

′
i+1,a

′
i+1)) denote the output;

6: Update Ii := I ′i, Ii+1 := I ′i+1 and [bi|bi+1] := [bi|bi+1] ·A−1 ·A′
(where A = [ai|ai+1] and A′ = [a′i|a′i+1]).

7: end while
8: return ((Ii,bi))i≤n.

algorithm proceeds by finding an approximation to a shortest non-zero element in a
rank-2 module, with respect to the algebraic norm. Using Lemma 2.2, we obtain a
sufficient condition on αK such that Algorithm 3.1 terminates. In particular, if αK is
sufficiently large, then N (ri+1,i+1Ii+1) <

1
αK
N (ri,iIi) implies that there is a vector s

in the local projected rank-2 module of norm significantly less than N (ri,iIi).

Lemma 3.3. Take the notations of Algorithm 3.1, and consider an index i < n

such that αK · N (ri+1,i+1Ii+1) < N (ri,iIi). We have N (si) ≤ γd
√

2d∆K
αK
N (ri,iIi).

Proof. Using Lemma 2.2 applied to the rank-2 module Mi, we have

N (si) ≤ γd2d/2∆1/2
K

(
N (ri,iIi)N (ri+1,i+1Ii+1)

)1/2
.

Using the assumption allows to complete the proof. ut

We are now ready to prove the main result of this section.

Theorem 3.4. Assume that Step 3 of Algorithm 3.1 is implemented with some
algorithm O for some parameter γ. Assume that αK > γ2d2d∆K . Then Algorithm 3.1
terminates and outputs an LLL-reduced pseudo-basis of M . Further, the number of
loop iterations is bounded by

n(n+ 1)

log(αK/(γ2d2d∆K))
· log

maxN (riiIi)

minN (riiIi)
,

where the Ii’s and rii’s are those of the input pseudo-basis.
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Proof. We first show that at every stage of the algorithm, the current pseudo-basis
((Ii,bi))i≤n is a pseudo-basis of M . For this, it suffices to show that the opera-
tions performed on it at Step 6 preserve this property. This is provided by the
fact that A−1 · A′ maps the pseudo-basis ((Ii,ai), (Ii+1,ai+1)) into the pseudo-
basis ((I ′i,a

′
i), (I

′
i+1,a

′
i+1)) of the same rank-2 module (by Lemma 2.8). Applying the

same transformation to ((Ii,bi), (Ii+1,bi+1)) preserves the spanned rank-2 module.
The correctness of Algorithm 3.1 is implied by termination and the above.

We now prove a bound on the number of loop iterations, which will in particular
imply termination. Consider the quantity

Π :=
∏
i≤n
N (riiIi)

n−i+1.

This quantity if bounded from above by maxN (riiIi)
n(n+1)/2 and from below by

minN (riiIi)
n(n+1)/2. Below, we show that Π never increases during the execution

of the algorithm, and that at every iteration of the while loop, it decreases by a
factor ≥

√
αK/(γ2d2d∆K). We also show that the quantity minN (riiIi)

n(n+1)/2 can
only increase during the execution of the algorithm, hence the lower bound above
holds with respect to the input rii and Ii at every step of the algorithm. Combining
the decrease rate with the above upper and lower bounds, this implies that the
number of loop iterations is bounded by

n(n+ 1)

log(αK/(γ2d2d∆K))
· log

maxN (riiIi)

minN (riiIi)
,

where the Ii’s and rii’s are those of the input pseudo-basis.

Consider an iteration of the while loop, working at index i. We have αK ·
N (ri+1,i+1Ii+1) < N (ri,iIi). Step 6 is the only one that may change Π. Observe
that we have

Π =
∏
j≤n
N
(
detKR

(
((Ii,bi))i≤j

))
.

During the loop iteration, none of the n modules in the expression above changes,
except possibly the i-th one. Now, note that

N
(
detKR

(
((Ik,bk))k≤i

))
=
∏
k≤i
N (rkkIk).

During the loop iteration under scope, only the i-th term in this product may
change. At Step 6, it is updated from N (riiIi) to N (I ′i)N (a′i). By Lemma 2.8,
we have N (I ′i) ≤ 1 and a′i = si. Now, by Lemma 3.3, we have that N (si) ≤
γd
√

2d∆K
αK
N (riiIi). Overall, this gives that N (riiIi) and hence Π decrease by a fac-

tor ≥
√
αK/(γ2d2d∆K).

To show that minN (riiIi) can only increase during the execution of the algo-
rithm, observe that, during a loop iteration, only N (riiIi) and N (ri+1,i+1Ii+1) may
be modified. Let us call N (r′iiI

′
i) and N (r′i+1,i+1I

′
i+1) the corresponding values at

the end of the iteration. We have seen above that N (r′iiI
′
i) ≤ N (riiIi), which implies

that N (r′iiI
′
i) ≤ max(N (riiIi),N (ri+1,i+1Ii+1)). We also know from Lemma 2.6 that
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N (r′iiI
′
i) ≥ min(N (riiIi),N (ri+1,i+1Ii+1)). As the determinant of Mi is constant, we

have

N (r′iiI
′
i) · N (r′i+1,i+1I

′
i+1) = N (riiIi) · N (ri+1,i+1Ii+1).

This implies that N (r′i+1,i+1I
′
i+1) ≥ min(N (riiIi),N (ri+1,i+1Ii+1)). Overall, we have

that N (r′iiI
′
i),N (r′i+1,i+1I

′
i+1) ≥ min(N (riiIi),N (ri+1,i+1Ii+1)). ut

3.2 Handling bit-sizes

In terms of bit-sizes of the diverse quantities manipulated during the execution of the
algorithm, there can be several sources of bit-size growth. Like in the classical LLL-
algorithm, the Euclidean norms of off-diagonal coefficients rij for i < j could grow
during the execution. We handle this using a generalized size-reduction algorithm.
Other annoyances are specific to the number field setup. There is too much freedom
in representing a rank-1 module Iv: scaling the ideal I by some x ∈ K and dividing v
by the same x preserves the module. In the extreme case, it could cost an arbitrarily
large amount of space, even to store a trivial rank-1 module such as R ·(1, 0, . . . , 0)T ,
if such a bad scaling is used (e.g., using such an x with large algebraic norm). Finally,
even if the ideal I is “scaled”, we can still multiply v by a unit: this preserves the
rank-1 module, but makes its representation longer.6

Definition 3.5. A pseudo-basis ((Ii,bi))i≤n, with Ii ⊂ K and bi ∈ Km
R for all i ≤ n,

is said scaled if, for all i ≤ n,

R ⊆ Ii, N (Ii) ≥ 2−d
2
∆
−1/2
K and ‖rii‖ ≤ 2d∆

1/(2d)
K N (riiIi)

1/d.

It is said size-reduced if ‖rij/rii‖ ≤ (4d)d∆
1/2
K for all i < j ≤ n.

Note that if ((Ii,bi))i≤n is scaled, then N (Ii) ≤ 1 for all i ≤ n. Further, if the
spanned module is contained in Rm, then bi ∈ Rm for all i ≤ n. Algorithm 3.2
transforms any pseudo-basis into a scaled pseudo-basis of the same module.

Algorithm 3.2 Scaling the ideals.
Input: A pseudo-basis ((Ii,bi))i≤n of a module M .
Output: A scaled pseudo-basis ((I ′i,b

′
i))i≤n of M .

1: for i = 1 to n do
2: Use LLL to find si ∈ rii · Ii \ {0} such that ‖si‖ ≤ 2d∆

1/(2d)
K N (riiIi)

1/d;
3: Write si = rii · xi, with xi ∈ Ii;
4: Define I ′i = Ii · 〈xi〉−1 and b′i = xibi.
5: end for
6: return ((I ′i,b

′
i))i≤n.

Lemma 3.6. Algorithm 3.2 outputs a scaled pseudo-basis of the module M gener-
ated by the input pseudo-basis and preserves the N (riiIi)’s. If M ⊆ Rm, then it runs
in time polynomial in the input bit-length and in log∆K .

6 Note that ideal scaling and size-reduction have been suggested in [FS10, Se. 4.1], but without a
complexity analysis (polynomial complexity was claimed but not proved).
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Proof. The algorithm scales each column of the pseudo-matrix by some factor xi ∈ K
and scales the corresponding ideal accordingly. This operation preserves the spanned
module. Further, the fact that xi belongs to K implies that the ideal I ′i remains a
fractional ideal of K.

Fix i ≤ n. The determinant of the canonical embedding of riiIi is ∆
1/2
K N (riiIi)

and its dimension is d, so LLL can indeed be used to find si ∈ rii · Ii \ {0} such

that ‖si‖ ≤ 2d∆
1/(2d)
K N (riiIi)

1/d. By the arithmetic-geometric inequality, this im-

plies that N (si) ≤ 2d
2
∆

1/2
K N (riiIi). We hence have N (xi) ≤ 2d

2
∆

1/2
K N (Ii) and

N (I ′i) = N (Ii)/N (xi) ≥ 2−d
2
∆
−1/2
K . Further, as xi ∈ Ii, we have R ⊆ I ′i, which

implies that N (I ′i) ≤ 1. Finally, we have r′ii = xirii = si, hence ‖r′ii‖ = ‖si‖ ≤
2d∆

1/(2d)
K N (riiIi)

1/d = 2d∆
1/(2d)
K N (r′iiI

′
i)
1/d. This proves the bound on ‖r′ii‖ and

concludes the proof of correctness of the algorithm.
Now, observe that b′i is KR-colinear to bi. Hence, replacing a vector bi by b′i does

not impact rjj for j 6= i. The quantities N (rjjIj) are therefore preserved through
the execution of the algorithm.

