
DLSCA: a Tool for Deep Learning Side Channel Analysis

Martin Brisfors, Sebastian Forsmark
EECS, Royal Institute of Technology (KTH)

Stockholm, Sweden
Email: brisfors@kth.se, sforsm@kth.se

Abstract—Research on Side Channel Analysis (SCA) is very
active and progressing at a fast pace. The idea of using
Machine Learning (ML), and more recently Deep Learning
(DL), to help SCA data is explored extensively. One issue facing
security researchers interested in contributing to this cause is
the difficulties getting started. While replicating previous works
with open source code is not difficult, taking the next steps from
there can be daunting. The presented open-source DLSCA tool
is created to aid with research on DL-based SCA and to help
newcomers to DL to get started. It is hoped to contribute to
investigating the strengths and limitations of ML-based SCA.

Keywords-Machine Learning, Side Channel Attack, Software
Tool

I. INTRODUCTION

The recent idea [1] of applying Deep Learning (DL)
techniques to Side Channel Analysis (SCA) is very currently
actively researched. The barrier of entry for deep learning
is one of the hurdles preventing more people familiar with
side channel analysis from researching it.

In an attempt to make the subject more approachable we
created the presented tool for Deep Learning Side Channel
Analysis (DLSCA). It is a collection of scripts and tools
bound together by a graphical user interface (GUI). This is
a layer of abstraction further away from the fundamentals of
deep learning that makes it significantly easier to get started.
Its purpose is to be a stepping stone in learning more. The
open source nature of the code means that more advanced
functionality can easily be implemented.

In this paper we will be using DLSCA to show the process
of training and testing a Multiple Layer Perceptron (MLP)
model trained on Electromagnetic (EM) side channel traces.
The results of this experiment are presented in section IV.
By showing the whole process we believe its ease of use is
made apparent.

The effects of introducing an open source tool, like
DLSCA, for getting started with applying DL to SCA
could be beneficial to the scientific community. It helps
demystify the subject to new researchers. It also makes it
easier to convey parameters and results for future research.
These are factors that could contribute to advancing future
SCA research at an accelerated rate. That would contribute
to finding the strengths and weaknesses of applying DL
techniques to SCA which could help advance both fields.

II. SIDE CHANNEL ANALYSIS & DEEP LEARNING

A brief introduction to the history and theory of SCA and
DL will be provided here. For further reading see [2] and
[3].

A. Side Channel Analysis

The idea of using meta information about a running
algorithm to learn more about the internal workings of the
algorithm in question was pioneered by Paul Kocher. He first
thought of it in the context of timing how long it took to
perform private key operations as part of the Diffie Hellman
key exchange [4]. By using time measurements as an infor-
mation leakage point, obfuscated pieces of information could
be inferred. As the field developed there have been several
new avenues of information leakage such as electromagnetic
radiation [5] and the power consumption [6] of the hardware.

B. Machine Learning

Machine Learning (ML) refers to the use of algorithms
that take input data and optimize parameters in order to
produce desirable responses to other input data. The funda-
mental ideas of ML date back to the 50s when computer sci-
entists like Alan Turing theorized about artificial intelligence
and Arthur Samuel coined the term Machine Learning [7].
However, more practical and modern applications of ML
date back to the 90s [8].

DL as a subfield of ML typically refers to the use of
Artificial Neural Nets (ANNs). These can among other
things be used to classify data samples based on their
features. Using a one-hot encoding for categorically correct
answers means the networks output can be normalized and
interpreted as a prediction array over all possible categories.
For every category ci ∈ C we determine a truth vector t
such that

t =

{
ti = 1 ⇐⇒ ci is the true class

ti = 0 otherwise

A rudimentary way of structuring an ANN is by creating
a Multiple Layer Perceptron (MLP). As the name implies,
an MLP network is divided into multiple discrete layers -
the input layer, hidden layers, and the output layer. Each
layer contains one more more so called neurons, which
have connections to neurons in previous and next layers of



the network. For each such connection the network has an
assigned weight variable. The value of each neuron (ni) is
given as a function of the sum of the value of all the previous
layer’s neurons (ni−1) it is connected to, each multiplied by
their respective weight (w) variable.

ni,j = f(
∑
j

ni−1,j ∗ wj + bi)

An optional bias term (b) is added to this sum before
applying the so called activation function (f ). Activation
functions serve an important role in creating non-linearity
in the multivariable function represented by the MLP net-
work. Commonly used activation functions include Rectified
Linear Unit (ReLU), sigmoid (σ) and softmax.

