
FRACTAL:
Post-Quantum and Transparent Recursive Proofs

from Holography

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Dev Ojha
dojha@berkeley.edu

UC Berkeley

Nicholas Spooner
nick.spooner@berkeley.edu

UC Berkeley

October 25, 2019

Abstract

We present a new methodology to efficiently realize recursive composition of succinct non-interactive
arguments of knowledge (SNARKs). Prior to this work, the only known methodology relied on pairing-
based SNARKs instantiated on cycles of pairing-friendly elliptic curves, an expensive algebraic object.
Our methodology does not rely on any special algebraic objects and, moreover, achieves new desirable
properties: it is post-quantum and it is transparent (the setup is public coin).

We exploit the fact that recursive composition is simpler for SNARKs with preprocessing, and the
core of our work is obtaining a preprocessing zkSNARK for rank-1 constraint satisfiability (R1CS) that is
post-quantum and transparent. We obtain this latter by establishing a connection between holography and
preprocessing in the random oracle model, and then constructing a holographic proof for R1CS.

We experimentally validate our methodology, demonstrating feasibility in practice.
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1 Introduction

Succinct non-interactive arguments (SNARGs) are cryptographic proofs for non-deterministic languages
that are small and easy to verify. In the last few years, researchers from across multiple communities have
investigated many aspects of SNARGs, including constructions under different cryptographic assumptions,
improvements in asymptotic efficiency, concrete performance of implementations, and real-world applications.
The focus of this paper is recursive composition, a notion that we motivate next.

Recursive composition. The time to validate a SNARG can be exponentially faster than the time to run the
non-deterministic computation that it attests to, a property known as succinct verification. This exponential
speedup raises an interesting prospect: could one produce a SNARG about a computation that involves
validating prior SNARGs? Thanks to succinct verification, the time to run this (non-deterministic) computa-
tion would be essentially independent of the time of the prior computations. This recursive composition of
SNARGs enables incrementally verifiable computation [Val08] and proof-carrying data [CT10; BCCT13].
A critical technicality here is that, for recursive composition to work, the SNARG must be an argument of
knowledge, i.e., a SNARK. This is because the security of a SNARG holds only against efficient adversaries,
and the knowledge property ensures that prior SNARGs must have been efficiently produced, and so we can
rely in turn on their security. A formal treatment of this can be found in [BCCT13], which discusses how the
“strength” of a SNARG’s knowledge property relates to how many recursions the SNARG supports.

Efficient recursion. Theory tells us that any succinct-verifier SNARK is recursively composable [BCCT13].
In practice, however, recursive composition is exceedingly difficult to realize efficiently. The reason is
that, even if we have a SNARK that is concretely efficient when used “standalone”, it is often prohibitively
expensive to express the SNARK verifier’s computation through the language supported by the SNARK.
Indeed, while by now there are numerous SNARK constructions with remarkable concrete efficiency, to date
there is only a single efficient approach to recursion. The approach, due to [BCTV14], uses pairing-based
SNARKs with a special algebraic property discussed below.1 This has enabled real-world applications such
as Coda [Co17], a cryptocurrency that uses recursive composition to achieve strong scalability properties.

Limitations. The above efficient approach to recursion suffers from significant limitations.
• It is pre-quantum. Pairing-based SNARKs rely (at least) on the hardness of extracting discrete logarithms,

and so are insecure against quantum attacks. Hence the approach of [BCTV14] is also insecure against
quantum attacks. Devising an efficient post-quantum approach to recursion is an open problem.
• It introduces toxic waste. All known pairing-based SNARKs that can be used in the approach of [BCTV14]

rely on a structured reference string (SRS). Sampling the SRS involves secret values (the “toxic waste”)
that must remain secret for security. Ensuring that this is the case in practice is difficult: the SRS must be
sampled by some trusted party or via a cryptographic ceremony [BCGTV15; BGG17; BGM17; ABLSZ19].
Devising an efficient transparent (toxic-waste free) approach to recursion is an open problem.
• It uses expensive algebra. The approach of [BCTV14] uses pairing-based SNARKs instantiated via

pairing-friendly cycles of elliptic curves. Only a single cycle construction is known, MNT cycles; it consists
of two prime-order elliptic curves, with embedding degrees 4 and 6 respectively. Curves in an MNT
cycle must be much bigger than usual in order to compensate for the loss of security caused by the small
embedding degrees. Moreover the fields that arise from MNT cycles are imposed on applications rather
than being chosen depending on the needs of applications, causing additional performance overheads.
Attempts to find “better” cycles, without these limitations, have resulted in some negative results [CCW19].
Indeed, finding any other cycles beyond MNT cycles is a challenging open problem.
1A recent note sketches an alternative approach to recursion based on batch verification [BGH19]. We omit a discussion of this

note due to lack of sufficient detail (it does not provide definitions, full constructions, security arguments, or an efficiency analysis).
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1.1 Our results

We present a new methodology for recursive composition that simultaneously overcomes all of the limitations
discussed above. We experimentally validate our methodology, demonstrating feasibility in practice.

