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Abstract. Let N = pq be an RSA modulus and e be a public exponent.
Numerous attacks on RSA exploit the arithmetical properties of the key
equation ed − k(p − 1)(q − 1) = 1. In this paper, we study the more
general equation eu − (p − s)(q − r)v = w. We show that when the
unknown integers u, v, w, r and s are suitably small and p− s or q − r
is factorable using the Elliptic Curve Method for factorization ECM,
then one can break the RSA system. As an application, we propose an
attack on Demytko’s elliptic curve cryptosystem. Our method is based
on Coppersmith’s technique for solving multivariate polynomial modular
equations.

Keywords: RSA, Cryptanalysis, Coppersmith’s method, Elliptic Curve
Method, Demytko’s scheme.

1 Introduction

In 1976, Diffie and Hellman [6] invented the concept of the public-key cryptosys-
tem. Since then, various schemes have been proposed as public-key cryptosys-
tems.

In 1978, Rivest, Shamir, and Adleman [25] proposed RSA, the most widely
used public-key cryptosystem. The public parameters in RSA are the modulus
N = pq and the public exponent e satisfying gcd(e, (p− 1)(q − 1)) = 1 where p,
q are large prime numbers of the same bit-size. The decryption exponent is the
integer d such that ed ≡ 1 (mod (p− 1)(q − 1)).

In 1985, Koblitz [16] and Miller [23] independently suggested the use of el-
liptic curves in cryptography, mainly for the Diffie-Hellman [6] key exchange
protocol and the El Gamal cryptosystem [7]. Elliptic curves have been also used
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for primality testing, factorisation, construction of many novel protocols [8]. Sev-
eral models of elliptic curves exist such as Weierstrass model, Edward model,
or level four theta model [14]. Some models are really interesting due to their
suitability for computing pairings in an efficient way [15]. Let p > 3 be a prime
number and a, b be two integers such that gcd(4a3 + 27b2, p) = 1. The ellip-
tic curve Ep(a, b) over the field Fp is the set of points P = (x, y) such that
y2 ≡ x3 + ax + b (mod p) together with the point at infinity. The number of
points in Ep(a, b) is #Ep(a, b) = p+ 1− tp where tp is an integer satisfying the
Hasse bound |tp| ≤ 2

√
p. Elliptic curves can be extended over the ring Z/nZ

where n is a composite integer. Such elliptic curves can serve to find small prime
factors of n as in the Elliptic Curve Method (ECM) for factorization [18].

In 1994, Demytko [5] developed a cryptosystem using an elliptic curve EN (a, b)
over the ring Z/NZ where N = pq is an RSA modulus. In the Demytko system,
the public parameters are N , a, b together with a public exponent e satisfying
gcd

(
e,
(
p2 − t2p

) (
q2 − t2q

))
= 1. The decryption exponent is an integer d satisfy-

ing ed ≡ 1 (mod lcm(p + 1 ± tp, q + 1 ± tq)) where tp = p + 1 −#Ep(a, b) and
tq = q + 1−#Eq(a, b).

The RSA cryptosystem is deployed in many commercial systems for providing
privacy and authenticity. If RSA is deployed in a device with small computing
power, it is desirable to use a small public exponent e or a small private ex-
ponent d. Unfortunately, in 1990, Wiener [28] showed that RSA is insecure if

d < 1
3N

1
4 . In 1999, Boneh and Durfee [3] improved this bound up to d < N0.292.

Their method is based on Coppersmith’s method [4] for solving modular poly-
nomial equations and uses the RSA key equation ed − k(p − 1)(q − 1) = 1.
Afterwards, many attacks on RSA or variants of RSA have been presented using
Coppersmith’s method or other techniques (see [12], [22], [2]).

In this paper, using a variant RSA equation, we present a new attack on
RSA by combining Coppersmith’s method and the Elliptic Curve Method for
factorization ECM. Let B be a positive integer. An integer n is said to be B-
smooth if all prime factors are less than B. We say that B is an efficiency bound
for ECM if every prime factor less than B of an integer n can be found by ECM.