The way an MLP is trained usually involves optimizing
the value of the weight and bias variables to fit the expected
output of the network to any given input. Data used for
training is divided into minibatches. For each minibatch
the network calculates its output to the given input. The
difference between the network output and the expected
output, called a label, is used to quantify how inaccurate
the model currently is. This is done via a so called loss
function. Examples of loss functions are Mean Square Error
(MSE) and Categorical Cross Entropy Loss [9].

The loss function is typically minimized through the
use of a type of optimization algorithm called gradient
descent. There are many adaptations of the gradient descent
algorithm, such as RMSProp and ADAM [10], but the
core idea remains the same. In order to minimize the loss
function, which is a multivariable function, we consider the
surface it spans. By calculating the gradient of the function
using the chain rule we can find which changes in internal
variables gets us closer to a minimum. These adjustments
are called back propagation.

III. DEVELOPMENT

DLSCA was inspired by and largely made possible by the
landmark contributions of Benadjila et al. at ANSSI who in
their paper [11] explored the use of DL-based SCA. Parts of
DLSCA are adaptations of the public domain code published
by ANSSI.

All code for DLSCA is written in python 3.6 and the ML
scripts were developed for tensorflow 1.12.0 and keras 2.2.4.
GUI was made using Qt5, through the pyqt library version
5.9.2. Testing with the most recent versions of all these
packages has shown that the software runs as expected, but
several warning messages about deprecated function names
do appear. The reason tensorflow 2.0 was not used is because
it had yet to be released when work started.

DLSCA runs its modules by creating subprocesses that
calls on external scripts. It was designed that way in order
to make it more modular. It was a natural consequence of
trying to collect and link together disparate scripts into one

Figure 1. A randomly selected EM trace. Only the first 200 time points
were sampled for this experiment.

hub. This modularity not only makes it easier to introduce
custom scripts; it also makes the software more resilient to
crashes. If one of the subprocess scripts crashes it does not
impact the main program - it shows the error message from
the crash in the terminal but DLSCA continues running.
Compartmentalizing scripts this way creates less interdepen-
dence. A benefit of this is that it makes it easier to change
scripts without breaking other parts of the software.

The scripts included with DLSCA were created with
ChipWhisperer in mind. Power traces captured using Chip-
Whisperer can interface with all the included scripts.

IV. FEATURES AND RESULTS

Rather than listing the features of DLSCA, we will
demo the software by presenting the process and results
of running an experiment. We collected EM side channel
traces using ChipWhisperer and a simple EM probe. The
experiment is aimed to answer the question ”can an MLP
model be trained on EM traces accurately using the same
hyperparameters as a successful model for power analysis?”.
This experiment pertains to the use of an ATxmega128D4
microcontroller running AES-128 encryption in Electronic
Code Book (ECB) mode. The process and the answer will
be presented here. The scripts included with DLSCA are
currently written with an assumption that a similar system
is being tested, but most of the code was written with
modification in mind for other applications.

After capturing the EM traces we can easily plot a
randomly selected trace using the ”plot a trace” utility script.
A sample EM trace is shown in Fig. 1.

First, labels for the training data had to be created. Run-
ning the unzipper utility tool on our ChipWhisperer traces
automatically labels the data and can combine multiple
capture sessions’ data into one. The traces and labels are
automatically stored in /traces/training. In Fig. 2, 3 and 4
you can see how this was done.

Next we created a training script for an MLP model
using hyperparameters that have proven successful in past



Figure 2. The unzipper is run by selecting either .npy files or .zip or .tar
files containing them

Figure 3. The unzipper scripts prompts the user for purpose and name for
traces

Figure 4. The unzipper ends with a summary of what it did

Figure 5. The following hyperparameters were chosen for training the
model using a dataset of 765k traces and a validation split 0.3. These
parameters have proven successful for training with power traces in past
experiments.

experiments, as seen in Fig. 5. This script can be run from
the base directory as is. In this case it was instead sent to a
computational node on a supercomputer.

The training yielded a history file which we plotted using
the history plotting script, see Fig. 6. Since training seems
to be successful we verified the input shape and model
summary using the corresponding utility scripts, as seen in
Fig. 7. Then we unzipped the testing traces, which were put
in the attack folder automatically, using the unzipper script
again.

