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Abstract. In the article we propose a new compression method (to 2 log2(p) + 3 bits)
for the Fp2-points of an elliptic curve Eb : y2 = x3 + b (for b ∈ F∗p2) of j-invariant 0. It is based
on Fp-rationality of some generalized Kummer surface GKb. This is the geometric quotient
of the Weil restriction Rb := R Fp2/Fp(Eb) under the order 3 automorphism restricted from Eb.

More precisely, we apply the theory of conic bundles (i.e., conics over the function field Fp(t))
to obtain explicit and quite simple formulas of a birational Fp-isomorphism between GKb and
A2. Our point compression method consists in computation of these formulas. To recover (in
the decompression stage) the original point from Eb(Fp2) = Rb(Fp) we find an inverse image of
the natural map Rb → GKb of degree 3, i.e., we extract a cubic Fp-root. For p 6≡ 1 (mod 27)
this is just a single exponentiation in Fp, hence the new method seems to be much faster than
the classical one with x-coordinate, which requires two exponentiations in Fp. In particular, it
is perfectly applicable to pairing-friendly elliptic curves from the IETF-draft [39, §4.3] and to
those used in the cryptocurrencies Ethereum and Zcash. Finally, we formulate the conjecture
about Fq-rationality of any geometrically rational generalized Kummer surface defined over
a finite field Fq.
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Introduction

Nowadays, no doubt, elliptic cryptography is widely used in practice [6]. In many of
its protocols one needs a compression method for points of an elliptic curve E over a finite
field Fq of characteristic p. This is done for quick transmission of the information over a
communication channel or for its compact storage in a memory. There exists a classical
method, which considers an Fq-point on E ⊂ A2

(x,y) as the x (or y [18]) coordinate with 1

(resp. 2) bits to uniquely recover the another coordinate by solving a quadratic (cubic)
equation over Fq. See variations of this method for p = 2 in [20], [44], [60].

Consider an ordinary (i.e., non-supersingular) elliptic curve Eb : y2 = x3 + b for b ∈ F∗q (of
j-invariant 0). Despite the insignificant acceleration [19] of Pollard rho method, these curves(
for q = p ≡ 1 (mod 3)

)
have become very popular in elliptic cryptography. This is confirmed
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by the standards WAP WTLS [57, table 8], SEC 2 [59, §2] and different technologies such
as the cryptocurrencies Bitcoin [5], Ethereum [22]. The main reason for this is the existence
of the order 3 automorphism [ω] : (x, y) 7→ (x 3

√
1, y) defined over Fp. Therefore for a faster

scalar multiplication on a curve Eb we can apply the so-called GLV decomposition [28]. At
the same time, in [32] it is suggested to also consider curves Eb over Fp2 , because for such
fields we can apply the GLS decomposition [27] (an improvement of GLV one). It is worth
noting, however, that the GLS decomposition is also applied to elliptic curves with j 6= 0.
The most famous example is the curve FourQ [15] proposed by Microsoft. See [47, §8] for
a comparison of the efficiency of the GLV-GLS approaches implemented for several curves,
including some with j = 0.

Because of many interesting applications such as identity-based cryptography [61] or short
signature schemes and breakthroughs in pairing computation [13] pairing-based cryptography
[51] is becoming a more and more popular alternative to classical elliptic cryptography.
Indeed, see the standards IEEE Std 1363.3 [34], ISO/IEC 15946 [37], the information reports
[1], [7], [30], [50], and the products of companies such as Intel [8], Ethereum Foundation [21],
Gemalto [29], TrendMicro [56], Cloudflare [63], MicroFocus [49], ZECC [69].

As usual in cryptography, for a given elliptic curve E/Fp its order n := |E(Fp)| is often
assumed to be a prime (6= p). In this case, the embedding degree of E is, by definition,
the extension degree k := [Fp(µn) : Fp]. Further, let E ′ be a twist for E of degree d | k and
G ⊂ E ′(Fp k

d) be the subgroup of order n. In practice, pairings (of type 2 [13, §2.3.2]) are
mainly taken in the form

E(Fp)×G→ µn ⊂ F∗pk [24, §7.3],

where k is the minimally possible number such that the discrete logarithm problem in F∗
pk

is
hard, but d is, conversely, the maximally possible one. It is a classical fact that d 6 6, and
this bound is only attained by the elliptic curves Eb, hence today they (and only they as far
as the author knows) are used in the real world of pairing-based cryptography. Among those,
the Barreto–Naehrig (BN) curves [4], [53, §2] are considered to be the most pairing-friendly.
Some of them are presented in the IETF-draft [39, §4.3]. BN-curves have embedding degree
k = 12 (i.e., k/d = 2), which currently seems to be optimal for 128-bit security level.

Thus it will be useful to find a compression method for Fp2-points of the curves Eb/Fp2 ,
whose decompression stage is much faster than extracting a square Fp2-root. It is easily seen
that the latter is equivalent to extracting 2 square Fp-roots. Despite the known fact that for
p 6≡ 1 (mod 8) a square Fp-root can be computed by a single exponentiation in Fp, it is still a
quite laborious operation. This article proposes a novel point compression method requiring
(in the decompression stage) to extract only a single cubic Fp-root. For p 6≡ 1 (mod 27) this
can also be done by one exponentiation in Fp (see [10, prop. 1]), hence our method seems to
be about twice as quick as the classical one with the x (a fortiori, y) coordinate.

Our approach is based on an Fp-rationality proof of the generalized Kummer surface
GKb := Rb/[ω]2 of the Weil restriction (descent) Rb := R Fp2/Fp(Eb) [25, §3.2] with respect

to the order 3 automorphism [ω]2 := R Fp2/Fp([ω]). More precisely, we apply the theory of

conic bundles [35], [36]
(
i.e., conics over the function field Fp(t)

)
to obtain explicit as well

as quite simple formulas of a birational Fp-isomorphism between GKb and A2. The new
compression method consists in computation of these formulas. To recover the original point
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from Eb(Fp2) = Rb(Fp
)

we need to find an inverse image of the natural map % : Rb → GKb

of degree 3, i.e., to solve a cubic equation over Fp. The advantage of curves Eb is that the
pull-back map %∗ is actually a Kummer extension, i.e., the field Fp(Rb) is generated by a
cubic root of some rational function from Fp(GKb).

A similar result has been obtained early in the author’s master’s thesis [45] for point
compression of the two Jacobians Jb [2] over the fields F2e , where b ∈ F2 and 2, 3 - e. These
are the unique (up to an F2e-isogeny) supersingular simple abelian surfaces that have the
maximally possible embedding degree k = 12. We proved F2-rationality of (usual) Kummer
surfaces K := Jb/[−1] and even obtained explicit formulas of an F2-birational isomorphism
between K and A2, also using the theory of conic bundles, but in a different way. Based
on this knowledge, in the current article we formulate a conjecture about Fq-rationality of
geometrically rational generalized Kummer surfaces defined over a finite field Fq.