If M ⊆ Rm, by Lemmas 2.3, 2.4 and 2.7, all the operations performed in the
algorithm can be done in polynomial time. Hence the whole algorithm runs in poly-
nomial time. ut

Algorithm 3.3 aims at size-reducing a scaled pseudo-basis. It relies on a b·eR
operator which takes as input a y ∈ KR and rounds it to some k ∈ R by writing y =∑
yiri for some yi’s in R, and rounding each yi to the nearest integer: k =

∑
kiri =∑

byieri (remember that the ri’s form an LLL-reduced basis of R). For computations,
we will apply this operator numerically, so that we may not have maxi |ki−yi| ≤ 1/2
but, with a bounded precision computation, we can ensure that maxi |ki − yi| ≤ 1

Algorithm 3.3 Size-reduction.
Input: A scaled pseudo-basis ((Ii,bi))i≤n of a module M .
Output: A size-reduced pseudo-basis of M .
1: for j = 1 to n do
2: for i = j − 1 to 1 do
3: Compute xi = brij/riieR;
4: bj := bj − xibi.
5: end for
6: end for
7: return ((Ii,bi))i≤n.

Lemma 3.7. Algorithm 3.3 outputs a scaled size-reduced pseudo-basis of the mod-
ule M generated by the input pseudo-basis and preserves the N (riiIi)’s. If M ⊆ Rm,
then it runs in time polynomial in the input bit-length and in log∆K .

Proof. As the input basis is scaled, the operations performed on the pseudo-basis
preserve the spanned module (because the ideals Ii contain R). Further, note that
the update of bj at Step 4 has no effect on ri′j′ for j′ 6= j or j′ = j and i′ > i.
It transforms rij into rij − xirii and ri′j into ri′j − xiri′i for i′ < i. In particular,
the new rij satisfies ‖rij/rii‖ ≤ dmaxk≤d ‖rk‖. As the rk’s are a LLL-reduced basis
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of R, we have that maxk≤d ‖rk‖ ≤ (4d)d/2∆
1/2
K . This proves the correctness of Algo-

rithm 3.3. The preservation of the N (riiIi)’s is direct, as neither the rii’s nor the Ii’s
are modified.

Now, assume that M ⊆ Rm. Assume that the outer loop is currently at index j.
Consider the inner loop iteration indexed by i. Letmold

j andmnew
j respectively denote

the value of maxi′<j ‖ri′j/ri′i′‖ at the start and end of this inner loop iteration. We
have:

mnew
j ≤ mold

j + ‖xi‖ ·max
i′<j
‖ri′i/ri′i′‖.

We have maxi′<j ‖ri′i/ri′i′‖ ≤ (4d)d∆
1/2
K , because the first j − 1 columns are size-

reduced. Also, we have ‖xi‖ ≤ mold
j + (4d)d∆

1/2
K , as xi = brij/riieR. This gives

mnew
j ≤ (1 + (4d)d∆

1/2
K )mold

j + (4d)2d∆K .

Iterating over the j − 1 ≤ n values of i, we obtain that mj always stays bounded

from above by (1 + (4d)d∆
1/2
K )n(minit

j + (4d)d∆
1/2
K ), where minit

j is the value of
maxi′<j ‖ri′j/ri′i′‖ at the start of the first inner loop iteration. This implies that
log ‖bj‖ always remains below a polynomial in the input size, n and log∆K . If
need be, we can recompute the R-factor at every step of the algorithm (rather than
updating it), and, by Lemma 2.7, the cost will still be polynomially bounded in the
input bit-length and in log∆K . ut

We now consider Algorithm 3.4, which is a variant of Algorithm 3.1 that allows
us to prove a bound on the bit cost. The only difference (Step 7) is that we call
Algorithms 3.2 and 3.3 at every loop iteration of Algorithm 3.1, so that we are able
to master the bit-lengths during the execution. Without loss of generality, we can
assume that the pseudo-basis given as input is scaled and size-reduced: if it is not the
case, we can call Algorithms 3.2 and 3.3, which will produce a pseudo-basis of the
same module, whose bit-length is polynomial in the input bit-length and in log∆K .

Algorithm 3.4 LLL-reduction over K with controlled bit-lengths
Input: A scaled size-reduced pseudo-basis ((Ii,bi))i≤n of a module M ⊆ Rm.
Output: An LLL-reduced pseudo-basis of M .
1: while there exists i < n such that αK · N (ri+1,i+1Ii+1) < N (ri,iIi) do
2: Let Mi be the rank-2 module spanned by the pseudo-basis ((Ii,ai), (Ii+1,ai+1)), with ai =

(rii, 0)T and ai+1 = (ri,i+1, ri+1,i+1)T ;
3: Find si ∈Mi \ {0} such that N (si) ≤ γd · λN1 (Mi);
4: Set si+1 = ai if it is linearly independent with si, and si+1 = ai+1 otherwise;
5: Call the algorithm of Lemma 2.8 with ((Ii,ai), (Ii+1,ai+1)) and (si, si+1) as inputs, and let

((I ′i,a
′
i), (I

′
i+1,a

′
i+1)) denote the output;

6: Update Ii := I ′i, Ii+1 := I ′i+1 and [bi|bi+1] := [bi|bi+1] ·A−1 ·A′
(where A = [ai|ai+1] and A′ = [a′i|a′i+1]);

7: Update the current pseudo-basis by applying Algorithm 3.2 and then Algorithm 3.3 to it.
8: end while
9: return ((Ii,bi))i≤n.
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Theorem 3.8. Assume that Step 3 of Algorithm 3.4 is implemented with some
algorithm O for some parameter γ. Assume that αK > γ2d2d∆K . Given as input a
scaled and size-reduced pseudo-basis of a module M ⊆ Rm, Algorithm 3.4 outputs
an LLL-reduced pseudo-basis of M in time polynomial in the bit-length of the input
pseudo-basis, log∆K and 1/ log(αK/(γ

2d2d∆K)).

Proof. The correctness proof of Theorem 3.4 still holds. The only adaptation needed
is to observe that during the execution of Step 7, none of the N (riiIi)’s changes. This
is provided by Lemmas 3.6 and 3.7. Further, note that the bound on the number
of loop iterations is polynomial in the bit-length of the input pseudo-basis and
1/ log(αK/(γ

2d2d∆K)). It remains to prove that the bit-lengths of all the quantities
occurring during the execution of the algorithm remain sufficiently small.

For this, it suffices to show that the pseudo-bases keep bounded bit-lengths.
As Algorithms 3.2, 3.3 and the algorithm from Lemma 2.8 run in polynomial time,
the bit-lengths of all quantities manipulated during a loop iteration are polynomially
bounded in terms of the run-time of O, log∆K and the bit-length of the pseudo-basis
at the start of the same loop iteration. It therefore suffices to bound the bit-lengths
of the pseudo-bases occurring at the start of each loop iteration. At that moment,
the pseudo-bases are scaled, so the bit-lengths of the coefficient ideals are polynomial
in log∆K . We now focus on the vectors bj ∈ Rm.

Note that ‖bj‖2 =
∑

i≤j ‖rij‖2. By size-reducedness, and using the fact that

‖rij‖ ≤ ‖rij/rii‖·‖rii‖, we have that ‖bj‖ ≤
√
d(4d)d∆

1/2
K maxi ‖rii‖. As the pseudo-

basis is scaled, we have that ‖bj‖ ≤
√
d · (8d)d · ∆K · maxiN (riiIi)

1/d. Now, note
that maxiN (riiIi)

1/d never increases during the execution of the algorithm: this is
implied by the part of the proof of Theorem 3.4 involving Π. Initially, it is bounded
by a polynomial in the input bit-length. Overall, we obtain that at every start of an
iteration of the while loop, the quantity log ‖bj‖ is bounded by a polynomial in the
input bit-length and log∆K . Using Lemma 2.3 allows to complete the proof. ut

3.3 Finding short vectors for the Euclidean norm

By Lemma 3.2 and Theorem 3.8 with αk = (1 + c/n) · γ2d2d∆K for a well-chosen
constant c, Algorithm 3.4 may be interpreted as a reduction from finding a 2 ·
(γ2d2d∆K)n approximation to a vector reaching λN1 in rank-n modules, to finding
a γd approximation to a vector reaching λN1 in rank-2 modules.

By using Lemma 2.2, we can extend the above to the Euclidean norm instead of
the algebraic norm.

Theorem 3.9. Let γ ≥ 1, assume that log∆K is polynomially bounded, and assume
that a Z-basis of R is known. Then there exists a polynomial-time reduction from
solving SVPγ′ in rank-n modules (with respect to ‖ · ‖) to solving SVPγ in rank-2

modules, where γ′ = (2γ∆
1/d
K )2n−1.

Proof. The reduction consists in first using Algorithm 3.4 with Step 3 implemented
using the oracle solving SVPγ in rank-2 modules. Using the arithmetic-geometric
inequality and Lemma 2.2, one can see that a vector s satisfying ‖s‖ ≤ γ · λ1(M)

also satisfies N (s) ≤ γd · ∆1/2
K · λN1 (M). Hence, we have an oracle computing a
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γN = γ · ∆1/(2d)
K approximation of λN1 (M). We then run Algorithm 3.4 with this

oracle by setting the parameter αK to (1 + c/n) · γ2d2d∆2
K , where c is a constant

such that (1 + c/n)n−1 ≤ 2.
By Theorem 3.8, the reduction runs in in polynomial time. Further, by Lemma 3.2,

the output pseudo-basis satisfies N (I1)N (b1) ≤ αn−1K · λN1 (M). By Lemma 2.2 and
by definition of αK , this gives:

N (I1)N (b1) ≤ 2(γ2d2d∆2
K)n−1 · d−d/2λ1(M)d.