Suppose that the public exponent e = Nβ satisfies a variant equation of the
form eu− (p−s)(q−r)v = w with suitably small unknown integers 0 < u < N δ,
0 < v, |w| < Nγ , |r| < Nα and |s| < Nα with α < 1

4 . We show that the RSA
modulus N = pq can be factored under two conditions. The first condition is
that p − s is B-smooth for some efficiency bound B of ECM and the second
condition is that δ satisfies the following inequality

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

where ε is a small positive constant. Our method is based on combining Cop-
persmith’s method and ECM. We use Coppersmith’s method to find the small
solutions (u, v, w, (p − s)(q − r)) of the equation eu − (p − s)(q − r)v = w and
ECM to factor (p−s)(q−r) and to extract the value of p−s from the B-smooth
part of (p− s)(q− r). Finally reusing Coppersmith’s method, we can find p from
the value of p− s.
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We apply the new method to present a new attack on Demytko’s scheme.
In this scheme, the public exponent e and the private exponent d satisfy one of
the four modular equations ed ≡ 1 (mod lcm(p+ 1± tp, q + 1± tq)). This gives
rise to an equation of the form eu− (p+ 1± tp)(q + 1± tq)v = w. Let e = Nβ .
Suppose that |u| < Nδ, 0 < v, |w| < Nγ , |tp| < Nα and |tq| < Nα with α < 1

4
and that p+ 1± tp or q+ 1± tq is B-smooth. Then applying the new method as
for RSA, one can factor the RSA modulus N = pq.

The rest of this paper is organized as follows. In Section 2, we review Cop-
persmith’s method, the theory of elliptic curves, Demytko’s elliptic curve cryp-
tosystem and the Elliptic Curve Method ECM for factorization. In Section 3, we
present the new attack on RSA, and in Section 4, we present the new attack on
Demytko’s scheme. We conclude in Section 5.

2 Preliminaries

The following classical result is useful for the proof of our new attack (see [24]).

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then

√
2

2

√
N < q <

√
N < p <

√
2
√
N.

2.1 Coppersmith’s method

In 1996, Coppersmith [4] describes a technique to find small modular roots of
univariate polynomials and small integer roots of bivariate polynomials. This
method has been extended to more variables and has many surprising results in
cryptanalysis. A typical example is the following result [21].

Theorem 1 (Coppersmith). Let N = pq be an RSA modulus with q < p <

2q. Let S̃ be an approximation of an unknown multiple pr of p with r 6= q and
|pr − S̃| < N

1
4 . Then one can factor N in polynomial time.

Let h(x, y, z) ∈ Z[x, y, z] be a polynomial with ω monomials of the form

h(x, y, z) =
∑
i,j,k

ai,j,kx
iyjzk.

The Euclidean norm of h(x, y, z) is defined as

‖h(x, y, z)‖ =

√∑
i,j,k

a2i,j,k.

Under some conditions, a modular polynomial equation can be solved over the
integers as presented in the following result [13].
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Theorem 2 (Howgrave-Graham). Let e be a positive integer and h(x, y, z) ∈
Z[x, y, z] be a polynomial with at most ω monomials. Suppose that

h (x0, y0, z0) ≡ 0 (mod em) and ‖h(xX, yY, zZ)‖ < em√
ω
,

where |x0| < X, |y0| < Y , |z0| < Z. Then h (x0, y0, z0) = 0 holds over the
integers.

To find polynomials with small coefficients that can be used in Howgrave-Graham’s
Theorem 2, Coppersmith’s method uses a lattice and a lattice reduction algo-
rithm such as the LLL algorithm [19]. This reduction algorithm can be applied
to find a basis of lattice vectors with relatively small norms (see [21]).

Theorem 3 (LLL). Let L be a lattice spanned by a basis (u1, . . . , uω), then the
LLL algorithm produces a new basis (b1, . . . , bω) satisfying

‖b1‖ ≤ . . . ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , i = 1, . . . , ω − 1.

Under the condition of Howgrave-Graham’s Theorem, some modular polynomial
equations derived from the reduced basis can be transformed to polynomial
equations over the integers. For multivariate modular equations, solving the
system of these polynomials is heuristic and depends on some extra assumptions
such as the following one.