The starting point of our work is the observation that recursive composition is simpler when applied to a
SNARG (of knowledge) that supports preprocessing, as we explain in Section 2.1. This property of a SNARG
means that in an offline phase one can produce a short summary for a given circuit and then, in an online
phase, one may use this short summary to verify SNARGs that attest to the satisfiability of the circuit with
different partial assignments to its inputs. The online phase can be as fast as reading the SNARG (and the
partial assignment), and in particular sublinear in the circuit size even for arbitrary circuits. Throughout, by
“preprocessing SNARG” we mean a SNARG whose verifier runs in time polylogarithmic in the circuit size.2

Our methodology has three parts: (1) a transformation that maps any “holographic proof” into a pre-
processing SNARG in the random oracle model; (2) a holographic proof for (rank-1) constraint systems,
which leads to a corresponding preprocessing SNARG; (3) a transformation that recurses any preprocessing
SNARK (once the random oracle is heuristically instantiated via a cryptographic hash function).

We now summarize our contributions for each of these parts.
(1) From holographic proofs to preprocessing SNARGs. A probabilistic proof is holographic if the
verifier does not receive the circuit description as an input but, rather, makes a small number of queries to
an encoding of the circuit [BFLS91]. Recent work [CHMMVW19] has established a connection between
holography and preprocessing (which we review in Section 1.2). The theorem below adds to this connection,
by showing that interactive oracle proofs (IOPs) [BCS16; RRR16] that are holographic can be compiled into
preprocessing SNARGs that are secure in the quantum random oracle model [BDFLSZ11; CMS19].

Theorem 1 (informal). There is an efficient transformation that compiles any holographic IOP for a relation
R into a preprocessing SNARG forR that is unconditionally secure in the random oracle model. If the IOP
is a (honest-verifier) zero knowledge proof of knowledge then the transformation produces a zero knowledge
SNARG of knowledge (zkSNARK). This extends to hold in the quantum random oracle model.

By applying Theorem 1 to known holographic proofs for non-deterministic computations (such as the
PCP in [BFLS91] or the IPCP in [GKR15]), we obtain the first transparent preprocessing SNARG and the
first post-quantum preprocessing SNARG. Unfortunately, known holographic proofs are too expensive for
practical use, because encoding the circuit is costly (as explained in Section 1.2.1). In this paper we address
this problem by constructing an efficient holographic proof, discussed below.

We note that holographic proofs involve relationsR that consist of triples rather than pairs because the
statement being checked has two parts. One part is called the index, which is encoded in an offline phase by
the indexer and this encoding is provided as an oracle to the verifier. The other part is called the instance,
which is provided as an explicit input to the verifier. For example, the index may be a circuit description and
the instance a partial assignment to its inputs. We refer to this notion as indexed relations (see Section 3.2).
(2) Efficient protocols for R1CS. We present a holographic IOP for rank-1 constraint satisfiability (R1CS),
a standard generalization of arithmetic circuits where the “circuit description” is given by coefficient matrices.
We describe the corresponding indexed relation.

Definition 1 (informal). The indexed relationRR1CS is the set of triples (i,x,w) =
(
(F, n,m,A,B,C), x, w

)
where F is a finite field, A,B,C are n× n matrices over F, each containing at most m non-zero entries, and
z := (x,w) is a vector in Fn such that Az ◦Bz = Cz. (Here “◦” denotes the entry-wise product.)