Since the model seems to be correct, we tested it using
the average rank test with the parameters seen in Fig. 8.
When the test finishes running it produces a plot of the
performance. This plot and the data used to generate it are
both saved in the results folder automatically. The plot from
the experiment is shown in Fig. 9

The average rank test is included with DLSCA. The model
makes a prediction which yields a probability array. This
array is sorted from what the model predicts is the most
likely answer to the least likely answer. We then find at what
index in this sorted array the correct answer exists. This is
called the rank of the prediction. A rank of 0 indicates the
correct answer was predicted. The test keeps a cumulative
sum of the logarithm of subsequent predictions and uses this
for the subsequent rank calculation. This method of testing
is highly dependent on the order in which data is processed.
Due to sensitivity to the order in which testing data is seen,
this test runs for a number of iterations set in the DLSCA test
parameters. The mean of the results is calculated and plotted.
If more sophisticated statistical analysis is warranted, the



Figure 6. A plot of the history is shown before being automatically saved
in the /history folder

Figure 7. Results of running scripts for input shape and model summary

raw data from the tests, before the mean is calculated, is
saved automatically by the test.

The other two tests, which were not performed in this
case, work as follows.

The whole key test runs an average rank for every keybyte
position. In order to recover the entire encryption key we
must converge to a rank of 0 for each keybyte position.
This is done by searching for a sequence of multiple 0s in
a row in the rank progression. Since all keybytes need to be
at rank 0, the whole key cannot be said to be recovered until
the poorest performing keybyte has been recovered. Thus,
whichever keybyte position takes the longest to converge to
rank 0 determines the amount of traces needed to recover
the whole key. The reason results from this test were not
presented for the EM experiment is because we captured
only the part of each trace corresponding to the first keybyte

Figure 8. Settings used for running the average rank test

0 10 20 30 40 50
number of traces

0

10

20

30

40

50

60

ra
nk

Performance of EM_example

Figure 9. Results of average rank test using the model to attack the same
device as trained on with new traces.

calculations.
The first trace success test works best with very large

amount of testing data, preferably with randomized encryp-
tion key to ensure the results are key independent. The
reason these results are not presented is that we did not
capture enough random key EM traces to warrant the test.
The test itself has the model make predictions on all the
test data. It then checks if the correct key was predicted.
The success rate is calculated as a fraction of how often
something was correctly predicted divided by how often it
should have been predicted.

As for what the results of the experiment show. As we
can see in Fig. 6 we have yet to hit a plateau in the history
plot. It is typical for these history plots to taper off. We can



also see in Fig. 9 that the performance of the model is not
very good. Yet it still does converge to rank 0 eventually.
Our conclusion from this very limited test would be that it is
possible that due to the noisy and inexact nature of capturing
traces with an EM probe the way we did it is more difficult
to learn from the traces. While this proves that it is possible
to train a functional model for EM traces using the same
hyperparameters as a model for power traces, it does not
seem to yield particularly good results.

V. RELATED WORK

In [11] Benadjila et al. present their findings on the
strengths and weaknesses of MLP networks and Convolu-
tional Neural Nets (CNNs). The in depth study of the effects
of hyperparametrization and the release of their source code
to the public makes their research an ideal starting point for
newcomers. Studying their code and their results is a great
way to learn more.

The ChipWhisperer project [12] is an open source project
with both hardware and software to help perform SCA on
a multitude of different devices. The use of ChipWhisperer
has become very popular due to its capability to reliably
replicate results. It offers many advantages over traditional
oscilloscope measurements such as guaranteeing synchro-
nization of traces. The popularity of ChipWhisperer helps
standardize parts of SCA making it easier to share results.

Introducing new hardware targets for ChipWhisperer is
another great way to contribute to making SCA studies
more accessible. Once recent such project comes once again
from Ryad Benadjila. In [13] Benadjila et al. detail the
specifications of their new ChipWhisperer target LEIA. It
can be used for capturing side channel data from for instance
USIM cards.

In their presentation at blackhat 2018 [1] Perin et al.
inspired many researchers with their findings about DL-
based SCA. Their results showed the potential of DL since
they were able to recover the key from a masked AES
implementation.