Assumption 1 Let h1, h2, h3 ∈ Z[x, y, z] be the polynomials that are found
by Coppersmith’s method. Then the ideal generated by the polynomial equations
h1(x, y, z) = 0, h2(x, y, z) = 0, h3(x, y, z) = 0 has dimension zero.

Under this assumption, a system of polynomials sharing the root can be solved
by using Gröbner basis computation or resultant techniques (see [1] for more
details).

2.2 Elliptic curves

Let N = pq be an RSA modulus and let a and b be two integers such that
gcd(4a3 + 27b2, N) = 1. An elliptic curve EN (a, b) is the set of points (x, y) such
that

y2 ≡ x3 + ax+ b (mod N),

together with the point at infinity O. It is well known that chord-and-tangent
method in the case of elliptic curves Ep(a, b) defined over the finite filed Fp still
hold for En(a, b) unless the inversion of a non-zero number Q does not exist
modulo N . This case would lead to find a factor of N by computing gcd(Q,N).
When the prime factors p, q in N = pq are large, then with overwhelming
probability the inversion of a non-zero number will exist modulo N .

Let p be a prime number. Under modulo p, the cardinality of Ep(a, b) is
denoted #Ep(a, b) and satisfies the following result (see [27], p. 131).
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Theorem 4 (Hasse). The order of an elliptic curve Ep(a, b) over Fp is given
by

#Ep(a, b) = p+ 1− tp, where |tp| ≤ 2
√
p.

When the prime number p and the elliptic curve Ep(a, b) are given, one can
find the value of tp using computational methods such the Schoof-Elkies-Atkin
algorithm (SEA) (see [26]). Conversely, let p be a prime number and t an integer
with |t| < 2

√
p. Let H(d) denote the Kronecker class number (see Section 1.6

of [18]). Deuring’s theory of CM-elliptic curves implies that there are H(t2−4p)
elliptic curves on Z/pZ having p+1−t points. Note that when |t| < √p,H(t2−4p)
satisfies the following inequalities (see Proposition 1.9 of [18])

c1

√
p

log p
< H(t2 − 4p) < c2

√
p(log p)(log log p)2,

where c1 and c2 are effectively computable positive constants. This shows that
the number of elliptic curves with known cardinality is non negligible.

Let p be a prime number and Ep(a, b) be an elliptic curve with equation
y2 ≡ x3 + ax + b (mod p) and cardinality #Ep(a, b) = p + 1 − tp. The twist of
Ep(a, b) is the elliptic curve E′p(a, b) defined by the equation cy2 ≡ x3 + ax+ b
(mod p) where c is a fixed quadratic non-residue modulo p. Then the cardinality
of E′p(a, b) is #E′p(a, b) = p+ 1 + tp.

2.3 Demytko’s elliptic curve cryptosystem

In 1994, Demytko [5] proposed a new cryptosystem defined over the field Z/NZ
where N = pq is an RSA modulus such that p ≡ q ≡ 2 (mod 3). Demytko’s
scheme uses fixed integers a and b and a fixed modulus N . Demytko’s scheme
uses only the x-coordinate of a point P = (x, y) ∈ EN (a, b) to compute a multiple
eP ∈ EN (a, b) (see Lemma 2 in [17]). Demytko’s scheme can be summarized as
follows.

1. Key Generation:
• Choose two distinct prime numbers p and q of similar bit-length.
• Compute N = pq.
• Select two integers a, b < p such that gcd

(
n, 4a3 + 27b2

)
= 1.

• Choose e such that gcd
(
e,
(
p2 − t2p

) (
q2 − t2q

))
= 1.

• Keep p, q secret and publish N, e, a, b.
2. Encryption:
• Transform the message m as the x-coordinate of a point P = (mx,my)

on the elliptic curve EN (a, b).
• Compute the ciphertext point C = eP = (cx, cy) = e(mx,my) on the

elliptic curve y2 = x3 + ax+ b (mod N).
3. Decryption:
• Compute u = c3x + acx + b (mod N).

