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Abstract

Password-Authenticated Key Exchange (PAKE) is a method to establish cryptographic keys between
two users sharing a low-entropy password. In its asymmetric version, one of the users acts as a server and
only stores some function of the password, e.g., a hash. Upon server compromise, the adversary learns
H(pw). Depending on the strength of the password, the attacker now has to invest more or less work
to reconstruct pw from H(pw). Intuitively, asymmetric PAKE seems more challenging than standard
(symmetric) PAKE since the latter is not supposed to protect the password upon compromise. In this
paper, we provide three contributions:

• Separating standard and asymmetric PAKE. We prove that a strong assumption like a
programmable random oracle is necessary to achieve security of asymmetric PAKE in the Universal
Composability (UC) framework. For standard PAKE, programmability is not required.

• Revising the security definition. We identify and close a gap in the UC security definition of
2-party asymmetric PAKE given by Gentry, MacKenzie and Ramzan (Crypto 2006). For this, we
specify a natural corruption model for server compromise attacks. We further remove an undesirable
weakness that lets parties wrongly believe in security of compromised session keys. We demonstrate
usefulness by proving that the Ω-protocol proposed by Gentry et al. satisfies our new security notion
for aPAKE.

• Composable multi-party aPAKE. We demonstrate that reliance on a programmable random
oracle hinders construction of multi-party aPAKE protocols from 2-party protocols via UC com-
position. Namely, the resulting protocols offer such strong security guarantees that they become
impractical in any application. We provide guidance on how to relax composable security notions
for multi-party asymmetric aPAKE to obtain useful protocols.

Keywords: Asymmetric Password-Authenticated Key Exchange, Universal Composability

1 Introduction

Establishing secure communication channels in untrusted environments is an important measure to ensure
privacy, authenticity or integrity on the internet. The most important cryptographic building blocks for
securing channels are key exchange protocols. The exchanged keys can be used to, e.g., encrypt messages
using a symmetric cipher, or to authenticate users. Password-authenticated key exchange (PAKE), introduced
by Bellovin and Merrit [BM92a], is a method to establish cryptographic keys between two users sharing a
password. A PAKE manages to “convert” this possibly low-entropy password into a random-looking key
with high entropy, which is the same for both users if and only if they both used the same password. What
makes these schemes interesting for practice is that they tie authentication solely to passwords, while other
methods such as password-over-TLS involve more authentication material such as a certificate. The probably
most prominent implementation of PAKE is the TLS-SRP ciphersuite1, which is used by GnuTLS, OpenSSL
and Apache.

1Specified in RFCs 2945 and 5054.



reference type sec. notion model

[BPR00] standard BPR non-prog. RO
[GL01] standard BPR standard
[KOY01] standard BPR standard
[BCL+11] standard BPR standard
[KV11] standard BPR standard
[BP13] asymmetric BPR non-prog. RO/GGM
[PW17] asymmetric BPR GGM
[CHK+05] standard UC standard
[KV11] standard UC standard
[BBC+13] standard UC standard
[GMR06] asymmetric UC progr. RO
[JR16] asymmetric UC limited progr. RO
[HL18] asymmetric UC progr. RO
[JKX18] asymmetric UC progr. RO

Figure 1: Comparison of static security of different PAKE and aPAKE schemes. In the above, RO means
random oracle and GGM means generic group model.

In most applications, users of a PAKE actually take quite different roles. Namely, some may act as
servers, maintaining sessions with various clients, and storing passwords of clients in a file. For better
security, it seems reasonable to not write the password to the file system in the clear, but store, e.g., a hash
of the password. A PAKE protocol that lets users take the roles of a client or a server is called asymmetric
or augmented2 PAKE (aPAKE).

Security of PAKE. Since a password is potentially of low entropy, an attacker can always engage in a
PAKE execution with another user by just trying a password, resulting in key agreement with non-negligible
probability. Such an attack is called an on-line dictionary attack since the attacker only has one password
guess per run of the protocol. A security requirement for standard PAKE is that an on-line dictionary attack
is the “worst the adversary can do”. Especially, the attacker should not be able to mount off-line dictionary
attacks on the password, e.g., by deriving information about the password by just looking at the transcript.
For an asymmetric PAKE, we can require more: if an attacker gets his hands on a password file, in which
case the server is called compromised, the attacker should not learn the password directly. At least, some
computation such as hashing password guesses is necessary.

Is aPAKE harder than PAKE? Intuitively, asymmetric PAKE seems more challenging than standard
PAKE already in the setting of static security, since standard PAKE protocols are supposed to protect the
password whenever the storage of a user is leaked to the adversary. This claim is supported by schemes
from the literature: there are PAKE schemes that are BPR-secure (BPR is the most widely used game-
based notion for PAKE, introduced by Bellare et al. [BPR00]) in the standard model, while current aPAKE
schemes satisfying the asymmetric variant of BPR security are only proven in an idealized model such as
the non-programmable random oracle or the generic group model. The situation is similar for security
of PAKE/aPAKE in the Universal Composability (UC) framework of Canetti [Can01]. UC-secure PAKE
protocols exist in the non-programmable random oracle model and even in the standard model, while proofs
of current aPAKE schemes additionally rely on some form of programmability of the random oracle. See
Figure 1 for a comparison.

However, to our knowledge, in none of the aforementioned models there exist any formal evidence for
asymmetric PAKE being harder to achieve than standard PAKE. In particular, Figure 1 demonstrates that
the “gap” in the model is much bigger in case of UC security. It thus seems reasonable to hope that UC
secure asymmetric PAKE can also be constructed from rather mild versions of idealized assumptions, such as
a non-programmable random oracle. This is particularly interesting since it is agreed upon in the literature
that UC security is the right security notion for PAKE protocols. Besides composability guarantees, the most
notable difference to BPR-security is that UC-secure PAKE protocols remain secure even when passwords

2To emphasize that we talk about a PAKE protocol without different roles, we write standard or symmetric PAKE.
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are adversarially chosen.

1.1 Our Contributions

In this paper, we rule out the existence of UC-secure aPAKE protocols from assumptions that are enough to
obtain (even adaptively) UC-secure standard PAKE. Namely, we show that aPAKE is impossible to achieve
w.r.t a non-programmable random oracle. To our knowledge, this is the first formal evidence that universally
composable aPAKE is harder to achieve than PAKE.

In preparation of this formal result, we revisit the ideal functionality FapwKE for asymmetric PAKE of
Gentry, MacKenzie and Ramzan [GMR06]. In more detail, our contributions are as follows:

• We show that FapwKE is not realizable due to an incorrect modeling of server compromise attacks. We
fix this by formally viewing server compromise as partial corruption of the server3.

• We show that FapwKE allows attacks on explicit authentication4. An adversary exploiting this weakness
can make parties believe in the security of adversarially chosen session keys. We exclude such attacks
by introducing a stronger modeling of explicit authentication to the functionality.

We argue plausibility of our revisited functionality FaPAKE by showing that it is realized by the two-party
version of the Ω-protocol from [GMR06]. By this, we show that the Ω-protocol actually provides stronger
security guarantees regarding explicit authentication than originally claimed in [GMR06].

All aforementioned results hold for asymmetric PAKE protocols run between two users. As a further con-
tribution, we investigate security of aPAKE protocols that are run by multiple users who want to bilaterally
exchange password-authenticated session keys. Our contributions are as follows:

• We show that our result established above, namely reliance on a programmable random oracle, yields
2-party protocols that become quite impractical when run in a context with multiple parties. While it is
well known that overly restrictive security requirements lead to impractical protocols, we demonstrate
that, for aPAKE protocols, issues remain unnoticed in a 2-party scenario but become visible when the
protocol is executed by more than two users.

• To alleviate the aforementioned issue, multi-party security notions for aPAKE need to be relaxed. We
provide a formal property that such notions need to fulfill to allow for practical protocols.

Let us now explain our results in more detail.

Separating standard and asymmetric PAKE. As already mentioned, asymmetric PAKE protocols are
supposed to provide some protection of the password in case of a server compromise. Let us elaborate on
this kind of attack. Naturally, for a server compromise to make sense, we can assume that the server already
stored a password file at the time it gets compromised. Formally, this means that the attacker is allowed
to obtain some partial inner state of an honest party who already ran parts of the protocol. Note that the
adversary is however not allowed to control the behaviour of the compromised server, which distinguishes
compromising a server from corrupting a server. Nevertheless, a server compromise allows the attacker to
mount an adaptive attack.

In simulation-based security notions such as notions stated in the UC model, adaptive attacks often
impose a security problem. Such problems are often referred to as “commitment problem”, since they
require the simulator to explain how, e.g., a transcript that he simulated in the beginning of the protocol
matches certain secrets of honest participants that are revealed at a later stage of the protocol run. The
first mentioning of such a commitment problem is the work of Nielsen [Nie02], who showed that a non-
programmable random oracle (NPRO) is not enough to obtain non-committing encryption. One contribution
of the paper is to formalize non-programmable random oracles. In a nutshell, such an oracle is modeled as an
external oracle that informs the adversary about all queries, but chooses values truly at random, especially
not letting the adversary in any way influence the outputs of the oracle.

3This was already proposed but not enforced in [GMR06].
4In a authenticated key exchange protocol with explicit authentication, the parties are reliably informed about the outcome

of the authentication.
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Inspired by the work of Nielsen, we obtain the following result: UC-secure asymmetric PAKE is impossible
to achieve in the NPRO model. Namely, we show that due to the adaptive nature of the server compromise
attack, the simulator needs to commit to a password file without knowing the password that the file is
containing. When the attacker tries to reconstruct the file from the true password, since accessing the
external oracle is sufficient to compute the file, the simulator merely learns the true password but cannot
influence the computation of the file anymore.

While the result itself is not very surprising, we stress that the techniques to prove it are actually
completely different from the techniques used by Nielsen [Nie02]. In the case of non-committing encryption,
the proof technique is to let the simulator commit to “too many” ciphertexts such that there simply does
not exist a secret key of reasonable size to explain all these ciphertexts later. However, in asymmetric PAKE
the situation is quite different, since there exists only one file per password. Indeed, there is a bit more hope
for a simulator of asymmetric PAKE to actually find a good password file if he only guesses the password
correctly. Our formal argument thus heavily relies on the fact that, in the UC model, the simulator does not
have an arbitrary amount of runtime to simulate the password file. We formally prove that, with very high
probability, he will exhaust before finding a good file.

Contrarily, it is known from the literature that UC-secure standard PAKE can be constructed in the
NPRO model and even in the standard model [ACCP08, CHK+05, KV11, DHP+18]. We note that, while
also the NPRO model suffers from the uninstantiability results of [CGH98], requiring programmability of a
random oracle is crucially strengthening the model. In a security proof w.r.t an NPRO, the reduction does
not need to determine any output values and thus could use, e.g., a hash function like SHA-3 to answer
random oracle queries. This is not possible for a reduction that makes use of the programmability property
of the random oracle. Thus, our results indicate that, while going from standard to asymmetric PAKE in
the UC model, we are forced to move further away from realistic setup assumptions.

Modeling server compromise. Towards separating standard and asymmetric PAKE, we first carefully
revisit the ideal functionality FapwKE for asymmetric PAKE from [GMR06], which adopts the ideal function-
ality for standard PAKE from [CHK+05] to the asymmetric case. Besides assigning the roles of a server and
a client to the users, FapwKE features interfaces that let the adversary mount a server compromise attack with
all its consequences: now the adversary is able to (a) submit off-line password guesses and (b) impersonate
the server. To model the fact that a server compromise is an attack that might help the UC environment
Z distinguishing real and simulated protocol runs, FapwKE only allows the adversary to ask StealPwdFile
queries upon instruction from Z.

We first prove that restricting the ideal world adversary to only submit off-line password guesses upon
instructions from Z results in a security notion that is impossible to realize. Secondly, putting restrictions
such as “only ask query x if Z tells you” on the ideal world adversary is not conform with the UC framework
and indeed invalidates important properties of the UC framework such as simulation with respect to the
dummy adversary. Towards a better modeling, we first lift the aforementioned restriction on the ideal world
adversary and argue why the resulting security notion captures what we expect from an asymmetric PAKE.
Secondly, we propose a UC-conform modeling of server compromise attacks as “partial” corruption queries
which, in the real execution of the protocol, leak a function of the internal state of an honest party to the
adversary (e.g., the password file).