This article is organized as follows. In §1 we recall or prove some mathematical facts,
which are necessary for our main results. More precisely, §1.1 is dedicated to the theory
of cubic polynomials (§1.1.1) and cubic Fp-surfaces Sh with two Fp-nodes (§1.1.2). Further,
in §1.2 we review some facts about curves Eb, their Weil restrictions Rb (§1.2.2), and also
Barreto–Naehrig curves (§1.2.1). In §1.3 we consider generalized Kummer surfaces, in par-
ticular GKb (§1.3.1). Finally, §1.4 discusses the theory of conic bundles, in particular an
example of such a bundle on Sh (§1.4.1) and some propositions about blowing down compo-
nents of degenerate fibers (§1.4.2). Moreover, in §2 we prove Fp-rationality of the surfaces
GKb, which leads to a new point compression method. We instantiate this method in §2.1
for a special case including some commercially used curves Eb, and calculate its algebraic
complexity. Finally, §3 discusses further questions regarding possible generalizations of this
work.

Acknowledgements. The author expresses his deep gratitude to his scientific advisor
M. Tsfasman and thanks A. Trepalin, K. Loginov, K. Shramov, L. de Feo, and S. Gashkov
for their help and useful comments. Also, special thanks to D. Fiorilli for his help in writing
this text.
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1 Mathematical preliminaries and auxiliary results

1.1 Cubics

1.1.1 Cubic polynomials

In this paragraph we recall some known facts about cubic polynomials. Many of these
can be found, for example, in [38]. Consider a polynomial x3 + αx2 + βx+ γ over a field k
of characteristic p 6= 2, 3. After the variable change x := y − α/3, we obtain the polynomial

f(y) := y3 + cy + d, where c := β − α2

3
, d := γ − αβ

3
+ 2α3

27
.

Let G ↪→ S3 be the Galois group of the splitting field of f over k. Further, for a ∈ k we
denote by

(
a
k

)
the Legendre symbol, however in the case of a finite field k = Fq we also use

the notation
(
a
q

)
.

Lemma 1. The discriminant of f is equal to ∆ = −4c3 − 27d2 and

(
∆
k

)
=


0 if f has a multiple root,

1 if G = 1 or G ' Z/3,

−1 if G ' Z/2 or G ' S3.

Theorem 1 (Cardano formula). The roots of f are equal to R+ +R−, where

R± := 3

√
−d

2
±
√
D, D := − ∆

108
= c3

27
+ d2

4
, R+R− = − c

3
.

One can see that for general c, d finding roots of f (by this formula) consists in extracting 1
square root and 2 cubic ones.

Throughout the article we denote by ζ3 a fixed primitive 3-th root of unity, which is equal
to (−1 +

√
−3)/2. However for p = 0 we prefer the symbol ω.

Lemma 2. Assume that ζ3 ∈ k∗, i.e.,
(−3
k

)
= 1. Then a cubic extension of k is cyclic iff it

is Kummer, i.e., it has the form k( 3
√
a) for some a ∈ k∗ such that a /∈ (k∗)3.

For k = Fp the condition ζ3 ∈ F∗p is also equivalent to p ≡ 1 (mod 3).
To formulate the next theorem we need to recall a definition of the Lucas sequence vn =

vn(a, b) for a, b ∈ k and n ∈ N:

v0 := 2, v1 := b, vn := bvn−1 − avn−2.
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Theorem 2 ([18, thm 2]).
Assume that k = Fp, c, d 6= 0, and

(
∆
p

)
= −1. Then the unique Fp-root of f is equal to

−(3c)−( p
3

)vn(C,D)

3
, where C := −27c3, D := −27d, n :=

p+ 2(p
3
)

3
.

Lemma 3 ([18, rem. 2]). For a ∈ F∗p we obtain:

a /∈ (F∗p )3 if and only if p ≡ 1 (mod 3) and a
p−1
3 6= 1.

Moreover, if a ∈ (F∗p )3, then

3
√
a =



a
2p−1

3 if p ≡ 2 (mod 3),

[10, prop. 1] if p ≡ 1 (mod 9) and p 6≡ 1 (mod 27),

a−
p−4
9 if p ≡ 4 (mod 9),

a
p+2
9 if p ≡ 7 (mod 9).

Algorithms of exponentiation in Fp and extracting cubic Fp-roots in the case p ≡ 1 (mod 27)
can be found, for example, in [62, §3.4] and [10] respectively. At the same time, for extracting
square Fp-roots see [62, §12.5.1].

1.1.2 Cubic Fp-surfaces Sh with two Fp-nodes

In this paragraph we study some singular cubic surfaces with 16 lines, which occur in
§1.4.1, §2. The general theory of singular cubic ones (over a non-closed field) can be found,
for example, in [12, part I].

Lemma 4. Let p (>3) be a prime. For h = h1t+ h0 ∈ Fp[t] (h1 6= 0) consider a cubic surface

Sh := x2y − (t2 + y2)y − (h1t+ h0y)z2 ⊂ P3
(x:y:z:t).

It has only two singular points P± := (±1 : 0 : 0 : 1) and they are nodes (i.e., of type A1). In
particular, the surface Sh is Fp-rational.

Proof. The partial derivatives of Sh are equal to

∂Sh
∂x

= 2xy,
∂Sh
∂y

= x2 − (t2 + 3y2)− h0z
2,

∂Sh
∂z

= −2(h1t+ h0y)z,
∂Sh
∂t

= −2ty − h1z
2.

Besides, after the translation

τP± : (x : y : z : t) 7→ (±x− t : y : z : t), τ−1
P±

: (x : y : z : t) 7→
(
±(x+ t) : y : z : t

)
the tangent cone of

Sh,O := τP±(Sh) = x2y + 2xty − y3 − (h1t+ h0y)z2

at the origin O = τP±(P±) of A3
(x,y,z) has the form

TO(Sh,O) = 2xy − h1z
2.

Therefore the points P± are nodes and the projection from one of them is the birational
Fp-isomorphism pr : Sh ∼99K A2.
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Let Nh := h2
0 + h2

1 and note that

Sh,O ∩ TO(Sh,O) = LP+,P− ∪MO,

where

LP+,P− := V(y, z), MO :=

{
h1x =

(
h0 ±

√
Nh

)
y,

h1z = ±
√

2h1xy.

Here MO is the union of 4 lines, i.e., the signs ± are taken independently. Consider the
projection from O and its inverse map:

prO : Sh,O ∼99K A2
(u,v), (x : y : z : t) 7→

(
x
y
, z
y

)
,

pr−1
O : A2

(u,v)
∼99K Sh,O, (u, v) 7→ (uY : Y : vY : T ),

where
Y := h1v

2 − 2u, T := u2 − h0v
2 − 1.

Note that prO, pr−1
O are isomorphisms on the open subsets

UO := Sh,O \
(
TO(Sh,O) ∪ L∞

)
, V := A2

(u,v) \ V(Y ),

where L∞ := V(y, t). Thus the maps

pr = prO ◦ τP± : Sh ∼99K A2, pr−1 = τ−1
P±
◦ pr−1

O : A2 ∼99K Sh

are those on the open subsets V and

U := τ−1
P±

(UO) = Sh \
(
TP±(Sh) ∪ L∞

)
,

where
TP±(Sh) = τ−1

P±
(S ′h) = ±2(x+ t)y − h1z

2.