2In contrast, non-preprocessing SNARGs can achieve fast verification only for structured circuits, because the verification
procedure must at a minimum read the description of the circuit whose satisfiability it checks. The description of a circuit can be
much smaller than the circuit itself only when the circuit has suitable structure, e.g., repeated sub-components in parallel or in series.
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Theorem 2 (informal). There exists a public-coin holographic IOP for the indexed relationRR1CS that is a
zero knowledge proof of knowledge with the following efficiency features. In the offline phase, the encoding
of an index is computable in O(m logm) field operations and consists of O(m) field elements. In the online
phase, the protocol has O(logm) rounds, with the prover using O(m logm) field operations and the verifier
usingO(|x|+logm) field operations. Proof length isO(m) field elements and query complexity isO(logm).

The above theorem improves, in the holographic setting, on prior IOPs for R1CS (see Fig. 1): it offers an
exponential improvement in verification time compared to the linear-time verification of [BCRSVW19], and
it offers succinct verification for all coefficient matrices compared to only structured ones as in [BCGGRS19].

Armed with an efficient holographic IOP, we use our compiler to construct an efficient preprocessing
SNARG in the random oracle model. The following theorem is obtained by applying Theorem 1 to Theorem 2.

Theorem 3 (informal). There exists a preprocessing zkSNARK for R1CS that is unconditionally secure in
the random oracle model (and the quantum random oracle model) with the following efficiency features. In
the offline phase, anyone can publicly preprocess an index in time Oλ(m logm), obtaining a corresponding
verification key of size Oλ(1). In the online phase, the SNARG prover runs in time Oλ(m logm) and the
SNARG verifier runs in time Oλ(|x|+ log2m); argument size is Oλ(log2m).

We have implemented the protocol underlying Theorem 3, obtaining the first efficient realization of a
post-quantum transparent preprocessing zkSNARK.

For example, for a security level of 128 bits over a 181-bit prime field, arguments range from 80 kB to
200 kB for instances of up to millions of constraints. These argument sizes are two orders of magnitude
bigger than pre-quantum non-transparent preprocessing zkSNARKs (see Section 1.2.2), and are 2× bigger
that the state of the art in post-quantum transparent non-preprocessing zkSNARKs [BCRSVW19]. Our
proving and verification times are comparable to prior work: proving takes several minutes, while verification
takes several milliseconds regardless of the constraint system. (See Section 13 for performance details.)

Besides its application to post-quantum transparent recursion, our preprocessing zkSNARK provides
attractive benefits over prior constructions, as we discuss in Section 1.2.2.

Note that, when the random oracle in the construction is heuristically instantiated via an efficient
cryptographic hash function (as in our implementation), the resulting preprocessing zkSNARK is in the
uniform reference string (URS) model, which means that the system parameters consist of a uniformly
random string of fixed size.3 The term “transparent” refers to a construction in the URS model.

(3) Post-quantum transparent recursion. We obtain the first efficient realization of post-quantum trans-
parent recursive composition for SNARKs. The cryptographic primitive that formally captures this capability
is known as proof carrying data (PCD) [CT10; BCCT13], and so this is what we construct.

Theorem 4 (informal). There is an efficient transformation that compiles any preprocessing SNARK in the
URS model into a preprocessing PCD scheme in the URS model. Moreover, if the preprocessing SNARK is
post-quantum secure then so is the preprocessing PCD scheme.

The above transformation, which preserves the “transparent” property and post-quantum security, is
where recursive composition occurs. For details, including the notion of PCD, see Section 11.

Moreover, we provide an efficient implementation of the transformation in Theorem 4 applied to our
implementation of the preprocessing zkSNARK from Theorem 3. The main challenge is to express the
SNARK verifier’s computation in as few constraints as possible, and in particular to design a constraint

3We stress that this step is a heuristic due to well-known limitations to the random oracle methodology [CGH04; GK03].
Investigating how to provably instantiate the random oracle for many natural constructions is an active research frontier.
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system for the SNARK verifier that on relatively small instances is smaller than the constraint system that
it checks (thereby permitting arbitrary recursion depth). Via a combination of computer-assisted design
and recent advances in algebraic hash functions, we achieve this threshold for all computations of at least 2
million constraints. Specifically, we can express a SNARK verifier checking 2 million constraints using only
1.7 million constraints, and this gap grows quickly with the computation size. This is the first demonstration
of post-quantum transparent recursive composition in practice.