Now, an SVPγ solver for rank-2 modules directly provides an SVPγ solver for
rank-1 module. We hence use our oracle again, on I1b1. This provides a non-zero

vector s ∈ I1b1 ⊆M such that ‖s‖ ≤ γ
√
d∆

1/(2d)
K ·(N (I1)N (b1))

1/d, by Minkowski’s
theorem. Combining the latter with the above upper bound on N (I1)N (b1) provides
the result. ut

4 The divide-and-swap algorithm

We now focus on how to implement Step 3 of Algorithm 3.1, using a CVP oracle for
a lattice depending on K only. To handle projected 2-dimensional lattices, the LLL
algorithm for integer lattices proceeds like the Gauss/Lagrange reduction algorithm
for 2-dimensional lattices. It relies on a divide-and-swap elementary procedure: first
shorten the second vector using a Z-multiple of the first one (using a Euclidean
division, or, more pedantically, a CVP solver for the trivial lattice Z); then swap
these two vectors if the second has become (significantly) shorter than the first one.
It has the effect that if this 2-dimensional basis is not reduced, then a swap occurs,
and some progress is made towards reducedness of the 2-dimensional basis. This
elementary step is repeated as many times as needed to achieve reduction of the
lattice under scope. In this section, we generalize this process to rank-2 modules.

We first describe a lattice L that depends only on K and for which we will assume
that we possess a CVP oracle. Then, we give an algorithm whose objective is to act
as a Euclidean algorithm, i.e., enabling us to shorten an element of KR using R-
multiples of another. Once we have this generalization of the Euclidean algorithm,
we finally describe a divide-and-swap algorithm for rank-2 modules.

4.1 Extending the logarithm

The lattice L is defined using (among others) the log-unit lattice Λ. However, the
Log function does not suffice for our needs. In particular, for a, b ∈ K×R , the close-
ness between a and b is not necessarily implied by the closeness of Log a and Log b,
because Log does not take into account the complex arguments of the entries of
the canonical embeddings of a and b. However, we will need such a property to
hold. For this purpose, we hence extend the Log function. For x ∈ K×R , we de-
fine Log x := (θ1, . . . , θr1+r2 , log |σ1(x)|, . . . , log |σd(x)|)T , where σi(x) = |σi(x)| · eIθi
for all i ≤ r1 + r2 and I is a complex root of x2 + 1. The Log function takes values
in (πZ/2πZ)r1 × (R/(2πZ))r2 × Rd.

Lemma 4.1. For x, y ∈ K×R , we have:

‖x− y‖∞ ≤
(

e
√
2‖Log x−Log y‖∞ − 1

)
·min(‖x‖∞, ‖y‖∞).
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Observe that for t ≤ (ln 2)/
√

2, we have e
√
2t − 1 ≤ 2

√
2t.

Proof. Let us write Log x = (θ1, . . . , θr1+r2 , log |σ1(x)|, . . . , log |σr1+r2(x)|)T and Log y =
(θ′1, . . . , θ

′
r1+r2 , log |σ1(y)|, . . . , log |σr1+r2(y)|)T . Let i ≤ r1 + r2 and define zx =

log |σi(x)|+ Iθi and zy = log |σi(y)|+ Iθ′i. By definition of Log, we have σi(x) = ezx

and σi(y) = ezy . Therefore, we can write

|σi(x)− σi(y)|
|σi(x)|

= |1− ezy−zx | =
∣∣∑
k≥1

(zy − zx)k

k!

∣∣ ≤∑
k≥1

|zy − zx|k

k!
= e|zy−zx| − 1.

As |zx − zy| ≤
√

2‖Log x− Log y‖∞, we derive that

|σi(x)− σi(y)| ≤ ‖x‖∞ ·
(

e
√
2‖Log x−Log y‖∞ − 1

)
.

Note that this holds for all i ≤ r1 + r2 and that we could as well have used ‖y‖∞
rather than ‖x‖∞. ut

4.2 The lattice L

Let r = poly(d) and β > 0 be some parameter to be chosen later. Let Λ denote
the log-unit lattice. Let B0 = {p1, . . . , pr0} be a set of cardinality r0 ≤ log hK of
prime ideals generating ClK , with algebraic norms ≤ 2δ0 , with δ0 = O(log log |∆|).
We will also consider another set B = {q1, . . . , qr} of cardinality r, containing prime
ideals (not in B0) of norms ≤ 2δ, for some parameters r and δ ≤ δ0 to be chosen
later. We also ask that among these ideals qj , at least half of them have an algebraic

norm ≥
√

2δ. Because we want r such ideals, we should make sure that the number
of prime ideals of norm bounded by 2δ in R is larger than r. This will asymptotically
be satisfied if r ≤ O(2δ/δ) (by Lemma 2.1). The constraint that at least r/2 ideals
should have norm larger than

√
2δ is not very limiting, as we expect that roughly

2δ−
√

2δ ≥ r−
√
r ideals should have algebraic norm between

√
2δ and 2δ (forgetting

about the poly(δ) terms).

We now define L as the lattice of dimension ν = 2(r1 + r2) + r0 + r− 1 (included
in Rν+1) spanned by the columns of the following basis matrix:
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β ·BΛ β · hg2(r1+r2)· · · β · hgν

BΛ0
wν−r+1

· · · wν

1

. . .

1

β · 2π
. . .
β · 2π

0

0

0

0

β · θgr1+r2+1 · · · β · θgν

β · ag2(r1+r2)· · · β · agν

BL :=

2(r1 + r2)− 1 r0 + r

r1 + r2

r1 + r2 − 1

r

r0

1

where

• BΛ is a basis of Λ, and we let (hi)r1+r2<i<2(r1+r2) denote its columns;

• BΛ0 is a basis of the lattice Λ0 := {(xi)i ∈ Zr0 :
∏
i p
xi
i is principal}, and we let

(wi)2(r1+r2)≤i≤ν−r denote its columns;

• for any g ∈ K, we have ag = (log |N (g)|)/
√
d ;

• for any g ∈ K, the vector θg consists of the first r1 + r2 entries of Log(g);

• for any g ∈ K, we have hg = iH∩E(ΠH(Log(g))), where ΠH is the orthogonal
projection on H and iH∩E is an isometry mapping H ∩ E to Rr1+r2−1;
• for any i > r1 + r2, if we parse the bottom r0 + r coordinates of the i-th column

vector as (wi,1, . . . , wi,r0 , w
′
i,1, . . . , w

′
i,r), then we have that 〈gi〉 =

∏
j p

wij
j ·
∏
j q

w′ij
j ;

• the gi’s for i > r1 + r2 are in K and, among them, gr1+r2+1, . . . g2(r1+r2)−1 are
the units of R corresponding to the columns of BΛ.

We now list a few properties satisfied by vectors in this lattice.

Lemma 4.2. For every vector (βa‖βθ‖βh‖w‖w′) ∈ L \ {0} (with blocks of dimen-
sions 1, r1 + r2, r1 + r2 − 1, r0 and r), there exists g ∈ K \ {0} with

• a = (log |N (g)|)/
√
d

• Log(g) = (θ′‖Log(g)) with θ′ = θ mod 2π.

• h = iH∩E(ΠH(Log(g)))

• 〈g〉 =
∏
j p

wj
j

∏
j q

w′j
j , where w = (w1, · · · , wr0) and w′ = (w′1, · · · , w′r).

Further, we have that ‖Log(g)‖2 = ‖(a,h)‖2.

Proof. Note that the first claim holds for the vectors of the input basis (with g = 1
for the first r1 + r2 vectors). The property is preserved by vector addition (resp.
subtraction), as can be seen by multiplying (resp. dividing) the corresponding g’s.
Hence it holds for all non-zero vectors of the lattice.
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For the last statement, observe that Log(g) = log |N (g)|
d 1 + ΠH(Log(g)). Hence,

by orthogonality, we have:

‖Log(g)‖22 =

(
log |N (g)|

d

)2

· d+ ‖ΠH(Log(g))‖22 = ‖(a,h)‖22.

This completes the proof. ut

4.3 On the distance of relevant vectors to the lattice

In this section, we make a heuristic assumption on the distance between target vec-
tors of a specific form and the lattice L defined in the previous section. This heuristic
is backed with a counting argument and numerical experiments (see Appendix A).
As L is not full rank, we only consider target vectors t lying in the span of L. Also,
as BL contains the identity matrix in its bottom right corner, we cannot hope to
have a covering radius that is much smaller than

√
r. In our case, the lattice dimen-

sion ν will be of the order of r, but in our application we will need a vector of L
much closer to t than

√
r ≈
√
ν. In order to go below this value, we only consider

target vectors t whose last r coordinates are almost 0.

Heuristic 1. Assume that there exist some integer B ≤ r such that B ≥ 100 ·
(log hK) · δ0/δ and that

α0 :=
√

2π
(( 2B

r0.96
)B · δB(detΛ)hK

)1/d
≤ ln d

12d2.5
.

Assume that the scaling parameter β in BL is set to 1
α0

√
0.01·B
2d . Then for any t ∈

Span(L) whose last r coordinates w′t satisfy ‖w′t‖2 ≤ 0.01·B/
√
r, we have dist(t, L) ≤√

1.05 ·B.

Discussion about Heuristic 1. We provide below a counting argument to justify
Heuristic 1. We consider the following set of vectors of L, parametrized by B ≤ r,
which we view as candidates for very close vectors to such target vectors:

SB := {s = (βas‖βθs‖βhs‖ws‖w′s) ∈ L : w′s ∈ {−1, 0, 1}r ∧ ‖w′s‖1 = B}.

We argue that there is a vector in SB that is very close to t. Our analysis is
heuristic, but we justify it with both mathematical arguments and experiments. We
are going to examine the vectors s ∈ SB such that s − t is reduced modulo L. Let
us write t = (βat‖βθt‖βht‖wt‖w′t)T . We define:

S
(1)
B,t := {(βas‖βθs‖βhs‖ws‖w′s) ∈ L : w′s ∈ {−1, 0, 1}r ∧ ‖w′s‖1 = B,

ws − bwte ∈ V(Λ0),

ht − hs ∈ V(Λ),

θt − θs ∈ (−π, π]r1+r2},

where the notation V refers to the Voronoi cell (i.e., the set of points which are closer
to 0 than to any other point of the lattice). The choice of w′s fully determines s ∈
S
(1)
B,t, which gives the bound |S(1)

B,t| = 2B ·
(
r
B

)
≥ (2r/B)B.
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We consider the following subset of S
(1)
B,t:

S
(2)
B,t = S

(1)
B,t ∩ {(βas‖βθs‖βhs‖ws‖w′s) ∈ L : ws = bwte}.