• Compute the Legendre symbols up =
(
u
p

)
and uq =

(
u
q

)
.
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• If (up, uq) = (1, 1), then compute d ≡ e−1 (mod lcm(p+1−tp, q+1−tq)).
• If (up, uq) = (1,−1), then compute d ≡ e−1 (mod lcm(p+ 1− tp, q+ 1 +
tq)).

• If (up, uq) = (−1, 1), then compute d ≡ e−1 (mod lcm(p+ 1 + tp, q+ 1−
tq)).

• If (up, uq) = (−1,−1), then compute d ≡ e−1 (mod lcm(p + 1 + tp, q +
1 + tq)).

• Compute m as the x-coordinate of dC = deP = P = (mx,my) on the
elliptic curve y2 = x3 + ax+ b (mod N).

A variant of Demytko’s scheme is to consider d ≡ e−1 (mod (p+1±tp, q+1±tq))
instead of modulo lcm(p+ 1± tp, q + 1± tq). Then e and d satisfy an equation
of the form

ed− k (p− s) (q − r) = 1, s = ∓tp − 1, r = ∓tq − 1.

This equation matches the RSA variant key equation that will be studied in this
paper.

2.4 The Elliptic Curve Method

An integer m is said to be B-smooth if all the prime factors of m are less than
or equal to B. Smooth numbers are used in cryptography by many factoring
and discrete logarithm algorithms (see [18] and[20]). The counting function of
B-smooth numbers in an interval [1, x] is defined as

ψ(x,B) = # {m : 1 ≤ m ≤ x,m is B-smooth} .

In the particular case x = Bu, Hildebrand [11] gave the asymptotic formula
ψ(x,B) = xρ(u) where ρ(u) is the Dikman rho-function defined as the solu-
tion of the differential equation uρ′(u) = −ρ(u − 1) for u ≥ 1 with the ini-
tial condition ρ(u) = 1 for 0 ≤ u ≤ 1. For 1 ≤ u ≤ 2, the Dikman func-
tion satisfies ρ(u) = 1 − log u so that ψ(x,B) = x(1 − log u). The Elliptic
Curve method (ECM) is a probabilistic method for integer factorization and
was discovered by H.W. Lenstra [18] in 1987. It is a fast partially factoring al-
gorithm, especially for finding small prime factors p, in a heuristic running time
O
(
exp

(
c(log p)1/2

) (
log log p)1/2

))
, for some constant c > 0. The ECM algo-

rithm is based on the property of the Chinese Remainder Theorem, that is, for
any elliptic curve E(a, b), if n = pe11 p

e2
2 · · · p

ek
k , then

E (Z/nZ) = E (Z/pe11 Z)× E (Z/pe22 Z)× · · · × E (Z/pekk Z) .

Suppose that the order of E (Z/pe11 Z) is B-smooth and let m be a multiple of
|E (Z/pe11 Z)|, typically m = lcm(2, . . . , B). Then, for every P ∈ E (Z/nZ), we
have mP = (0 : 1 : 0) (mod p1). Consequently, computing mP where P ∈
E (Z/nZ), using the addition formulas on E (Z/nZ), we must get mP = (x :
y : z) = (0 : 1 : 0) (mod p1). This implies that z ≡ 0 (mod p1) and that
gcd(z, n) = pr1 for some positive integer r which will reveal p1.
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3 The Attack on RSA

In this section, we present an attack on RSA when the public key (N, e) satisfies
an equation eu− (p− s)(q − r)v = w with suitably small parameters u, v, w, r,
s under the condition that one of the factors (p− s) or (q − r) is B-smooth for
some ECM-efficiency bound B.

3.1 The attack

Theorem 5. Let N = pq be an RSA modulus and e = Nβ be a public exponent.
Suppose that e satisfies the equation eu−(p−s)(q−r)v = w with |r|, |s| < Nα <

N
1
4 , 0 < u < N δ, 0 < v and |w| < Nγ . If

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

where ε is a small positive constant, then, under assumption (1), one can find
(p− s)(q − r) in polynomial time.

