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Abstract. ISO/IEC standardizes several chosen ciphertext-secure key
encapsulation mechanism (KEM) schemes in ISO/IEC 18033-2. However,
all ISO/IEC KEM schemes are not quantum resilient. In this paper, we
introduce new isogeny-based KEM schemes (i.e., CSIDH-ECIES-KEM
and CSIDH-PSEC-KEM) by modifying Diffie-Hellman-based KEM schemes
in ISO/IEC standards. The main advantage of our schemes are compact-
ness. The key size and the ciphertext overhead of our schemes are about
five times smaller than these of SIKE-KEM which is submitted to NIST’s
post-quantum cryptosystems standardization.
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1 Introduction

1.1 Isogeny-based Cryptosystems

Post-quantum cryptosystems (PQC) are one of hottest research topics in cryp-
tography due to the emerging of quantum computers. Though the most studied
PQC is lattice-based, other alternatives are also required for risk diversification
as NIST’s PQC standardization [NIST]. Isogeny-based cryptosystems are one
of candidates of PQC. Given two elliptic curves E,E′/Fp, non-zero homomor-
phism ψ : E → E′ is called an isogeny. By Vélu’s formula [Vél71], given an
elliptic curve E and a point R on E, we can efficiently compute an isogeny
ψ : E → E/〈R〉 with kernel 〈R〉 by choosing an appropriate parameter. On the
other hand, given two isogenous elliptic curves E and E′, to find (a compact
representation of) isogeny ψ : E → E′ (the isogeny computation problem) is
believed to be hard even for quantum computers. Isogeny-based cryptosystems
rely on the isogeny computation problem and its derivations. The advantage of
isogeny-based cryptosystems against other PQC candidates is compactness of
the key size and the ciphertext size.

Couveignes [Cou06] initiated the research of isogeny-based cryptography by
formulating the basic notion of hard homogeneous spaces (HHSs) which is an
abstract form of isogeny graphs and class groups of endomorphism rings of (or-
dinary) elliptic curves. Rostovtsev and Stolbunov [RS06] proposed a DH type



key exchange scheme from ordinary elliptic curve isogenies. On the other hand,
Childs et al. [CJS14] showed that the isogeny computation problem on ordinary
elliptic curve isogenies can be analysed in quantum subexponential time. Then,
Jao et al. [JF11] proposed supersingular isogeny-based DH type key exchange
(SIDH) scheme because no quantum subexponential time analysis is known for
the isogeny computation problem on supersingular elliptic curve isogenies. It is
known that j-invariants j(E) = j(E′) (where j(E) is deterministically derived
from E) iff elliptic curves E and E′ are isomorphic. SIDH uses this property to
share j-invariants as the common session key between parties. Also, Castryck
et al.[CLM+18] proposed a new HHS-based key exchange scheme called CSIDH
(commutative SIDH), which is constructed from a group action on the set of
supersingular elliptic curves defined over a prime field. Since the group action is
commutative in CSIDH, we can deal with it as a similar manner to classical DH
key exchange. In CSIDH, a common secret curve is obtained between parties
resulting from the group action, and the Montgomery coefficient of the curve
is shared as the common session key. Moreover, validity of public keys can be
efficiently verified while SIDH has no efficient method yet. Hence, CSIDH is very
compatible to classical DH.

There is a trade-off between the SIDH system and the CSIDH system. The
advantage of SIDH is that computational time is relatively faster than the CSIDH
while it is slower than other PQC candidates. For the security level corresponding
to 64 bit quantum security and 128 bit classical security (i.e., NIST category
1 [NIST]), computational time for the SIDH key exchange is about 10 times faster
than the CSIDH key exchange. On the other hand, the advantage of CSIDH is
that the key size is more compact than SIDH while the key size of SIDH is also
more compact than other PQC candidates. For the parameter of NIST category
1, the key size is about one fifth of these of SIDH. Also, another major advantage
of CSIDH is efficient public key validation and applicability to non-interactive
key exchange.

For NIST’s PQC competition, a key encapsulation mechanism (KEM) scheme
based on SIDH, called SIKE-KEM [SIKE17], was submitted as the only isogeny-
based submission, and it now survives at the second round. SIKE-KEM satisfies
chosen ciphertext (CCA) security in the classical random oracle (RO) model. It
is obtained by applying a generic construction [HHK17] to a chosen plaintext
(CPA) secure public key encryption (PKE) scheme, called SIKE-PKE, which is
an extension of the hashed ElGamal PKE to SIDH-based. SIKE-KEM achieves
the most compact key size and ciphertext length among NIST PQC submissions.
However, the key size and the ciphertext size are still relatively large compared
to classical DH-based KEM schemes. For example, SIKE-KEM needs the public
key of 2640 bit and the ciphertext of 3152 bit for the parameter of NIST category
1, but ECIES-KEM [ISO] only needs the public key of 256 bit for the same level
of classical security. Hence, it is an interesting question how compact we can
achieve CCA-secure post-quantum KEM.
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1.2 ISO/IEC Standards KEM

ISO/IEC standardizes several CCA-secure KEM schemes in ISO/IEC 18033-
2 [ISO]. Such standards are important in the real world because it is helpful to
implement a KEM scheme in an IT system by non-specialist engineers. Since
ISO/IEC standards have been implemented in various systems and many theo-
retical and implementation attacks would be examined, the structures and se-
curity of these schemes are reliably sound by its maturity.

In ISO/IEC 18033-2, four DH-based schemes, two RSA-based schemes and
a factoring-based scheme are standardized. In this paper, we focus on DH-based
schemes (ECIES-KEM, PSEC-KEM, ACE-KEM and FACE-KEM). All these
schemes satisfy CCA-security. ECIES-KEM and PSEC-KEM are proved in the
RO model, and ACE-KEM and FACE-KEM are proved in the standard model
(i.e., without ROs). The merit of ECIES-KEM and PSEC-KEM is compactness.
For example, for 128 bit security, the public key size is 256 bit, and the ciphertext
size (overhead) is 256 bit for ECIES-KEM and 384 bit for PSEC-KEM.

However, all KEM schemes in ISO/IEC 18033-2 are not quantum-resilient.
If quantum computers become practical, it is known that underlying DH, RSA
and factoring problems are solved in a quantum polynomial-time by Shor’s al-
gorithm [Sho94] and its variant. It is desirable to construct post-quantum KEM
schemes without changing structures of standards.