We heuristically assume that when we sample a uniform vector in S
(1)
B,t, the com-

ponents ws of the vectors s ∈ S(1)
B,t are uniformly distributed modulo Λ0. Then the

proportion of those for which ws = bwte mod Λ0 is 1/ det(Λ0) = 1/hK . Hence, we

expect that |S(2)
B,t| ≈ |S

(1)
B,t|/hK .

We consider the following subset of S
(2)
B,t, parametrized by α ≤ (ln d)/(12d2.5):

S
(3)
B,α,t = S

(2)
B,t ∩ {(βas‖βθs‖βhs‖ws‖w′s) ∈ L : ‖(θs‖hs)− (θt‖ht)‖∞ ≤ α}.

We heuristically assume that when we sample a uniform vector in S
(2)
B,t, the com-

ponents (θs,hs) are uniformly distributed modulo 2πZr1+r2 × Λ. Observe that the
first r1 coordinates of θs (corresponding to real embeddings) are either 0 or π. Hence,
the probability that θs = θt on these coordinates is 2−r1 . Once these first r1 coordi-
nates are fixed, the remaining coordinates of (θs,hs) have no a priori reason to be
bound to a sublattice of 2πZr2×Λ and we heuristically assume them to be uniformly

distributed in Rr1+2r2−1/(2πZr2×Λ). Overall, the probability that a vector s ∈ S(2)
B,t

satisfies ‖(θs,hs) − (θt,ht)‖∞ ≤ α is ≈ αr1+2r2−1

2r1 ·(2π)r2 ·det(Λ) . Here, we used the fact that
√
r1 + 2r2 − 1 · α is smaller than λ1(2πZr2 × Λ)/2 (recall from preliminaries that

λ
(∞)
1 (Λ) ≥ (ln d)/(6d2)). We conclude that

|S(3)
B,α,t| ≈ |S

(2)
B,t|

αr1+2r2−1

2r1 · (2π)r2 · det(Λ)
≥ |S(2)

B,t|
αd−1

(2π)d/2 · det(Λ)
.

Finally, we consider the following subset of S
(3)
B,α,t:

S
(4)
B,α,t = S

(3)
B,α,t ∩ {(βas‖βθs‖βhs‖ws‖w′s) ∈ L : |as − at| ≤ α}.

We want a lower bound for |S(4)
B,α,t|/|S

(3)
B,α,t|. Fix an s ∈ S(3)

B,α,t. As t ∈ Span(L), we
have:

√
d(at − as) =

∑
j

(wt,j − bwt,je) logN (pj) +
∑
j

w′t,j logN (qj)−
∑
j

w′s,j logN (qj),

where the wt,j (respectively w′t,j and w′s,j) are the coordinates of wt (respectively
w′t and w′s). We define bt =

∑
j(wt,j − bwt,je) logN (pj) +

∑
j w
′
t,j logN (qj), which

depends only on t. We would like to have a lower bound on the proportion of vectors

s ∈ S(3)
B,α,t such that |

∑
j w
′
s,j logN (qj)− bt| ≤

√
dα. In other words, we would like

a lower bound on the probability that |
∑

j w
′
s,j logN (qj) − bt| ≤

√
dα, when s is

chosen uniformly at random in S
(3)
B,α,t. In order to simplify the estimation, we will

assume in the following that when s is chosen uniformly at random in S
(3)
B,α,t, then

the vector w′s is sampled uniformly in {−1, 0, 1}r, with B non-zero coefficients (this
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is an over-simplification, as we are already restricted to S
(3)
B,α,t). Let us write Yj the

random variables w′s,j logN (qj) for all 1 ≤ j ≤ r.
First, let us compute an upper bound on |bt| (the random variable |

∑
j Yj | being

bounded by δB, if |bt| > δB + α
√
d, then the event would be empty). We have

|bt| ≤
∑
j

|wt,j − bwt,je| · δ0 +
∑
j

|w′t,j | · δ ≤ δ0 · r0 + δ · ‖w′t‖1 ≤ 0.02 · δB,

using the assumptions on B and ‖w′t‖1 ≤
√
r · ‖w′t‖.

The element bt is hence small enough to be reached by the variable
∑

j Yj .
However, it will be in the tail of the distribution: the sum of B independent variables
bounded by δ has standard deviation at most

√
B ·δ, which is asymptotically smaller

than |bt|. This makes the probability very small and difficult to estimate. In order to
circumvent this difficulty, we “recenter” our target bt. A way to do so is to condition
the probability at stake on the event that the first few Yj ’s have their sum very close
to bt.

More formally, recall that the ideals qj ’s are chosen so that at least B/2 of them
have norms at least 2δ/2, and sort them by decreasing algebraic norm. Hence, we have
δ/2 ≤ logN (qj) ≤ δ for j ≤ B/2. Now, because |bt| ≤ 0.02 · δB, we know that there
exists a choice of w′s,1, . . . , w

′
s,d0.04·Be ∈ {−1, 1} such that |

∑
j≤d0.04·Be Yj − bt| ≤ δ.

Indeed, we can for instance choose the signs of the first w′s,j to be the same as the sign
of bt until we “reach it”, that is, until we are at distance at most δ. Then we choose
the next sign to be negative, resp. positive if the current sum is larger, resp. smaller
than bt. This ensures that we will never be at distance more than δ from bt when
all the d0.04 ·Be signs have been chosen. We are left with b0.96 ·Bc non-zero values
w′s,j to choose among the r − d0.04 · Be remaining ideals, but our target vector is
now b′t := bt −

∑
j≤d0.04·Be Yj , which is much smaller than bt. In particular, |b′t| is

asymptotically smaller than the standard deviation of
∑

j>d0.04·Be Yj .

Overall, we obtain by conditional probabilities that

Pr(|
∑
j

Yj − bt| ≤
√
dα)

≥ Pr
(
|
∑
j

Yj − bt| ≤
√
dα and |bt −

∑
j≤d0.04·Be

Yj | ≤ δ and w′s,j 6= 0 ∀j ≤ d0.04 ·Be
)

= Pr
(
|
∑
j

Yj − bt| ≤
√
dα
∣∣ |bt − ∑

j≤d0.04·Be

Yj | ≤ δ and w′s,j 6= 0 ∀j ≤ d0.04 ·Be
)

· Pr
(
|bt −

∑
j≤d0.04·Be

Yj | ≤ δ and w′s,j 6= 0 ∀j ≤ d0.04 ·Be
)
, (4.1)

where the probabilities are taken over the uniform choice of the w′s,j ’s in {−1, 0, 1}r
with B non-zero coefficients. We first deal with the second probability in Equa-
tion (4.1). We have seen that there exists at least one choice of the first d0.04 · Be
elements w′s,j such that |bt −

∑
j≤d0.04·Be Yj | ≤ δ. Hence, by counting the number of
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possible choices for the remaining b0.96 ·Bc non-zero elements w′s,j , we obtain that

Pr
(
|bt −

∑
j≤d0.04·Be

Yj | ≤ δ and w′s,j 6= 0 ∀j ≤ d0.04 ·Be
)

≥
2b0.96·Bc ·

(r−d0.04·Be
b0.96·Bc

)
2B ·

(
r
B

)
≥ 2−d0.04·Be ·

(
r − d0.04 ·Be
b0.96 ·Bc

)b0.96·Bc
·
(
B

e · r

)B
≥ (r − d0.04 ·Be)b0.96·Bc

eB · 2d0.04·Be · rB

≥ (0.96 · r)b0.96·Bc

eB · 2d0.04·Be · rB

≥ 0.344B

rd0.04·Be
,

where we used the fact that for any B ≤ r, it holds that (r/B)B ≤
(
r
B

)
≤ (e · r/B)B.

It remains to deal with the first probability involved in Equation (4.1). We showed
above that this probability is equal to Pr(|

∑
j>0.04·B Yj − b′t| ≤ α

√
d), where |b′t| ≤ δ

and the w′s,j are chosen uniformly at random in {−1, 0, 1}r−d0.04·Be, with b0.96 ·Bc
non-zero coefficients. Because our target is now closer to the center of the distribution
of
∑

j Yj , we will assume that

Pr(|
∑

j>d0.04·Be

Yj − b′t| ≤ α
√
d) ≥ α

√
d

Bδ
,

where the lower bound is the probability we would have obtained if the random
variable

∑
j>d0.04·Be Yj was uniformly distributed in [−Bδ,Bδ]. This assumption is

justified by the fact that the random variable
∑

j>d0.04·Be Yj has a bell shape and

that b′t is close to the center of the bell (the standard deviation of
∑

j Yj is roughly√
0.96 ·B · δ � |b′t|). Hence, the probability to be close to b′t should be larger in the

bell shape case than in the uniform case (over [−0.96 · Bδ, 0.96 · Bδ] ⊂ [−Bδ,Bδ]).
This lower bound is backed with numerical experiments described in Appendix A.1.
This leads us to the following lower bound.

Pr(|
∑
j

Yj − bt| ≤
√
dα) ≥ 0.344B

r0.04·B
· α
√
d

Bδ
.

We finally obtain that

|S(4)
B,α,t| ≥

0.344B · α
√
d

δB · r0.04·B
· αd−1

(2π)d/2 · det(Λ)
· 1

hK
·
(

2r

B

)B
≥
(

α√
2π

)d 1

δB · det(Λ) · hK

(
0.344 · 2r
B · r0.04

)B
≥
(

α√
2π

)d 1

δB · det(Λ) · hK

(
r0.96

2B

)B
.
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When the above is ≥ 1, we expect that there exists s ∈ S(4)
B,α,t. If that is the case,

then we have
‖s− t‖2 ≤ (β ·

√
2d · α)2 + r0 + ‖w′t −w′s‖2.

By condition on B, we know that r0 ≤ 0.01 ·B. Also, by choice of w′t (and using the
fact that r ≥ B), we have that ‖w′t−w′s‖2 ≤ (

√
B + 0.01 ·

√
B)2 ≤ 1.03 ·B. Finally,

choosing α minimal provides the result.