Thus we proved

Lemma 5. If
(
Nh

p

)
= −1, then pr : U(Fp) ∼−→ V (Fp), where

U(Fp) = Sh(Fp) \ V(y), V (Fp) = A2(Fp) \ V(Y ).

We are also interested in the involution

[−1] : Sh ∼−→ Sh, (x : y : z : t) 7→ (x : y : −z : t),

the meaning of which is explained in §3. Let P ∈ Sh \ T∞(Sh) be a point outside the tangent
plane

T∞(Sh) = h1t+ h0y.

In geometric terms the point [−1](P ) is the third intersection one of the surface Sh and the
line L∞,P passing through P and ∞ := (0 : 0 : 1 : 0) ∈ Sh. In other words,

Sh ·L∞,P =∞+ P + [−1](P ).
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1.2 Elliptic curves Eb (of j-invariant 0)

Consider a finite field Fq, where q = pe, e ∈ N, and p (>3) is a prime. Also, let α ∈ F∗q be

a primitive element. In this paragraph we review elliptic curves Eb ⊂ P2 (of j = 0) with an
affine model

Eb : y2 = x3 + b ⊂ A2
(x,y)

for b ∈ F∗q . In other words, Eb = Eb ∪ {O}, where O := (0 : 1 : 0). Unless otherwise specified

we will identify Eb and Eb for the sake of simplicity. Curves Eb are discussed, for example,
in [32], [52]. They have the order 3 automorphism

[ω] : Eb ∼−→ Eb, (x, y) 7→ (ζ3x, y)

with fixed point set
Fix([ω]) =

{
O, (0,±

√
b)
}
.

Let us recall some well known results.

Theorem 3. A curve Eb is ordinary if and only if p ≡ 1 (mod 3).

Hereafter we will assume this condition, because results of the article have immediate ap-
plications only for discrete logarithm cryptography, where supersingular elliptic curves are
weak.

Theorem 4 ([53, prop. 1.50], [53, exam. 1.112]).

1. Curves Eb are isomorphic to each other at most over Fq6 by the map

ϕb,b′ : Eb ∼−→ Eb′ , (x, y) 7→ ( 3
√
βx,

√
βy),

where β := b′/b. Besides, Eαi (i ∈ Z/6) are unique (up to an Fq-isomorphism) elliptic
curves of j = 0.

2. The endomorphism ring of curves Eb (and only of them) is that of Eisenstein integers:

EndFq(Eb) = EndFq(Eb) ' Z[ω],

where ω = 3
√

1 ∈ C∗ corresponds to the automorphism [ω]. In particular, the discrimi-
nant (conductor) of End(Eb) is equal to −3 (respectively 1) and

Aut(Eb) ' 〈−ω〉 ' Z/6.

Let us recall some things about the ring of Eisenstein integers. First, there is the unique
decomposition p = ππ such that π = n+mω is a prime in Z[ω] and π ≡ 2 (mod 3). Besides,
for a number a ∈ Z[ω] \ (π) its 6-th power residue symbol

(
a
π

)
6

is, by definition, the 6-th root

of unity that is congruent to a
p−1
6 modulo π. We will denote by tq (by fq) trace (respectively

conductor) of the Frobenius map πq = πe on Eb/Fq. In other words, fq is conductor of the
order Z[πq] ⊂ Z[ω]. In particular,

t2q − 4q = −3f 2
q and hence πq, πq =

tq ± fq
√
−3

2
,

where πq = πe is the Verschiebung map on Eb/Fq. Finally, let

nb := |Eb(Fq)| = q + 1− tq.
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Theorem 5 ([32, thm 2], [53, prop. 1.57]).

1. For q = p we obtain:

tp = −
(

4b
π

)
6
π −

(
4b
π

)
6
π ∈

{
±(n+m), ±(2n−m), ±(n− 2m)

}
.

2. If Eb′ is a twist of Eb of degree d, then its trace is equal to

t′q =


−tq if d = 2,
±3fq − tq

2
if d = 3,

±3fq + tq
2

if d = 6.

Moreover, for any curve Eb all cases occur.

Consequently, applying both parts of this theorem, we can immediately compute the trace
tq (and then the order nb) of any curve Eb/Fq.

Theorem 6 ([31, thm 9]). If 2, 3 - nb, then

Eb(Fq6) '
⊕
i∈Z/6

Eαi(Fq).

Moreover, if Fq(Eb[l]) = Fq6 for some prime l | nb, then Eb has the unique sextic twist Eb′/Fq
such that l | nb′. In other words,

Eb[l] = Eb(Fq)[l]×ϕ−1
b,b′(G), where G := Eb′(Fq)[l].

1.2.1 Barreto–Naehrig curves

Let for some u ∈ Z numbers

p := 36u4 + 36u3 + 24u2 + 6u+ 1, l := p+ 1− t

are primes, where t := 6u2 + 1. Because of p ≡ 1 (mod 3) the CM method (see, for example,
[24, §2]) gives the unique (ordinary) curve Eb′/Fp of order nb′ = l. It is called Barreto–Naehrig
(or BN) curve [4], [53]. Today they are probably the most used elliptic curves in pairing-based
cryptography.

Lemma 6.

1. p ≡ 3 (mod 4) ⇔ u is odd,

2. embedding degree k = 12,

3. ζ3 = 18u3 + 18u2 + 9u+ 1 ∈ F∗p ,

4. fp = 6u2 + 4u+ 1.
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According to this lemma (item 2) and Theorem 6 the curve Eb′ has the unique sextic
twist Eb/Fp2 such that l | nb. Table 1 represents some pairing-friendly elliptic curves Eb/Fp2
really used in practice. For all cases p ≡ 3 (mod 4), i.e., i :=

√
−1 /∈ Fp. Numbers appeared

in names are equal to log2(p) (for BLS12-381 this is 381). Almost all curves are Barreto–
Naehrig ones except for BLS12-381 (a Barreto–Lynn–Scott curve), which also has embedding
degree k = 12. Finally, in all cases p 6≡ 1 (mod 27). This allows to extract a cubic Fp-root by
one exponentiation in Fp (see Lemma 3).

name b p (mod 27) references

BN160, BN192,

BN224, BN256
24(−1 + i) 22 [4, §A]

bn256 3/(3 + i) 19
Cloudflare [11],

Ethereum [21], [54]

BLS12-381 4(1 + i) 10 Zcash [69]

Fp256BN, Fp224BN,

Fp384BN, Fp512BN
3(1 + i) 22 IETF-draft [39, §4.3]

Table 1: Some pairing-friendly elliptic curves Eb/Fp2 used in practice

1.2.2 The Weil restriction of Eb/Fp2

For simplicity suppose p ≡ 3 (mod 4), i.e., i :=
√
−1 /∈ Fp. Also, let b := b0 + b1i and

Nb := b2
0 + b2

1 for some b0, b1 ∈ Fp. Then the Weil restriction [25, §3.2] of Eb ⊂ A2
(x,y) (with

respect to the extension Fp2/Fp) is equal to

Rb :=

{
y2

0 − y2
1 = x3

0 − 3x0x
2
1 + b0,

2y0y1 = −x3
1 + 3x2

0x1 + b1

⊂ A4
(x0,x1,y0,y1).