1.3 Our Contribution

We give a post-quantum variants of CCA-secure KEM schemes standardized in
ISO/IEC. Our scheme inherits the same structures as original KEM schemes; and
thus, it is structurally sound by maturity of standards. Specifically, we extend
PSEC-KEM and ECIES-KEM to CSIDH-based, called CSIDH-PSEC-KEM and
CSIDH-ECIES-KEM. We use group action operations of the CSIDH system
instead of elliptic curve scalar multiplications of original schemes. Thanks to
compatibility of CSIDH to DH, we can retain original structures.

Also, since we can consider DH-like hard problems in the CSIDH system,
CCA-security can be proved by a similar manner as original proofs in the RO
model. On the other hand, in the quantum setting, an adversary poses quantum
queries to ROs. It means that security proofs in the quantum RO (QRO) model
are desirable. Hence, we show the security proof of CSIDH-PSEC-KEM in the
QRO model. Proofs in the QRO model have several difficulties which do not
happen in the RO model. Specifically, a simulator cannot extract a quantum hash
query (i.e., a quantum superposition) from the hash list due to the no-cloning
theorem, and must generate random values for exponentially many positions
in order to simulate outputs of the hash function. We solve these hurdles by
applying Zhandry’s simulation technique [Zha12] to our security proof. Due to
the former difficulty of the QRO model, we prove security of CSIDH-PSEC-KEM
under the decisional DH-like (CSI-DDH) assumption while PSEC-KEM can be
proved under the computational DH assumption. For CSIDH-ECIES-KEM, it
is not easy to prove security in the QRO model because the proof needs the
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gap DH-like (CSI-GDH) assumption which is not comparable to the decisional
DH-like assumption.

The main advantage of our schemes are compactness. CSIDH-ECIES-KEM
has the public key of 512 bit and the ciphertext of 512 bit for the parameter
of NIST category 1.1 It is just twice of original ECIES-KEM. Also, CSIDH-
PSEC-KEM has the public key of 512 bit and the ciphertext of 640 bit for the
parameter of NIST category 1. It is also comparable to classical DH-based KEM
schemes while security can be proved in the QRO model. A detailed efficiency
estimation is given in Section 5.

To summarize, our contribution is as follows:

– We introduce CSIDH-PSEC-KEM by extending PSEC-KEM to CSIDH-
based. CCA-security is proved in the QRO model under the CSI-DDH as-
sumption. It has the public key of 512 bit and the ciphertext of 640 bit for
the parameter of NIST category 1. CSIDH-PSEC-KEM is the most compact
post-quantum CCA-secure KEM in the QRO model as far as we know.

– We introduce CSIDH-ECIES-KEM by extending ECIES-KEM to CSIDH-
based. CCA-security is proved in the RO model under the CSI-GDH as-
sumption. It has the public key of 512 bit and the ciphertext of 512 bit for
the parameter of NIST category 1. CSIDH-ECIES-KEM is the most compact
post-quantum CCA-secure KEM as far as we know.

– We discuss difficulty of extending ACE-KEM and FACE-KEM to CSIDH-
based as CSIDH-PSEC-KEM and CSIDH-ECIES-KEM. Though the CSIDH
system is compatible to classical DH, there is a gap between algebraic struc-
tures. Due to the gap it is impossible to extend these schemes with retaining
original structures. Hence, it indicates that we do not always replace known
DH-based constructions to CSIDH-based.

1.4 Related Work

Recently, several generic constructions of post-quantum CCA-secure KEM (i.e.,
in the QRO model) are studied. Boneh et al. [BODF+11] proved a KEM vari-
ant of Bellare-Rogaway construction based on a one-way trapdoor function is
CCA-secure in the QRO model. Targhi and Unruh [TU16] proposed a variant
of Fujisaki-Okamoto transformation and OAEP. Hofheinz et al. [HHK17] subse-
quently gave a modular analysis for the conversion. Saito et al. [SXY18] showed a
construction of CCA-secure KEM based on a deterministic PKE scheme satisfy-
ing a new notion. Xagawa and Yamakawa [XY19] extended it to quantum CCA-
security. These construction requires various properties for underlying primitives.

1 Peikert [Pei19] showed a new quantum security analysis of CSIDH-512, correspond-
ing to NIST category 1, by using the collimation sieve technique, and CSIDH-512 is
broken by 40 bit quantum memory and 216 quantum oracle queries (i.e., 56 bit quan-
tum security). Hence, He estimates that the quantum security level of CSIDH-512
is rather weaker than NIST category 1. On the other hand, the quantum circuit for
the group operation of CSIDH is very high cost. Thus, by considering such external
overheads of circuits in addition to his evaluation, CSIDH-512 still seems safe in
reality.
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It is not clear that the CSIDH system satisfies such properties. Though some con-
structions [TU16,HHK17] only require CPA-security, the resultant CCA-secure
KEM is less compact than our schemes. Also, Szepieniec et al. [SRP18] intro-
duced a generic construction from noisy key agreement. We compare our schemes
to KEM schemes obtained from the generic construction in Section 5.

2 Preliminaries

Throughout this paper we use the following notations. If S is a set, then by
s ∈R S we denote that s is sampled uniformly from S. If R is an algorithm, then
by y ← R(x; r) we denote that y is output by R on input x and randomness r
(if R is deterministic, r is empty). The security parameter is κ.

2.1 Key Encapsulation Mechanism

Definition 1 (Syntax for KEM Schemes). A KEM scheme Π consists of
the following 3-tuple (Gen, Enc, Dec):

Gen : a key generation algorithm which on input 1κ, where κ is the security
parameter, outputs a pair of keys (pk, sk).

Enc : an encapsulation algorithm which takes as input public key pk, outputs
session key K and ciphertext CT .

Dec : a decapsulation algorithm which takes as input secret key sk and cipher-
text CT , outputs session key K or reject symbol ⊥.

CCA-security is recognized as the strongest security notion. Here, we show the
definition of CCA-security for KEM as follows.

Definition 2 (CCA-Security for KEM). A KEM scheme Π is CCA-secure
for KEM if the following property holds for security parameter κ; For any proba-
bilistic polynomial-time (PPT) adversary A = (A1,A2), the advantage AdvkemΠ (A) =

|Pr[(pk, sk) ← Gen(1κ); (state) ← ADO(sk,·)
1 (pk); b

R← {0, 1}; (K∗0 , CT
∗
0 ) ←

Enc(pk); K∗1
R← K; b′ ← ADO(sk,·)

2 (pk, (K∗b , CT
∗
0 ), state); b′ = b] − 1/2| is

negligible in κ, where DO is the decapsulation oracle which outputs K or ⊥ on
receiving CT , K is the space of session key, and state is state information which
A wants to preserve from A1 to A2. A cannot submit the ciphertext CT = CT ∗0
to DO.