We call our revisited functionality for asymmetric PAKE FaPAKE. It however differs in another aspect
from FapwKE as mentioned above, which we will now explain in more detail.

Modeling explicit authentication. A protocol is said to have explicit authentication if the parties
can learn whether the key agreement was successful, in which case they might opt for, e.g., reporting
failure. FapwKE features a TestAbort interface which allows the adversary to obtain information about the
authentication status and also to decide whether parties should abort if their computed session keys do not
match. The idea behind modeling explicit authentication via an interface that the adversary may or may
not decide to use is to keep FapwKE flexible: both protocols with or without explicit authentication can be
proven to realize it. However, we show that this results in FapwKE providing very weak security guarantees
regarding explicit authentication. One property that a protocol with authentication should have is that
parties reliably abort if they detect authentication failure. However, FapwKE does not enforce this property
since the adversary can simply decide not to use the TestAbort interface. We propose a stronger version
of FaPAKE that enforces explicit authentication within the functionality and merely informs the adversary
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about the status of authentication.

Why is it important to analyze multi-party UC security? One of the main benefits of the UC
framework is that it comes with a composition theorem. The essence of this theorem is that whatever
guarantee a protocol gives when considering an isolated run of it, it will maintain when running in an arbitrary
context. For key exchange protocols, which are never the ultimate goal in any higher level application, secure
composition with arbitrary other protocols is essential. Moreover, the same protocol suite is run by a large
number of users and thus multiple instances of the key exchange protocol are executed. To name an example,
consider protocols for user-friendly password authentication in a landscape of distributed servers and service
providers (e.g., Single-Sign-On schemes or distributed authentication schemes). To facilitate security analysis
of such a protocol suite which uses aPAKE as a building block, we want to assume that all the single aPAKE
instances behave in an ideal way.

How to go from 2-party aPAKE to multi-party aPAKE. FapwKE as well as our FaPAKE are two-party
functionalities running with one client and one server. This means they let us only analyze security of a
very small part of the whole protocol. This however is usually not a problem: the UC framework comes
with a composition theorem, which allows to instantiate an arbitrary number of instances of the two-party
functionality with the real protocol. E.g., in the above scenario, each client would invoke an instance of
FaPAKE, and the server participates in all of them. To avoid that all instances use their “own” setup, e.g.,
the server has to use a different hash function for each client, all functionalities could share their setups.
This can be achieved by transforming FaPAKE to a multi-party functionality F̂aPAKE that acts as a wrapper
for multiple copies of FaPAKE and shares the random oracle between them. This approach is widely used and
called UC with joint state (JUC) [CR03].

However, we demonstrate that, in case of asymmetric PAKE, leveraging 2-party security to multi-party
security using a natural compositional approach such as the above is tricky. The reason lies in the com-
posability guarantee itself: even within a larger context with multiple users, each 2-party aPAKE instance
is guaranteed to keep its security guarantees. This isolation, however, is not realistic for aPAKE protocols,
where Alice running a key exchange session with some server from her home computer should be entangled
with Alice running the same protocol from her work computer. But since Alice is supposed to remember
only her password, we cannot expect her to help linking the different sessions, e.g., by remembering her
session id with the server and entering it into her work computer.

To remedy the situation, we identify the property that is missing from any multi-party aPAKE security
notion that is composed from 2-party instances. In a nutshell, the security notion needs to allow Alice’s
password file at the server side to work for all her sessions. Formally, this can be seen as a ”cross-session”
impersonation attack requiring only the password file. Note that already 2-party aPAKE security notions
need to incorporate vulnerability to impersonation attacks against the single session to be useful at all in
practice (otherwise even an honest server would not be able to run the protocol). We conclude by claiming
that any multi-user aPAKE protocol needs to additionally allow for cross-session impersonation in order to
be useful in practice.

Related work. Canetti et al. [CHK+05] show impossibility of FapwKE in the plain model. [GMR06] show
how to transform a UC-secure PAKE into a UC-secure asymmetric PAKE5. However, as we will show while
proving security of their resulting aPAKE, their transformation seem to require a strong assumption such as
a programmable random oracle. Thus, this does not contradict our separation result.

Assumption-wise, there is a distance between non-programmable and a programmable random oracles.
[FLR+10] introduces models that are in between both: random oracles with “limited programmability”. In
a nutshell, such a random oracle allows the adversary to influence the mapping between queries and outputs,
but the outputs are always randomly chosen. As our proof of security of the Ω-method demonstrates, for
aPAKE influencing the mapping is sufficient. This means that our impossibility result for NPRO cannot be
broadened to hold also for random oracles with limited programmability. And indeed, [JR16] propose an
aPAKE that is secure w.r.t a limited programmability random oracle.

[CK02] analyze multi-session security of UC-secure key exchange protocols. Similar to us, they apply the
JUC composition theorem and methods to leverage single-session security to multi-party security. However,
in their work, a session refers to an exchange of a single key, while in UC notions of PAKE a session refers

5The opposite direction is trivial.
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to a pair of users. And indeed, all PAKE functionalities already enable exchange of multiple keys via the
use of subsession identifiers. On the other hand, PAKE functionalities handle only two users, while the KE
functionality treated in [CK02] can deal with many users from the start. While the goal of [CK02] and
our work is the same, namely achieving ”multi-party + multi-session” UC security, the starting points are
different.

Roadmap. Section 2 gives details on how to model server compromise as partial corruption and states our
revisited functionality FaPAKE. Section 3 shows our separation result. In Section 4 we use our new model
to make a stronger security statement of the Ω-protocol. In Section 5 we discuss composable multi-party
security of asymmetric PAKE schemes. The appendix recalls ideal functionalities, gives some technical
details of the UC model and contains the full proofs of security.

2 The Security Model

The notion of universally composable asymmetric PAKE was introduced in 2006 by Gentry, MacKenzie
and Ramzan ([GMR06]). Their two-party functionality FapwKE augments the functionality for (symmetric)
PAKE from [CHK+05] by adding an interface for server compromise attacks. The presentation is slightly
more involved due to the different roles that the two participating users can take in the asymmetric version
of PAKE: while the client can initiate multiple key exchange sessions by providing a fresh password each
time, the server has to register a password file once which is then used in every key exchange session with
the client. We recall FapwKE in Figure 8 in Appendix B.

Stealing Password Data To model a server compromise attack, FapwKE provides three interfaces called
StealPwdFile, OfflineTestPwd and Impersonate, which we describe in more detail in the following.

• The StealPwdFile query initiates a server compromise attack. The output is a bit, depending on
whether the server already registered a password file or not, and the query can only be made by the
simulator if Z gives the instruction for it.

• The OfflineTestPwd query models an off-line dictionary attack. In this attack, the adversary
tests whether a client password is contained in the password file. The output is a bit, depending on
whether the password was correct or not. The attack is called “off-line” since it can be mounted by
the adversary without engaging in a session with the client. The interface can only be used after a
StealPwdFile query happended, and like StealPwdFile this attack can only be mounted by the
simulator if Z instructs him to do so. Depending on whether one wants to allow pre-computation
attacks or not, OfflineTestPwd can be either queried at any time or is restricted to be queried
only after a StealPwdFile query was issued. In any case, if the attack is successful, the password is
revealed to the adversary only after a StealPwdFile query happened.

• The Impersonate query enables the adversary to engage in a key exchange session with the client,
using the stolen password file as authenticating data. This query is necessary since a server compromise
attack (i.e., StealPwdFile query) does not allow the adversary in any way to control the behavior
of the server. Nonetheless, a network attacker is able to engage in a session with the client using the
stolen password file, which he can do via Impersonate.

Definitional issues with FapwKE Let us make a few observations on these interfaces. Firstly, the re-
striction of letting S ask specific queries only upon receiving them from Z constitutes a change of the UC
framework (the authors propose to change the control function of the UC framework to enforce it). This
needs to be done carefully to not invalidate important properties of the framework such as the composition
theorem and emulation w.r.t the dummy adversary. Without further restrictions, at least the latter does not
hold anymore. To provide an example, consider an environment Z that asks an “encoded” StealPwdFile
query, e.g., (ask-StealPwdFile-query, sid) and sends it to A, respectively to S. A real-world adversary A
can easily decode this query and perform the desired attack, while the simulator in the ideal world has to
drop the message due to the wrong format. This way, Z can keep the simulator from using his interfaces,
leaving him with no leverage to presume his simulation. Clearly, such a real-world adversary is worse than
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a dummy adversary, who would have to drop the message just like S. Thus, to get a meaningful definition
that inherits all properties of the UC framework, such environments would have to be excluded.

Our second observation concerns the real execution of the protocol, where the adversary A obtains
StealPwdFile and OfflineTestPwd queries from Z. [GMR06] seem to implicitly assume that A now
mounts a server-compromise attack and does not behave as the dummy adversary, as usually assumed in the
UC framework (see [Can00], Section 4.4.1). Note that A only has influence on the communication channel
and corrupted parties, and it seems that none of this helps him to, e.g., steal a password file from the server6.
For proving UC-security of a protocol with respect to FapwKE, it is however crucial to formally specify the
outputs of A upon these queries, since A’s output is what has to be simulated by S7.

2.1 Corruption Model

To address the aforementioned issues, we first reformulate StealPwdFile queries, which can be asked by
S only upon getting instructions from Z, as corruption queries. This possibility was already pointed out in
[GMR06]. Modeling server compromise via corruption offers the following advantages:

• It captures the intuition that compromising the server, like Byzantine party corruption, constitutes an
attack that the environment Z can mount to distinguish real and ideal execution.

• It takes care of definitional issues by using the special properties of corruption queries in UC, e.g., that
they can only be asked by S and A if Z instructs them to do so. As a consequence, there is no need to
adjust the control function or to put restrictions on the environment, nor to consider adversaries other
than the dummy adversary.

• It leads to a flexible definition, since arbitrary corruption models can be integrated into the UC frame-
work (see [Can00], section 6.1). E.g., one can choose whether upon compromising the server the
adversary merely learns that a password file exists or even leak the whole file to him.

Formally, besides Byzantine party corruption, we allow Z to issue an additional corruption query called
StealPwdFile. To formalize what happens upon corruption in the ideal world, we adopt the conventions
for corruption queries from [Can00], Section 6.2, and let dummy parties in the ideal world completely ignore
corruption messages. Instead, these queries are handeled by the ideal functionality, who receives them
directly from S. We now detail the structure and effect of the two types of corruption queries that we allow
Z to ask.

Byzantine corruption
Real world: Upon receiving a message (corrupt,P, sid) from Z, A delivers the message to P who imme-
diately sends its internal state to A and, from that point on, is completely controlled by A.
Ideal world: Upon receiving a message (corrupt,P, sid) from Z, S delivers the message to FapwKE, who
marks P as corrupted. If FapwKE already received input from P or sent output to it, it sends all these values
to S. FapwKE further notifies S of all future inputs and outputs of P and lets S modify P’s input values.
We call a party that is corrupted in this way corrupted.

Server compromise
Real world: Let f : {0, 1}∗ → {0, 1}∗ be an efficiently computable function. We denote the internal state
of PS with state = (file, pw, state′), consisting of a password file file, the server’s input pw and additional
information state′. Upon receiving a message (StealPwdFile, sid) from Z, A delivers the message to PS ,
who immediately sends f(state) to A8. A natural choice is f(state) = file, which we will use throughout this

6The intention of FapwKE to model a server compromise attack is to leave the server honest and mount the attack via the
provided interfaces instead.

7This requirement of adding explanation of the real-world adversary A to obtain a security notion usually does not occur in
the UC framework as long as Z does not expect meaningful output from queries other than (a) modifying/introducing messages
on communication tapes or (b) acting on behalf of corrupted parties and (c) messages to hybrid ideal functionalities (such as
FRO used in this paper) that Z accesses through A. The StealPwdFile and OfflineTestPwd queries are not of any of these
two types.

8This definition of corruption resembles what [Can00] describes as physical “side channel” attacks since it results in leaking
a function of the internal state of a party.
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work.
Ideal world: Upon receiving a message (StealPwdFile, sid) from Z, S sends this message to FapwKE.
FapwKE marks PS as compromised. If there are records (file,PC ,PS , pw) and (offline, pw), FapwKE sends
pw to S.