R1CS indexer prover verifier round proof query
instances holographic? time time time complexity length complexity

[BCRSVW19] arbitrary NO N/A O(m+ n logn) O(|x|+m) O(logn) O(n) O(logn)

[BCGGRS19] † semi-succinct NO N/A O(m+ n logn) O(|x|+ logn) O(logn) O(n) O(logn)

this work arbitrary YES O(m logm) O(m logm) O(|x|+ logm) O(logm) O(m) O(logm)

Figure 1: Comparison of IOPs for R1CS: two prior non-holographic IOPs, and our holographic IOP. Here n
denotes the number of variables and m the number of non-zero coefficients in the matrices.
†: The parameters stated for [BCGGRS19] reflect replacing the constant-query low-degree test in the construction
with a concretely-efficient logarithmic-query low-degree test such as [BBHR18], to simplify comparison.
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Figure 2: Diagram of our methodology to recursive composition that is post-quantum and transparent.

1.2 Comparison with prior work

We provide a comparison with prior work in the three areas to which we contribute: holographic proofs (Sec-
tion 1.2.1); preprocessing SNARGs (Section 1.2.2); and recursive composition of SNARKs (Section 1.2.3).
We omit a general discussion of the now ample literature on SNARGs, and in particular do not discuss
non-preprocessing SNARGs for structured computations (e.g., [XZZPS19], [BBHR19], and many others).

1.2.1 Prior holographic proofs

The verifier in a proof system cannot run in time that is sublinear in its input, because it must at a minimum
read the input in order to know the statement being checked. Holographic proofs [BFLS91] avoid this
limitation by considering a setting where the verifier does not receive its input explicitly but, instead, has
query access to an encoding of it. The goal is then to verify the statement in time sublinear in its size; note
that such algorithms are necessarily probabilistic.4

4The goal of sublinear verification via holographic proofs is similar to, but distinct from, the goal of sublinear verification via
proximity proofs (as, e.g., studied in [EKR04; DR04; BGHSV06; RVW13; GR15].) In this latter setting, the verifier has oracle access
to an input that is not promised to be encoded and, in particular, cannot in general decide if the input is in the language without
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In Fig. 3 we compare the efficiency of prior holographic proofs and our holographic proof for the case of
circuit satisfiability, where the input to the verifier is the description of an arbitrary circuit. There are two
main prior holographic proofs in the literature. One is the PCP construction in [BFLS91], where it suffices
for the verifier to query a few locations of a low-degree extension of the circuit description. Another one is
the “bare bones” protocol in [GKR15], which is a holographic IP for circuit evaluation that can be re-cast as
a holographic IPCP for circuit satisfaction; the verifier relies on the low-degree extensions of functions that
describe each layer of the circuit. The constructions in [BFLS91] and [GKR15] are unfit for practical use as
holographic proofs in Theorem 1, because encoding the circuit incurs a polynomial blowup due to the use of
multivariate low-degree extensions (which yield encodings with inverse polynomial rate).

In the table we exclude the “algebraic holographic proof” of Marlin [CHMMVW19], because the
soundness guarantee of such a proof is incompatible with Theorem 1.

Comparison with this work. Our holographic proof is the first to achieve efficient asymptotics not only for
the prover and verifier, but also for the indexer, which is responsible for producing the encoding of the circuit.

proof indexer prover verifier
type time time time

[BFLS91] PCP poly(N) poly(N) poly(|x|+ log(N))
[GKR15] IPCP poly(N) poly(|w|) +O(N) O(|x|+D logW )
this work IOP O(N logN) O(N logN) O(|x|+ logN)

Figure 3: Comparison of holographic proofs for arithmetic circuit satisfiability. Here x denotes the known inputs,
w the unknown inputs, and N the total number of gates; if the circuit is layered, D denotes circuit depth and
W circuit width. Our Theorem 1 can be used to compile any of these holographic proofs into a preprocessing
SNARG. (For better comparison with other works, [GKR15] is stated as an IPCP for circuit satisfiability rather
than as an IP for circuit evaluation; in the latter case, the prover time would be O(N). The prover times for
[GKR15] incorporate the techniques for linear-time sumcheck introduced in [XZZPS19].)

1.2.2 Prior preprocessing SNARGs

Prior works construct preprocessing SNARGs in a model where a trusted party samples, in a parameter setup
phase, a structured reference string (SRS) that is proportional to circuit size. We summarize the main features
of these constructions, distinguishing between the case of circuit-specific SRS and universal SRS.