Finally, in [14] Huanyu et al. talk about the effects of
board diversity in DL-based SCA. The surprising ability to
generalize across different Printed Circuit Board layout is
especially noteworthy. Yet the difficulties presented by board
diversity, such as the need for much more generalization in
models, makes it difficult to train good models unless very
similar hardware is used for training. [15] and [16] by the
same authors go more in depth about the subject.

VI. CONCLUSION

DLSCA is an easy to use tool for getting started with
ML based SCA. Its open source nature makes it useful for
those interested in furthering current research. In its current
state it has enough functionality to explore new questions
and yield results in a presentable format.

Using DLSCA we did some very rudimentary testing of
EM side channel data using an MLP neural net. The results
show that it is possible to train a network to recover a single
keybyte from EM traces using DL. This seems to indicate
it is possible to recover the entire key if multiple models
are used in parallel or if the training strategy is altered.
However, the results also showed that hyperparameters that
were good for training using power traces captured from the
same device are likely to not be as good for EM traces.

The software can be downloaded from
github.com/brisfors/DLSCA

A. Acknowledgements

We would like to express our deep gratitude to Ryad Be-
nadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and
Cécile Dumas from ANSSI for their significant contributions
to the field of applying DL to SCA and particularily for
making their findings and their code publicly available.

This work was supported in part by the research grants
2018-04482 from the Swedish Research Council and 2018-
03964 from VINNOVA.

REFERENCES

[1] G. Perin, B. Ege, and J. van Woudenberg, “Lowering the
bar: Deep learning for side-channel analysis (white paper),”
August 2018, blackHat’2018.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
MIT Press, 2016, http://www.deeplearningbook.org.

[3] Swarup Bhunia Ph.D. and Mark Tehranipoor Ph.D., Hard-
ware Security: A Hands-on Learning Approach. Morgan
Kaufmann, 2018.

[4] P. C. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Proc. of the 16th
Annual Int. Cryptology Conf. on Advances in Cryptology,
1996, pp. 104–113.

[5] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi,
“The em side—channel(s),” in InCryptographic Hardware
and Embedded Systems -CHES, 2003, pp. 29–45.

[6] Paul Kocher, Joshua Jaffe, and Benjamin Jun, “Differential
power analysis.” Springer-Verlag, 1999, pp. 388–397.

[7] A. L. Samuel, “Some studies in machine learning using the
game of checkers,” vol. 3, no. 3, pp. 210–229, July 1959-07.

[8] Mor-Yosef S., Samueloff A., Modan B., Navot D., and
Schenker JG., “Ranking the risk factors for cesarean: logistic
regression analysis of a nationwide study.” Obstetrics &
Gynecology, 1990.

[9] R. Gómez. (2019, April) Understanding categorical
cross-entropy loss, binary cross-entropy loss, softmax
loss, logistic loss, focal loss and all those confusing
names. [Online]. Available: https://gombru.github.io/2018/
05/23/cross entropy loss/



[10] De, Soham, Mukherjee, Anirbit, and Ullah, Enayat, “Conver-
gence guarantees for RMSProp and ADAM in non-convex
optimization and an empirical comparison to Nesterov accel-
eration,” arXiv:1807.06766 [cs, math, stat], Jul. 2018, arXiv:
1807.06766.

[11] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas,
“Study of deep learning techniques for side-channel analysis
and introduction to ASCAD database,” IACR Cryptology
ePrint Archive, p. 45, 2018.

[12] NewAE Technology Inc. (2019, April) ChipWhisperer R©.
[Online]. Available: https://newae.com/tools/chipwhisperer/

[13] R. Benadjila, M. Renard, D. Elbaze, and P. Trébuchet, “LEIA:
the Lab Embedded ISO7816 Analyzer A Custom Smartcard
Reader for the ChipWhisperer,” SSTIC2019, p. 30, 2019.

[14] H. Wang, M. Brisfors, S. Forsmark, and E. Dubrova, “How
diversity affects deep-learning side-channel attacks,” Cryptol-
ogy ePrint Archive, Report 2019/664, 2019, https://eprint.iacr.
org/2019/664.

[15] M. Brisfors and S. Forsmark, “Deep-learning side-channel
attacks on aes,” p. 24, 2019.

[16] H. Wang, “Side-channel analysis of aes based on deep learn-
ing,” Master’s thesis, KTH, School of Electrical Engineering
and Computer Science (EECS), 2019.