Numerical experiments. Heuristic 1 is also backed with numerical experiments. We
performed the experiments with r of the order of d2 (looking forward, this is the
value of r that will be used by our algorithm). This means that our lattice L has
dimension roughly d2, and so solving CVP in it quickly becomes impractical. We
were still able to check that our heuristic seems correct in cyclotomic number fields
of very small degree (up to d = 8). More details on these numerical experiments can
be found in Appendix A.2

4.4 A “Euclidean division” over R

We will need the following technical observation that, given a, b ∈ KR, it is possible
to add a small multiple ka of a to b to ensure that N (b+ ka) ≥ N (a).

Lemma 4.3. For any a ∈ K×R and b ∈ KR, there exists k ∈ [−d, d] ∩ Z such that
|N (b+ ka)| ≥ |N (a)|.

Note that an integer k such as in Lemma 4.3 can be found efficiently by exhaustive
search.

Proof. We know that |N (a)| =
∏
i |σi(a)| so it suffices to find k such that |σi(b +

ak)| ≥ |σi(a)| holds for all i ≤ d. Now, the condition |σi(b+ak)| < |σ(a)| is equivalent
to |σi(b/a) + k| < 1. As a complex plane open circle of radius 1 contains at most
two integers, we deduce that for each i ≤ d, there are at most two integers k such
that |σi(b+ak)| < |σ(a)|. Because the set [−d, d]∩Z contains 2d+ 1 different values
of k, then at least one of these should satisfy |σi(b+ ak)| ≥ |σi(a)| for all i. ut

We can now describe our “Euclidean division” algorithm over R. Our algorithm
takes as input a fractional ideal a and two elements a, b ∈ KR, and outputs a pair
(u, v) ∈ R× a. The first five steps of this algorithm aim at obtaining, for any input
(a, b), a replacement (a1, b1) that satisfies some conditions. Namely, we would like a1
to be balanced, i.e., ‖a1‖ should not be significantly more than N (a1)

1/d. We also
would like b1 to be not much larger that a1 and N (a1/b1) to be close to 1. These
conditions are obtained by multiplying the element a by an appropriate element of R,
and removing a multiple of a from b. Note that we require that the output element v
should not be too large. As b is not multiplied by anything, these normalization
steps will not impact this output property. After these first five steps, the core of
the algorithm begins. It mainly consists in the creation of a good target vector t
in Rν+1, followed by a CVP computation in the lattice L.

Theorem 4.4 (Heuristic). Assume that a satisfies c−d ≤ N (a) ≤ cd, with c as in
Lemma 2.5. Assume also that B and r are chosen so that
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Algorithm 4.1 A Euclidean division over R

Input: A fractional ideal a, and two elements a ∈ K×R and b ∈ KR.
Output: A pair (u, v) ∈ R× a.

Computing a better pair (a1, b1)
1: Find s ∈ a−1 \ {0} such that ‖s‖∞ ≤ c · N (a−1)1/d as in Lemma 2.5.
2: Find y ∈ R \ {0} such that ‖ya‖∞ ≤ c · |N (a)|1/d as in Lemma 2.5 (with ideal 〈a〉). Define
a1 = ya.

3: Solve CVP in R to find x ∈ R such that ‖b/(s · a1)− x‖ ≤ ρ(R).
4: Find k ∈ Z ∩ [−d, d] such that |N (b− xsa1 + ksa1)| ≥ |N (sa1)| (see Lemma 4.3).
5: Define b1 = b+ (k − x)s · a1.

Defining the target vector and solving CVP
6: Compute (wt,j)j≤r0 and gt such that a−1 =

∏
j p

wt,j

j 〈gt〉. Let wt = (wt,j)j≤r0 .

7: Let at = (logN|b1/(a1gt)|)/
√
d, θt be the first r1 + r2 coordinates of Log(b1/(a1gt)) and ht =

iE∩H(ΠH(Log(b1/(a1gt))).
8: Define t = (βat‖βθt‖βht‖wt‖0).
9: Solve CVP in L with target vector t, to obtain a vector s.

Using s to create a good ring element
10: Write s = (βas‖βθs‖βhs‖ws‖w′s) and let gs ∈ K∗ be the associated element as in Lemma 4.2.

11: Define the ideal I = a
∏
j:ws,j−wt,j<0 p

wt,j−ws,j

j

∏
j:w′

s,j<0 q
−w′

s,j

j .

12: Find v ∈ I \ 0 such that ‖v‖∞ ≤ c · N (I)1/d as in Lemma 2.5.
13: Define u′ = gs · gt · v.
14: return (u′y + (k − x)sy · v, v).

B ≥ max

(
100 · d · log[(ρ(R) + d)c4], log hK · (103 · δ0

δ
)2
)
,

α0 :=
√

2π
(( 2B

r0.96
)B · δB(detΛ)hK

)1/d
≤ ε

43 ·
√
d · (ρ(R) + d)c4 · 20.55·δ·B/d

,

for some ε > 0. Assume also that α0 ≤ (ln d)/(12d2.5), and set the scaling pa-
rameter β of BL as in Heuristic 1. Then, under Heuristic 1 and the heuristics
of Lemma 2.5, Algorithm 4.1 outputs a pair (u, v) ∈ R× a with

‖ua+ vb‖∞ ≤ ε · ‖a‖∞,
‖v‖∞ ≤ c · 20.55·δ·B/d.

Apart from the CVP calls in R,LK and L, Algorithm 4.1 runs in quantum polynomial
time.

Proof. Throughout the proof, we keep the notations of Algorithm 4.1.
We first prove that (u, v) ∈ R× a. As s ∈ a−1 and x, k, y ∈ R, it suffices to prove

that (u′, v) ∈ R× a. By definition of gt and gs, we have

〈gsgt〉 = a−1
∏
j

p
ws,j−wt,j
j

∏
j

q
w′s,j
j = J · I−1,

with J =
∏
j:ws,j−wt,j>0 p

ws,j−wt,j
j

∏
j:w′s,j>0 q

w′s,j
j . As the pj ’s and qj ’s are integral

ideals, we see that J ⊆ R and I ⊆ a. As v ∈ I, we obtain that v ∈ a. Since
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gs · gt ∈ JI−1 and v ∈ I, we also have u′ = gsgtv ∈ JI−1I = J ⊆ R. This gives our
first claim.

As a preliminary step towards bounding ‖ua+ bv‖∞ = ‖u′a1 + vb1‖∞, we study
the sizes of a1 and b1. Using the equality b1 = b− xsa1 + ksa1, we have

‖b1‖∞ ≤ (‖b/(sa1)− x‖∞ + |k|) · ‖sa1‖∞ ≤ (ρ(R) + d) · ‖s‖∞ · ‖a1‖∞.

By definition of a1, we have ‖a1‖∞ ≤ c‖a‖∞. By assumption on a, we also have
‖s‖∞ ≤ c · N (a−1)1/d ≤ c2. Hence, we obtain

‖b1‖∞ ≤ (ρ(R) + d)c3‖a‖∞.

Now, by definition of a1, we know that ‖a1‖∞ ≤ c · |N (a1)|1/d. Hence, we obtain

c−1 ≤ |N (b1/a1)|1/d ≤ c · ‖b1‖∞
‖a1‖∞

≤ (ρ(R) + d) · c3.

The left inequality is provided by the choice of k at Step 4 (and the fact that
N (s) ≥ N (a−1)).

To bound ‖u′a1+vb1‖∞, we estimate the closeness of t and s. If t was in Span(L),
then we could apply Heuristic 1. As this is not necessarily the case, we first need
to compute the distance between t and Span(L). This is done in the proof of the
following lemma, which is provided after the current proof.

Lemma 4.5 (Heuristic). Under the assumptions of Theorem 4.4, we have ‖s −
t‖2 ≤

√
1.06 ·B.

This lemma implies that

‖(as‖θs‖hs)− (at‖θt‖ht)‖2 ≤
√

1.06 ·B/β ≤ 15 ·
√
d · α0.

By definition of t and construction of L, this means that

‖Log(gtgs · a1/b1)‖2 = ‖(as‖θs‖hs)− (at‖θt‖ht)‖2 ≤ 15 ·
√
d · α0.

Recall that u′/v = gtgs. Hence we have ‖Log(u′a1) − Log(vb1)‖∞ ≤ 15 ·
√
d · α0.

Using Lemma 4.1, we deduce that

‖u′a1 − vb1‖∞ ≤ (e15·
√
2d·α0 − 1) · ‖b1‖∞ · ‖v‖∞

≤ 43 ·
√
d · α0 · ‖b1‖∞ · ‖v‖∞,

where we used the fact that α0 ≤ (ln d)/(12d2.5) and so the exponent should be
smaller than (ln 2)/

√
2 for d large enough. We have already bounded ‖b1‖∞. We

now bound ‖v‖∞. By definition of v, we have ‖v‖∞ ≤ c · N (I)1/d. The task is then

to provide an upper bound on N (I). As IJ = a ·
∏
j p
|ws,j−wt,j |
j ·

∏
j q
|w′s,j |
j , we have:

logN (IJ) = logN (a) +
∑
j

|ws,j − wt,j | logN (pj) +
∑
j

|w′s,j | · logN (qj)

≤ logN (a) + ‖ws −wt‖1 · δ0 + ‖w′s‖1 · δ
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Recall from Lemma 4.5 that we have ‖s− t‖2 ≤
√

1.06 ·B. This implies that ‖ws−
wt‖2, ‖w′s‖2 ≤

√
1.06 ·B. Note that

‖ws −wt‖1 ≤
√
r0 · ‖ws −wt‖2 ≤ 1.03 ·

√
B · r0 ≤ 0.01 · δ

δ0
·B,

by assumption on B and the fact that r0 ≤ log hK . For w′s, we use the fact that it
has integer coordinates, to obtain ‖w′s‖1 ≤ ‖w′s‖22 ≤ 1.06 ·B. We thus obtain

logN (IJ) ≤ logN (a) + 1.07 · δ ·B.