Let us emphasize that, while we now model StealPwdFile queries formally as corruption queries,
this does not mean that the adversary gets to control the behavior of the server afterwards. The reader
should keep in mind that there are different variants of corruption, some more severe and some less. As
common in the UC model, we refer to a party having received a Byzantine corruption message as corrupted
(acknowledging that Byzantine party corruption is the “default” type of corruption used in the literature).
Also, we refer to a server having received a StealPwdFile corruption query as compromised. In line
with [GMR06],[JKX18], we only consider static Byzantine corruption (meaning that Byzantine corruption
messages are ignored after the first party obtained input from Z). Contrarily, StealPwdFile corruption
messages can be asked by Z at any time. This makes server compromise an adaptive attack. Obviously,
static server compromise is not very interesting since it will result in leakage of an empty file.

2.2 Offline Attacks against the Password File

As soon as an adversary gets his hands on the password file of a server, he can try to figure out the password
which was used to generate this file. Such an attack on the password file is called “off-line” to emphasize
that there is no further interaction with the client required.

Such an attack is reflected in FapwKE via the OfflineTestPwd interface. This interface lets the ad-
versary guess the password contained in the file, and can only be used after a StealPwdFile corruption
query was asked. However, the security notion should offer means to tell a protocol with file = pw from a
protocol with file = H(pw) for some hash function H. The latter requires the adversary to compute hashes of
passwords until it guesses the correct password, while the former directly leaks the password to the adversary
without any computational effort. If we want to distinguish between these protocols, we need to make the
number of OfflineTestPwd queries explicit to Z.

To this end, [GMR06] define FaPAKE such that A is allowed to query OfflineTestPwd only upon
getting instruction from Z. Clearly, this gives Z a way to bound the number of OfflineTestPwd guesses
and does not allow to prove a protocol with file = pw secure.

However, FapwKE with OfflineTestPwd instructed by Z is inherently impossible to realize for natural
asymmetric PAKE protocols even under strong assumptions such as a programmable random oracle (see B
for a definition of this assumption). To show this, we first need to formally capture what it means for a
protocol formulated in the UC framework to have a verifiable password file. In a nutshell, the definition
captures whether, after a server compromise attack happens, the adversary is provided with all necessary
information and interfaces at hybrid functionalities to reconstruct the password file from only pw, i.e., to
actually mount an off-line dictionary attack on file9.

Definition 2.1 (Adversarial Verifiability). Let π be an asymmetric PAKE protocol in an F-hybrid model,
where F is an arbitrary set of ideal functionalities. We say that π is adversarially verifiable if the real-
world adversary A can execute the server’s code to compute file from pw by only interacting with the ideal
functionalities F . In this case, we also say that A can efficiently verify correctness of (pw, file).

We emphasize that it is the real-world adversary A who can verify correctness of the password file, and
after giving the inputs no further help of the environment is required. This will become crucial in proving our
impossibility result. Most asymmetric PAKE protocols formulated in the UC framework are adversarially
verifiable [GMR06, HL18, JKX18].

Theorem 2.2. Let F be a set of ideal functionalities. Then FapwKE as depicted in Fig. 8 is not realizable in
the F-hybrid model by any protocol that is adversarially verifiable.

9While it seems contradictory for an asymmetric PAKE protocol to not allow off-line dictionary attacks upon server com-
promise, one could indeed build such strong protocols by shielding information from the adversary using, e.g., a third party. If
this party is involved in the registration phase but is not accessible by the adversary, off-line attacks can be prevented. Most
notably, sharing the role of the server among several parties achieves this, and is known as threshold PAKE [FJ00]. While
FapwKE allows to consider such protocols, we are not interested in them in this paper.
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Proof. Let π be an adversarially verifiable protocol that UC-realizes FapwKE. Consider the following envi-
ronment Z running either with an adversary or the simulator.

• Z starts the protocol with (StorePwdFile, sid,PC , pw) as input to PS . All parties remain uncor-
rupted.

• Z sends (StealPwdFile, sid) to the adversary to mount a server compromise attack. It obtains file
as answer from the adversary.

• Z flips a coin b. If b = 0, set pw′ = pw, else draw pw′ 6= pw uniformly at random with the same length
as pw. Z now sends (pw′, file) to the adversary for verification.

• Z outputs 0 if verification succeeds, else it outputs 1.

If b = 0, then due to the adversarial verifiability of the protocol, Z will always output 0 in the real execution.
If b = 1, verification will succeed only with negligible probability10. To see this, consider an environment
Zrand that starts the server with pw, then corrupts the client, honestly executes the client’s code using a
randomly chosen pw′ with pw′ 6= pw and finally checks equality of the output keys of both parties. In the
ideal world, where S issues a TestPwd query to correctly simulate the output of the honest server and
learns “wrong guess” due to pw 6= pw′, V iewS,FapwKE

(Zrand) will contain two randomly chosen output keys
since S acts on the (correct) assumption that the passwords do not match. Thus, verification of (pw′, file)
succeeds (i.e., file also “works for” pw′) only with negligible probability, since otherwise V iewA,π(Zrand)
would contain two equal output keys and thus Zrand contradicts the UC-security of π. Altogether, with
overwhelming probability, Z outputs b in the real execution.

We now analyze the output of Z in the ideal world. Since Z issues only StorePwdFile and StealP-
wdFile queries (which both do not produce any output in this case), no (offline, ...) or (ssid, ...) records
are ever created within FapwKE. Due to the absence of these records, it can be easily checked that none of
the interfaces of FapwKE provided to S produce any output. Thus, S ′s view is completely independent of b,
and Z outputs b in the ideal world with probability 1/2, which contradicts the UC-security of π.

Remark 2.3. A simple fact in the UC model is that every UC-functionality realizes itself via a trivial
protocol π∅ that just lets parties relay their input to and obtain their output from the functionality as in the
ideal world. Phrased differently, every ideal functionality F ′ is trivially realizable in the F ′-hybrid model.
This immediately raises the question why π∅ with F = {FapwKE} does not contradict Theorem 2.2. The
answer is that π∅ is not adversarially verifiable: FapwKE does not assign any value to a file entry (it answers
StealPwdFile queries with only a bit indicating success) and thus the real-world adversary is not able to
check validity of a tuple (pw, file) by only interacting with FapwKE.

From Theorem 2.2, it becomes apparent that the simulator needs more leverage regarding off-line dictio-
nary attacks. Indeed, involving Z in OfflineTestPwd queries keeps the simulator from using this interface
and prevents successful simulation. Moreover, we conjecture that providing Z with an OfflineTestPwd
interface is not meaningful, since this “attack” only provides Z with information it can already compute
herself. It is thus not surprising that the best strategy for Z is to not use this interface, as the proof of
Theorem 2.2 indicates.

Toward an improved modeling, let us first reflect the intuition of security against server compromise:

After compromising the server, the best strategy of the adversary to figure out the password is to
run off-line dictionary attacks on the password file.

Note that this resembles the security requirement for standard PAKE regarding on-line dictionary attacks,
the only differences being that the latter can be asked at an arbitrary time but only once per protocol run. It
thus seems reasonable to let the simulator issue OfflineTestPwd queries similarly to TestPwd queries,
namely oblivious to Z11.

10Probabilities are taken over the random coins of all involved entities.
11We remark that FapwKE as stated in [GMR06] and in Figure 8 still allows for off-line pre-computation attacks. In a nutshell,

this attack models the fact that an adversary can produce hashes of password candidates already before stealing the password
file, and find out the password quickly by going through the hash list after seeing the file. In a recent work, [JKX18] strengthens
the security notion accordingly and gives protocols that protect against these attacks.
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We change the model by letting OfflineTestPwd constitute an interface provided to the adversary by
FapwKE without requiring instructions from Z. Consequently, OfflineTestPwd queries by Z do not have
any effect nor produce any output in the real world. Of course, we now need means to bound usage of this
interface.

Bounding the simulator’s computation. Unlimited access to the OfflineTestPwd interface lets S
find out the server’s password eventually, within polynomial time if we assumem passwords that are human
memorable. Knowing the password, simulation of the server becomes trivial and even protocols that we
would consider insecure can be simulated (e.g., a protocol with file = pw).

One possible countermeasure is to require the simulator have runtime similar to the real-world adversary.
Letting S only issue OfflineTestPwd when being instructed by Z enforces this, and was probably the
reason for this limitation in [GMR06] in the first place. However, as shown in Theorem 2.2, this restriction
on S is too heavy. Instead, we propose to lift this restriction, as formalized above, and instead require
that the simulator’s runtime is determined by the length of its overall input. Intuitively, each input bit can
be seen as a ticket to provide an input bit to another machine. Since input to the simulator comes from
the environment, this restriction lets Z decide about how many OfflineTestPwd queries S is allowed to
make12. To formalize this, we require a simulator for a protocol realizing our revisited functionality FaPAKE

given in Figure ?? to be locally T -bounded (cf. Section A).

3 The Separation Result

The non-programmable random oracle model. In his seminal paper, Nielsen [Nie02] formalizes
the non-programmable random oracle model (NPRO) as a variant of the UC framework where all entities
(including Z) are granted direct acces to an oracle O. This oracle answers fresh values with fresh randomness,
and maintains state to consistently answer queries that were asked before. We recall the formalism from
[Nie02] to integrate such a random oracle in the UC framework.

In the NPRO model, all ITMs that exist in the UC framework are equipped with additional oracle tapes,
namely an oracle query tape and an oracle input tape. To denote an ITM Z communicating with oracle O
via these tapes, we write ZO. Z can write on his oracle query tape, while the oracle input tape is read-only.
As soon as Z enters a special oracle query state, the content of the oracle query tape is sent to O. The
output of O is then written on the oracle input tape of Z. A random oracle can be implemented by letting
O denote an ITM defining a uniformly random function H : {0, 1}∗ → {0, 1}λ. We now say that a protocol
π UC-realizes a functionality F in the NPRO model if

∀AO ∃SO s.t. ∀ZO : V iewπO,AO (ZO)
c
≈ V iewFO,SO (ZO)

Theorem 3.1. The functionality FaPAKE as depicted in Fig. 2 is not realizable in the NPRO model by any
protocol that is adversarially verifiable.

More detailed, for every adversarially verifiable protocol π and every polynomial T , there exists an attacker
A and an environment Z which only issues static corruption requests, such that there is no locally T -bounded
simulator S such that π UC-realizes FaPAKE in the NPRO model.

Proof. Let π be an adversarially verifiable protocol that UC-realizes FaPAKE in the NPRO model. Consider
the following environment Z running either with an adversary or the simulator.

• ZO starts the protocol with (StorePwdFile, sid,PC , pw) as input to PS , where pw
$← {0, 1}d

√
2λe.

All parties remain uncorrupted.

• ZO sends (StealPwdFile, sid) to the adversary to mount a server compromise attack. It obtains file
as answer from the adversary.

• ZO verifies (pw, file′) by running the code of AO to verify a password file.

12This argument requires that S cannot use the ideal functionality to augment its input bits. However, all PAKE functionalities
give only answers that are shorter than the corresponding queries. Thus, S can obtain additional “input tickets” only from Z
and each query to the ideal functionality results in losing tickets.
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The functionality FaPAKE is parameterized with a security parameter λ. It interacts with an adversary S and
a client and a server P ∈ {PC ,PS} via the following queries:

Password Registration

• On (StorePwdFile, sid,PC , pw) from PS , if this is the first StorePwdFile message, record
(file,PC ,PS , pw).

Stealing Password Data

• On (StealPwdFile, sid) from S, if there is no record (file,PC ,PS , pw), return “no password file”

to S. Otherwise, mark PS as compromised; regardless,

� If there is a record (offline, pw), send pw to S.

� Else, return “password file stolen” to S.

• On (OfflineTestPwd, sid, pw′) from S, do:

� If there is a record (file,PC ,PS , pw) and PS is compromised, do: if pw = pw′, return “correct
guess” to S; else, return “wrong guess”.

� Else, record (offline, pw′)

Password Authentication

• On (UsrSession, sid, ssid,PS , pw′) from PC , send (UsrSession, sid, ssid,PC ,PS) to S. Also, if this is
the first UsrSession message for ssid, record (ssid,PC ,PS , pw′) and mark it fresh.