Besides, we denote by Rb ↪→ P8 the Weil restriction of Eb ⊂ P2, recalling that Rb ' Eb × Ebp
over Fp2 . Also consider the restriction of [ω], i.e., the order 3 automorphism

[ω]2 : Rb
∼−→ Rb, (x0, x1, y0, y1) 7→ (ζ3x0, ζ3x1, y0, y1).

If b1 6= 0, then its fixed point set

Fix([ω]2) =
{

(0, 0, y0, y1) | 2y0y1 = b1, 2y2
0 = b0 ±

√
Nb

}
.

Over Fp it obviously consists of exactly 4 points, and Fix([ω]2)(Fp) = ∅ if and only if
(
b
p2

)
=

−1. At the same time, the continuation [ω]2 : Rb
∼−→ Rb has exactly 9 fixed Fp-points.
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1.3 Generalized Kummer surfaces

Let A be an abelian surface over a perfect field k of characteristic p and σ be its au-
tomorphism as a group variety. The geometric quotient A/σ (or its minimal resolution of
singularities) is called generalized Kummer surface. For σ = [−1] this is just Kummer surface
KA. We will denote by % : A→ A/σ the quotient morphism, which is of degree ord(σ). In
particular, by % the endomorphism [n] : A→ A (for any n ∈ Z) is clearly induced to A/σ.

Let us recall some rationality properties of generalized Kummer surfaces.

Theorem 7 ([41, thm A], [42, thm 1.3]). For k = k we obtain:

1. If p > 2, p 6≡ 1 (mod 12), then A is supersingular ⇔ KA is a Zariski surface [68];

2. If p = 2, then A is supersingular ⇔ KA is a rational surface.

Theorem 8 ([26, table 6], [66, §2]). For k = C there are only two abelian surfaces having σ
of a prime order such that the generalized Kummer surface is rational. These are:

1. The direct square E2
1 with σ = ([ω], [ω]) of order 3;

2. The Jacobian J1 of the genus 2 curve given by the affine model y2 = x5 + 1 with σ (of
order 5) induced from the curve automorphism (x, y) 7→ (x 5

√
1, y).

In fact, J1 is the unique simple abelian surface A having σ with the rational quotient A/σ
even if we omit the prime condition on ord(σ).

Theorem 9 ([40, thm 2.11]). Assume that k = k, dim
(
Fix(σ)

)
= 0, and at least one of sin-

gularities on A/σ is not a node. Then A/σ is a rational surface.

Recently, a sort of classification for automorphism groups of abelian surfaces over a finite
field Fq appeared in [33]. Nevertheless, almost nothing is known about Fq-rationality of
generalized Kummer surfaces unlike their Fq-unirationality in some cases (see [40]). This
article can be considered the first step in this direction.

1.3.1 The generalized Kummer surfaces GKb

We keep the notation of §1.2.2. Consider the affine part

GKb := Rb/[ω]2 = α(t)(y2
0 − y2

1)− 2β(t)y0y1 + f(t) ⊂ A3
(t,y0,y1),

of the generalized Kummer surface GKb := Rb/[ω]2, where

α(t) := 3t2 − 1, β(t) := t(t2 − 3), f(t) := −b0α(t) + b1β(t) = b1t
3 − 3b0t

2 − 3b1t+ b0.

For uniformity we will also call GKb the generalized Kummer surface and we will consider
its closure in A1

t×P2
(y0:y1:y2), keeping the same notation.

The discriminant of f is equal to ∆ = 2233N2
b and hence

(
∆
p

)
= −1. By Lemma 1 there

is the decomposition f = λγ into linear λ and Fp-irreducible quadratic γ polynomials over
Fq. For uniqueness we suppose γ to be reduced. This decomposition (or, equivalently, the
unique Fp-root of f) can be found, for example, by means of Theorem 2.

10



We also have the quotient map

% : Rb 99K GKb, (x0, x1, y0, y1) 7→
(
x0

x1
, (y0 : y1 : 1)

)
.

An inverse image of % is represented, for example, as(
t, (y0 : y1 : y2)

)
7→
(
tX1, X1, Y0, Y1

)
,

where

X1 := 3

√
2Y0Y1 − b1

α(t)
, Y0 :=

y0

y2
, Y1 :=

y1

y2
.

In other words, these formulas give the map %−1 from GKb to the set-theoretic quotient of Rb

by [ω]2. It is known [64, exam. 8.10] that the image of Fix([ω]2) ⊂ Rb under % is the singular
locus of GKb and all its 9 singularities are cyclic quotient ones of type 1

3
(1, 1).

1.4 Conic bundles (conics over the function field)

In this paragraph we will recall some facts about conic bundles. For a deeper look, see
[35], [36]. Let (x0 : x1) be homogenous coordinates of P1 and t := x0/x1. As usual, we denote
a point (t0 : 1) just by t0 and the point (1 : 0) by ∞.

Consider a projective irreducible (possibly singular) surface S over a finite field Fq of
characteristic p > 2. We call a non-constant Fp-morphism π : S → P1 conic bundle if for
general t0 ∈ P1 the fibre π−1(t0) is a non-degenerate conic. The latter means an irreducible
(or, equivalently, non-singular) algebraic curve

(
over Fq(t0)

)
of degree 2. As usually, a Fq-

section of π is a Fq-morphism σ : P1 → S such that π ◦ σ = id.
It is clear that π corresponds to its general fibre Fπ, which is a non-degenerate conic over

the univariate function field Fq(t). And besides, Fq-sections of π correspond to Fq(t)-points
on Fπ. For one another conic bundle π′ : S ′ → P1 any birational Fq-isomorphism ϕ : S ∼99K S ′
(such that π = π′ ◦ ϕ) corresponds to an Fq(t)-isomorphism (i.e., a transformation in P2) of
their general fibers ϕπ,π′ : Fπ ∼−→ Fπ′ , and vice versa. If the general fibre Fπ is isotropic, i.e.,
it has Fq(t)-point, then S is obviously an Fq-rational surface. Inverse is not true (see, for
example, Theorem 13).

Suppose S to be a non-singular surface. A conic bundle π is called relatively Fq-minimal if
S has no Fq-orbits of pairwise disjoint exceptional (−1)-curves in fibers of π. In other words,
the surface S can not be contracted over Fq with respect to π. A conic bundle may have
several relatively Fq-minimal models, however the Frobenius action on each of them is the
same.

Theorem 10 (Iskovskih). Suppose π : S → P1 to be a relatively Fq-minimal conic bundle.
Then we obtain:

1. The number of degenerate fibres of π (over Fq) is equal to 8−K2, where K is a canonical
divisor of S;

2. The surface S is Fq-rational if and only if K2 > 5, i.e., there is no more than 3 degen-
erate fibers.

11



3. If K2 ∈ {5, 6}, then S is a del Pezzo surface. Moreover, S is unique among all relatively
Fq-minimal conic bundles of degree K2.