• Circuit-specific SRS: a circuit is given as input to the setup algorithm, which samples a (long) proving
key and a (short) verification key that can be used to produce and validate arguments for the circuit.
Preprocessing SNARGs with circuit-specific SRS originate in [Gro10; Lip12; GGPR13; BCIOP13], and
have been studied in an influential line of work that has led to highly-efficient constructions (e.g., [Gro16])
and large-scale deployments (e.g., [Zc14]). They are obtained by combining linear interactive proofs and
linear-only encodings. The argument sizes achievable in this setting are very small: less than 200 bytes.

• Universal SRS: a size bound is given as input to the setup algorithm, which samples a (long) proving key and
a (short) verification key that can be used to produce and validate arguments for circuits within this bound.
A public procedure can then be used to specialize both keys for arguments relative to the desired circuit.
Preprocessing SNARGs with universal (and updatable) SRS were introduced in [GKMMM18], and led

reading all of the input. To allow for sublinear verification without any promises on the input, the decision problem is relaxed: the
verifier is only asked to decide if the input is in the language or far from any input in the language.
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to efficient constructions in [MBKM19; CHMMVW19; GWC19]. They are obtained by combining
“algebraic” holographic proofs (see below) and polynomial commitment schemes. The argument sizes
currently achievable with universal SRS are bigger than with circuit-specific SRS: less than 1500 bytes.

Comparison with this work. Theorem 1 provides a methodology to obtain preprocessing SNARGs in the
(quantum) random oracle model, which heuristically implies (by suitably instantiating the random oracle)
preprocessing SNARGs that are post-quantum and transparent. Neither of these properties is achieved by prior
preprocessing SNARGs. Theorem 1 also develops the connection between holography and preprocessing
discovered in [CHMMVW19], which considers the case of holographic proofs where the completeness and
soundness properties are restricted to “algebraic provers” (which output polynomials of prescribed degrees).
We consider the case of general holographic proofs, where completeness and soundness are not restricted.

Moreover, our holographic proof (Theorem 2) leads to a preprocessing SNARG (Theorem 3) that, as
supported by our implementation, provides attractive benefits over prior preprocessing SNARGs.

• Prior preprocessing SNARGs require cryptographic ceremonies to securely sample the long SRS, which
makes deployments difficult and expensive. This has restricted the use of preprocessing SNARGs to proving
relatively small computations, due to the prohibitive cost of securely sampling SRSs for large computations.
This is unfortunate because preprocessing SNARGs could be useful for “scalability applications”, which
leverage succinct verification to efficiently check large computations (e.g., verifying the correctness of
large batches of trades executed at a non-custodial exchange [RU19; SD19]).

The transparent property of our preprocessing SNARG means that the long SRS is replaced with a fixed-size
URS (uniform reference string). This simplifies deployments and enables scalability applications.

• Prior preprocessing SNARGs are limited to express computations over the prime fields that arise as the
scalar fields of pairing-friendly elliptic curves. Such fields are imposed by parametrized curve families that
offer little flexibility for optimizations or applications. (Alternatively one can use the Cocks–Pinch method
[FST10] to construct an elliptic curve with a desired scalar field, but the resulting curve is inefficient.)

In contrast, our preprocessing SNARG is easily configurable across a range of security levels, and supports
most large prime fields and all large binary fields, which offers greater flexibility in terms of performance
optimizations and customization for applications.

Remark 1.1 (weaker forms of preprocessing). Prior work proved recursive composition only for non-
interactive arguments of knowledge with succinct verifiers [BCCT13]; this is the case for our definition of
preprocessing SNARGs. In this paper we show that recursive composition is possible even when the verifier
is merely sublinear in the circuit size (see Section 11), though the cost of each recursion is much steeper than
in the polylogarithmic case.

This provides additional motivation to the study of preprocessing with sublinear verifiers, as recently
undertaken by Setty [Set19]. In this latter work, Setty proposes a non-interactive argument in the URS
(uniform reference string) model where, for n-gate arithmetic circuits and a chosen constant c ≥ 2, proving
time is Oλ(n), argument size is Oλ(n1/c), and verification time is Oλ(n1−1/c).

1.2.3 Recursion for pairing-based SNARKs

The approach to recursive composition of [BCTV14] uses pairing-based (preprocessing) SNARKs based on
pairing-friendly cycles of elliptic curves. This approach applies to constructions with circuit-specific SRS
(e.g. [Gro16]) and to those with universal SRS (e.g. [GKMMM18; MBKM19; CHMMVW19; GWC19]).
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Informally, pairing-based SNARKs support languages that involve the satisfiability of constraint systems
over a field that is different from the field used to compute the SNARK verifier — this restriction arises
from the mathematics of the underlying pairing-friendly elliptic curve used to instantiate the pairing. This
seemingly mundane fact has the regrettable consequence that expressing the SNARK verifier’s computation
in the language supported by the SNARK (to realize recursive composition) is unreasonably expensive due to
this “field mismatch”. To circumvent this barrier, prior work leveraged two pairing-based SNARKs where the
field to compute one SNARK verifier equals the field of the language supported by the other SNARK, and
vice versa. This condition enables each SNARK to efficiently verify the other SNARK’s proofs.