Proof. Suppose that N = pq is an RSA modulus and e is a public exponent
satisfying eu− (p− s)(q− r)v = w. Since (p− s)(q− r) = N − pr− qs+ rs, then
−v(N − pr − qs+ rs)− w ≡ 0 (mod e), which can be rewritten as v(pr + qs−
rs) −Nv − w ≡ 0 (mod e). Consider the polynomial f(x, y, z) = xy −Nx + z,
Then (x, y, z) = (v, pr + qs − rs,−w) is a solution of the modular polynomial
equation f(x, y, z) ≡ 0 (mod e). The small solutions of this modular equation
can be found by applying Coppersmith’s method [4]. Let m and t be two positive
integers. Consider the polynomials

Gk,i1,i2,i3(x, y, z) = xi1−kzi3f(x, y, z)kem−k,

for k = 0, . . .m, i1 = k, . . . ,m, i2 = k, i3 = m− i1,
Hk,i1,i2,i3(x, y, z) = yi2−kzi3f(x, y, z)kem−k,

for k = 0, . . .m, i1 = k, i2 = k + 1, . . . , i1 + t, i3 = m− i1.

Let L denote the lattice spanned by the coefficient vectors of the polynomials
Gk,i1,i2,i3(Xx, Y y, Zz) and Hk,i1,i2,i3(Xx, Y y, Zz). We can get a left triangular
matrix if the ordering of the rows follows the ordering of the k’s and the ordering
of the the monomials of a polynomial follows the natural ordering following the
i1’s, then the i2’s, then the i3’s. Hence, using the triangular form of the matrix,
the determinant of L is in the form det(L) = eneXnXY nY ZnZ . For m = 2 and
t = 1, the coefficient matrix for L is presented in Table 1. The non-zero elements
are marked with an ‘~’.
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To find the values of the exponents, define S(x) to be

S(x) =

m∑
k=0

m∑
i1=k

k∑
i2=k

m−i1∑
i3=m−i1

x+

m∑
k=0

k∑
i1=k

i1+t∑
i2=k+1

m−i1∑
i3=m−i1

x.

Using the construction of the polynomials G and H, we get

ne = S(m− k) =
1

6
m(m+ 1)(2m+ 3t+ 4),

nX = S(i1) =
1

6
m(m+ 1)(2m+ 3t+ 4),

nY = S(i2) =
1

6
(m+ 1)

(
m2 + 3mt+ 3t2 + 2m+ 3t

)
,

nZ = S(i3) =
1

6
m(m+ 1)(m+ 3t+ 2),

ω = S(1) =
1

2
(m+ 1)(m+ 2t+ 2).

(1)

Let t = τm for some positive τ to be optimized later. The dominant terms of
the exponents in (1) are

ne ≈
1

6
(3τ + 2)m3 + o(m3),

nX ≈
1

6
(3τ + 2)m3 + o(m3),

nY ≈
1

6

(
3τ2 + 3τ + 1

)
m3 + o(m3),

nZ ≈
1

6
(3τ + 1)m3 + o(m3),

w ≈ 1

6
(6τ + 3)m2 + o(m2).

(2)

Applying the LLL algorithm 3 to the lattice L, we get a reduced basis where the
three first vectors hi, i = 1, 2, 3 satisfy

‖h1‖ ≤ ‖h2‖ ≤ ‖h3‖ ≤ 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

To apply Howgrave-Graham’s Theorem 2 to h1, h2 and h3, we set

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em√
ω
.

This can be transformed to

det(L) < 2−
ω(ω−1)

4
1

(
√
ω)
ω−2 e

m(ω−2),

or equivalently

eneXnXY nY ZnZ < 2−
ω(ω−1)

4
1

(
√
ω)
ω−2 e

m(ω−2). (3)
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Suppose that e = Nβ , 0 < u < N δ, |w| < Nγ and max(|r|, |s|) < Nα < N
1
4 .

Since q < p <
√

2
√
N by Lemma 1, then

p|r+q|s+|rs| < 3 max(p|r|, q|s|, |rs|) < 3 max
(√

2
√
N ·Nα, N2α

)
= 3
√

2N
1
2+α.