It is well known that every surface having conic bundle can be reduced by means of some
birational Fq-isomorphism to the form

S = F (x0, x1)y2
0 +G(x0, x1)y2

1 +H(x0, x1)y2
2 ⊂ P1

(x0:x1)×P2
(y0:y1:y2),

where F,G,H are non-zero homogenous Fq-polynomials of the same degree. The conic bundle
itself is transformed into the projection π : S → P1

(x0:x1). The product ∆ := FGH is called
discriminant of π. After a simple check we obtain

Lemma 7. For t0 ∈ P1 the following is true:

1. The fibre of π over t0 is degenerate ⇔ ∆(t0) = 0;

2. The fibre of π over t0 contains a singular point on S ⇔ t0 is a multiple root of ∆;

3. Singular curves on S may only be double fibers of π.

Further, it is clear that the surface S has the non-singular Fq-model

Sf,g,h := f(t)y2
0 + g(t)y2

1 + h(t)y2
2 ⊂ A1

t×P2
(y0:y1:y2),

where f, g, h are non-zero (possibly Fq-reducible) square-free polynomials having no common
roots in pairs. We will also call the projection Sf,g,h → A1

t (induced from π) a conic bundle
despite the fact that Sf,g,h is not a projective surface. Thus its general fibre can be written
as

Qα,β := y2
0 + α(t)y2

1 + β(t)y2
2, where α(t) :=

g(t)

f(t)
, β(t) :=

h(t)

f(t)
.

Lemma 8 ([58, thm 3.7]). The conic bundle Sf,g,h → A1
t has an Fq-section if and only if the

following identities on the Legendre symbols are satisfied:(
−fg
h

)
=

(
−fh
g

)
=

(
−gh
f

)
= 1.

A quite efficient algorithm for finding an Fq-section of a conic bundle can be found, for
example, in [65].

We recall that for functions α, β ∈ Fq(t)∗ their (quadratic) Hilbert symbol at t0 ∈ P1 is the
Legendre one

(α, β)t0 :=

(
e(α, β)

Fq(t0)

)
, where e(α, β) := (−1)abα

b

βa
(t0) ∈ Fq(t0)∗

and a, b are orders at t0 of α, β respectively. The following theorem is very useful despite
the fact that it is not constructive.

Theorem 11 ([35, exam. 3.7]). Fix two more functions α′, β′ ∈ Fq(t)∗. Then the conics Qα,β,
Qα′,β′ are Fq(t)-isomorphic if and only if for all t0 ∈ P1 we have that (α, β)t0 = (α′, β′)t0 .
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1.4.1 A conic bundle on Sh

We save the notation of §1.1.2. In §2 we will encounter the projection π : Sh → P1
(y:t) from

the line L∞, which is a conic bundle. The surfaces Sh and

S ′h := x2 − (t2 + 1)y2 − (h1t+ h0)z2 ⊂ A1
t×P2

(x:y:z)

are obviously equal for y 6= 0 on both ones. Moreover, after inducing the maps π, pr, [−1] on
S ′h they respectively become the projection π′ : S ′h → A1

t,

pr′ : S ′h ∼99K A2
(u,v),

(
t, (x : y : z)

)
7→
(
±x
y
− t, z

y

)
,

and
[−1] : S ′h

∼−→ S ′h,
(
t, (x : y : z)

)
7→
(
t, (x : y : −z)

)
.

Besides,

(pr′)−1 : A2
(u,v)
∼99K S ′h, (u, v) 7→

(
T
Y
,
(
±(uY + T ) : Y : vY

))
.

For compactness we will sometimes use the notation g(t) := t2 + 1.

Lemma 9. Suppose p ≡ 3 (mod 4). Then the conic bundle π′ has an Fp-section⇔
(
Nh

p

)
= 1.

Proof. According to Lemma 8 there is an Fp-section for π′ if and only if(g
h

)
=
(
h
g

)
=

(
−gh

1

)
= 1.

The last equality is obviously true. Also, note that(g
h

)
=

(
g(h0/h1)

p

)
=
(
Nh

p

)
.

Finally, the second equality is, by definition, the existence of an Fp-polynomial r(t) = r1t+ r0

such that g | h− r2. The remainder of dividing h− r2 by g is equal to

(h1 − 2r0r1)t+ (h0 − r2
0 + r2

1),

hence we obtain the equation system
r0 =

h1

2r1

,

4r4
1 + 4h0r

2
1 − h2

1 = 0.

Therefore r2
1 = R±, where

R± :=
−h0 ±

√
Nh

2
, R+R− = −h

2
1

4
.

If
(
Nh

p

)
= 1, then the above system is solvable. Indeed, R± ∈ Fp and exactly one of these

elements is a quadratic residue in Fp.
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Provided
(
Nh

p

)
= −1 we see that pr′ : U(Fp) ∼−→ V (Fp) by analogy with Lemma 5. For the

next theorem consider the lines

L± := h1x± y
√
Nh, M± := x− z

√
h(±i), M

(1)
± = x+ z

√
h(±i).

Theorem 12. If
(
Nh

p

)
= −1, then:

1. The degenerate fibers of π′ over t 6=∞ are represented in Figure 1;

2. The fibre of π′ over∞ is the double one with the unique surface singular point (1 : 0 : 0),
which is of type A3;

3. The relatively Fp-minimal model of S ′h is a del Pezzo surface of degree 5.

Proof. The first fact is immediately checked. To prove the second one we write out the
surface S ′h (locally over Fp) as

s2 − (1 + s2)y2 − (1 +
h0

h1

s)sz2 ⊂ A3
(y,z,s).

To obtain the surface V(s2 + y2 + z4) it remains to apply the analytical change of variables

(y, z, s) 7→
(
Ay,Bz, s+

(Bz)2

2

)
,

where

A =
√
−(1 + s2), B =

√
−(1 +

h0

h1

s) ∈ Fp[[s]].

Finally, the third fact follows from the Iskovskih theorem 10 and Fp-rationality of Sh (see
Lemma 4).

L+

L−

M+

M
(1)
+

M−

M
(1)
−

−h0/h1 i −i

Figure 1: The Frobenius action on degener-
ate fibers of the conic bundle π′ : S ′h → A1

t

M+

L+

M−

L−

r+ r−

Figure 2: Pairs of Fp-conjugate lines lying in
two Fp-conjugate degenerate fibers

Hereafter we will identify (Sh, π, pr) and (S ′h, π
′, pr′), saving for simplicity only the first

notation.
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1.4.2 Blowing down components of degenerate fibres

According to [35, §3] we have explicit formulas for contracting one of Fp-lines of a degen-
erate Fp-fibre. We will also need to explicitly contract one of the pairs of Fp-conjugate lines
L± (or M±) lying in two Fp-conjugate degenerate fibers over roots r± of some Fp-irreducible
quadratic polynomial. This is done in Lemma 10 in a particular case, which is sufficient for
our purposes. For better comprehension of the described situation see Figure 2.

For any polynomial h ∈ Fp[t] consider the surface

Sh := x2 − (t2 + 1)y2 − h(t)z2 ⊂ A1
t×P2

(x:y:z).

As usual, the projection π : Sh → A1
t is a conic bundle.

Lemma 10. Let q(t) := t2 + ct+ d ∈ Fp[t] with roots r± and discriminant D = c2 − 4d such
that

(
D
p

)
= −1. Also, let h ∈ Fp[t] and s± := r2

± + 1 provided that q | h and
(
s±
p2

)
= 1. Then

for some u ∈ F∗p there is a birational Fp-isomorphism (respecting the conic bundles)

ϕq : Sh ∼99K Suh
q

such that ϕq : Sh(Fp) ∼−→ Suh
q
(Fp).