2.2 Hard Homogeneous Space and CSIDH

Here, we recall the definition of HHS [Cou06], and the CSIDH system [CLM+18]
as an instantiation of HHS.
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Hard Homogeneous Space. The definition of HHS is as follows.

Definition 3 (Freeness and Transitivity). X denotes a finite set, and G de-
notes an abelian group. We say that G acts efficiently on X freely and transitively
if there is an efficiently computable map ∗ : G×X → X as follows:

– for any x ∈ X and g, h ∈ G, g ∗ (h ∗ x) = (gh) ∗ x holds, and there is an
identity element id ∈ G such that id ∗ x = x,

– for any (x, y) ∈ X ×X, there is g ∈ G such that g ∗ x = y, and
– for any x ∈ X and g, h ∈ G such that g ∗ x = h ∗ x, g = h holds.

Definition 4 (Hard Homogeneous Space). A HHS consists of a finite abelian
group G acting freely and transitively on some set X such that the following tasks
are efficiently executable:

– Computing the group operation on G
– Sampling randomly from G with (close to) uniform distribution
– Deciding validity and equality of a representation of elements of X
– Computing the action of a group element g ∈ G on some x ∈ X (i.e., g ∗ x)

CSIDH. The CSIDH system is an instantiation of HHS from Fp-rational su-
persingular elliptic curves and their Fp-rational isogeny. Let E``p(O) be the set
of elliptic curves over Fp whose Fp-rational endomorphism ring is some fixed
quadratic order O, and cl(O) be the ideal class group of O. Then, the CSIDH
system is regarded as HHS by setting X = E``p(O) and G = cl(O) as the param-
eter of HHS. For curve E ∈ X and ideal class [g] ∈ G, the group action [g] ∗ E
corresponds to the map ([g], E) 7−→ E/g. Since E/g is a supersingular curve,
the form of E/g is y2 = x3 + cx2 +x for c ∈ Fp. Then, [g] ∗E can be represented
as such Montgomery coefficient c.

Due to commutativity of cl(O), for [g], [g′] ∈ G, E ∈ X, Eg = E/g and Eg′ =
E/g′, curves Eg′/g and Eg/g

′ are identical. Thus, we can use the Montgomery
coefficient of E/gg′ (i.e., ([g][g′]) ∗ E) as the common secret computed by two
ways. Please see [CLM+18] for the detail of the mathematical foundation of the
CSIDH system. In this paper, we use the notation of HHS as the CSIDH system
for simplicity.

In the CSIDH system, hardness assumptions are defined as classical DH by
using HHS. We recall the computational DH-type assumption for HHS defined
in [BGK+18].2

Definition 5 (CSI-CDH Problem [BGK+18]). For E0 ∈ X, [a], [b] ∈R G,
Ea = [a]∗E0 and Eb = [b]∗E0, the advantage of a PPT solver S in the CSI-CDH
problem is defined as

Advcsi-cdhG,X (S) = PrS(E0, Ea, Eb)→ ([a][b]) ∗ E0.

2 In [BGK+18], assumptions are defined as a generalized form for n-way by using
cryptographic invariant maps (CIM). In the case of n = 1, CIM is the same as HHS.
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Definition 6 (CSI-DDH Problem [BGK+18]). For E0 ∈ X, [a], [b], [c] ∈R
G, Ea = [a] ∗ E0 and Eb = [b] ∗ E0, the advantage of a PPT distinguisher D in
the CSI-DDH problem is defined as

Advcsi-ddhG,X (D) = |Pr[D(E0, Ea, Eb, E
′ = ([a][b]) ∗ E0)→ 1]

− Pr[D(E0, Ea, Eb, E
′ = [c] ∗ E0)→ 1]|.

Definition 7 (CSI-GDH Problem [FTY19]). For E0 ∈ X, [a], [b] ∈R G,
Ea = [a] ∗ E0 and Eb = [b] ∗ E0, the advantage of a PPT solver S in the CSI-
GDH problem is defined as

Advcsi-gdhG,X (S) = Pr[SDDH(·,·,·)(E0, Ea, Eb)→ ([a][b]) ∗ E0].

where DDH is the decision oracle which outputs 1 if the input (Ea′ , Eb′ , E′)
satisfies Ea′ = [a′] ∗ E0, Eb′ = [b′] ∗ E0 and E′ = ([a′][b′]) ∗ E0, or outputs 0
otherwise.

The CSI-CDH (resp. CSI-DDH, CSI-GDH) problem corresponds to the clas-
sical computational DH (resp. decisional DH, gap DH) problem.3

Protocol of CSIDH. Here, we recall the protocol of CSIDH [CLM+18].

Public Parameters. Let p = (4 · `1 · · · `n−1) be a large prime where each `i
is a small distinct odd prime. Then, the supersingular elliptic curve E0 : y2 =
x3 + x over Fp with endomorphism ring O = Z[π] is constructed where π is
the Frobenius endomorphism satisfying π2 = −p. For the notation of HHS, G is
denoted by cl(O) and X is denoted by E``p(O); and thus, E0 ∈ X = E``p(O).
[g] ∈R G means that integers (e1, . . . , en) are randomly sampled from a range
{−m, . . . ,m} and [g] = [le11 · · · lenn ] ∈ cl(O) where li = (`i, π − 1). [g] ∗ E0 is
represented by the Montgomery coefficient c ∈ Fp of the elliptic curve [g]E0 :
y2 = x3 + cx2 + x by applying the action of [g] to E0.

The public parameters are (G,X,E0).

Session. Parties A and B executes a key exchange session as follows:

1. Party A chooses [a] ∈R G, and sends the public key Â = [a] ∗E0 to party B.
2. Party B chooses [b] ∈R G, and sends the public key B̂ = [b] ∗E0 to party A.
3. On receiving B̂, party A generates the session key SK = [a] ∗ B̂.
4. On receiving Â, party B generates the session key SK = [b] ∗ Â.

Since G is an abelian group, [a][b] = [b][a] holds. Therefore, [a] ∗ B̂ = [a] ∗
([b] ∗ E0) = ([a][b]) ∗ E0 = ([b][a]) ∗ E0 = [b] ∗ ([a] ∗ E0) = [b] ∗ Â holds from
Definition 3.

It is obvious that the session key SK is hard to find for any passive adversary
if the CSI-CDH problem is hard.