• On (SrvSession, sid, ssid) from PS , ignore the query if there is no record (file,PC ,PS , pw). Else
send (SrvSession, sid, ssid,PC ,PS) to S and, if this is the first SrvSession message for ssid, record
(ssid,PS ,PC , pw) and mark it fresh.

Active Session Attacks

• On (TestPwd, sid, ssid,P, pw) from S, if there is a record (ssid,P,P ′, pw′) marked fresh, do: if
pw′ = pw, mark it compromised and return “correct guess” to S; else, mark it interrupted and
return “wrong guess” to S.

• On (Impersonate, sid, ssid) from S, if there is a record (ssid,PC ,PS , pw′) marked fresh, do: if there
is a record (file,PC ,PS , pw), PS is marked compromised and pw′ = pw, mark (ssid,PC ,PS , pw′)
compromised and return “correct guess” to S; else, mark it interrupted and return “wrong guess” to
S.

Key Generation and Authentication

• On (NewKey, sid, ssid,P,K) from S where |key| = λ, if there is a record (ssid,P,P ′, pw) not
completed, do:

� If the record is compromised, or either P or P ′ is corrupted, or K = ⊥, then send (sid, ssid,K) to
P.

� If the record is fresh, (sid, ssid,K′) was sent to P ′, and at that time there was a record
(ssid,P ′,P, pw) marked fresh, send (sid, ssid,K′) to P.

� If the record is interrupted or if it is fresh and there is a record (sid,P ′,P, pw′) with pw 6= pw′,
then send (ssid, ssid,⊥) to P.

� Else, pick K′′
$← {0, 1}λ and send (sid, ssid,K′′) to P.

Finally, mark (ssid,P,P ′, pw) as completed.

Figure 2: Our revisited ideal functionality FaPAKE for asymmetric PAKE, with explicit authentication (cf.

Section 4.1). Framed queries can only be asked upon getting instructions from Z. Gray boxes indicate

queries that required instructions from Z in [GMR06], but not in FaPAKE. To be consistent with the writing
conventions for ideal functionalities, FaPAKE marks PS as compromised instead of the file record.



• ZO outputs 0 if verification succeeds, else it outputs 1.

Note that step 3 can be performed by ZO since it has the same oracle access as AO. Due to the adversarial
verifiability of π, ZO always outputs 0 in the real execution. It remains to compute the probability that SO
outputs fileS such that ZO outputs 0 in the ideal execution. As in the proof of Theorem 2.2, since ZO issues
only StorePwdFile and StealPwdFile queries (which both do not produce any output in this case),
no (offline, ...) or (ssid, ...) records are ever created within FaPAKE. Due to the absence of these records,
the only interface of FaPAKE provided to SO that produces any pw-depending output is OfflineTestPwd.
This interface provides SO with a bit, depending on whether the submitted password was equal to pw or
not.

Since SO is locally T -bounded (see Section A for details), it has runtime T (n) with n = nI − ne,
where T is some function, nI is the number of bits written to SO’s input tapes and ne the number of
bits SO writes to other input tapes. Since SO cannot have a negative runtime, the maximum number of
password bits that he can submit to OfflineTestPwd is nI . In the above attack, nI consists of the
minimal input 1λ, (StealPwdFile, sid) from ZO as well as a bit as answer to each StealPwdFile and
OfflineTestPwd query that SO issues. We now upper bound the number of total password guesses that
SO can submit. We simplify the analysis by ignoring names and session IDs in queries, and by assuming
that (StealPwdFile, sid) has the same bitsize as SO’s answer fileS . Additionally, we let SO know k, i.e.,
the length of the password of the server. The simplifications yield nI = λ + m, where m is the number of
OfflineTestPwd queries of SO. Since |pw| ≥ 1, we have m < λ, and thus the maximum number of k-bit
long passwords that SO can write in queries is 2λ/k. Setting k = log2(λ) + 2 , and using the fact that ZO
draws pw at random, the probability that SO obtains 1 from OfflineTestPwd is at most 1/2. It follows
that

Pr[Z → 1| ideal ] = Pr[AO(pw) = fileS ]

≤ 1/2 + 1/2k−1,

contradicting the UC-security of π.

Remark 3.2. In the above proof, it would suffice to choose k bigger than the overall input. However, it is
important to choose k roughly the size as real passwords (≈ log2(λ)), to not make the attack artificial.

Remark 3.3. Since in the above attack the oracle O is not queried before SO provides his output, any flavor
of observability can be added without invalidating Theorem 3.1. That is, even observing random oracle queries
from parties and the environment does not help the simulator to prevent the described attack. Contrarily,
our result does not apply with respect to an oracle offering limited programability such as random or weak
programmability [FLR+10]. In a nutshell, these oracles give the adversary the freedom to assign images that
are chosen by the oracle to inputs of his choice. This seems enough to circumvent our impossibility result
since the simulator is now able to solve its commitment issue, while it does not rely on choosing the images
itself (e.g., taking a DDH challenge as image). This claim is supported by [JR16] who construct a UC-secure
asymmetric PAKE in a limited programmability random oracle model. We leave it as an open question to
broaden or invalidate our result for more notions of random oracles, espcially different flavors of global
random oracles [CDG+18].

Possilibity of PAKE in the NPRO-model. As opposed to asymmetric PAKE, for standard PAKE it
is possible to achieve static UC-security without relying on programmability.

A widely used PAKE protocol is DH-EKE [BM92b], which is inspired by the Diffie-Hellman Key Exchange
[DH76]. The two flows of the protocol are encrypted using the password as the encryption key with an
appropriate symmetric encryption scheme. The EKE protocol has been further formalized by Bellare et
al. [BPR00] under the name EKE2. Its UC security is formally analyzed in [ACCP08] and [DHP+18].
By looking at their simulators for static security, it is apparent that the internally simulated oracle is not
programmed in any way. Indeed, it is only observability of random oracle queries of Z that is required for
the security proof. Thus, EKE2 is statically secure in the NPRO-model.

A PAKE protocol that is often referred to as the “KOY protocol” was originally introduced by [KOY01].
To enable UC security, it was later slightly modified [CHK+05] and proven to be UC-secure in a CRS-hybrid
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model. The protocol makes use of a Hash Proof System which can be obtained from, e.g., standard discrete-
log based assumptions. Security of the protocol thus does not rely on any idealized assumption. The same
holds for the round-optimal PAKE from [KV11] and the protocol from [BBC+13].

4 UC-Security of the Ω-Method

In their paper, [GMR06] propose a generic method for obtaining an asymmetric PAKE protocol from a
symmetric PAKE protocol. Their protocol called Ω-method is a modification of the so-called “Z-method”
[Mac02] for turning a standard PAKE into an asymmetric PAKE. In this section, we analyze the UC-security
of the Ω-method. Let us first recall the protocol in Figure 3.

Client (pw′) Server (pw)

(vk, sk)
$← SigGen(1λ)

(pw||3),(pw||2),←−−−−−−−−−−−
(sk||3)FRO

File Storage Phase
r,kpw,hsk−−−−−−−→ store (r,

=:c︷ ︸︸ ︷
kpw ⊕ sk||hsk, vk)

(pw′||3),(pw′||2)−−−−−−−−−−−→ Key Exchange Phase

FRO
r′,k′pw←−−−−−

r′−−→ r←−−
FrpwKE

K′,tr′←−−−− K,tr−−−→
(K′||1),(K′||2)−−−−−−−−−−→ (K||1),(K||2)←−−−−−−−−−

FRO
K′1,K

′
2←−−−−−

K1,K2−−−−−→

c′ := e⊕ K′
1

e←−−−−−−−−−−−−−−−−−−−−−−−−−−− e := K1 ⊕ c
parse c′ =: c′1||c

′
2, c′1 ∈ {0, 1}

λ

sk← c′1 ⊕ k
′
pw

(sk′||3)−−−−−−→ Proof Phase
FRO

h′sk←−−−
if h′

sk 6= c′2 set K′
2 := ⊥

σ := Signsk′ (tr
′)

(send only if K′
2 6= ⊥) σ−−−−−−−−−−−−−−−−−−−−−−−−−−−→ if Vfyvk(σ, tr) 6= 1 set K2 := ⊥

output K′
2 output K2

Figure 3: The Ω protocol from [GMR06]. Slightly abusing notation, we assume FrpwKE outputs transcripts
together with the keys. To avoid using different instantiations of FRO, we implicitly assume that FRO outputs
random values of length 2λ for inputs ending with 1, and random values of length λ for inputs ending with
2 or 3. ⊕ binds stronger than ||.

In a nutshell, the Ω-method consists of three phases: file storage, the key exchange phase and the proof
phase. We now describe the three phases in more detail.

• File Storage: The server stores a hash of a password together with a signing key pair. This file is
then used for all further sessions with a specific client.

• Key Exchange Phase: Client and server run a symmetric PAKE protocol using the hashes of their
passwords as input.

• Proof Phase: In this phase, the client has to prove that he actually knows the password13. Using
the (hash of the) password as an encryption key, the stored signing key is encrypted and sent to the

13This phase is necessary since otherwise a server compromise would enable the attacker to impersonate a client using only
the hash of the password. This is clearly undesireable and reflected in the functionality that, upon server compromise, only
allows to impersonate the server.
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client, who decrypts it and signs the transcript together with the session identifier. Besides proving
knowledge of the password, this step also informs both users whether their key exchange was successful
or not. In case of success, a user outputs the session key that was computed in the key exchange phase.

We formally prove what was claimed in [GMR06], namely, UC security of the Ω protocol, executed in
the UC model (cf. Appendix ??), with respect to our revisited functionality, but using the NewKey and
TestAbort interfaces used by [GMR06].

Theorem 4.1. Protocol Ω depicted in Figure 4 securely realizes FaPAKE with NewKey and TestAbort
interface as in Figure 8 in the {FRO,FrpwKE}-hybrid model with respect to static (byzantine) corruptions and
adaptive server compromise.

Outline of the proof The proof of the theorem is mainly divided in four steps: simulate on-line dictionary
attacks, simulate man-in-the-middle attacks, simulate server compromise attacks and simulate transcript and,
if necessary, outputs of honest parties without their passwords and random coins.

• Towards simulating on-line dictionary attacks, the simulator is allowed to use the TestPwd interface
of FaPAKE once per ssid. However, note that a dictionary attack is mounted by Z through a corrupted
party, meaning that Z internally chooses a password and runs the party’s code internally and then
sends messages on behalf of the corrupted party. The simulator has to extract somehow the password
that Z is using in the attack. However, since Z needs to hash the password, S can derive it from
inputs to the random oracle and the inputs that Z sends to the hybrid FrpwKE. If Z does not issue any
of these queries, it is straightforward that the dictionary attack fails with overwhelming probability.

• Since the protocol uses a standard PAKE protocol as a building block, man-in-the-middle attacks
against this part of the protocol are already excluded via the UC security of the PAKE scheme. This
means that there are only two messages that the environment can attack: the first is a one-time-
pad and the second a signature. Z can suppress or modify these messages, and we show that these
denial-of-service type attacks can be handled by the simulator by calling the appropriate interfaces of
FaPAKE.

• Server compromise attacks mounted by the environment require the simulator to provide information
that is indistinguishable of what Z sees in the real world. In the previous section, we detailed via a
new corruption model that, in the real world, Z obtains a part of the servers internal state, which we
call the password file. To argue security, we have to show how this file can be simulated. However,
since the file contains a password hash, S can just output a randomly chosen value. Now Z can
“check” this value by hashing the password and comparing it with the file. Our S will crucially rely
on reprogramming the random oracle to match password and file. To learn what he has to program, S
will input all random oracle queries of Z as OfflineTestPwd guesses to FaPAKE. Crucially, he relies
on having unlimited access to this interface as soon as he has to simulate a password file. Lastly, if
Z uses the password file to mount a network attack on the session (by issueing a TestPwd query to
FrpwKE using the file), S asks an Impersonate query. If Z uses a wrong file, S can make sure that
the key exchange fails by sending ⊥ via the NewKey interface.

• When simulating honest parties, S has to use simulated random coins and passwords. For showing
indistinguishability of runs with simulated and real honest parties, we heavily rely on the usage of ideal
building blocks that output truly random values, and in the case of FrpwKE especially outputting truly
random values that are different with overwhelming probability in case of mismatching passwords.

The full proof can be found in Appendix C.