Proof. We propose to start the searching a desired transformation in the form

ψq :=


x2 := (b0 + b1t)x− y,
y2 := −x+ (a0 + a1t)y,

z2 := a1b1q(t)z,

ψ−1
q =


x := (a0 + a1t)x2 + y2,

y := x2 + (b0 + b1t)y2,

z := z2,

det(ψ−1
q ) = a1b1q(t),

where a0, b0 ∈ Fp, a1, b1 ∈ F∗p . After substitution ψ−1
q into Sh and division by q(t) the coeffi-

cients of the monomials x2
2, x2y2, y2

2 we obtain (up to a non-zero constant) the remainders

(a2
0 − a2

1d+ d− 1)x2
2, (2a0a1 − a2

1c+ c)x2
2t,

(a0 + b0d− b0 − b1cd)x2y2,
(
a1 + b0c− b1(c2 − d+ 1)

)
x2y2t,(

db2
0 − b2

0 − 2cdb0b1 + d(c2 − d+ 1)b2
1 + 1

)
y2

2,
(
cb2

0 − 2(c2 − d+ 1)b0b1 + c(c2 − 2d+ 1)b2
1

)
y2

2t

and the non-zero quotients ux2
2, v(t)x2y2, w(t)y2

2, where

u := a2
1 − 1,

v(t) := 2(−b1t+ b1c− b0),

w(t) := −b2
1t

2 + b1(−2b0 + b1c)t− b2
0 + 2b0b1c− b2

1(c2 − d+ 1).

Consider the trace and norm:

T := TrFp2/Fp(s±) = c2 − 2d+ 2, N := NFp2/Fp(s±) = c2 + d2 − 2d+ 1.

Because of
(
s±
p2

)
= 1 we get

(
N
p

)
= 1. Also, it is easily checked that T 2 − c2D = 4N . The

system of reminders has two Fp-solutions:

a0 := c
(d+ 1)Nb2

1 + 1− d
2Nb1

, a1 :=
TNb2

1 − c2

2Nb1

, b0 := c
Nb2

1 + 1

2Nb1

, b1 := ±
√
β,
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where β is exactly one (due to
(
D
p

)
= −1) of the roots

T ± 2
√
N

ND
∈ Fp∗ of DN2X2 − 2TNX + c2 ∈ Fp[X]

such that
(
β
p

)
= 1. Therefore

ψq : Sh ∼99K S ′, where S ′ := ux2
2 + v(t)x2y2 + w(t)y2

2 −
h(t)

q(t)
z2

2 .

Note that u, a1 6= 0. Thus after the Fp-transformation χq : S ′ ∼−→ Suh
q

given by

χq :=


x3 := ux2 +

v(t)

2
y2,

y3 := a1b1y2,

z3 := z2,

χ−1
q =


x2 :=

a1b1

u x3 −
v(t)

2u
y3,

y2 := y3,

z2 := a1b1z3,

det(χq) = ua1b1

we obtain the desired surface Suh
q
, i.e., ϕq := χq ◦ ψq satisfies the theorem conditions.

Under the conditions of this lemma as the lines of Figure 2 we can take

L± = x−√s±y, M± = x+
√
s±y.

In the following corollary L+ = L− (resp. M+ = M−).

Corollary 1. If c = 0 and d 6= 1 in the previous lemma, then the condition
(
s±
p2

)
= 1 is

fulfilled. Thus, letting δ :=
√
d(d− 1), we obtain:

u = −1
d
, v(t) = ∓2t

δ
, w(t) = −t

2 − d+ 1
δ2

(in particular,
(
u
p

)
= −1) and (up to multiplication by elements of F∗p )

ψq =


x2 := ± t

δ
x− y,

y2 := −x∓ (d− 1)t

δ
y,

z2 := −q(t)
d
z,

ψ−1
q =


x := ∓(d− 1)t

δ
x2 + y2,

y := x2 ± t
δ
y2,

z := z2,

χq =


x3 := x2 ± dt

δ
y2,

y3 := y2,

z3 := −dz2,

χ−1
q =


x2 := x3 ∓ dt

δ
y3,

y2 := y3,

z2 := −1
d
z3.

Proof. It is immediately checked that

s+ = s− = 1− d, D = −4d, T = −2(d− 1), N = (d− 1)2, β = 1
δ2

and all other values are as stated.
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2 New point compression method

We will freely use the notation of previous paragraphs. As early, p be a prime such that
p ≡ 1 (mod 3), p ≡ 3 (mod 4). Consider the following ordinary elliptic Fp2-curve, its Weil
restriction (with respect to Fp2/Fp), and the generalized Kummer Fp-surface respectively:

Eb ⊂ A2
(x:y), Rb ⊂ A4

(x0,x1,y0,y1), GKb ⊂ A1
t×P2

(y0:y1:y2).

In this paragraph we prove Fp-rationality of GKb, which leads to the creation of our compres-
sion method for Fp2-points of Eb. We also discuss some technical details of its implementation.

Note that the projection π : GKb → A1
t is a conic bundle. If

√
b = b′0 + b′1i for b′0, b

′
1 ∈ Fp,

then the general fibre of π contains the point (b′0 : b′1 : 1) and the projection from it obviously
gives a birational Fp-isomorphism between GKb and A2. In fact, this case does not happen
(see §1.2) in pairing-based cryptography. Hereafter we hence can assume that

(
b
p2

)
= −1, in

particular b0, b1 6= 0.
First, we reduce GKb to a diagonal form by the map σ : GKb

∼99K Sαf given by

σ :=


x := β(t)y0 + α(t)y1,

y := g(t)y0,

z := y2,

σ−1 =


y0 := α(t)y,

y1 := g(t)x− β(t)y,

y2 := α(t)g(t)z,

det(σ) = α(t)g(t).

In particular, σ respects the conic bundle π and σ : GKb(Fp) ∼−→ Sαf (Fp). Next we successively
apply Corollary 1 and Lemma 10 to contract pairs of Fp-conjugate lines lying in the fibres of
π over roots of the Fp-irreducible polynomials α, γ respectively. More precisely, this is done
by means of the maps

ϕα/3 : Sαf ∼99K S9f , ϕγ : S9f
∼99K Sh,

where h(t) = 9uλ(t) for some u ∈ F∗p . The surface Sh is Fp-rational by the projection pr from
any of its two nodes (see Lemma 4). Thus we obtain the maps

θ := ϕγ ◦ ϕα/3 ◦ σ : GKb
∼99K Sh, τ := pr ◦ θ : GKb

∼99K A2,

θ% := θ ◦ % : Rb 99K Sh, τ% := τ ◦ % : Rb 99K A2.

By analogy with %−1 we also have the map θ−1
% (resp. τ−1

% ) from Sh (resp. A2) to the set-
theoretic quotient of Rb by [ω]2.