3 Dobson and Galbraith [DG19] show an attack to the gap DH-like assumption for
SIDH [FTTY18]. The attack uses an algebraic structure of SIDH. Such an attack
strategy is not applicable to CSIDH because of the difference between algebraic
structures. Hence, the CSI-GDH assumption is considered to still seem safe.
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Public Parameter: X, G, E0 ∈ X, H1 : {0, 1}κ → G× {0, 1}κ, H2 : X2 → {0, 1}κ

Gen(1κ)

s ∈R G
Es = [s] ∗ E0

pk = Es

sk = s
return (pk, sk)

Enc(pk)

t ∈R {0, 1}κ
r||K = H1(t)
C1 = [r] ∗ E0

C′ = [r] ∗ pk
C2 = t⊕H2(C1, C

′)
CT = (C1, C2)
return (CT,K)

Dec(sk, CT )

parse CT as (C1, C2)
C′ = [sk] ∗ C1

t = C2 ⊕H2(C1, C
′)

r||K′ = H1(t)
if C1 6= [r] ∗ E0, K = ⊥
else K = K′

return K

Fig. 1: CSIDH-PSEC-KEM

3 CSIDH-PSEC-KEM

PSEC is the abbreviation of “Provably Secure Elliptic Curve encryption”. It is a
DH-based PKE scheme developed at Nippon Telegraph and Telephone corpora-
tion [NTT08] based on the work of Fujisaki and Okamoto [FO99]. PSEC-KEM
is the KEM version of PSEC, which is standardized in ISO/IEC 18033-2 [ISO].
In the draft [Sho01] of ISO/IEC 18033-2, CCA-security of PSEC-KEM is proved
under the CDH assumption in the RO model.

CSIDH-PSEC-KEM is a natural extension of PSEC-KEM to CSIDH-based
with retaining the structure. Instead of the scalar multiplication on the elliptic
curve, we use the group action operation ∗ to generate the public key and the
ciphertext. The protocol of CSIDH-PSEC-KEM is given in Fig. 1. X and G are
parameters of HHS. H1 : {0, 1}κ → G× {0, 1}κ and H2 : X2 → {0, 1}κ are hash
functions modeled as ROs.

The first advantage of CSIDH-PSEC-KEM against SIKE-KEM [SIKE17] is
the ciphertext overhead. The ciphertext of SIKE-KEM contains an element of
the SIDH public key and a κ-bit element. On the other hand, the ciphertext of
CSIDH-PSEC-KEM contains an element of the CSIDH public key and a κ-bit
element. Since it is estimated that the CSIDH public key is more compact than
the SIDH public key for equivalent security level [SIKE17,CLM+18], CSIDH-
PSEC-KEM is more efficient in the ciphertext overhead, than SIKE-KEM.

The second advantage is the public key size. The public key of SIKE-KEM
contains an element of the SIDH public key. The public key of CSIDH-PSEC-
KEM contains an element of the CSIDH public key. Thanks to compactness of
the CSIDH public key, CSIDH-PSEC-KEM is also more efficient in the public
key size, than SIKE-KEM.

The third advantage is security in the QRO model. Naturally, by a similar
manner as the security proof of the original PSEC-KEM, we can prove CCA-
security of CSIDH-PSEC-KEM under the CSI-CDH assumption in the classical
RO model. In this paper, we give a security proof in the QRO model. In our proof,
the CSI-DDH assumption is necessary instead of the CIS-CDH assumption. The
reason that it is not easy to prove the security under the CSI-CDH assumption
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in the QRO model is as follows; In the reduction to the CCA-security, the CSI-
CDH solver needs to extract the answer of the CSI-CDH problem from a hash
query by the CCA adversary. However, the query may be a quantum state (i.e.,
superposition), and the solver cannot record a copy of the input due to the
no-cloning theorem. Thus, such a proof strategy (as the original PSEC-KEM)
does not work. Conversely, the CSI-DDH just distinguishes if the given instance
is valid, and does not need extract hash queries. Hence, we can prove CCA-
security under the CSI-DDH assumption by using some proof techniques (see
Section 3.1).

Though the computational time of CSIDH is slower than SIDH, it is practi-
cal enough as estimated in [CLM+18]. A detailed comparison to SIKE-KEM is
shown in Section 5.

3.1 Useful Techniques for Quantum Random Oracle Model

A hurdle on security proofs in the quantum random oracle model is how to gener-
ate random values for exponentially many positions in order to simulate outputs
of the hash function. For a hash function H : Dom → Rng, in the quantum
random oracle model, the adversary poses a superposition |φ〉 = Σαx|x〉 and
the oracle returns Σαx|H(x)〉. If Rng is large for a quantum polynomial-time
simulator, it is difficult to generate all random output values of H to compute
Σαx|H(x)〉. Zhandry [Zha12] showed a solution with the notion of k-wise inde-
pendent function.

A weight assignment on a set X is a function D : X → R such that
Σx∈XD(x) = 1. A distribution on X is a weight-assignment D such that D(x) ≥
0 for all x ∈ X . Consider the set of functions H : X → Y for sets X and Y,
denoted by HX ,Y . We define the marginal weight assignment DW of D on HX ,Y
where the weight of a function HW :W → Y is equal to the sum of the weights
of all H ∈ HX ,Y that agree with HW on W.

Definition 8 (k-wise equivalence). We call two weight assignments D1 and
D2 on HX ,Y k-wise equivalent if for all W ⊆ X of size k, the marginal weight
assignments D1,W and D2,W (of D1 and D2) over HX ,Y are identical.

Definition 9 (k-wise independent function). We call a function f k-wise
independent function if f is k-wise equivalent to a random function.

Lemma 1 (Theorem 3.1 in [Zha12]). Let A be a quantum algorithm making
q quantum queries to an oracle H : X → Y. If we draw H from some weight
assignment D, then for every z, the quantity PrH←D[AH() = z] is a linear
combination of the quantities PrH←D[H(xi) = ri ∀i ∈ 1, . . . , 2q] for all possible
settings of the xi and ri.

Lemma 2 (Theorem 6.1 in [Zha12]). If there exists 2qi-wise independent
function, then any quantum algorithm A making qi quantum queries to random
oracles Oi can be efficiently simulated by a quantum algorithm B, which has the
same output distribution, but makes no queries.
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Hence, a quantum algorithm B can simulate quantum random oracles in a
polynomial-time. We use this simulation technique to simulate outputs of hash
functions H1 and H2 in the security proof of CSIDH-PSEC-KEM.

On the other hand, the other problem on security proofs in the quantum
random oracle model is how to insert intended random values as the outputs of
corresponding oracle inputs. Zhandry [Zha12] showed a solution with the notion
of semi-constant distributions SCω.

Definition 10 (Semi-constant distribution). We define SCω, the semi-constant
distribution, as the distribution over HX ,Y resulting from the following process:

– First, pick a random element y from Y.
– For each x ∈ X , do one of the following:
• With probability ω, set H(x) = y. We call x a distinguished input to H.
• Otherwise, set H(x) to be a random element in Y.