These special SNARKs rely on pairing-friendly cycles of elliptic curves, which are pairs of pairing-
friendly elliptic curves where the base field of one curve equals the scalar field of the other curve and vice versa.
The only known construction is MNT cycles, which consist of two prime-order elliptic curves with embedding
degrees 4 and 6 respectively. An MNT cycle must be much bigger than usual in order to compensate for the
low security caused by the small embedding degrees. For example, for a security level of 128 bits, curves
in an MNT cycle must be defined over a prime field with roughly 800 bits; this is over three times the 256
bits that suffice for curves with larger embedding degrees. These performance overheads can be significant
in practice, e.g., Coda [Co17] is a project that has deployed MNT cycles in a product, and has organized a
community challenge to speed up the proof generation for pairing-based SNARKs [SN]. A natural approach
to mitigate this problem would be to find “high-security” cycles (i.e., with higher embedding degrees) but to
date little is known about pairing-friendly cycles beyond a few negative results [CCW19].

Comparison with this work. The approach to recursion that we present in this paper is not tied to
constructions of pairing-friendly cycles of elliptic curves. In particular, our approach scales gracefully across
different security levels, and also offers more flexibility when choosing the desired field for an application. In
addition, our approach is post-quantum and, moreover, uses a transparent (i.e., public-coin) setup.

On the other hand, our approach has two disadvantages. First, argument size is about 100 times bigger
than the argument size achievable by cycle-based recursion. Second, the number of constraints needed to
express the verifier’s computation is about 45 times bigger than those needed in the case of cycle-based
recursion (e.g., the verifier of [Gro16] can be expressed in about 40,000 constraints). The vast majority of
these constraints come from the many hash function invocations required to verify the argument.

Both of the above limitations are somewhat orthogonal to our approach and arguably temporary: the
large proof size and many hash invocations come from the many queries required from current constructions
of low-degree tests [BBHR18; BGKS19]. As the state of the art in low-degree testing progresses (e.g., to
high-soundness constructions over large alphabets), both argument size and verifier size will also improve.

7



2 Techniques

We discuss the main ideas behind our results. In Section 2.1 we explain how preprocessing simplifies
recursive composition. In Section 2.2 we describe our compiler from holographic IOPs to preprocessing
SNARGs (Theorem 1). In Section 2.3 we describe our efficient holographic IOP (Theorem 2), and then in
Section 2.4 we discuss the corresponding preprocessing SNARG (Theorem 3). In Section 2.5 we describe
how to obtain post-quantum and transparent PCD (Theorem 4). In Section 2.6 we discuss our verifier circuit.

Recall that indexed relations consist of triples (i,x,w) where i is the index, x is the instance, and w
is the witness (see Section 3.2). We use these relations because the statements being checked have two
parts, the index i (e.g., a circuit description) given in an offline phase and the instance x (e.g., a partial input
assignment) given in an online phase.

2.1 The role of preprocessing SNARKs in recursive composition

We explain why preprocessing simplifies recursive composition of SNARKs. For concreteness we consider
the problem of incrementally proving the iterated application of a circuit F : {0, 1}n → {0, 1}n to an initial
input z0 ∈ {0, 1}n. We are thus interested in proving statements of the form “given zT there exists z0 such
that zT = F T (z0)”, but wish to avoid having the SNARK prover check the correctness of all T invocations
at once. Instead, we break the desired statement into T smaller statements {“zi = F (zi−1)”}Ti=1 and then
inductively prove them. Informally, for i = 1, . . . , T , we produce a SNARK proof πi for this statement:

“Given a counter i and claimed output zi, there exists a prior output zi−1 such that zi = F (zi−1)
and, if i > 1, there exists a SNARK proof πi−1 that attests to the correctness of zi−1.”

Formalizing this idea requires care, and in particular depends on how the SNARK achieves succinct verifica-
tion (a prerequisite for recursive composition). There are two methods to achieve succinct verification.