According to Lemma 9 we can assume that
(
Nh

p

)
= −1, otherwise the conic bundle π on

Sh (or, equivalently, on GKb) has an Fp-section. Thus taking into account Lemma 5 we sum
up the main result of this article in

Theorem 13. For a prime p such that p ≡ 1 (mod 3), p ≡ 3 (mod 4) the generalized Kummer
surface GKb is Fp-rational. More precisely, assume that the conic bundle π on GKb has no
an Fp-section, in particular

(
b
p2

)
= −1. Then we have the birational Fp-isomorphism

τ : GKb
∼99K A2 such that τ : GKb(Fp) ↪→ A2(Fp).
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Another constructive proof of the Fp-rationality could consist in applying the theory of ad-
joints [58, §5]. However, in our opinion, the approach using conic bundles is more simple and
elegant.

The map % is not defined for x1 = 0. We spread it to this case as follows. Let

Rb,∞ := Rb ∩ V(x1) =

{
2y0y1 = b1,

y2
0 − y2

1 = x3
0 + b0.

⊂ A3
(x0,y0,y1),

Qb := 4y2
0(y2

0 − x3
0 − b0)− b2

1 ⊂ A2
(x0,y0).

Then the projection %∞ : Rb,∞ ∼99K Qb to (x0, y0) is a birational Fp-isomorphism with the
inverse one

%−1
∞ : Qb

∼99K Rb,∞, %−1
∞ : (x0, y0) 7→

(
x0, y0,

b1

2y0

)
.

It is obvious that %∞ is an isomorphism if y0 6= 0 both on Rb,∞ and Qb. In particular, this is
fulfilled for b1 6= 0.

Similarly, the map pr is not defined for y = 0. Let

Sh,∞ := x2 − (h1t+ h0)z2 ⊂ A3
(t,x,z).

Then the projection pr∞ : Sh,∞ ∼99K A2
(x,z) is a birational Fp-isomorphism with the inverse one

pr−1
∞ : A2

(x,z)
∼99K Sh,∞, (x, z) 7→

(
x, z,

x2 − h0z
2

h1z
2

)
.

As a result we obtain the compression map

comb : Eb(Fp2) ↪→ F2
p×F3

2 , comb(P ) :=



(
%∞(P ), (0, 0, 0)

)
if x1(P ) = 0,(

(0, 0), (0, 0, 1)
)

if P = O,(
(pr∞ ◦ θ%)(P ), (v, 0)

)
if y

(
θ%(P )

)
= 0,(

τ%(P ), (v, 1)
)

otherwise,

where v ∈ {(0, 1), (1, 0), (1, 1)} is the position number of x1(P ) ∈ F∗p in the representative
set {ζ i3x1(P ) (mod p)}2

i=0 ordered with respect to the usual numerical order. Therefore the
corresponding decompression map has the form

com−1
b : Im(comb) ∼−→ Eb(Fp2), com−1

b

(
Q,w

)
=



%−1
∞ (Q) if w = (0, 0, 0),

O if w = (0, 0, 1),

(θ−1
% ◦ pr−1

∞ )(Q) if w = (v, 0),

τ−1
% (Q) if w = (v, 1),

where in the two last cases the image of com−1
b is uniquely defined by the value v.
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2.1 An example of using the method in a particular case

In this paragraph we instantiate the new point compression method for the case b0 = b1.
According to Table 1 the curve BLS12-381 and BN-ones from IETF-draft [39, §4.3] satisfy
this condition. We get:

Nb = 2b2
1, λ(t) = b1(t+ 1), γ(t) = t2 − 4t+ 1, r± = 2±

√
−3i, s± = 4r±.

In particular,
(
s±
p2

)
= 1, because the norm N(r±) = 1. As usually, we will suppose that(

b
p2

)
= −1 (i.e.,

(
2
p

)
= −1), hence according to the known formula

(
2
p

)
= (−1)

p2−1
8 [62, thm

12.1.iv] we have p ≡ 3 (mod 8).
We say that an arbitrary map has (on the average) an algebraic complexity

nSS + nMcMc + nMM + nII + nCRCR

if (for most arguments) it can be computed by means of nS squarings, nMc multiplications
by a constant, nM general ones (with different non-constant multiples), nI inversions and
nCR cubic roots, where all operations are in Fp. Additions and subtractions in Fp are not
considered, because they are very easy to compute. We also do not take account (in nMc)
for multiplications by a constant c ∈ Fp such that c (mod p) 6 6, because they are not more
difficult than few additions. Implementation details of the most operations mentioned see,
for example, in [62].

Next we specify the maps ϕα/3 and ϕγ, multiplying them by some elements of F∗p to reduce
their algebraic complexity.

Corollary 2. For q = α/3 the value δ = 2/3 and hence Corollary 1 takes the form:

u = 3, v(t) = ∓3t, w(t) = −3
(

3
4
t2 + 1

)
and

ψq =


x2 := ±3tx− 2y,

y2 := −2x± 4ty,

z2 := 2α(t)z,

ψ−1
q =


x := ±4tx2 + 2y2,

y := 2x2 ± 3ty2,

z := 2z2,

χq =


x3 := 6x2 ∓ 3ty2,

y3 := 6y2,

z3 := 2z2,

χ−1
q =


x2 := 2x3 ± ty3,

y2 := 2y3,

z2 := 6z3.

Corollary 3. For q = γ Lemma 10 takes the form:

u = −1
3
, v(t) = ∓t− 1√

6
, w(t) = −t

2 − 6t+ 1
24
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and

ψq =


x2 := ±

√
6

2
(5− t)x+ 6y,

y2 := 6x± 2
√

6(1 + t)y,

z2 := q(t)z,

ψ−1
q =


x := ∓ 2√

6
(1 + t)x2 + y2,

y := x2 ∓ 1
2
√

6
(5− t)y2,

z := z2,

χq =


x3 := 2x2 ∓

√
6

2
(1− t)y2,

y3 := y2,

z3 := −6z2,

χ−1
q =


x2 := −3x3 ∓ 3

√
6

2
(1− t)y3,

y2 := −6y3,

z2 := z3.

It is easily seen that after applying ϕγ we obtain the surface Sh with h(t) = −3b1(t+ 1).
To make sure in correctness of the above formulas see our code [46] in the language of the
computer algebra system Magma.

Lemma 11. The maps comb, com−1
b respectively have an algebraic complexity

3S + 5Mc + 14M + 2I and 4S + 6Mc + 18M + 3I + CR.

Proof. It is easily checked that the basic maps forming comb, com−1
b have an algebraic com-

plexity as in Table 2. Therefore we know that of the maps τ%, τ
−1
% . Exactly these functions

are computed for most arguments. It remains to note that for finding v ∈ F2
2 (during compu-

tation of comb) it is necessary to accomplish two multiplications by the constants ζ3, ζ2
3 . And

vice versa, this is also done to recover the initial value of x1-coordinate (during computation
of com−1

b ).

map %∞ pr∞ % σ ϕα/3 ϕγ pr %−1
∞

alg. complexity 0 0 I S + 4M S + 4M S + 3Mc + 4M 2M + I Mc + I

pr−1
∞ %−1 σ−1 ϕ−1

α/3 ϕ−1
γ pr−1

2S +Mc +M + I S + 4M + 2I + CR S + 6M 3M 3Mc + 3M 2S +Mc + 2M + I

Table 2: An algebraic complexity of the maps

3 Further questions

We end the article by a report on some questions that are attractive in our opinion.
First, it is easily checked that by the map θ% from §2 the ordinary involution [−1] : Rb

∼−→ Rb

is induced onto the cubic surface Sh (deg(h) = 1) as the involution [−1] from §1.1.2, §1.4.1.
Similarly, on Sh there is the double map [2]. It would be very interesting to understand the
geometric picture of this map and its relation to the existence (discussed in [48, ch. II]) of a
binary algebraic structure on a cubic surface.