Lemma 3 (Corollary 4.3 in [Zha12]). The distribution of outputs of a quan-
tum algorithm making qH queries to an oracle drawn from SCω is at most a
distance 3

8q
4
Hω

2 away from the case when the oracle is drawn from the uniform
distribution.

We suppose that the simulation succeeds with probability ε if the adversary
uses an inserted random value as the outputs of corresponding oracle inputs. If
the probability that the adversary uses one of the points is ω, then the simu-
lation succeeds with probability εω − 3

8q
4
Hω

2. By choosing ω to maximize the
success probability, the simulation succeeds with probability O(ε2/q4H). We use
this simulation technique to insert a CSI-DDH instance into an output of the
hash function H2 in the security proof of CSIDH-PSEC-KEM.

3.2 Security

We show that CSIDH-PSEC-KEM is CCA-secure under the CSI-DDH assump-
tion in the QRO model.

Theorem 1 (Security of CSIDH-PSEC-KEM). For the advantage Advcsi-ddhG,X (D)

of the CSI-DDH problem, the advantage Advkempsec(A) of CSIDH-PSEC-KEM is as
follows in the QRO model:

Advkempsec(A) ≤ Advcsi-ddhG,X (D)1/2
(

3

4
(qH2 + qD + 1)4 + 2qH2qD

)1/2

+
qH1

+ 2qD
2κ

.

where qH1 , qH2 and qD denote the upper bound of queries to H1, H2 and DO,
respectively.

First, we give an intuition of the proof.
We use a game hopping technique. First, we change the rules of the decap-

sulation oracle DO such that the secret key is not used. Such game transitions
are indistinguishable by the property of ROs. Next, we change the construction
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of the challenge ciphertext and session key such that the session key is a fixed
value ζ as the output of H2. Then, we show that the advantage of the KEM
adversary A is equivalent to the advantage of the CSI-DDH distinguisher D;
that is, we construct D (the input is (E0, Ea, Eb, E

′)) from A. In the final game,
the advantage of A is negligible.

D has difficulty in responding to hash queries because it needs to return
superpositions corresponding to random values for exponentially many positions
(the domain of H1 is {0, 1}κ and the domain of H2 is X2). We solve this problem
by using Lemma 2. Specifically, since the number of queries to H1 (resp. H2)
made by A is qH1

(resp. qH2
) for direct queries, qD for decapsulation queries, and

one for the challenge ciphertext, for the total of qH1
+qD+1 (resp. qH2

+qD+1)
queries, a (qH1

+ qD + 1)-wise independent function (resp. a (qH2
+ qD + 1)-wise

independent function) is sufficient to simulate superposition of outputs.

There is the other difficulty to correctly answer the CSI-DDH problem. If
the position of ζ is only the corresponding input in the superposition, A uses ζ
to distinguish the real session key from a random session key with exponentially
small probability. We can also solve this problem by using Lemma 3. Specifically,
D inserts ζ in outputs for inputs X ⊂ X2. The probability that a randomly
chosen input is contained in X is ω. Then, H2 is distributed according to SCω,
and A can only tell it is not random with probability O(Advkempsec(A)2/(qH2 +qD+
1)4) from Lemma 3.

Therefore, D can use the distinguishing capacity of A to distinguish the CSI-
DDH challenge.

Proof. We change the interface of the decapsulation oracle query and the compu-
tation of the challenge ciphertext and session key. These instances are gradually
changed over seven hybrid experiments, depending on specific sub-cases. We de-
note these hybrid experiments by H0, . . . ,H6 and the advantage of the adversary
A when participating in experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes the real experiment for
CCA-security and in this experiment the decapsulation oracle DO is as defined
in the protocol. (C∗1 , C

∗
2 ) and K∗ denote the challenge ciphertext and the session

key, respectively. Also, let ρ(t) = r such that r||K = H1(t), and t∗ be random-
ness to be used to generate the challenge ciphertext and the session key. Thus,
Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid experiment H1: In this experiment, the rule of DO is changed as
follows; If (C1 = C∗1 , C2) is posed, the query is rejected.

Let F1 be the event that in H1 such a ciphertext is rejected that would not
have been rejected under the rules of H0. From the deference lemma [Sho04], we
have |Adv(A,H1) − Adv(A,H0)| ≤ Pr[F1]. Since A cannot pose the challenge
ciphertext to DO, C2 6= C∗2 holds. Hence, t for C2 must be different from t∗

because C2 = C∗2 if t = t∗. Also, since (C∗1 , C2) is not rejected in H0, A must
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find r = ρ(t) = ρ(t∗). It means the probability of collision; and thus, Pr[F1] ≤
(qH1 + qD)/2κ.

Therefore, we obtain

|Adv(A,H1)− Adv(A,H0)| ≤ (qH1
+ qD)/2κ.

Hybrid experiment H2: In this experiment, the rule of DO is changed again
as follows; If (C1 6= C∗1 , C2) is posed and t is never posed to H1, the query is
rejected.

Let F2 be the event that in H2 such a ciphertext is rejected that would not
have been rejected under the rules of H1. First, we consider the case of t = t∗.
In this case, since C1 6= C∗1 = [ρ(t)] ∗ E0 holds, (C1, C2) is always rejected by
the decapsulation procedure in H1. Next, we consider the case of t 6= t∗. In this
case, since t is never posed to H1, ρ(t) is perfectly random from A’s view. Hence,
the probability that C1 = [ρ(t)] ∗ E0 is qD/2

κ. Therefore, we obtain

|Adv(A,H2)− Adv(A,H1)| ≤ qD/2κ.

Hybrid experiment H3: In this experiment, the rule of DO is changed again
as follows; If (C1 6= C∗1 , C2) is posed, and C1 6= [ρ(t′)] ∗ E0 for any t′ posed to
H1, then the query is rejected. Also, if (C1 6= C∗1 , C2) is posed, and there exists
t′ such that C1 = [ρ(t′)] ∗E0 and t′ is posed to H1, then C ′ in the decapsulation
procedure is computed by [ρ(t′)] ∗Eb instead of [s] ∗C1. It means that DO does
not use the secret key.

First, we consider the case that C1 6= [ρ(t′)] ∗ E0 for any t′ posed to H1.
For t′ which is not posed to H1, the query is rejected by the rule of H2. For t′

which is posed to H1, the query is also rejected in H2 because C1 6= [ρ(t′)] ∗E0

in the decapsulation procedure. Hence, there is no difference between rejected
queries in H2 and H3. Next, we consider the case that there exists t′ such that
C1 = [ρ(t′)] ∗ E0 and t′ is posed to H1. There is no difference between rejected
queries in H2 and H3 because [ρ(t′)] ∗ Eb = [s] ∗ C1 always holds in this case.
Therefore, we obtain

Adv(A,H3) = Adv(A,H2).