This gives

(p−r)(q−s) = N−pr−qs+rs > N− (p|r+q|s+ |rs|) > N−3
√

2N
1
2+α >

1

2
N.

Using 0 < v and |w| < eu < Nβ+δ, we get

0 < v =
eu− w

(p− s)(q − r)
<

eu+ |w|
(p− s)(q − r)

<
2eu
1
2N

< 4Nβ+δ−1, (4)

Let X = 4Nβ+δ−1, Y = 3
√

2N
1
2+α and Z = Nγ . Then the target solution

(x, y, z) satisfies |x| < X, |y| < Y and |z| < Z. Using the approximations of ne,
nX , nY , nZ and ω given in (2), the inequality (3) can be transformed into

(3τ+2)β+(3τ+2)(β+δ−1)+
(
3τ2 + 3τ + 1

)(1

2
+ α

)
+(3τ+1)γ < (6τ+3)β−ε1,

where ε1 collects all constant terms in e, X, Y and Z. It is a small positive
constant that depends only on N . The optimal value for τ is

τ0 =
1− 2δ − 2α− 2γ

2(1 + 2α)
,

and, plugging this value in the former inequality, we obtain

4α2 + 16αβ+ 8αδ− 8αγ− 12δ2− 24δγ− 12γ2− 4α+ 8β+ 28δ+ 20γ− 15 < −ε2,

where ε2 is another small positive constant. The former equation is valid for

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

where ε is a small positive constant. Under this condition, the LLL algorithm ap-
plied to the lattice L outputs three vectors vi, i = 1, 2, 3. These vectors represent
the coefficients of three polynomials hi(Xx, Y y, Zz), i = 1, 2, 3 sharing the root
(x, y, z) = (v, pr+ qs+ rs,−w). Then, applying Gröbner basis computations, we
get the expected solution, from which we deduce (p−s)(q−r) = N−(pr+qs+rs).
Since all the former steps can be done in polynomial time, then the method is a
polynomial time algorithm. This terminates the proof.

Remark 1. If r = s = w = 1, then the equation eu− (p− s)(q − r)v = w is the
classical RSA key equation ed− (p− 1)(q − 1)k = 1 with d < N δ. Using α = 0,

β = 1 and γ = 0, the bound of Theorem 5 gives δ < 7
6 −

√
7
3 . This retrieves the

classical bound on the private exponent d (see [3]).
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Theorem 6. Let N = pq be an RSA modulus and e = Nβ be a public exponent.
Suppose that e satisfies the equation eu−(p−s)(q−r)v = w with |r|, |s| < Nα <

N
1
4 , 0 < u < N δ, 0 < v and |w| < Nγ . Let B be an ECM-efficiency bound for

the Elliptic Curve Method. If (p− s) or (q − r) is B-smooth and

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

then, under assumption (1), one can find p and q in polynomial time.

Proof. Suppose that, in the equation eu − (p − s)(q − r)v = w, the parameters

satisfy |r|, |s| < Nα < N
1
4 , e = Nβ , 0 < u < Nδ, < v, |w| < Nγ and that the

exponent parameters satisfy δ < 7
6 + 1

3α−γ−
1
3

√
(2α+ 1)(2α+ 6β − 6γ + 1)−ε.

Then, by applying Theorem 5, we can find the exact value of (p−s)(q−r). Next,
suppose that (p − s) is B-smooth where B is a bound for the efficiency of the
Elliptic Curve Method (ECM). Hence, ECM will reveal a partial factorization
of (p− s)(q − r) as

(p− s)(q − r) = M ·
ω((p−s)(q−r))∏

i=1

peii ,

were ω((p − s)(q − r) is the number of distinct prime factors of (p − s)(q − r)
less than B and M is such that M = 1 or all prime factors of M are greater
than B. The average order of the number of prime factors of an integer n is
ω(n) ≈ logn

log logn (see [10], pp. 355). Since |r|, |s| < Nα and
√
N < p <

√
2N , then(√

N −Nα
)2

< (p− s)(q − r) <
(√

2N +Nα
)2
. (5)

Hence, the average number of the prime factors of (p− s)(q − r) satisfies

ω((p− s)(q − r) ≈ log((p− s)(q − r))
log log((p− s)(q − r))

≈ logN

log logN
.