4.1 Explicit authentication

A protocol is said to have explicit authentication if the parties learn whether the key agreement was successful
(in which case they might opt for, e.g., outputting a failure symbol). When designing their asymmetric
PAKE functionality, [GMR06] introduced the TestAbort interface to the functionality to allow to analyze
the security of protocols either with or without explicit authentication.
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TestAbort is too weak. While it is in fact desireable to analyze both types of schemes since both are used
in practice, the TestAbort interface weakens FaPAKE by not clearly distinguishing which type of protocol
is analyzed. This results in a functionality with very weak security guarantees regarding authentication.
An adversary can abuse this interface by letting a party in a protocol with explicit authentication output
whatever key it computed by not making use of the TestAbort interface. This is particularly troubling
since, intuitively, a protocol featuring explicit authentication should reliably inform participants whether
the key exchange was successful or not. On top of that, no security guarantee about session keys is granted
whatsoever in a session under attack. This means that a party under attack would faithfully use even an
adversarially determined key to, e.g., encrypt her secrets.

We disclose this weakness of FaPAKE with TestAbort by demonstrating with Theorem 4.1 that the
Ω-method is securely realizing it even if the signature scheme is insecure. By looking at the proof of the
theorem, it becomes apparent that we do not rely on the signature scheme used for explicit authentication
to fullfill any security notion. Let us explain on a high level why the Ω-method can be shown to securely
realize FaPAKE even when signatures are easily forgeable. The purpose of the signature is to convince the
server that the client holds the correct password. If an attacker manages to inject a forgery as last message,
it can convince the server to output a session key in the real execution even if the client holds a different
password. However, this can be easily simulated in the ideal world by letting the simulator not issue a
TestAbort query for the server (as he would do for a protocol not featuring explicit authentication).
Using this simulation strategy in the proof, we do not have to rely on forgeries only occuring with negligible
probability.

Let us emphasize this. Inspired by the above simulation strategy, we make the following claim: a modified
Ω-method where the client sends a text message “accept”/“do not accept” to the server also realizes FaPAKE

in the (FRO,FrpwKE)-hybrid model. Of course, we do not recommend to use this modified version of the
protocol, nor to use it with a flawed signature scheme. This is just a thought experiment to demonstrate the
severe weaknesses of the security notion that are introduced by the TestAbort interface.

Thus, FaPAKE with TestAbort is not a good abstraction of the security properties of the Ω-method.
We now correct this and give a stronger functionality that captures them better.

Strong explicit authentication guarantees. For proving security of a protocol featuring explicit
authentication such as the Ω-method, we show how to modify FaPAKE to provide strong authentication guar-
antees. Our modifications closely follow the recommendations for explicit authentication from [CHK+05].
Namely, we let the functionality send a special failure ⊥ as output to parties with mismatching passwords.
However, the functionality hides this information from the adversary, which models the fact that a passive
adversary should not be able to tell whether a PAKE between two parties resulted in the same session key
or not. Similarly, sessions with “wrong guess” can only get ⊥ as output from the functionality.

Considering network attacks, an adversary can always mount a DoS attack on the protocol by, e.g.,
injecting messages of wrong format to make the receiving party believe authentication was unsuccessful.
We incorporate this attack into the functionality by letting the adversary propose failure in his NewKey
response. Formally, FaPAKE enforcing explicit authentication is depicted in Figure 214.

We are now ready to state a stronger version of Theorem 4.1, which captures security of the Ω-method
more precisely.

Theorem 4.2. If the signature scheme is EUF-CMA secure, protocol Ω depicted in Figure 4 securely realizes
FaPAKE in the {FRO,FrpwKE}-hybrid model with respect to static (byzantine) corruptions and adaptive server
compromise.

The proof can be found in Appendix D.

5 Multi-Session Security

In practice, asymmetric PAKE schemes are implemented in scenarios comprising many clients accessing
various servers. In this section, we analyze how two-party UC security can be leveraged to obtain UC-secure
multi-party asymmetric PAKE schemes.

14A protocol without explicit authentication, on the other hand, can be proven to securely realize FaPAKE with the NewKey
interface of the symmetric PAKE functionality FrpwKE from Figure 7.
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Exploiting the modularity of the UC framework, we can design a multi-party aPAKE protocol by run-
ning FaPAKE between each client-server pair. The composition theorem of the framework then allows us to
subsequently replace all the ideal protocols with their realizations. However, with each such replacement, a
new set of hybrid functionalities is created that is used only by one instance of the protocol. For example,
in case of the Ω-protocol, this would result in as many FRO functionalities as there are disjoint client-server
pairs. Clearly, instantiating all these random oracles with different hash functions does not yield a practical
scheme.

UC with joint state. Toward a more realistic multi-party protocol, we want all two-party aPAKE
protocols to jointly use their hybrid functionalities. For this, the UC with joint state (JUC) framework
[CR03] can be used. In a nutshell, this framework provides a tool, the so-called multi-session extension F̂
of a functionality F to replace many hybrid functionality invokations with a single protocol. F̂ is a single
functionality comprising arbitrarily many instances of F , distributing calls to and from them consistently.
Replacement is handled via the JUC composition theorem:

Theorem 5.1 (Universal composition with joint state [CR03]). Let F ,G be ideal functionalities. Let π be a
protocol in the F-hybrid model, and let ρ̂ be a protocol that UC-emulates F̂ , the multi-session extension of
F , in the G-hybrid model. Then the composed protocol πF→ρ̂ in the G-hybrid model emulates protocol π in
the F-hybrid model. Here, πF→ρ̂ denotes the protocol π where each invokation of F is replaced by a call to
ρ̂.

Let us showcase the workflow for the Ω-protocol.

(1) Find a protocol that UC-emulates the multi-session extension of FRO

(2) Modify the Ω method from Figure 4 to use this protocol instead of FRO

(3) Apply the JUC composition theorem to replace multiple instances of FaPAKE (in an arbitrary application
protocol) by the modified Ω-protocol

More detailed, the multi-session extension F̂RO of FRO is a wrapper around many instances of FRO. F̂RO

is called with inputs of the form (sid, ssid,m). It distributes the queries to the corresponding inner FRO

functionality with session ID ssid. Vice versa, sid is added to all outputs of inner functionalities before they
leave F̂RO.

The main difference between F̂RO and FRO is that F̂RO maintains a number of random oracle lists which
we can refer to as L[ssid]. Therefore, sending a value m to F̂RO can result in different outputs, depending
on the ssid of the input. It can be easily argued that a variant of FRO that includes the ssid in the hash list
UC-emulates F̂RO. We call the resulting functionality FsRO and refer to it as a shared random oracle. See
Figure 6 for a formal definition.

Lemma 5.2. The ideal protocol idealFsRO
UC-emulates F̂RO.

We now modify the Ω-protocol execution in UC to work with FsRO. Whenever a party issues a query
(sid,m) to FRO, this query is rewritten as (s, sid,m) and send to FsRO. Here, s is a session ID hard-coded
in the protocol, i.e., the same s is used by all instances of the protocol. We call the resulting protocol Ωs.
The effect of the modification is that all instances of the Ωs protocol in a UC execution will call the same
random oracle functionality FsRO having session ID s. Let us stress that Ωs is still a two-party protocol.

We are now ready to investigate security of a protocol π invoking several instances of the Ωs protocol
(π can be thought of being the context of a two-party aPAKE protocol, in the easiest case just a protocol
invoking multiple users running aPAKEs among them). As desired, the following theorem lets us replace
multiple instances of the ideal functionality FaPAKE by the Ωs-protocol.

Theorem 5.3. Let πFaPAKE be a protocol in the FaPAKE-hybrid world and πΩ→Ωs be the protocol πFaPAKE where
each invokation of FaPAKE is replaced by an invokation of the Ωs protocol making calls to FsRO. Then

πΩ→Ωs UC-emulates πFaPAKE

Proof. The theorem follows directly from Theorem 4.2, Lemma 5.2 and the JUC composition Theorem 5.1.
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We thus obtain strongly secure multi-party asymmetric PAKE schemes using a joint setup from protocols
realizing FaPAKE. Namely, we are guaranteed that all single instances within the multi-party protocol behave
in an ideal way. To our knowledge, this is the first statement of UC security of a multi-party aPAKE protocol.
The same technique can be applied to the protocols from [JKX18]15.

Remark 5.4. As done already in [CK02], we could apply the JUC routine also ”at the next level” and
consider the multi-session extension of FaPAKE. The resulting functionality F̂aPAKE would be a single setup
that can be called by muliple parties in an application protocol. However, while this does not give any new
insights regarding security (that is, security would still hold only under the assumption introduced by the first
application of JUC, e.g., a shared random oracle), it hinders our original goal to modularly analyze multi-
party protocols which use aPAKE bilaterally. For this, we believe that the two-user FaPAKE is the simplest
and best option.

Relying on a shared random oracle naturally comes at a cost: instantiating FsRO requires us to hash
session-specific information along with the password, e.g., use H(pw, ssid) as password file in the Ω-protocol.
We will elaborate on the effects of a shared random oracle in the remainder of this section. First, we detail
a specific class of attacks that are important only in a multi-user scenario.

5.1 Impersonation Attacks

Impersonation attacks are attacks where the data leaked by a compromised server is used by an adversary to
impersonate the server in a session with a client. It is well known that the unauthenticated communication
channel between a client and a server running an aPAKE protocol makes it prone to such attacks. For
the multi-party scenario, things are a bit more complicated. Put simply, multiple parties maintain multiple
communication channels, and we have to analyze which password files “work” for which channels. Namely,
we will distinguish between two types of impersonation attacks, which we call local and cross-session attacks.

Local Impersonation Attack. This attack involves only two parties, namely a client PC and a server
PS . First, PS gets compromised and the adversary learns the password file of PC . The attacker then uses
his ability to control the communication between PC and PS to mount a man-in-the-middle attack and
succesfully exchange a key with PC .

Cross-session impersonation attack. Besides PC and PS , this attack involves another party P ′S . First,
PS gets compromised and the adversary learns the password file of PC . Then the attacker corrupts P ′S ,
engages in a session with PC , installs the stolen password file and follows the rest of the protocol honestly.

Looking at the Impersonate interface of FaPAKE, it can be easily seen that protocols realizing FaPAKE (and
thus also protocols invoking multiple instances of it) are not supposed to protect against local impersonation
attacks. The rationale is that knowing the password file and being able to hijack the connection between
server and client already puts the attacker in the position of the server. He should thus be able to authenticate
to the client.

On the other hand, and perhaps a bit surprisingly, protocols that are composed from two-party FaPAKE

instances protect against cross-session impersonation attacks. In particular, this holds for the protocols
constructed via Theorem5.3. The reason is that the password file “works” only for a specific ssid, and the
ssid of the session (PC ,PS) is different from the one of (PC ,P ′S). While this might at first glance be a benefit
due to stronger security guarantees, protection against cross-session impersonation attacks actually hinders
practicality of a multi-party aPAKE protocol.

Session Identifiers. In a UC execution, session identifiers are agreed upon by the parties before a
protocol is run. They represent the minimal amount of coordination between parties that is needed in order
to distinguish between multiple executions (called instances) of protocols. Agreement on sid can happen
bilaterally (e.g., each party sending a randomly chosen string to one another and then XORing them) or
by the initiating party proposing a sid. The UC model allows reusing a sid among multiple instances of

15In their protocols, switching to the shared random oracle FsRO lets the server compute session-specific OPRF keys Ksid and
the password file becomes PRFKsid

(pw).
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protocols. However, to avoid ambuigity which instance a message belongs to, a user is not allowed to run
the same protocol twice under the same sid16.

In multi-user aPAKE protocols composed from FaPAKE, a user Alice is thus not allowed to use the same
sid in two aPAKE sessions running on her personal computer. Similarly, when Alice uses her computer at
work to run aPAKE protocols, she will use different session identifiers since she is not supposed to remember
anything besides her password. This makes the protocol impractical since the server needs to store multiple
files for Alice, and cannot even erase the password in case she wishes to use a new device.