Hybrid experiment H4: In this experiment, the rule of halting is changed as
follows; Let ω ∈ (0, 1) be chosen later, and X be a subset ofX2 where (Ĉ1, Ĉ

′) ∈R
X2 is put in X with independent probability ω. H4 halts if (Ea, E

′) /∈ X (where
(Ea, E

′) is a part of the CSI-DDH instance), A poses H2(C1, C
′) such that

(C1, C
′) ∈ X , or A poses DO(C1, C2) such that (C1, C

′) ∈ X .
We obtain

Adv(A,H4) ≥ ω(1− ωqH2qD) · Adv(A,H3)

≥ ωAdv(A,H3)− ω2qH2
qD.
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Hybrid experiment H5: In this experiment, the rule of H2 is changed as
follows; ζ is set as H2(C1, C

′) for all (C1, C
′) ∈ X , and hash values are ran-

domly chosen for all other inputs. Now, H2 is distributed according to SCω. By
Lemma 3, the output distribution of A in H5 is at most a distance 3

8 (qH2
+qD +

1)4ω2 from that in H4.
Therefore, we obtain

Adv(A,H5) ≥ Adv(A,H4)− 3

8
(qH2

+ qD + 1)4ω2.

Hybrid experiment H6: In this experiment, the rule of generating the chal-
lenge ciphertext and session key is changed as follows; r∗ ∈R G and K∗ ∈R
{0, 1}κ are randomly chosen instead of computing H1(t∗).

We construct a distinguisher D of the CSI-DDH problem with the advantage
Advcsi-ddhG,X (D) from A. For simplicity, we assume that D has quantum access to

three random oracles Ĥ1 : {0, 1}κ → G × {0, 1}κ, Ĥ2 : X2 → {0, 1}κ and
Ĥ ′2 : X2 → {0, 1} where Ĥ ′2 outputs 1 with probability ω. Let X be the set of
(C1, C

′) such that H2(C1, C
′) = 1. We can see that the above conditions are

equivalent to H6. By Lemma 2, D can perfectly simulate Ĥ1 and (Ĥ2, Ĥ
′
2) by

using a (qH1 + qD + 1)-wise independent function and a (qH2 + qD + 1)-wise
independent function without oracle accesses, respectively. L is a list which is
initially empty and maintained by D.

– Input and Setting of Public Key. D receives the challenge instance
(E0, Ea, Eb, E

′). Then, D sends the public parameter E0, and pk = Eb to
A.

– Simulation of Challenge Ciphertext and Session key. D chooses
t∗ ∈R {0, 1}κ and ζ ∈R {0, 1}κ, and sets CT ∗ = (Ea, t

∗⊕ ζ) as the challenge
ciphertext. Also, D computes K∗ as H5.

– Simulation of H1. On receiving t̂, D simulates H1 such that H1(t̂) = Ĥ1(t̂).

– Simulation of H2. On receiving (Ĉ1, Ĉ
′), D simulates H2 such that

H2(Ĉ1, Ĉ
′) =

{
ζ if Ĥ ′2(Ĉ1, Ĉ

′) = 1

Ĥ2(Ĉ1, Ĉ
′) otherwise

– Simulation of DO. On receiving (Ĉ1, Ĉ2), D simulates DO as H3 without
using the secret key.

– Analysis of Success Probability. If A poses queries included in X to
H2 or DO, then A distinguishes the simulation from the real experiment.
However, in H6, these events do not occur because of the game hopping in
H4. Also, (Ea, E

′) ∈ X holds. In the case of E′ = ([a][b])∗E0, the simulation
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of the challenge ciphertext and session key is the same as H5. Then, A
poses (Ea, E

′) to H2 and succeeds with Adv(A,H5). In the case of z =
[c] ∗E0, the simulated challenge ciphertext and session key are independent
because H2(Ea, E

′) is randomly chosen. Then, A succeeds with Adv(A,H6).
Therefore, we obtain

|Adv(A,H6)− Adv(A,H5)| ≤ Advcsi-ddhG,X (D).

Analysis of Adv(A,H6): The hidden bit b is independent of the challenge
session key. Therefore, we obtain

Adv(A,H6) = 0.

Then, by combining advantages we obtain

Advkempsec(A) ≤ 1

ω
Advcsi-ddhG,X (D) + ω

(
3

8
(qH2

+ qD + 1)4 + qH2
qD

)
+
qH1 + 2qD

2κ
.

Since the right side is minimized when ω =

(
Advcsi-ddhG,X (D)

3
8 (qH2

+qD+1)4+qH2
qD

)1/2

, we obtain

Advkempsec(A) ≤ Advcsi-ddhG,X (D)1/2
(

3

4
(qH2

+ qD + 1)4 + 2qH2
qD

)1/2

+
qH1

+ 2qD
2κ

.

ut

4 CSIDH-ECIES-KEM

ECIES is the abbreviation of “Elliptic Curve Integrated Encryption Scheme”.
It is a DH-based hybrid encryption scheme based on DHAES [ABR99]. ECIES-
KEM is the KEM version of ECIES, which is standardised in ISO/IEC 18033-
2 [ISO]. It is a hashed variant of ElGamal KEM. In the draft [Sho01] of ISO/IEC
18033-2, CCA-security of ECIES-KEM is proved under the gap DH assumption
in the RO model.

CSIDH-ECIES-KEM is a natural extension of ECIES-KEM to CSIDH-based
with retaining the structure. The protocol of CSIDH-ECIES-KEM is given in
Fig. 2. X and G are parameters of HHS. H : X2 → {0, 1}κ is a hash function
modeled as an RO.

CSIDH-ECIES-KEM contains the validation of the ciphertext in decapsu-
lation (i.e., checking CT ∈ X) in order to ensure CCA-security by preventing
active attacks such as Galbraith et al.’s attack [GPST16]. The validation can be
efficiently done thanks to the CSIDH system. However, it is costly in the SIDH
system because the SIDH system does not have an efficient validation method
yet and countermeasures are expensive as mentioned in [GPST16].

The main advantage of CSIDH-ECIES-KEM is that the ciphertext is very
compact. The ciphertext of CSIDH-ECIES-KEM only contains an element of
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Public Parameter: X, G, E0 ∈ X, H : X2 → {0, 1}κ

Gen(1κ)

s ∈R G
Es = [s] ∗ E0

pk = Es

sk = s
return (pk, sk)

Enc(pk)

r ∈R G
C = [r] ∗ E0

C′ = [r] ∗ pk
CT = C
K = H(C,C′)
return (CT,K)

Dec(sk, CT )

if CT 6∈ X, K = ⊥
else K = H(CT, [sk] ∗ CT )
return K

Fig. 2: CSIDH-ECIES-KEM

the CSIDH public key. The ciphertext overhead of CSIDH-ECIES-KEM is 512
bit for the parameter corresponding to NIST category 1 [NIST] (i.e., 128 bit
security). It is just twice as much as the elliptic curve ElGamal cryptosystem.