As J is integral, this gives an upper bound on N (I). However this upper bound is not
sufficient for our purposes. We improve it by giving an upper bound on logN (IJ−1),
using the fact that the ideal IJ−1 is designed to have an algebraic norm close to the
one of a1/b1. Recall that a1 and b1 are constructed so that N (a1/b1) is close to 1,
which means that I and J should have roughly the same norm. More precisely, it
is worth recalling that I−1J = 〈gsgt〉, and that ‖Log(gtgs · a1/b1)‖2 ≤ 15 ·

√
d · α0.

Looking at the first coordinate of the Log vector and multiplying it by
√
d shows

that | log |N (gsgt)|+ log |N (a1/b1)| | ≤ 15 · d · α0. This gives us

logN (IJ−1) ≤ | log |N (a1/b1)| |+ 15 · d · α0

Combining the bounds on logN (IJ) and logN (IJ−1), we finally obtain that

logN (I) ≤ 1

2
· | logN (a)|+ 0.535 · δ ·B +

1

2
· | log |N (a1/b1)||+ 7.5 · d · α0.

We have seen that c−1 ≤ |N (b1/a1)|1/d ≤ (ρ(R) + d) · c3. Finally, recall that
c−d ≤ N (a) ≤ cd. Hence, we conclude that | log |N (a1/b1)|| + | logN (a)| ≤ d ·
log((ρ(R) + d) · c4) ≤ 0.01 · B by assumption on B. Recall that we assumed that
α0 ≤ (ln d)/(12d2.5) ≤ 1/d. Hence, we have d · α0 ≤ 1. Using the fact that B ≥ 750
(which is implied by the second term in the max), we obtain 7.5 · d · α0 ≤ 0.01 · B.
We conclude that

logN (I) ≤ 0.55 · δ ·B.

Collecting terms and using the assumptions, this allows us to write

‖u′a1 − vb1‖∞ ≤ 43 ·
√
d · α0 · ‖b1‖∞ · ‖v‖∞

≤ α0 · 43 ·
√
d · 20.55·δ·B/d · (ρ(R) + d)c4‖a‖∞

≤ ε · ‖a‖∞.

Finally, the run-time bound follows by inspection. ut

Proof (Proof of Lemma 4.5).
By the Pythagorean theorem, if tL is the orthogonal projection of t onto L, then

we have

‖t− s‖22 = ‖t− tL‖2 + ‖tL − s‖2 = dist(t,Span(L))2 + ‖tL − s‖2.

This quantity is minimal when ‖tL − s‖ is minimal, and so the closest point to t
in L is also the closest point to tL.
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First, observe that Span(L) (of dimension ν) is exactly

{
(βa‖βθ‖βh‖w‖w′) ∈ Rν+1 : a =

∑
j

wj
logN (pj)√

d
+
∑
j

w′j
logN (qj)√

d

}
.

Define v = (−
√
d/β, 0, . . . , 0, logN (p1), . . . , logN (qr))

T , where the block of zeros
has dimension 2(r1 + r2)− 1. It is orthogonal to Span(L) and satisfies ‖v‖ >

√
r, as

each one of the last r coefficients is > 1. Hence

dist(t, Span(L)) =
|〈v, t〉|
‖v‖

<
| −
√
dat +

∑
j wt,j logN (pj)|√
r

=
| − log |N (b1/(a1gt))| − logN (a)− log |N (gt)||√

r

=
| log |N (a1/b1)| − logN (a)|√

r
.

We have seen in the proof of Theorem 4.4 that | log |N (a1/b1)|| ≤ d·log((ρ(R)+d)·c3).
By assumption on a, we have that | log |N (a1/b1)||+| logN (a)| ≤ d·log((ρ(R)+d)·c4).
The latter bound is ≤ 0.01 ·B. So we obtain that dist(t,Span(L)) ≤ 0.01 ·B/

√
r ≤√

0.01 ·B.
As ‖t− tL‖2 ≤ 0.01 ·B/

√
r and the last r entries of t are zero, we have that the

last r entries of tL have euclidean norm≤ 0.01·B/
√
r. We can hence apply Heuristic 1

to tL, which gives us ‖t− s‖22 = ‖t− tL‖2 + ‖tL − s‖2 ≤ 0.01 ·B + 1.05 ·B. ut

We observe that the parameters r and B of Theorem 4.4 can be instantiated as
B = Õ(log |∆|+ d log ρ(R)) and r0.96 = Θ((1/ε)d/B · B · 20.55δ). Thanks to the 0.55
in the exponent, this choice of r is compatible with the condition r ≤ O(2δ/δ) which
was required for the construction of the lattice L (recall that we want r prime ideals
of norm smaller than 2δ). We note also that the constants 0.96 and 0.55 appearing
in the exponent can be chosen as close as we want to 1 and 0.5 respectively, by
adapting the argument above. Hence, assuming (1/ε)d/B = O(1), we expect to be
able to choose 2δ as small as B2+η for any η > 0. Overall, the following corollary gives
an instantiation of Theorem 4.4 with parameters that are relevant to our upcoming
divide-and-swap algorithm.

Corollary 4.6 (Heuristic). Let ε = 1/2Õ(log∆K)/d. For any η > 0, there ex-
ists a lattice L′ of dimension Õ((log |∆K | + d log ρ(R))2+η), an upper bound C =

2Õ(log |∆K |+d log ρ(R))/d and an algorithm A that achieve the following. Under Heuris-
tic 1 and the heuristics of Lemma 2.5, algorithm A takes as inputs a ∈ K×R , b ∈ KR
and an ideal a satisfying c−d ≤ N (a) ≤ cd, and outputs u, v ∈ R× a such that

‖ua+ bv‖∞ ≤ ε · ‖a‖∞
‖v‖∞ ≤ C.

If given access to an oracle solving the closest vector problem in L′ in polynomial
time, and when restricted to inputs a, b belonging to K, Algorithm 4.1 runs in quan-
tum polynomial time.
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Proof. Consider an instantiation of Theorem 4.4 with B = Θ̃(log |∆| + d log ρ(R)),
δ = 2.451 · log2B and r = B2.45. This choice of parameters asymptotically satisfies
r ≤ O(2δ/δ), which was required for the generation of the lattice L. It also satisfies
the constraints of Theorem 4.4. It can be checked by proof inspection that the
constant 2.45 can be adapted to 2 + η for an arbitrary η > 0, which allows to obtain
the asymptotic parametrization of the statement. Finally, observe that the algorithm
relies on oracles that solve CVP in R, LK and L. We can consider the direct sum of
these lattices, to obtain a single lattice L′. ut

4.5 The divide-and-swap algorithm

In this subsection, we describe a divide-and-swap algorithm, which takes as input a
pseudo-basis of a rank-2 module and outputs a short non-zero vector of this module
(for the algebraic norm). In order to do so, we will need to link the Euclidean and
algebraic norms of vectors appearing during the execution, and limit the degree of
freedom of the ideal coefficients. For this purpose we use a strengthening of the
notion of scaled pseudo-bases from Section 3.2.

Definition 4.7. A pseudo-basis ((Ii,bi))i≤n, with Ii ⊂ K and bi ∈ Km
R for all i ≤ n,

is said strongly scaled if, for all i ≤ n,

R ⊆ Ii, N (Ii) ≥ c−d and ‖rii‖∞ ≤ c · N (riiIi)
1/d,

where c is as in Lemma 2.5.

Algorithm 4.2 below strongly scales a given module pseudo-basis. It is a direct
adaptation of Algorithm 3.2 in which the LLL algorithm is replaced by the algorithm
from Lemma 2.5 (relying on a CVP oracle for LK).

Algorithm 4.2 Strongly scaling the ideals.
Input: A pseudo-basis ((Ii,bi))i≤n of a module M .
Output: A strongly scaled pseudo-basis ((I ′i,b

′
i))i≤n of M .

1: for i = 1 to n do
2: Use Lemma 2.5 to find si ∈ rii · Ii \ {0} such that ‖si‖∞ ≤ c · N (riiIi)

1/d;
3: Write si = rii · xi, with xi ∈ Ii;
4: Define I ′i = Ii · 〈xi〉−1 and b′i = xibi.
5: end for
6: return ((I ′i,b

′
i))i≤n.

Lemma 4.8. Algorithm 4.2 outputs a strongly scaled pseudo-basis of the module M
generated by the input pseudo-basis and preserves the N (riiIi)’s. If given access to
an oracle that solves CVP in the lattice LK of Lemma 2.5, and if M ⊆ Rm, then it
runs quantumly in time polynomial in the input bit-length and in log∆K .

The proof is a direct adaptation of the proof of Lemma 3.6. We will use it in
dimension 2, but stated it in dimension n (for the sake of consistency).

We can now describe Algorithm 4.3, our divide-and-swap algorithm. During the
execution of the algorithm, the R-factor of the current matrix (b1|b2) is always
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computed. The algorithm is very similar to the LLL algorithm in dimension 2, except
for Step 4, which is specific to this algorithm. This step ensures that when we swap
the vectors, we still obtain a pseudo-basis of the input module. This seems necessary,
as our Euclidean division over R involves a multiplication of the second vector by a
ring element, and hence the new vector and the second pseudo-basis vector may not
span the whole module anymore. At Step 4, note that the gcd is well-defined, as 〈u〉
and 〈v〉a−1 are integral ideals. As an alternative to Step 4, we could use Lemma 2.8
as in Algorithm 3.1.

Algorithm 4.3 Divide-and-swap.

Input: A pseudo-basis ((a1,b1), (a2,b2)) of a module M ⊂ K2
R.

Output: A vector v ∈M .
1: while (γ/c)dN (r22a2) < N (r11a1) do
2: Strongly scale the pseudo-basis ((a1,b1), (a2,b2)) using Algorithm 4.2.
3: Apply Algorithm 4.1 to (a, b, a) = (r11, r12, a2 · a−1

1 ) and ε = 1/(4c). Let (u, v) be the output.