6 Conclusion

We identify and fix issues of the UC functionality for asymmetric PAKE. We demonstrate usefulness of
our revised functionality by proving that the classical Ω protocol securely realizes it. We then show that
strong assumptions such as a programmable random oracle are required to achieve UC security of 2-party
asymmetric PAKE protocols. When such strongly secure protocols are composed in larger context protocols
with many users, we find that the resulting schemes have such strong security guarantees that they even
protect against “attacks” that are actually considered relevant use cases of multi-session aPAKE protocols.
We conclude that, currently, only in the 2-party case the composable security notion introduced in this work
is a useful notion. For composable multi-party aPAKE protocols, on the other hand, a new and relaxed notion
of security in the UC framework is required. We provide a formalism, namely cross-session impersonation,
that can guide the design of a more realistic composable security notion for multi-party aPAKE protocols.
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A Some Details on Universal Composability

In this section we will briefly recall parts of the Universal Composability (UC) framework of [Can01] that
are needed in our proofs.

First, let us introduce a convention for the textual descriptions of the UC framework in this work. We
will use the term simulator to emphasize that we talk about the adversary in the ideal world and the term
real-world adversary if we talk about the adversary interacting with the real protocol. If we talk about both
entities, we use the term adversary.

The UC framework uses interactive Turing machines (ITM) to describe a protocol execution, which are
basically Turing machines that can send messages to each other. Each entity in the system (parties, adver-
saries, ideal functionalities) is model as such an ITM and is connected to various other entities. Technically,
sending messages works via writing to the tape of an ITM. There are different types of tapes, e.g., for pro-
viding initial input or receiving a protocol message from another party, but we can ignore this since it is not
important for our purposes and just talk about input tapes in general.

Before proceeding, let us quickly recall the notion of a protocol UC-realizing an ideal functionality F .

Definition A.1 (UC realization, informally). A protocol π UC-realizes an ideal functionality F if

∀A ∃S s.t. ∀Z : V iewπ,A(Z)
c
≈ V iewF,S(Z)

where A,S,Z are ITMs each having private random coins available.

Of course, for the above definition to make sense one needs to bound the resources of each ITM, in
particular its runtime. Bounding the runtime of a Turing machine is usually done by saying that it has to
halt within T (n) steps, where T is some function T : N→ N and n is the number of overall input bits. Care
has to be taken when formulating such a restriction for an interactive Turing machine, since such a machine
can create new input bits for other machines. Consider for example two ITMs with runtime bounded by
the constant function T : N → 2. If the only thing that the machines do is writing one bit on the other
ITM’s input tape upon each activation, the system of these two ITMs will never halt. To avoid infinite
runs, input bits are interpreted as “runtime tokens” that can either be consumed by the ITM itself for local
computations, or given away to other ITMs. This leads to the notion of locally T -bounded ITMs.

Definition A.2 (Locally T -bounded ITM, Def. 2 of [Can01]). Let T : N → N. An ITM M is locally T -
bounded if, at any point during an execution of M (namely, in any configuration of M), the overall number
of computational steps taken by M so far is at most T (n), where n = nI − nO, nI is the overall number of
bits written so far on M ’s input tape, and nO is the number of bits written by M so far on input tapes of
ITM instances.

Finally, we recall execution of the Ω protocol in the UC model. Most of Figure 4 is taken verbatim from
[GMR06] with only adjustments to our notation.
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Setup: The protocol uses a random oracle functionality FRO and a PAKE functionality FrpwKE, as
well as a signature scheme (SigGen,Sign,Vfy). It is executed by a client PC and a server PS .

Password Storage: When PS is activated with (StorePwdFile, sid,PC , pw) for the first time, he
first sends (sid, pw||3), (sid, pw||2) to FRO and receives responses (sid, r) and (sid, kpw). He generates a
signature key pair (vk, sk) ← SigGen(1λ) and sends (sid, sk||3) to FRO, obtaining an answer (sid, hsk).
He computes c← kpw ⊕ sk||hsk, where ⊕ binds stronger than ||, and sets file[sid] := (r, c, vk).

Protocol Steps:

• When PC receives input (SrvSession, sid, ssid,PC) he obtains r from file[sid] (aborting if this
value is not properly defined), sends (NewSession, sid||ssid,PS ,PC , r, server) to FrpwKE and
awaits a response.

• When PC receives an input (UsrSession, sid, ssid,PS , pw) he sends (sid, pw||3) to FRO and obtains
a response r. He then sends (NewSession, sid||ssid,PC ,PS , client) to FrpwKE and awaits a
response.

• When PS is awaiting a response from FrpwKE and receives (sid||ssid,K) and
(transcript, sid||ssid, tr) from it, he sends (sid||ssid,K||1) and (sid||ssid,K||2) to FRO and
receives responses (sid||ssid,K1) and (sid||ssid,K2). He retrieves c from file[sid] and computes
e← K1 ⊕ c and sends the message (flow-zero, sid, ssid, e) to PC .

• When PC is awaiting a response from FrpwKE and receives (sid||ssid,K) and
(transcript, sid||ssid, tr) from it, he sends (sid||ssid,K||1) and (sid||ssid,K||2) to FRO and
receives responses (sid||ssid,K1) and (sid||ssid,K2).

• When PC receives a message (flow-zero, sid, ssid, e) he computes c ← K1 ⊕ e and parses c =:
c1||c2 with c1 ∈ {0, 1}λ. He sends (sid, pw||2) to FRO and receives response kpw. He computes
sk := c1 ⊕ kpw and sends (sid, sk||3) to FRO, receives response hsk and verifies that hsk = c2.
If not, he outputs (abort, sid, ssid) and terminates the session. Otherwise, he computes σ ←
Signsk(sid||ssid||tr), sends (flow-one, sid, ssid, σ) to PS , outputs (sid, ssid,K2) and terminates the
session.

• When PS receives a message (flow-one, sid, ssid, σ), he checks that Vfyvk(σ, sid||ssid||tr) = 1. If
not, he outputs (abort, sid, ssid) and terminates the session. Otherwise, he outputs (sid, ssid,K2)
and terminates the session.

Figure 4: Execution of the Ω protocol from Figure 3 in the UC model.



The functionality FRO proceeds as follows, running on security parameter λ, with a set of parties
P1, . . . ,Pn and an adversary S:

• FRO keeps a list L (which is initially empty) of pairs of bit strings.

• Upon receiving a value (sid,m) (with m ∈ {0, 1}∗) from some party Pi or from S, do:

� If there is a pair (m, h̃) for some h̃ ∈ {0, 1}λ in the list L, set h := h̃.

� If there is no such pair, choose uniformly h ∈ {0, 1}λ and store the pair (m,h) ∈ L.

Once h is set, reply to the activating machine (i.e., either Pi or S) with (sid, h).

Figure 5: Functionality FRO

The functionality FsRO proceeds as follows, running on security parameter λ, with a set of parties
P1, . . . ,Pn and an adversary S:

• FsRO keeps a list L (which is initially empty) of pairs of bit strings.

• Upon receiving a value (sid, ssid,m) (with m ∈ {0, 1}∗) from some party Pi or from S, do:

� If there is a tuple (ssid,m, h̃) for some h̃ ∈ {0, 1}λ in the list L, set h := h̃.

� If there is no such pair, choose uniformly h ∈ {0, 1}λ and store the pair (ssid,m, h) ∈ L.

Once h is set, reply to the activating machine (i.e., either Pi or S) with (sid, h).

Figure 6: Functionality FsRO

B Ideal functionalities

We recall the Random Oracle (RO) functionality FRO as defined by Hofheinz and Müller-Quade in [HM04]
in Figure 5, the revisited ideal functionality for symmetric PAKE from [GMR06], called FrpwKE in Figure 7
and the ideal functionality FapwKE for asymmetric PAKE also from [GMR06] in Figure 8.

C Proof of Theorem 4.1

Proof. We call a message adversarially generated if it was not output by any of the honest parties, neither
within the real execution nor the simulation. We refer to a query (NewKey, sid,Pi,K) from the adversary S
with an honest party Pi as due if

• there is a fresh record of the form (Pi, pw)

• there is a record (ssid,P1−i,Pi, pw′) with pw = pw′ and P1−i is honest

• a key K′ was sent to the other party while (ssid,P1−i,Pi, pw′) was fresh at the time.

We denote parties with PS ,PC whenever we want to specify their role in the protocol, and with Pi,P1−i
whenever the role does not matter.

Game G0: The real protocol execution. The real protocol execution is depicted in Figure 3. For a
description of how to execute the protocol in the UC model, we refer the reader to Figure 6 in [GMR06].

Game G1: Introducing the ideal functionality. In this game we just create new and regroup existing
entities in the system which, in the UC framework, are modeled as interactive Turing machines (ITM).
Specifically, we create two dummy ITMs, one for each party, who just relay all the messages and are
connected to the real parties and the environment. Between dummy and real parties, we create a new
ITM that we call F . This ITM will be gradually changed among the upcoming games and in the end
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The functionality FrpwKE is parameterized by a security parameter λ. It interacts with an adversary S
and two parties Pi,P1−i via the following queries:

Upon receiving (NewSession, sid,Pi,P1−i, pw, role) from party Pi:
Send (NewSession, sid,Pi,P1−i, role) to S. Also, if this is the first NewSession query,
or if this is the second NewSession query and there is a record (P1−i,Pi, pw′), then record
(P1−i,Pi, pw) and mark this record fresh.

Upon receiving (TestPwd, sid,Pi, pw′) from S:

If there is a record (Pi,P1−i, pw) which is fresh, then do:

• if pw = pw′, mark the record compromised and reply to S with “correct guess”.

• if pw 6= pw′, mark the record interrupted and reply to S with ”wrong guess“.

Upon receiving (NewKey, sid,Pi,K) from S where |K| = λ:

If there is a record of the form (Pi,P1−i, pw) that is not marked completed, then:

• If this record is compromised, or either Pi or P1−i is corrupted, then output (sid,K) to
Pi.

• If this record is fresh, and there is a record (P1−i,Pi, pw′) with pw′ = pw, and a key
K′ was sent to P1−i, and (P1−i,Pi, pw) was fresh at that time, then output (sid,K′)
to Pi.

• In any other case, pick a new random key K′ of length λ and send (sid,K′) to Pi.
Either way, mark the record (Pi,P1−i, pw) as completed.

Upon receiving (NewTranscript, sid,Pi, tr) from S:

If there is a record of the form (Pi,P1−i, pw) that is marked completed, then:

• If (1) there is a record (P1−i,Pi, pw′) for which a tuple (transcript, sid, tr′′) was sent to
P1−i, (2) either (Pi,P1−i, pw) or (P1−i,Pi, pw′) was ever compromised or interrupted,
and (3) tr = tr′′, ignore this query.

• In any other case, send (transcript, sid, tr) to Pi.

Figure 7: Functionality FrpwKE for symmetric PAKE from [GMR06]. It was obtained by adapting the original
symmetric PAKE functionality from [CHK+05] to the possiblity of letting the parties obtain a transcript of
the protocol.



24The functionality FapwKE is parameterized with a security parameter λ. It interacts with an adversary S, a
client PC and a server PS via the following queries:
Password Registration

• On (StorePwdFile, sid,PC , pw) from PS , if this is the first StorePwdFile message, record
(file,PC ,PS , pw) and mark it uncompromised.

Stealing Password Data

• On (StealPwdFile, sid) from S, if there is no record (file,PC ,PS , pw), return “no password file”

to S. Otherwise, if the record is marked uncompromised, mark it compromised; regardless,

� If there is a record (offline, pw), send pw to S.

� Else, return “password file stolen” to S.

• On (OfflineTestPwd, sid, pw′) from S, do:

� If there is a record (file,PC ,PS , pw) marked compromised, do: if pw = pw′, return “correct
guess” to S; else, return “wrong guess”.

� Else, record (offline, pw′)

Password Authentication

• On (UsrSession, sid, ssid,PS , pw′) from PC , send (UsrSession, sid, ssid,PC ,PS) to S. Also, if this is
the first UsrSession message for ssid, record (ssid,PC ,PS , pw′) and mark it fresh.

• On (SrvSession, sid, ssid) from PS , ignore the query if there is no record (file,PC ,PS , pw). Else
send (SrvSession, sid, ssid,PC ,PS) to S and, if this is the first SrvSession message for ssid, record
(ssid,PS ,PC , pw) and mark it fresh.

Active Session Attacks

• On (TestPwd, sid, ssid,P, pw′) from S, if there is a record (ssid,P,P ′, pw) marked fresh, do: if
pw′ = pw, mark it compromised and return “correct guess” to S; else, mark it interrupted and
return “wrong guess” to S.