On the other hand, according to the factorization

(p− s) =

ω((p−s))∏
i=1

peii ,

the number of distinct divisors of p− s is exactly
∏ω(p−s)
i=1 (ei + 1). However, the

average number of divisors of an integer n is log n (see Theorem 319 of [10]).
Hence, the average number of divisors of p − s is approximately log(p − s) ≈
1
2 logN . Let d be a divisor of (p− s)(q − r) such that d = p− s. Then

d =

ω(p−s)∏
i=1

pxi
i , 0 ≤ xi ≤ ei.
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Using (5), we get

log
(√

N −Nα
)
<

ω(p−s)∑
i=1

xi log pi < log
(√

2N +Nα
)
.

The former inequalities can be solved by applying linear programming algorithms
such as PSLQ [9] and LLL [19], and using a solution (x1, . . . , xω(p−s)), we com-

pute d =
∏ω(p−s)
i=1 pxi

i which is then a candidate for p− s. Since |s| < Nα < N
1
4 ,

then d is an approximation of the prime factor p of N with an error term less than
N

1
4 . Hence, using Theorem 1, this leads to the exact value of p if d is the good

candidate. Repeating this process sequentially for the factors d of (p− s)(q− r)
in the range

√
N − Nα < d <

√
2N + Nα, we will find p and then get q = N

p .
This achieves the factorization of the RSA modulus.

3.2 A numerical example for RSA

We experimented our method with various sizes. In all cases, the assumption (1)
was true and the method was successful to find the factorization of the RSA
modulus.

As a numerical example, consider the following RSA 265 bit-size modulus N
with the public exponent e,

N =431152655066872264361967287569597072664021583942612947594581

39340520129183826747,

e =442910968337832163537316435435954401939549665933793683113289

7706681971178351139.

Suppose that N = pq with unknown factorization and e satisfies an equation
eu − (p − s)(q − r)v = w with the suitably small unknown parameters u, v,
w, r and s. Then applying the method of Theorem 5 to solve the equation
eu− (p− s)(q − r)v = w, with the bounds

u < N δ = N0.15, |w| < Nγ = N0.15, |r|, |s| < Nα = N0.15, e = Nβ = N0.987,

we get

v =8330878683394

w =2516643,

ps+ qr − rs =45624103499453346715225639044829688941453657147,

Since (p− s)(q − r) = N − (pr + qs− rs), we get

(p− s)(q − r) =4311526550668722643619672875695966164229865894091457953

3819094510831187730169600.
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Then, using the Elliptic Curve Method with the bound B = N
1
10 ≈ 91931238,

we get the factorization

(p− s)(q − r) = 28 · 3 · 52 · 13 · 23 · 53 · 89 · 181 · 1663 · 2833 · 2969 · 5197 · 5233·
6481 · 12007 · 18439 · 36973 · 435876180528100336114933071348569.

Using the factorization of (p − s)(q − r), we can find the set of the factors
d such that

√
N − Nα < d <

√
2N + Nα. Such divisors are candidate for

p − s, that is p − s = d for one of these factors. Then by applying Copper-
smith’s Theorem 1, we can find p using the correct candidate. For the divi-
sor d = 6672224014662340178579721474326728185600, we apply Coppersmith’s
Theorem 1 and find p = 6672224014662340178579721474326734152749. Then
q = N

p = 6461903169309154483833797011785886506503.

4 Application to Demytko’s Scheme

In this section, we show how to apply the technique of Theorem 5 and Theo-
rem 6 to break the Demytko scheme in some situations and provide a numerical
example.