4: Let b = gcd(〈u〉, 〈v〉a−1), find x ∈ a−1b−1 and y ∈ b−1 such that uy − vx = 1.
5: Update (b1,b2)← (ub1 + vb2, xb1 + yb2) and (a1, a2)← (a1b

−1, a2b).
6: end while
7: Strongly scale the pseudo-basis ((a1,b1), (a2,b2)) using Algorithm 4.2.
8: return b1

Lemma 4.9. Let γ ≥ 4 · C · c2, where C is as in Corollary 4.6. Then, given as
input a pseudo-basis of a rank-2 module M ⊂ K2

R, Algorithm 4.3 outputs a vector
v ∈M \ {0} such that N (v) ≤ γdλN1 (M). Further, if M ⊆ Rm and Algorithms 4.1
and 4.2 run in polynomial time, then Algorithm 4.3 runs in time polynomial in the
input bit-length and in log∆K .

Proof. Let us first prove that the pseudo-basis ((a1,b1), (a2,b2)) we have throughout
the execution of the algorithm remains a pseudo-basis of M . By Lemma 4.8, this
property is preserved through Steps 2 and 7. It remains to prove it for Step 5. At

this step, we multiply
(
b1 b2

)
on the right by U :=

(
u x
v y

)
. Let a1, a2 (resp. a′1 =

a1b
−1, a′2 = a2b) denote the coefficient ideals at the start (resp. completion) of Step 5.

We know from the preliminaries that this transformation outputs a pseudo-basis of
the same module if U is invertible over K and uij ∈ ai(a

′
j)
−1 and u′ij ∈ a′i(aj)

−1 for

all i, j ∈ {1, 2}, with U′ = U−1. In our case, because we asked that uy−vx = 1, then

U is indeed invertible and we have U−1 =

(
y −x
−v u

)
. Observe that by definition of

b = gcd(〈u〉, 〈v〉a−1), we have u ∈ b and v ∈ a · b = a−11 a2b. Using these properties
and the fact that x ∈ a1a

−1
2 b−1 and y ∈ b−1 by definition, one can then check that

all the conditions uij ∈ ai(a
′
j)
−1 and u′ij ∈ a′i(aj)

−1 are indeed satisfied.

We now prove that the output vector v belongs to M . As v = b1, it suffices that
R ⊆ a1. This is provided by the application of Algorithm 4.2 at Step 7.

Assume now that the algorithm terminates, and let us show that the output
vector v satisfies N (v) ≤ γdλN1 (M). Because of the application of Algorithm 4.2 at
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Step 7, we have N (a1) ≥ c−d. This, and the inequality γ ≥ c, imply that N (b1) =
N (r11) ≤ cd · N (r11a1) ≤ γd · N (r11a1). On the other hand, because we exited the
while loop, we have (γ/c)dN (r22a2) ≥ N (r11a1) (by Lemma 4.8, Step 7 does not
change the values of N (r11a1) and N (r22a2)). We conclude that (using Lemma 2.6):

N (b1) ≤ γd ·min(N (r11a1),N (r22a2)) ≤ γdλN1 (M).

It remains to show that the algorithm is polynomial time if M ⊆ Rm (assuming
that Algorithms 4.1 and 4.2 are polynomial time). For this, we first prove that the
number of loop iterations is polynomial. We do so by proving thatN (r11a1) decreases
by a factor ≥ 2d at each iteration. As the product N (r11a1)N (r22a2) = det(M)/∆K

is constant and we stop whenever N (r11a1) becomes smaller than (γ/c)dN (r22a2),
the number of iterations is bounded by logN (r11a1)/d (for the r11 and a1 of the
input). Here, we used the fact that N (r11a1)N (r22a2) ≥ 1 (because M ⊆ R2) and
(γ/c)d ≥ 1, so we cannot enter the while loop if N (r11a1) < 1.

Recall that at the end of Step 2, we have ‖rii‖∞ ≤ c · N (riiai)
1/d for i = 1, 2.

Recall also that Algorithm 4.1 outputs u, v such that ‖ur11 +vr12‖∞ ≤ ε‖r11‖∞ and
‖v‖∞ ≤ C. The new vector b1 at the end of the loop iteration is ub1 + vb2. We
compute an upper bound on its algebraic norm:

N (ub1 + vb2) ≤ (
√
d)−d · ‖ub1 + vb2‖d = (

√
d)−d ·

∥∥∥∥(ur11 + vr12
vr22

)∥∥∥∥d
≤ (
√
d)−d · (‖ur11 + vr12‖+ ‖vr22‖)d

≤ (‖ur11 + vr12‖∞ + ‖vr22‖∞)d

≤ (ε‖r11‖∞ + ‖v‖∞ · ‖r22‖∞)d .

Using the facts that the basis is strongly scaled and that the condition of Step 1 is
satisfied, we have:

N (ub1 + vb2) ≤ cd ·
(
ε · N (r11a1)

1/d + C · N (r22a2)
1/d
)d

≤ cd · (ε+ C · (c/γ))d · N (r11a1).

Now, by choice of ε and γ:

N (ub1 + vb2) ≤ cd ·
(

1

4c
+

1

4c

)d
· N (r11a1) = 2−d · N (r11a1).

Recall that a1 is also updated as a1b
−1 at the end of the loop iteration. Hence, we

conclude by arguing that N (a1b
−1) ≤ 1. Note that N (a1) ≤ 1 holds due to scaling,

and that N (b) ≥ 1 holds because b is integral. Overall, we obtain that N (r11a1)
decreases by a factor ≥ 2d during a loop iteration.

To complete the cost analysis, we observe that all the steps run in polynomial
time, except maybe Step 4. In this step, it is a priori not obvious that the elements
x and y satisfying the stated conditions even exist. The conditions can be re-stated
as uy ∈ 〈u〉b−1, vx ∈ 〈v〉a−1b−1 and uy − vx = 1. Hence such x, y exist if the ideals
〈u〉b−1 and 〈v〉a−1b−1 are coprime. This is indeed the case, by construction of b.
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Further, we can compute x, y in polynomial time by computing a basis of the lattice
spanned by the two ideals (which is R, as they are coprime). Finally, note that by
ideal scaling and the fact that the quantity N (r11a1) decreases throughout the al-
gorithm, all pseudo-bases occurring through the execution have bit-sizes polynomial
in the input bit-size. ut

Instantiating this lemma with the value of C obtained in Corollary 4.6, we obtain
the following corollary.

Corollary 4.10 (Heuristic). For any number field K and any η > 0, there exists
a lattice L′ of dimension Õ((log |∆K | + d log ρ(R))2+η), a choice of the approxima-

tion factor γ = 2Õ(log |∆K |+d log ρ(R))/d and an algorithm A such that the following
holds. Under Heuristic 1 and the heuristics of Lemma 2.5, algorithm A takes as
input a pseudo-basis of a rank-2 module M ⊂ K2

R, and outputs a vector v ∈ M
such that N (v) ≤ γdλN1 (M). If given access to an oracle solving the closest vector
problem in L′ in polynomial time, and when restricted to modules contained in K2,
Algorithm A runs in quantum polynomial time.

Proof. The corollary is obtained by combining Lemma 4.9 with Corollary 4.6. To

apply Corollary 4.6, we need 1/ε = 2Õ(log∆K)/d, which is indeed the case in Algo-
rithm 4.3. Note that the choice of ε in Algorithm 4.3 only depends on K. ut
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of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-
IDEX-0007) operated by the French National Research Agency (ANR).

References

AD17. M. R. Albrecht and A. Deo. Large Modulus Ring-LWE ≥Module-LWE. In ASIACRYPT,
2017.

Ajt96. M. Ajtai. Generating hard instances of lattice problems. In STOC, 1996.
Ajt98. M. Ajtai. The shortest vector problem in l2 is NP-hard for randomized reductions. In

STOC, 1998.
BEF+17. J.-F. Biasse, T. Espitau, P.-A. Fouque, A. Gélin, and P. Kirchner. Computing generator

in cyclotomic integer rings. In EUROCRYPT, 2017.
BF14. J.-F. Biasse and C. Fieker. Subexponential class group and unit group computation in

large degree number fields. LMS J Comput Math, 2014.
BFH17. J.-F. Biasse, C. Fieker, and T. Hofmann. On the computation of the HNF of a module

over the ring of integers of a number field. J Symb Comput, 2017.
BGV14. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption

without bootstrapping. ToCT, 2014.
BP91. W. Bosma and M. Pohst. Computations with finitely generated modules over Dedekind

domains. In ISSAC, 1991.
BS96. E. Bach and J. O. Shallit. Algorithmic Number Theory: Efficient Algorithms. MIT Press,

1996.
BS16. J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class groups and

solving the principal ideal problem in arbitrary degree number fields. In SODA, 2016.

36



Buc94. J. Buchmann. Reducing Lattice Bases by Means of Approximations. In ANTS, 1994.
CDW17. R. Cramer, L. Ducas, and B. Wesolowski. Short Stickelberger class relations and appli-

cation to ideal-SVP. In EUROCRYPT, 2017.
Cer05. J.-P. Cerri. Spectres euclidiens et inhomogènes des corps de nombres. PhD thesis, Uni-
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A Numerical experiments

In this section, we provide some numerical experiments confirming our heuristic
arguments of Section 4.3. The code used to run these experiments is available at
https://github.com/apelletm/code_module_LLL. We first tested experimentally
the assumption we made on the distribution of the first coordinate of the vectors
(which is related to the norm of the ideals). We show below that our assumption
on the asymptotic behaviour of Pr(|

∑
j>0.04·B w′s,j logN (qj) − b′t| ≤ α

√
d) seems

reasonable. We then performed experiments to test Heuristic 1 as a whole. Because
the complexity of these experiments grows as 2d

2
with d the degree of the number

field, we could not test the heuristic on number fields of large degree. For the number
fields of small degree we tested, Heuristic 1 seems to hold.