• On (Impersonate, sid, ssid) from S, if there is a record (ssid,PC ,PS , pw′) marked fresh, do: if there is
a record (file,PC ,PS , pw) marked compromised and pw′ = pw, mark (ssid,PC ,PS , pw′) compromised
and return “correct guess” to S; else, mark it interrupted and return “wrong guess” to S.

Key Generation and Authentication

• On (NewKey, sid, ssid,P,K) from S where |key| = λ, if there is a record (ssid,P,P ′, pw) not marked
completed, do:

� If the record is marked compromised, or either P or P ′ is corrupted, send (sid, ssid,K) to P.

� If the record is marked fresh, (sid, ssid,K′) was sent to P ′, and at that time there was a record
(ssid,P ′,P, pw′) marked fresh, send (sid, ssid,K′) to P.

� Else, pick K′′
$← {0, 1}λ and send (sid, ssid,K′′) to P.

Finally, mark (ssid,P,P ′, pw) completed.

• On (TestAbort, sid, ssid,P) from S, if there is a record (ssid,P,P ′, pw) not marked completed, do:

� If it is marked fresh and record (ssid,P ′,P, pw) exists, send “success” to S.

� Else, send “fail” to S and (abort, sid, ssid) to P, and mark (ssid,P,P ′, pw) completed.

Figure 8: Ideal functionality FapwKE for asymmetric PAKE from [GMR06], but phrased as in [JKX18] with

slight notational changes to avoid confusion between the adversary (S) and server (PS). Framed queries

can only be asked upon getting instructions from Z.



be equivalent to FaPAKE. For now, F connects dummy and real parties by relaying messages between
each real party and its dummy party. Lastly, we merge the real parties, the hybrid functionalities and
the real world adversary into a single ITM and call it the simulator S. The random tape of S is used
to provide the random tapes of all the ITMs that S comprises. The changes are depicted in Figure 1
and since none of them impact any outputs or messages, the current and previous game are perfectly
indistinguishable.

FROFrpwKE

PC PS

A

Z Z Z

F

PC PS

FROFrpwKE

A

S

Figure 9: Transition from Game game G0 (left) to Game game G1 (right), showing a setting where PS is
corrupted.

Game G2: F keeps records. We now let F maintain records. On receiving (StorePwdFile, sid,PC , pw
from PS , if this is the first StorePwdFile query, then F records (file,PC ,PS , pw). Upon receiving a
message (UsrSession, sid, ssid,PS , pw′) from PC and this is the first UsrSession message for ssid, F
records (ssid,PC ,PS , pw′). Similarly, we record SrvSession messages as done in FaPAKE.

Since the changes do not influence any inputs or outputs of F , game G2 and game G1 are perfectly
indistinguishable.

Game G3: adding interfaces to F . We now add all missing interfaces except NewKey to the code of
F , namely StealPwdFile, OfflineTestPwd, TestPwd, Impersonate and TestAbort exactly
as in FaPAKE. Since S so far does not make use of any of these interfaces, the current and last game
are perfectly indistinguishable.

Game G4: random key for interrupted sessions. We now change the simulation and let S add a
NewKey tag and party name to the output of parties. At the same time, we change F and partly
add the NewKey interface as follows:

On (NewKey, sid, ssid,P,K) from S where |key| = λ, if there is a record
(ssid,P,P ′, pw′) not marked completed, do:

• If the record is marked compromised, or either P or P ′ is corrupted, send
(sid, ssid,K) to P.

• If the record is marked interrupted, pick K′′
$← {0, 1}λ and send (sid, ssid,K′′)

to P.

• Else, send (sid, ssid,K) to P.

Finally, mark (ssid,P,P ′, pw′) completed.
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Note that this only changes outputs towards honest parties in case of records that are marked interrupted.
Since this will not happen in our current simulation (S does not make use of any interfaces that mark
records as interrupted), the current and previous game are perfectly indistinguishable.

Game G5: ask TestPwd query upon dictionary attack. We now change the simulation. If Pi is
honest and P1−i corrupted and P1−i provides an input r to FrpwKE, then S looks for an entry (pw||3, r)
in L. If there is such an entry, S submits (TestPwd, sid, ssid,Pi, pw) to F . If there is no such entry, S
submits (TestPwd, sid, ssid,Pi,⊥) to F17. Whenever S receives “correct guess”, he sets the password
of the simulated Pi to be pw.

Since S still uses the real passwords, overwriting them upon a “correct guess” will not change them.
Further, the output of Pi remains unchanged since, due to the changes, F keeps relaying K2 or K′2,
respectively, from the simulation. Note that even interrupted records do not obtain session keys
determined by F as stated in game G4, since the corruption status is more relevant in the NewKey
interface of F .

The changes are quite trivial since S still knows all real passwords. We will change this in the end of
the proof, using the current game as a preparation step.

Game G6: attacks against inner PAKE. If Z instructs S to send a (TestPwd, 〈sid, ssid〉,Pi, r) query
to a specific instance 〈sid, ssid〉 of FrpwKE, the simulation is changed as follows:

• (Impersonation attack:) If sid is an uncorrupted session, Pi is the client, Z already issued a
StealPwdFile query and S replied with a value file = (r, ·, ·), S now sends (Impersonate, sid, ssid)
to F . If the answer is “correct guess”, S continues the simulation of the client with r.

• (Dictionary attack on PAKE:) Else, if Z received r as response of some FRO query (pw||3), S
sends (TestPwd, sid, ssid,Pi, pw) to F . If the answer is “correct guess”, S continues the internal
simulation of Pi with pw.

In any case, if the answer is “wrong guess”, S sends (TestAbort, sid, ssid,Pi) to FaPAKE and forwards
the answer of his own Impersonate query as reply to Z’s TestPwd query.

The output of Pi is now ⊥ in case of “wrong guess”. Since in game G5 the outputs of honest parties
with non-matching passwords (in case of an impersonation attack) or an interrupted FrpwKE session (in
case of a dictionary attack against PAKE) were drawn uniformly random upon simulating FrpwKE and
FRO, the output of Pi was already ⊥ except in case of colliding FrpwKE outputs, which happens only
with negligible probability.

Game G7: man-in-the-middle against client. If Z injects an adversarially generated eZ as message
to the client in an honest session that is different from the corresponding message computed in the
internal simulation, S issues (TestPwd, ssid,PC ,⊥) and then (TestAbort, sid, ssid,PC) to FaPAKE.

In this game and considered case, PC will produce ⊥ as output due to the combination of TestPwd
and TestAbort queries, while in game G6 an adversarially generated message could have made PC
output something else. Namely, PC outputs K′2 6= ⊥ in game G6 only if eZ ⊕ k′pw parses as some sk′, h′

such that H(sk′) = h′. Since k′pw is drawn uniformly random and h′ is of length λ, the probability that

this happens is upper bounded by 1/2λ.

Game G8: man-in-the-middle against server. We change the simulation as follows:

• S issues a (TestAbort, sid, ssid,PC) query at the point where the simulated PC checks whether
h′sk 6= c′2. If S gets back “fail”, it aborts the simulation.

• If Z injects σZ as last message where Vfyvk(σZ , tr) = 1 then nothing is changed.

• If Z injects σZ as last message where Vfyvk(σZ , tr) = 0 then S first issues (TestPwd, sid, ssid,PS ,⊥)
and then (TestAbort, sid, ssid,PS).

• If Z does not inject the last message, S issues (TestAbort, sid, ssid,PS) when the simulated PS
runs Vfy.

17We assume this query to result in F marking the corresponding record as interrupted.
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We now analyze indistinguishability from game G7. If Z does not inject any messages, in the “success”
case outputs are not modified. In the “fail” case, where client and server hold different passwords, it
holds that kpw 6= k′pw which ensures sk 6= sk′ and h′sk 6= h′. This means that PC and PS computed
K2 = K′2 = ⊥ already in game G7

18.

In case of an adversarially generated σZ with Vfyvk(σ, tr) = 0, the changes in the current game will let
PS output ⊥. However, PS already outputs K2 = ⊥ in game G7 in case of a non-verifying signature.

Game G9: align session keys. We change F and add the second bullet to the NewKey query: If the
record is marked fresh, (sid, ssid,K′) was sent to P ′, and at that time there was a record (ssid,P ′,P, pw′)
marked fresh, send (sid, ssid,K′) to P.

Indistinguishability from the previous game follows by correctness of the protocol: for an honest session,
users holding the same passwords will input the same value into FrpwKE and thus K2 = K′2.

Game G10: random session key for honest session. We now change F and add the last bullet to the
NewKey query: Else, pick K′′

$← {0, 1}λ and send (sid, ssid,K′′) to Pi. Note that this instruction will
now comprise the change made in game G4 concerning interrupted records19.

For analyzing indistinguishability, we first observe that opposed to game G9 F now hands out random
session keys for fresh records of honest sessions where the NewKey query is not due. Split up even
more, F now hands out random session keys for a fresh record (ssid,Pi,P1−i, pw) of an honest session
where

• no key was sent to P1−i yet

• a key was sent to P1−i but at that time there was no (ssid,P1−i,Pi, pw) record that was fresh

In the first case, note that the key output by Pi in game G9 was randomly chosen upon simulation
of FrpwKE and thus the ouput of Pi is equally distributed. In the second case, (1) either there was
a record (ssid,P1−i,Pi, pw) but it was compromised or interrupted, which happens in our simulation
in honest sessions only if Z injects eZ or a non-verifying σZ (cf. game G8). Since the simulation is
aborted upon an adversarially generated eZ the second case will never happen for Pi being the client.
If on the other hand Pi is the server, then in game G9 Pi will output K′2 that he obtained from FrpwKE

which is uniformly random just as in game G10. The only other possibility for the second case is (2)
mismatching passwords (i.e., there is a fresh record (ssid,P1−i,Pi, pw′) with pw 6= pw′), in which case
indistinguishability holds since both parties obtained freshly chosen random keys from FrpwKE in the
last game, just like in the current game. Thus, both games are indistinguishable.

We now observe that the NewKey interface handles all cases before the last instruction added in
game G3 can trigger. We thus can remove it without any effect, resulting in a NewKey interface as
in FaPAKE. Note that now F already resembles FaPAKE, the only difference being that it still relays the
passwords of the parties and informs the simulator about a StorePwdFile input. We will show in
the remaining games how to simulate without these.

Game G11: store file when needed. In this game we let S refrain from executing the file storage part of
the server simulation upon receiving a StorePwdFile query from F . Instead, S only remembers pw
from that query and executes the file storage code for the server when receiving either a StealPwdFile
or SrvSession query.

Since this game only constitutes a change of the order of execution in the simulated server’s code only
inbetween two outputs and without affecting them, game G11 and game G10 are indistinguishable.

Game G12: simulate honest server without password. For an honest session, we modify F to not
relay (StorePwdFile, sid,PC , pw) to S anymore. This means we have to change simulation of an
honest server to use a simulated password, which will in case of a successful off-line dictionary attack
be overwritten with the real password. In this case, S can hide usage of the “wrong” password in

18We assume that the signature scheme has unique signing keys.
19We chose to decouple generating random session keys for interrupted sessions since these changes mainly concern dictionary

attacks, which we analyzed already in games G5 and G6.
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the beginning of the simulation by programming the random oracle accordingly. The changes in the
simulation are as follows:

• Instead of submitting a password to FRO, S directly chooses rS ← {0, 1}λ, kpwS ← {0, 1}
2λ.

• Upon receiving (sid, pw) from Z (intended to reach the simulated FRO), S submits (OfflineTestPwd, pw)
to F . Upon receiving “correct guess”, S stores (pw||3, rS), (pw||2, kpwS ) in L.

• Upon receiving (StealPwdFile, sid) from Z, S relays the query to F .

� Upon “no password file” from F , S answers ⊥ to Z.

� Upon receiving pw from F , if S already created a password file in the simulation of the honest
server using rS , kpwS , S now stores (pw||3, rS), (pw||2, kpwS ) in L. If S did not already create
a password file, S starts simulation of the server with pwS := pw.

� Upon “password file stolen” from F , no further changes are made.