Besides Theorem 13 the author has already proved in [45] a similar one about F2-
rationality of the (usual) Kummer surface of the two supersingular Jacobians [2] of dimension
2. Thus we are feel free to formulate
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Conjecture 1. Let A be an abelian surface over a finite field Fq and σ be its Fq-automorphism.
If the generalized Kummer surface A/σ is geometrically rational, then it is also Fq-rational.

Let us add some comments about possible generalizations of our point compression
method. First, we do not see problems to spread it to the Weil restriction R Fq2/Fq(Eb)
for any finite field Fq of characteristic p > 3. Besides, our approach could be immediately
applied to Ab,b′ := Eb×Eb′ . Nevertheless, in this article we focused on the surface Rb/Fp,
because compression of its points seemed to us more difficult and important for practice.
However, the task of point compression for Ab,b′ (so-called double point compression) also has
reason to live. It has already been discussed (in a slightly different way) in [43] for the direct
square E2 of any elliptic curve E/Fq. In that article authors do not try to compress points as
compact as possible. Instead of this they find an Fq-model of E2 in A3 and the corresponding
birational Fq-isomorphism. The advantage of their approach is speed, because it should not
solve equations at the decompression stage. Finally, according to Theorem 8 the Jacobian of
a hyperelliptic curve y2 = x5 + b (for b ∈ F∗q , p > 5) seems to be also Fq-rational.

Double point compression also occurred [3], [14], [67] in supersingular isogeny-based cryp-
tography (SIDH) [16]. The main difference from classical one is the need to compress points
of a superspecial abelian surface E2 for any supersingular elliptic curve E/Fp2 . Therefore
our approach does not spread immediately to this case. However, over the algebraic closure
Fp there is the unique (up to an isomorphism) superspecial abelian surface. Besides, any
endomorphism of E2 is defined over Fp2 . Thus every superspecial abelian Fp2-surface has an
Fp2-automorphism σ such that the generalized Kummer surface E2/σ is geometrically ratio-
nal. According to Conjecture 1 it is even Fp2-rational. Of course, this can be very difficult to
find σ and explicit formulas of an Fp2-birational isomorphism between E2/σ and A2.

Up to now we have focused only on the rationality problem of a generalized Kummer
surface. However there is also another possible method to compress points of a superspecial
abelian surface E2/Fp2 . According to Theorem 7 its Kummer surface K is a so-called Zariski
surface [68] for p 6≡ 1, 2 (mod 12). This means the existence of a purely inseparable map
K 99K A2 (or, equivalently, A2 99K K) of degree p. We stress that computation of such a map
(and its preimage) is very fast and usually even trivial. But, unfortunately, the known proof
of the mentioned theorem is valid only over Fp and it is absolutely not constructive.

It is very natural to think about compression for points of m-dimensional abelian varieties,
where m > 2. Multiple point compression, i.e., that for a direct power Em of an elliptic curve
E/Fq is discussed in [23] by analogy with double one. At the same time, by the Weil descent
attack [17], [25, §3.2] it may be dangerous to consider elliptic curves over Fpm for classical
elliptic cryptography. However, in pairing-based one optimal embedding degree k will exceed
12 in the near future. Therefore we will have to use twists (of degree d) defined over Fpm ,
where m = k/d. According to [24, §8.2] for most k > 12 the curves Eb are still the most
pairing-friendly, because there are methods to generate such curves with a quite large prime
Fp-subgroup. Unfortunately, for m > 2 the generalized Kummer variety corresponding to
the order 3 automorphism [ω]m := R Fpm/Fp([ω]) on the Weil restriction Rb,m := R Fpm/Fp(Eb)

is no longer rational [64, lem. 8.11] even over Fp. Nevertheless, for m = 3 (resp. m ∈ {4, 5})
geometrical rationality is proved [55, thm 1.4.(1)] (conjectured [9, ques. 1.3, 1.4]) for the
quotient of Rb,m by the order 6 automorphism −[ω]m.

21



References

[1] Appenzeller G., Martin L., Schertler M. Identity-based encryption architecture and supporting data
structures (RFC 5408), 2009.

[2] Aranha D., Beuchat J.-L., Detrey J., Estibals N. Optimal Eta pairing on supersingular genus-2 binary
hyperelliptic curves. // Cryptographers’ Track at the RSA Conference, 2012. P. 98–115.

[3] Azarderakhsh R., Jao D., Kalach K., Koziel B., Leonardi C. Key compression for isogeny-based cryp-
tosystems. // 3rd ACM International Workshop on ASIA Public-Key Crypto., 2016. P. 1–10.

[4] Barreto P., Naehrig M. Pairing-friendly elliptic curves of prime order. // 12th International Workshop
on Selected Areas in Cryptography, 2006. P. 319–331.

[5] BitcoinWiki, secp256k1. URL: https://en.bitcoin.it/wiki/Secp256k1.

[6] Bos J., Halderman J., Heninger N., Moore J., Naehrig M., Wustrow E. Elliptic curve cryptography in
practice. // 18th International Conference on Financial Crypto. and Data Security, 2014. P. 157–175.

[7] Boyen X., Martin L. Identity-based cryptography standard (IBCS) #1: Supersingular curve implemen-
tations of the BF and BB1 cryptosystems (RFC 5091), 2007.

[8] Brickell E., Li J. Enhanced privacy ID from bilinear pairing for hardware authentication and attesta-
tion. // IEEE Second International Conference on Social Computing. 2010. P. 768–775.

[9] Catanese F., Oguiso K., Verra A. On the unirationality of higher dimensional Ueno-type manifolds,
2015. URL: https://arxiv.org/abs/1506.01925.

[10] Cho G., Koo N., Ha E., Kwon S. New cube root algorithm based on the third order linear recurrence
relations in finite fields. // Designs, Codes and Cryptography, 2015. Vol. 75(3). P. 483–495.

[11] Cloudflare, bn256. URL: https://github.com/cloudflare/bn256.

[12] Coray D., Tsfasman M. Arithmetic on singular del Pezzo surfaces. // Proceedings of the London
Mathematical Society, 1988. Vol. 3(1). P. 25–87.

[13] Costello C. Fast formulas for computing cryptographic pairings. // PhD thesis, 2012. URL: https://
eprints.qut.edu.au/61037/1/Craig Costello Thesis.pdf.

[14] Costello C., Jao D., Longa P., Naehrig M., Renes J., Urbanik D. Efficient compression of SIDH public
keys. // 36th Annual Intern. Conf. on the Theory and Applications of Crypto. Tech., 2017. P. 679–706.

[15] Costello C., Longa P. FourQ: Four-dimensional decompositions on a Q-curve over the Mersenne
prime. // 21st Intern. Conf. on the Theory and App. of Crypto. and Inform. Secur., 2015. P. 214–235.
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