Moreover, the other advantage is the security reduction is equivalent to the
CSI-GDH assumption as shown in 2. Since SIKE-KEM uses the generic conver-
sion [HHK17], the reduction is not tight. The reduction of CSIDH-PSEC-KEM
is also not tight due to proving security in the QRO model.

It is not easy to prove security in the QRO model by a similar reason de-
scribed in Section 3. The solver of the CSI-GDH problem must extract the answer
of the problem from a hash query by the CCA adversary, but the solver cannot
record a copy of the input due to the no-cloning theorem.

4.1 Security

We show that CSIDH-ECIES-KEM is CCA-secure under the CSI-GDH assump-
tion in the RO model.

Theorem 2 (Security of CSIDH-ECIES-KEM). For the advantage Advcsi-gdhG,X (S)

of the CSI-GDH problem, the advantage Advkemecies(A) of CSIDH-ECIES-KEM is
as follows in the RO model:

Advkemecies(A) ≤ Advcsi-gdhG,X (S).

Proof. We construct a solver S of the CSI-GDH problem with the advantage
Advcsi-gdhG,X (S) by assuming that there exists an adversary A of CSIDH-ECIES-

KEM with the advantage Advkemecies(A). L is a list which is initially empty and
maintained by S.

– Input and Setting of Public Key. S receives the challenge instance
(E0, Ea, Eb). Then, S sends the public parameter E0, and pk = Eb to A.

– Simulation of Challenge Ciphertext and Session key. S sets CT ∗ =
Ea as the challenge ciphertext. Also, S generates K∗ ∈R {0, 1}κ as the chal-
lenge session key.
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Table 1: Comparison among CCA-secure KEM from isogeny

Model Assumption Public key Ciphertext Time per Time per
size overhead encapsulation decapsulation

SIKE-KEM [SIKE17] ROM SI-CDH 2640 bit 3152 bit ≈ 3.1 ms ≈ 3.3 ms

SIDH-SRP [SRP18] QROM SI-DDH 2640 bit 3280 bit ≈ 3.1 ms ≈ 6.4 ms

CSIDH-SRP [SRP18] QROM CSI-DDH 512 bit 768 bit ≈ 81.6 ms ≈ 122.4 ms

CSIDH-PSEC-KEM QROM CSI-DDH 512 bit 640 bit ≈ 81.6 ms ≈ 81.6 ms

CSIDH-ECIES-KEM ROM CSI-GDH 512 bit 512 bit ≈ 81.6 ms ≈ 42.9 ms

– Simulation of H. On receiving (Ĉ, Ĉ ′), S simulates H as follows:
• If (Ĉ, Ĉ ′, K̂) ∈ L for some K̂ ∈ {0, 1}κ, then return K̂.
• Else if DDH(Eb, Ĉ, Ĉ

′) = 1 and Ĉ = Ea, then outputs Ĉ ′ as the answer
of the CSI-GDH problem.

• Else if DDH(Eb, Ĉ, Ĉ
′) = 1 and (Ĉ,⊥, K̂) ∈ L for some K̂ ∈ {0, 1}κ,

then return K̂ and store (Ĉ, Ĉ ′, K̂) to L.
• Otherwise, generate K̂ ∈R {0, 1}κ, return K̂ and store (Ĉ, Ĉ ′, K̂) to L.

– Simulation of DO. On receiving Ĉ, S simulates DO as follows:
• If Ĉ 6∈ X, then return ⊥.
• Else if (Ĉ, Ĉ ′, K̂) ∈ L for some Ĉ ′ ∈ X and K̂ ∈ {0, 1}κ, then return K̂.
• Else if (Ĉ,⊥, K̂) ∈ L for some K̂ ∈ {0, 1}κ, then return K̂.
• Otherwise, generate K̂ ∈R {0, 1}κ, return K̂ and store (Ĉ,⊥, K̂) to L.

– Analysis of Success Probability. The simulation fails if A distinguishes
the simulated challenge session key (i.e., chosen randomly) from the real
challenge one (i.e, generated by H(Ea, ([a][b]) ∗ E0)). However, since H is
an RO, A cannot obtain any information of H(Ea, ([a][b]) ∗ E0) unless A
poses (Ea, ([a][b]) ∗ E0) to the RO. Hence, A must pose (Ea, ([a][b]) ∗ E0)
and obtain the answer of the CSI-GDH problem to H in order to distinguish
these. When A poses it, S wins by the simulation of H. Other simulations
are obviously perfect. Therefore, we obtain

Advkemecies(A) ≤ Advcsi-gdhG,X (S).
ut

5 Comparison

In this section, we give an comparison efficiency of our schemes and previous
isogeny-based CCA-secure KEM schemes. The comparison is shown in Table 1.

To compare SIDH-based schemes and CSIDH-based schemes, we use param-
eters having the same security level (i.e., NIST category 1 [NIST]) corresponding
to the key search on a block cipher with a 128 bit key (i.e., κ = 128). For SIDH,
the parameter corresponding to NIST category 1 is estimated as SIKEp434 in
[SIKE17]. As computational time of encapsulation and decapsulation of SIKE-
KEM, we use the performance evaluation of x64-assembly implementation on
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a 3.4GHz Intel Core i7-6700 (Skylake) processor in [SIKE17, Table 2.1]. The
SI-CDH (resp. SI-DDH) assumption denotes the CDH-like (resp. DDH-like) as-
sumption corresponding to SIDH. For CSIDH, the parameter corresponding to
NIST category 1 is estimated as CSIDH-512 in [CLM+18]. The public key size
and the ciphertext overhead are estimated as 512 bit. Computational time of a
group action and time for a public key validation are about 40.3 ms and about
1.6 ms, respectively, based on the proof-of-concept implementation on a 3.5GHz
Intel Core i5 (Skylake) processor in [CLM+18, Table 2]. CSIDH-PSEC-KEM
contains a CSIDH public key as the public key, a CSIDH public key and a κ
bit string as the ciphertext, and two group actions both for encapsulation and
decapsulation. Also, CSIDH-ECIES-KEM contains a CSIDH public key as the
public key, a CSIDH public key as the ciphertext, two group actions for encap-
sulation, and a group action and a ciphertext validation for decapsulation. We
simply add these values without any acceleration technique.