We first analyze indistinguishability if no server compromise happens. In this case, S simulates the
server now with randomly chosen rS , kpwS , opposed to obtaining them from FRO using the real password
in game G11. However, this does not affect the output of the parties since F determines them.
Regarding the transcript, e is equally distributed in both games since K1 is uniformly random, and σ
does not depend on the password which is used in the simulation (it only depends on the passwords
stored in F).

In case of a server compromise, the output of the server is not affected since the NewKey instruction
neither depends on whether PS is marked compromised or not, nor on the outcomes of the Of-
flineTestPwd queries. This means that, as argued before, F will determine the outputs depending
on the passwords provided to F upon StorePwdFile and UsrSession queries. Regarding the tran-
script, e is again equally distributed in both games due to K1 being chosen uniformly random from
{0, 1}2λ. The only difference is thus simulation of FRO, but this is only a matter of timing when the
entries pw||3 and pw||2 are added to L. However, since they are in any case stored before answering
queries (sid, pw||3) and (sid, pw||2) of Z, we conclude that the simulation of FRO is indistinguishable in
both games.

Game G13: simulate honest client without password. Upon receiving (UsrSession, sid, ssid,PS , pw)
from PC via F , if both parties are honest, instead of simulating the first FRO query of the client, S
directly chooses r′S ← {0, 1}λ and proceeds the simulation of the client with r′S . Since S does not make
use of pw anymore, we can modify F to send only (UsrSession, sid, ssid,PS) to S.

With the same argument that was used for the server, the outputs of the honest client in game G13 and
game G12 are equally distributed since they do not depend on the password used in the simulation.
Regarding the transcript, creation of the signature just depends on whether client and server use
the same password (and whether their transcripts from FrpwKE were the same). Since S will issue a
TestAbort query (cf. game G8), it will obtain this information from F and thus the distribution of
σS is equal to that in game G12.

Game G14: simulate corrupted session without password. We change the simulation of the honest
Pi when P1−i is corrupted. Namely, we omit the first usage of the random oracle regarding all inputs
depending on the password. After receiving r from the environment as input to FrpwKE and issueing
a (TestPwd, sid, ssid,Pi, pw) query (cf. game G5), if the answer is ”correct guess”, we catch up on
all random oracle queries using pw. If the answer is ”wrong guess” (in which case it might be that

pw = ⊥), we draw rS
$← {0, 1}λ, kpwS

$← {0, 1}2λ with rS 6= r and proceed the simulation using these
values. Additionally, since S does not use the passwords relayed by F anymore, we delete the password
from the UsrSession query that F sends to S, and modify F to not send any message to S anymore
upon receiving a StorePwdFile query.

Regarding indistinguishability of games G14 and G13, we first consider the ”correct guess” case. In this
case, simulation of the honest party uses the same password, and the only difference is when S issues
FRO queries on behalf of the honest party. However, since pw was found in FRO, the corresponding
entries already exist in L and thus Z cannot distinguish both games by distinguishing the simulation
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of FRO. In case of ”wrong guess”, the simulation of Pi is proceeded using random rS , kpwS as before,
but with overwhelming probability there are no entries in L pointing to these values.

Regarding outputs, note that the output key K computed in the simulation will reach Pi. However,
the distribution of this key is exactly as in game G13, since it only depends on whether the inputs to
FrpwKE will match or not, which is the same in both games.

It is now left to argue indistinguishability of the transcript using randomly drawn rS , kpwS . Note that
indistinguishability even has to hold when Z queries FRO with the password that he used as input to
Pi, thus learning the true values of r, kpw, i.e., the values that were used to generate the transcript
in game G13. However, note that even knowing these values, Z can never learn K, namely what the
honest party obtains as output from FrpwKE. Since this value is uniformly random in both games due
to interrupted records in FrpwKE, the transcripts are equally distributed.

By collecting the changes among the games, it is clear that in game G14, F = FaPAKE. Since all game
hops are only noticeable by Z with negligible probability, the theorem follows. For clarity, the code of
the simulator is collected in Figures 10 and 11.

D Proof of Theorem 4.2

Proof. We adopt all notation from the proof of Theorem 4.1 and merely state how the latter has to be
adjusted to prove Theorem 4.2.

Games G0-G4 are adopted unchanged.

Game G4 is changed in terms of the NewKey interface that is partly added:

On (NewKey, sid, ssid,P,K) from S where |key| = λ, if there is a record
(ssid,P,P ′, pw′) not marked completed, do:

• If the record is compromised, or either P or P ′ is corrupted, or K = ⊥, then send
(sid, ssid,K) to P.

• If the record is interrupted, send (ssid, ssid,⊥) to P.

• Else, send (sid, ssid,K) to P.

Finally, mark (ssid,P,P ′, pw′) completed.

Note that this consitutes no change regarding outputs towards Z since F does not mark records interrupted
so far, and will thus always relay the output keys from the simulation.

Game G5 is adopted.

Game G6 is only slightly changed: S does not have to ask TestAbort queries in case of obtaining “wrong
guess”, since F outputs ⊥ in case of interrupted records right away. Indistinguishability holds with the same
arguments as before.

Game G7 is changed in the same way: S only asks TestPwd and no TestAbort. Indistinguishability
arguments are the same as before.

Game G8a : abort upon signature forgery. We change the simulation. Consider an honest session where
the server might be compromised, Z does not send (sid, pw||2) to FRO but injects an adversarially generated
σZ as last message. In this case, we let S abort the simulation.
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The simulator S is parametrized with a security parameter λ. It interacts with the environment Z and
a client and a server party P ∈ {PC ,PS} as described below. S internally simulates FRO as depicted in
Figure 5. S forwards all instructions from Z to A and reports all output of A towards Z. Instructions
of corrupting a player are only obeyed if they are received before the protocol started, i.e., before S
received any UsrSession, SrvSession or StorePwdFile query from FaPAKE.

Messages from FaPAKE

• Upon receiving a query (UsrSession, sid,PC) from FaPAKE, S initializes an ITM PC in the
internal simulation running the code of the client in the Ω-method (cf. game G1), but directly

starting with r′S ← {0, 1}λ, k′pwS

$← {0, 1}2λ in case both parties are honest (cf. game G13). If
PS is corrupted, then the simulation of PC is not started (cf. game G14).

• Upon receiving the first of the queries {(SrvSession, sid, ssid), (StealPwdFile, sid)}, S
initializes an ITM PS in the internal simulation running the code of the server in the Ω-method
(cf. game G11), but directly starting with rS

$← {0, 1}λ, kpwS
$← {0, 1}2λ in case both parties

are honest (cf. game G12). If PC is corrupted, then the simulation of PS is not started (cf.
game G14).

Actions triggered by internal simulation

• If an internally simulated party Pi produces an output (sid,K), S sends (NewKey, sid,Pi,K)
to FaPAKE. (Cf. game G4.)

• When the internally simulated PC checks whether h′sk 6= c′2, S issues (TestAbort, sid, ssid,PC)
towards FaPAKE. If S receives back “fail”, it aborts the simulation. (Cf. game G8.)

• When the internally simulated PS runs Vfy and Z did not inject the last message, S sends
(TestAbort, sid, ssid,PS) to FaPAKE. (Cf. game G8.)

Messages from Z

• Upon receiving r from Z intended as input of a corrupted P1−i, S looks for an entry
(pw||3) in L. (Cf. game G5.)

� If there is such an entry, S submits (TestPwd, sid, ssid,Pi, pw) to FaPAKE. If S receives
back “correct guess”, he catches up on the first two usages of FRO in the simulation of the
honest Pi using pw. If S receives back “wrong guess”, he proceeds simulation of the honest
Pi using rS

$← {0, 1}λ, kpwS
$← {0, 1}2λ. (Cf. games G5 and G14.)

� If there is no such entry, S submits (TestPwd, sid, ssid,Pi,⊥) to FaPAKE. Also in this

case, S proceeds the simulation of the honest Pi using rS
$← {0, 1}λ, kpwS

$← {0, 1}2λ. (Cf.
games G5 and G14.)

Figure 10: The simulator S for the proof of Theorem 4.1.



Messages from Z

• Upon receiving (TestPwd, 〈sid, ssid〉,Pi, r) from Z, if sid is an uncorrupted session, Pi is the
client, Z already issued a StealPwdFile query and S replied with a value file = (r, ·, ·), S now
sends (Impersonate, sid, ssid) to F . If the answer is “correct guess”, S continues the internal
simulation of the client with r. Else, if Z received r as response of some FRO query (pw||3), S
sends (TestPwd, sid, ssid,Pi, pw) to F . If the answer is “correct guess”, S continues the internal
simulation of Pi with pw. In any case, S forwards the answer of his own Impersonate query to
Z as reply to Z’s TestPwd query. (Cf. game G6.)

• Upon receiving eZ from Z where eZ is different from the interally simulated value e, S sends
(TestPwd, ssid,PC ,⊥) to FaPAKE. (Cf. game G7.)

• Upon receiving σZ from Z where Vfyvk(σZ , tr) = 0, S sends (TestPwd, sid, ssid,PS ,⊥) and
afterwards (TestAbort, sid, ssid,PS). (Cf. game G8.)

• Upon receiving (sid, pw) from Z, S submits (OfflineTestPwd, pw) to FaPAKE. Upon receiv-
ing “correct guess”, S stores (pw||3, rS), (pw||2, kpwS ) in L. (Cf. game G12.)

• Upon receiving (StealPwdFile, sid) from Z, S relays the query to FaPAKE.

� In case of receiving back “no password file” from FaPAKE, S sends ⊥ to Z.

� In case of receiving back pw from FaPAKE, if S already created a password file in the simulation
of the honest server using rS , kpwS , S now stores (pw||3, rS), (pw||2, kpwS ) in L.

Figure 11: The simulator S for the proof of Theorem 4.1, cont’d.

The current and last game are indistinguishable due to the EUF-CMA-security of the signature scheme.

Game G8b
: man-in-the-middle against server. Fortunately, this game gets much simpler with FaPAKE

with strong explicit authentication. We change the simulation as follows:

• If Z injects σZ as last message where Vfyvk(σZ , tr) = 0 then S issues (TestPwd, sid, ssid,PS ,⊥)

In case of an adversarially generated σZ with Vfyvk(σ, tr) = 0, the changes in the current game will let PS
output ⊥. However, PS already outputs K2 = ⊥ in game G13 in case of a non-verifying signature.

Game G8c : completing explicit authentication in F . We add the third and fourth bullet to the
NewKey interface - comprising the changes made in game G4.
The fourth bullet just let F relay ⊥ from S, which already was the case in the last game. For the case of
F now deciding to output ⊥ for fresh records with mismatching passwords, we only have to consider honest
sessions without man-in-the-middle attacks by Z, since in case of these attacks the output of the attacked
party already was ⊥ in the previous game. For fresh records, F now outputs ⊥ in case there is a fresh record
of the other party but with a mismatching password. However, in this case parties outputted ⊥ already
in the last game with overwhelming probability in λ, since FrpwKE hands out values that are different with
probability 1/2λ.

Game G9 is adopted unchanged.

Game G10: random session key for honest session. The changes are adopted. However, note that
the analysis of indistinguishability becomes easier since the only case in which this code of F is executed is
when the other party did not receive a key yet, but there are fresh records with matching passwords. The
randomness of the outputs of FrpwKE is enough to argue perfect indistinguishability.

Game G11 remains unchanged.

31



Game G12: simulate honest server without password. The game remains unchanged except that we
now need to also change a part of code of S that we added in game G8a . There, S made use of his knowledge
of the true password of the server by comparing it with random oracle queries issued by Z. We thus replace
the change made in game G8a by the following instruction:

Consider an honest session where the server might be compromised,
S never received “correct guess” from OfflineTestPwd and Z injects an adversarially
generated σZ as last message. In this case, we let S abort the simulation.

Since S only uses OfflineTestPwd upon random oracle inputs of Z, the replacement is unnoticeable: S
obtains “correct guess” if and only if Z submits the server’s password to FRO.
The rest of the changes and argumentation of indistinguishability can be adopted.

Game G13: simulate honest client without password. The changes in the simulation are adopted.
The argument of indistinguishability has to be slightly changed: now, S will be automatically informed by
F in case of authentication failure at the client’s side, which is enough to let him simulate a signature that
verifies or not verifies according to the authentication status.

Game G14 is adopted. This concludes the proof of the theorem.
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