A.1 Testing the distribution of the norm

In this section, we provide some experimental results justifying our assumption that

Pr(|
∑

j>0.04·B
w′s,j logN (qj)− b′t| ≤ α

√
d) ≥ α

√
d

Bδ
,

for any target b′t satisfying |b′t| ≤ δ. Write p` = Pr(|
∑

j>0.04·B w′s,j logN (qj) −
b′t| ≤ `). We first checked that for a fixed number field and choice of B and δ,
this probability is proportional to ` (for small `’s). To do so, we used the following
procedure:

– select ` in some interval;
– choose a random target b′t uniformly in [−δ, δ];
– sample 500 000 points according to the distribution of

∑
j w′s,j logN (qj);

– count those that are at distance at most ` of b′t.

This gives us an empirical probability p`. One can have in mind that ` should
be small, as α

√
d = O(d−3/2 log d). We then computed it for different values of `

ranging in [0.001, 0.01], [0.01, 0.1] and [0.1, 1], to check that the our assumption on
the proportionality still looked reasonable for different orders of magnitude of `. The
results are plotted in Figures A.1, A.2 and A.3 for a power of two cyclotomic field,
a cyclotomic field which is not a prime power, and a “random” number field (the
coefficients of the defining polynomial being chosen uniformly at random between
−4 and 4). One can observe that the probabilities are indeed proportional the length
of the interval `, and that the proportionality factor is roughly the same for the three
different ranges of `.

These results suggest that assuming p` = c ·` for some c is reasonable. It remains
to check the asymptotic behavior of the proportionality factor c compared to 1/(Bδ)
We hence computed an empiric c for different cyclotomic number fields of increasing
degree.7 We set B = d and δ = d2 log(d2), as these are roughly the values that we
want to choose later on in our algorithm. The number of points used to compute
the empirical probabilities p` was set to 10 000 and we chose ` ranging in [0.1, 1] to

7 We restricted to cyclotomic fields to allow faster experiments.
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Fig.A.1. Empirical probability p` as a function of ` in a cyclotomic field of conductor 64 (degree
32)
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Fig.A.3. Empirical probability p` as a function of ` in a “random” number field of degree 32

compute the slope. Then, we computed 1/c and Bδ and observed that 1/c is indeed
smaller than Bδ (see Table 1). We also plotted the values of 1/c as a function of Bδ
in Figure A.4. The results suggests that the value 1/c increase linearly with Bδ, with
a slope smaller than 1. Therefore it seems reasonable to assume that the inequality
1/c ≤ Bδ holds asymptotically.

d 8 16 20 24 32 36 40 44 48 54 56 60 64 66 70

m 16 32 44 35 64 57 100 69 65 81 87 99 128 67 71

B · δ 64 168 225 284 409 475 541 609 678 783 819 891 964 1000 1074

1/c 33 87 39 93 67 124 97 116 99 113 142 142 162 159 189

Table 1. Empirical values of 1/c for different cyclotomic number fields of conductor m and degree d
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Fig.A.4. Evolution of 1/c (computed empirically) as a function of Bδ

A.2 Testing the validity of Heuristic 1 in cyclotomic fields of small
dimension

We also tested the validity of Heuriscic 1 as a whole. We tried to test it with param-
eters relevant to its use in Algorithm 4.3, which means that r should be quadratic
in the dimension d of the number fields. As we needed to solve CVP instances in a
lattice of dimension larger than r, this means that we could only test number fields
of degree up to d = 8.

For each degree d = 4, 6, 8, we tested 3 different number fields of degree d,
and for every number field, we tested different values of r, ranging from roughly
d2 to 200. Once d and r were fixed, we defined δ = log(r)/ log(d) and B = 10 ·
max(log hK , 1)·max(δ0/δ, 1). Compared to the lower bound on B given in Heuristic 1,
the constant 100 has been replaced by 10 (because we want r ≥ B and we cannot
deal with r larger than 200). We also added the max with 1, because in the special
case we consider, the rings are principal, and so hK = 1 and δ0 = 0. We then defined
α0 and β as in Heuristic 1, except that the constant 0.96 in α0 was replaced by 1
and the constant 0.01 is β was replaced by 0.1. The constraint α0 ≤ ln d

12d2.5
was never

satisfied in our experiments, as it would have required r to be much larger. However,
the fact that this constraint is not satisfied should only make the distance between
the target points and the lattice larger, as it was used to ensure that the space of
solutions was not wrapped up modulo Λ (if the space is folded, it should decrease
the number of solutions).

Once all these parameters were computed, we constructed the lattice L as in
Heuristic 1. We then sampled 90 target points ti of the desired shape (i.e., in the
span on L and with their last r coordinates of Euclidean norm at most 0.01B/

√
r),

and computed the maximum distance of these points to the lattice L (by solving
CVP in L).

We plot on Figure A.5 the evolution the maximum distance maxi dist(ti, L) (in
blue) and

√
B (in red) as a function of r. The points on the curves are obtained

by taking the average value for the three number fields with the same degree d
(these values where very close, and taking the average smooths slightly the curves).
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One can observe that maxi dist(ti, L) is indeed smaller than
√
B (so in particular

smaller than
√

(1 + ε)B for any ε > 0), and that this seems to stabilize and hold
asymptotically.
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Fig.A.5. Evolution of maxi dist(ti, L) (in blue) and
√
B (in red) as a function of r. From left to

right: number fields of degree 4, 6 and 8.

Table 2 below gives more details on the parameters of the experiments. For
readability, we give the values only for one number field per degree d, but the values
for the other number fields of the same degree were very similar. In the table, we
provide the values of maxi dist(ti, L) and

√
B as plotted above, but also the values of

the parameters α0 and β. One can observe, as was mentioned above, that the values
of α0 we were able to reach never satisfy the constraint α0 ≤ ln d

12d2.5
. In particular,

in Algorithm 4.3, we use Heuristic 1 with α0 very small (of the order of 1/dlog d, as

we will have ε of this order of magnitude) and hence β = 1
α0

√
0.01B
2d should be quite

large (slightly more than polynomial in d). In the experiments, one can see that for
degree 6 and 8, we were only able to reach β = 2, which is not very realistic for our
concrete choice of parameters. In the case of degree 4, we reached more interesting
values of β (up to 16.7, which is roughly dlog d).

The table also contains intervals that we called ‘B in practice’. For a specific
target vector ti, the value ‘B in practice’ corresponds to the `1 norm of the last r
coordinates of vi, the closest point to ti in L. Recall that in our analysis, we heuristi-
cally assumed that the closest point to ti would have at most B non zero coefficients
(equal to 1 or −1) in its last r coordinates. We experimentally observed that, indeed,
the non-zero coefficients are 1 or −1, but it seems that the closest point has signifi-
cantly less than B non-zero coefficients. This does not invalidate the heuristic, but it
seems to say that the distance between ti and L might be less that what we expected
(and this is indeed what we observe when we compare maxi dist(ti, L) and

√
B). The

interval given in the table is the smallest interval containing all the ‘B in practice’
for all the 90 target points. One can observe that for degree 6 and 8, the numbers
‘B in practice’ remain very small (between 0 and 2), meaning that the closest point
can be obtained with a linear combination of a small number of the basis vectors
(at most 9 vectors among the 200 vectors of the basis). This is probably the reason
why the CVP solver is so fast and we can use it in lattices of dimension 200. In the
case of degree 4, the number ‘B in practice’ increases up to 4, and the run time of
the CVP solver degrades consequently.
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d r m α0 β B in practice maxi dist(ti, L)
√
B

4 20 5 20.5 0.0204 [0, 0] 0.0551 3.74
4 40 5 1.21 0.306 [0, 0] 0.760 3.32
4 60 5 0.403 0.878 [0, 2] 1.46 3.16
4 80 5 0.200 1.77 [0, 2] 1.61 3.16
4 100 5 0.116 3.06 [0, 3] 1.75 3.16
4 120 5 0.0740 4.78 [2, 3] 1.95 3.16
4 140 5 0.0508 6.96 [2, 4] 2.01 3.16
4 160 5 0.0366 9.66 [2, 4] 2.02 3.16
4 180 5 0.0274 12.9 [2, 4] 2.03 3.16
4 200 5 0.0212 16.7 [2, 4] 2.04 3.16

6 40 9 2.25 0.146 [0, 0] 0.471 3.61
6 60 9 0.919 0.344 [0, 0] 1.09 3.46
6 80 9 0.537 0.564 [0, 2] 1.46 3.32
6 100 9 0.388 0.743 [0, 2] 1.50 3.16
6 120 9 0.289 1.00 [0, 2] 1.54 3.16
6 140 9 0.224 1.29 [0, 2] 1.63 3.16
6 160 9 0.180 1.60 [0, 2] 1.76 3.16
6 180 9 0.149 1.94 [0, 2] 1.75 3.16
6 200 9 0.125 2.30 [2, 3] 1.94 3.16

8 60 16 1.40 0.178 [0, 0] 0.745 3.16
8 80 16 0.987 0.253 [0, 0] 1.06 3.16
8 100 16 0.751 0.333 [0, 1] 1.35 3.16
8 120 16 0.601 0.416 [0, 2] 1.49 3.16
8 140 16 0.498 0.502 [0, 2] 1.49 3.16
8 160 16 0.422 0.592 [0, 2] 1.56 3.16
8 180 16 0.366 0.684 [0, 2] 1.57 3.16
8 200 16 0.321 0.778 [0, 2] 1.62 3.16

Table 2. Experimental values of the different parameters of Heuristic 1, observed in cyclotomic
fields of conductor m and degree d, for different values of r.

Overall, the experiments seem consistent with the heuristic for these cyclotomic
fields, but this is not very satisfactory as we could test only very small cyclotomic
number fields. It could be that the small degree of the number fields (and the fact
that they are principal) changes completely the behaviour of the heuristic. Also,
the parameter setting of our algorithm is asymptotic (with hidden constants and
logarithms in the Õ), so testing it for only 3 number fields of very small degree does
not say a lot. Our code is open access and has been done to handle any number
field, so it could be used to create the lattice L for much larger number fields, but
then the CVP step would be very costly.
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