(1) Non-preprocessing SNARKs for structured computations. The SNARK supports non-deterministic
computations expressed as programs, i.e., it can be used to prove/verify statements of the form “given a
program M , primary input x, and time bound t, there exists an auxiliary input w such that M accepts
(x,w) in t steps”. (More generally, the SNARK could support any computation model for which the
description of a computation can be significantly smaller than the size of the described computation.)

(2) Preprocessing SNARKs for arbitrary computations. The SNARK supports circuit satisfiability, i.e., it can
be used to prove/verify statements of the form “given a circuit C and primary input x, there exists an
auxiliary input w such that C(x,w) = 0”. Preprocessing enables the circuit C to be summarized into
a short verification key ivkC that can be used for succinct verification regardless of the structure of C.
(More generally, the SNARK could support any computation model as long as preprocessing is possible.)

We compare the costs of recursive composition in these two cases, showing why the preprocessing case
is cheaper. Throughout we consider SNARKs in the uniform reference string model, i.e., parameter setup
consists of sampling a fully random string urs of size poly(λ) that suffices for proving/verifying any statement.

(1) Recursion without preprocessing. Let (P,V) be a non-preprocessing SNARK for non-deterministic
program computations. In this case, recursion is realized via a program R, which depends on urs and F , that
checks one invocation of the circuit F and the validity of a prior SNARK proof relative to the reference string
urs. The program R is defined as follows:
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Primary input: a tuple x = (M, i, zi) consisting of the description of a program M , counter i,
and claimed output zi. (We later set M := R to achieve recursion, as explained shortly.)

Auxiliary input: a tuple w = (zi−1, πi−1) consisting of a previous output zi−1 and corre-
sponding SNARK proof πi−1 that attests to its correctness.

Code: R(x,w) accepts if zi = F (zi−1) and, if i > 1, V(urs,M,xi−1, t, πi−1) = 1 where
xi−1 := (M, i− 1, zi−1) and t is a suitably chosen time bound.

The program R can be used to incrementally prove the iterated application of the circuit F . Given a tuple
(i − 1, zi−1, πi−1) consisting of the current counter, output, and proof, one can use the SNARK prover to
obtain the next tuple (i, zi, πi) by setting zi := F (zi−1) and computing the proof πi := P(urs, R,xi, t,wi)
for the instance xi := (R, i, zi) and witness wi := (zi−1, πi−1) (and a certain time bound t). Note that we
have set M := R, so that (the description of) R is part of the primary input to R. A tuple (i, zi, πi) can then
be verified by running the SNARK verifier, as V(urs, R,xi, t, πi) for xi := (R, i, zi).5

We refer the reader to [BCCT13] for details on how to prove the above construction secure. The aspect
that we are interested to raise here is that the program R is tasked to simulate itself, essentially working as
a universal machine. This means that every elementary operation of R, and in particular of F , needs to be
simulated by R in its execution. This essentially means that the computation time of R, which dictates the
cost of each proof composition, is at least a constant c > 1 times the size of |F |. This multiplicative overhead
on the size of the circuit F , while asymptotically irrelevant, is a significant overhead in concrete efficiency.

(2) Recursion with preprocessing. We describe how to leverage preprocessing in order to avoid universal
simulation, and in particular to avoid any multiplicative performance overheads in recursive composition.
Intuitively, preprocessing provides a “cryptographic simplification” to the requisite recursion, by enabling us
to replace the description of the computation with a succinct cryptographic commitment to it.

Let (I,P,V) be a preprocessing SNARK for circuits. Recursion is realized via a circuit R that depends
on urs and F , and checks one invocation of F and a prior proof. The circuit R is defined as follows:

Primary input: a tuple x = (ivk, i, zi) consisting of an index verification key ivk, counter i,
and claimed output zi. (We later set ivk := ivkR to achieve recursion.)

Auxiliary input: a tuple w = (zi−1, πi−1) consisting of a previous output zi−1 and corre-
sponding SNARK proof πi−1 that attests to its correctness.

Code: R(x,w) accepts if zi = F (zi−1) and, if i > 1, V(urs, ivk,xi−1, πi−1) = 1 where
xi−1 := (ivk, i− 1, zi−1).