4.1 The attack on Demytko’s Scheme

In Demytko’s scheme, the RSA modulus is N = pq and the elliptic curve EN (a, b)
is such that #Ep(a, b) = p+ 1− tp and #Eq(a, b) = q + 1− tq where, according
to Hasse Theorem, |tp| < 2

√
p and |tq| < 2

√
q. Also, the public exponent e and

the private exponent d satisfy one of the four equations

eu− (p+ 1± tp)(q + 1± tq)v = w.

These equations can be transformed into one of the form eu−(p−s)(q−r)v = w
where s = ∓tp− 1 and t = ∓tq − 1, which can be studied using the technique of
Theorem 5 and Theorem 6.

Corollary 1. Let (N, e, a, b) the public parameters of a Demytko’s instance where
N = pq. Suppose that e = Nβ satisfies an equation of the form eu − (p + 1 ±
tp)(q+1± tq)v = w with |± tp−1|, |± tq−1| < Nα < N

1
4 , 0 < u < N δ, < v and

|w| < Nγ . Let B be an ECM-efficiency bound for the Elliptic Curve Method. If
p+ 1± tp or q + 1± tq is B-smooth and

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

then, under assumption (1), one can find p and q in polynomial time.

Proof. Since the equation eu− (p+ 1± tp)(q+ 1± tq)v = w can be transformed
into eu − (p − s)(q − r)v = w with s = ∓tp − 1 and t = ∓tq − 1, then this
equation can be solved under the conditions of Theorem 5 and Theorem 6 when
|tp − 1| < Nα and |tq − 1| < Nα.
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4.2 A numerical example for Demytko

Let us consider the Demytko public parameters (N, e, a, b) where N is an 510-bit
RSA modulus

N =24456415204971883728939103295386758243314549215201639004265623

93634418526897575682249916293416221269674459540700624274860236

238684609738360751815410091617,

e =207753540686843587408555602893982678168821441852165899252123932

416370824148707563812033872059010473801740084336709522813588017

197501164099322578137710783,

a =0,

b =9,

with the elliptic curve EN (a, b) with equation y2 ≡ x3+9 (mod N). We suppose
that e satisfies the equation eu − (p + 1 ± tp)(q + 1 ± tq)v = w with tp, tq <
Nα = N0.1. Then applying the method of Theorem 5 to solve the equation
eu − (p − s)(q − r)v = w where s = ∓tp − 1 and r = ∓tp − 1, we get for
e = Nβ ≈ N , u < Nδ = N0.1, |w| < Nγ = N0.1

v =6889077569105,

w =2916646,

pr + qs− rs =7843579993396182200943116363500139031658267071337633,

244222164466922717093026565590439040792,

Then

N − (pr + qs− rs) = (p− s)(q − r)
= 244564152049718837289391032953867582433145492152016

3900426562385790838533501393481306799929916082238016

192469362991030638071771761892645334186224971050825.

Applying the Elliptic Curve Method for factorization with the bound B = 280 ≈
N0.16, we get the factorization

(p− s)(q − r) =36 · 52 · 72 · 133 · 432 · 1032 · 277 · 6742 · 1021 · 4177 · 15061

· 217372 · 271092 · 522912 · 84991 · 90841 · 132661 · 3473292

· 3834631 · 29327821 · 69689551 · 30404961633073956301

· 305196537135675591605491.

Any divisor d of (p− s)(q− r) is a candidate for p− s or q− r. Using the divisor

d =33 · 132 · 277 · 1021 · 15061 · 217372 · 271092 · 522912 · 90841

· 305196537135675591605491,
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as a candidate for p− s in Coppersmith’s Theorem 1, we get p and then q = N
p

as follows

p =6859204255983061432517785834149052664712382794585028575

9827931818992553395171,

q =3565488691146548938655947873912559573169857298248409258

0287175860557076482027,

which completes the factorization of N .

5 Conclusion

In this paper, we consider an instance of RSA where the public exponent satis-
fies a generalized key equation with many unknown parameters. Under suitable
conditions, we combine Coppersmith’s method and the Elliptic Curve Method
for factorization ECM, we solve the equation and find the prime factors of the
RSA modulus. We apply the same technique to launch an attack on Demytko’s
Elliptic Curve Cryptosystem when the secret parameters are suitably small.
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