Note that SIKEp434 is rather conservatively estimated to be at NIST cate-
gory 1, whereas the estimates for CSIDH-512 require much stronger assumptions
on the real-world attack costs and it is heavily debated if it achieves this security
level. Also, since the best attacks against SIKE are exponential but the best at-
tacks against CSIDH are subexponential, CSIDH becomes much more inefficient
than SIKE at higher security levels. Hence, our comparison is not rigorous, and
the values are just a guide for readers.

In the comparison, we also compare our schemes to KEM schemes using
a generic construction [SRP18] from noisy key agreement. By using SIDH (or
CSIDH) a CCA-secure KEM scheme in the QRO model is obtained. The resul-
tant KEM scheme contains a SIDH (or CSIDH) public key as the public key, a
SIDH (CSIDH) public key and two κ bit strings as the ciphertext, two group
actions for encapsulation, and three group actions for decapsulation. Since se-
sion key indistinguishability is required for noisy key agreement, the SI-DDH
assumption (or the CSI-DDH assumption) is necessary.

As shown in Table 1, CSIDH-PSEC-KEM is the most compact scheme which
is secure in the QRO model, and CSIDH-ECIES-KEM is the most compact
scheme compared to other schemes. Since SIKE-KEM is the most compact
scheme in submissions to the NIST PQC competition, our schemes are also more
compact than all submitted cryptosystems. The disadvantage of our schemes is
computation time. However, both times for encapsulation and decapsulation are
faster than 100 ms; and hence, it is still practical.

6 How about ACE-KEM and FACE-KEM?

ISO/IEC 18033-2 [ISO] contains other DH-based KEM schemes, ACE-KEM and
FACE-KEM. ACE-KEM is based on Cramer-Shoup cryptosystem [CS98,CS04]
and FACE-KEM is based on Kurosawa-Phong cryptosystem [KP14]. These schemes
are proved to satisfy CCA-security in the standard model. In this section, we dis-
cuss difficulty to naturally extend ACE-KEM and FACE-KEM to isogeny-based
without changing the structure.
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ACE-KEM contains four secret keys (x1, x2, x3, x4) ∈ Zp and four public keys
(X1 = gx1 , X2 = gx2 , X3 = gx3 , X4 = gx4) where p is a large prime and g is a gen-

erator. The ciphertext contains C1 = gr, C2 = Xr
1 and C3 = Xr

2X
r·TCR(C1,C2)
3

where r ∈R Zp and TCR is a target collision resistance hash function. In decapsu-

lation, validity of the ciphertext is verified by checking if C
x2+x3·TCR(C1,C2)
1 = C3

holds. It seems that it can be replaced by the CSIDH system as C1 = [r] ∗ E0,
C2 = [r] ∗ X1 and C3 = ([r] ∗ X2) · ([r · TCR(C1, C2)] ∗ X3), and checking
[x2 + x3 · TCR(C1, C2)] ∗ C1 = C3. However, public keys and the ciphertext are
elements in X, and X has no algebraic structure as Definition 4. It means that
the relation ([g] ∗E0) · ([g′] ∗E0) = [g+ g′] ∗E0 is not guaranteed. Hence, such a
decapsulation strategy does not work in the CSIDH system (and also the SIDH
system).

FACE-KEM also has a similar situation. FACE-KEM contains four secret
keys (x1, x2, y1, y2) ∈ Zp and two public keys (X = gx1

1 gx2
2 , Y = gy11 g

y2
2 ) where

g1 and g2 are generators. The ciphertext contains C1 = gr1, C2 = gr2 and
C3 = T such that (K||T ) ← KDF (XrY r·TCR(C1,C2)) where KDF is a key
derivation function. In decapsulation, validity of the ciphertext is verified by

checking if T ′ = C3 holds such that (K ′||T ′) ← KDF (C
x1+y1·TCR(C1,C2)
1 ·

C
x2+y2·TCR(C1,C2)
2 ). As ACE-KEM, it cannot work in the CSIDH system.

Conversely, PSEC-KEM and ECIES-KEM do not contain such a structure.
Also, in security proofs of CSIDH-PSEC-KEM and CSIDH-ECIES-KEM,X does
not have to has algebraic structure. Thus, we can extend these KEM schemes to
CSIDH-based. Constructing a CCA-secure KEM scheme in the standard model
from isogeny is a remaining problem for further research.
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[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A Modular Anal-
ysis of the Fujisaki-Okamoto Transformation. In TCC (1) 2017, pages
341–371, 2017.

[ISO] Information technology – Security techniques – Encryption algorithms –
Part 2: Asymmetric ciphers. ISO/IEC 18033-2:2006 and ISO/IEC 18033-
2:2006/AMD1:2017. https://www.iso.org/standard/37971.html.

[SIKE17] David Jao and et al. Supersingular Isogeny Key Encapsulation (SIKE).
submission to NIST PQC Competition, 2017. https://sike.org/.

[JF11] David Jao and Luca De Feo. Towards Quantum-Resistant Cryptosystems
from Supersingular Elliptic Curve Isogenies. In PQCrypto, pages 19–34,
2011.

[KP14] Kaoru Kurosawa and Le Trieu Phong. Kurosawa-Desmedt Key Encap-
sulation Mechanism, Revisited. In AFRICACRYPT 2014, pages 51–68,
2014.

[NIST] Post-Quantum Cryptography Standardization. National Institute of
Standards and Technology. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography.

[NTT08] NTT Corporation. PSEC-KEM Specification version 2.2. PSEC-KEM
website, 2008. https://info.isl.ntt.co.jp/crypt/eng/psec/.

[Pei19] Chris Peikert. He Gives C-Sieves on the CSIDH. Cryptology ePrint
Archive, Report 2019/725, 2019.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem
Based on Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006.

[Sho94] Peter W. Shor. Polynominal time algorithms for discrete logarithms and
factoring on a quantum computer. In ANTS 1994, page 289, 1994.

[Sho01] Victor Shoup. A Proposal for an ISO Standard for Public Key Encryption.
Cryptology ePrint Archive, Report 2001/112, 2001.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332, 2004.

19



[SRP18] Alan Szepieniec, Reza Reyhanitabar, and Bart Preneel. Key Encapsula-
tion from Noisy Key Agreement in the Quantum Random Oracle Model.
Cryptology ePrint Archive, Report 2018/884, 2018.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-Secure
Key-Encapsulation Mechanism in the Quantum Random Oracle Model. In
EUROCRYPT (3) 2018, 2018.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-Quantum Security of
the Fujisaki-Okamoto and OAEP Transforms. In TCC (B2) 2016, pages
192–216, 2016.
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