The circuit R can be used for recursive composition as follows. In the offline phase, we run the indexer I
on the circuit R, obtaining a long index proving key ipkR and a short index verification key ivkR that can be
used to produce and validate SNARKs with respect to the circuit R. Subsequently, in the online phase, one
can use the prover P to go from a tuple (i− 1, zi−1, πi−1) to a new tuple (i, zi, πi) by letting zi := F (zi−1)
and πi := P(urs, ipkR,xi,wi) for the instance xi := (ivkR, i, zi) and witness wi := (zi−1, πi−1). Note that
we have set ivk := ivkR, so that the verification key ivkR is part of the primary input to the circuit R. A tuple
(i, zi, πi) can then be verified by running the SNARK verifier, as V(urs, ivkR,xi, πi) for xi := (ivkR, i, zi).

Crucially, the circuitR does not perform any universal simulation involving the circuit F , and in particular
does not incur multiplicative overheads. Indeed, |R| = |F | + |V| = |F | + o(|F |). This was enabled by
preprocessing, which let us provide the index verification key ivkR as input to the circuit R.

5The astute reader may notice that we could have applied the Recursion Theorem to the program R to obtain a new program R∗

that has access to its own code, and thereby simplify primary inputs from triples x = (M, i, zi) to pairs x = (i, zi). This, however,
adds unnecessary complexity. Indeed, here we can rely on the SNARK verifier to provide R with its own code as part of the primary
input, obviating this extra step. (For reference, the Recursion Theorem states that for every program A(x, y) there is a program B(y)
that computes A(〈B〉, y), where the angle brackets emphasize that the first argument is the description of the program B.)

9



In fact, preprocessing is already part of the efficient approach to recursive composition in [BCTV14].
There the preprocessing SNARK uses a structured, rather than uniform, reference string but the benefits of
preprocessing are analogous (even when the reference string depends on the circuit or a bound on it).

In summary: preprocessing SNARKs play an important role in efficient recursive composition. Our
first milestone is post-quantum and transparent preprocessing SNARKs, which we then use to achieve
post-quantum and transparent recursive composition.

2.2 From holographic proofs to preprocessing with random oracles

We describe the main ideas behind Theorem 1, which provides a transformation that compiles any holographic
IOP for an indexed relationR into a corresponding preprocessing SNARG forR. See Section 10 for details.

Warmup: holographic PCPs. We first consider the case of PCPs, a special case of IOPs. Recall that the
Micali transformation [Mic00] compiles a (non-holographic) PCP into a (non-preprocessing) SNARG. We
modify this transformation to compile a holographic PCP into a preprocessing SNARG, by using the fact
that the SNARG verifier output by the Micali transformation invokes the PCP verifier as a black box.

In more detail, the main feature of a holographic PCP is that the PCP verifier does not receive the index
as an explicit input but, rather, makes a small number of queries to an encoding of the index given as an
oracle. If we apply the Micali transformation to the holographic PCP, we obtain a SNARG verifier that must
answer queries by the PCP verifier to the encoded index. If we simply provided the index as an input to
the SNARG verifier, then we cannot achieve succinct verification and so would not obtain a preprocessing
SNARG. Instead, we let the SNARG indexer compute the encoded index, compute a Merkle tree over it,
and output the corresponding root as an index verification key for the SNARG verifier. We can then have
the SNARG prover extend the SNARG proof with answers to queries to the encoded index, certified by
authentication paths relative to the index verification key. In this way the SNARG verifier can use the answers
in the SNARG proof to answer the queries to the encoded index by the underlying PCP verifier.

This straightforward modification to the Micali transformation works: one can prove that if the soundness
error of the holographic PCP is ε then the soundness error of the preprocessing SNARG is tε+O(t2 · 2−λ)
against t-query adversaries in the random oracle model. (A similar expression holds for quantum adversaries.)

General case: holographic IOPs. While efficient constructions of holographic PCPs are not known, in
this paper we show how to construct an efficient holographic IOP (see Section 2.3). Hence we are actually
interested in compiling holographic IOPs. In this case our starting point is the BCS transformation [BCS16],
which compiles a (non-holographic) IOP into a (non-prepreprocessing) SNARG. We adopt a similar strategy
as above: we modify the BCS transformation to compile a holographic IOP into a preprocessing SNARG,
using the fact that the SNARG verifier output by the BCS transformation invokes the IOP verifier as a black
box. Indeed, the main feature of a holographic IOP is the fact that the IOP verifier makes a small number of
queries to an encoding of the index given as an oracle. Therefore the SNARG indexer can output the Merkle
root of the encoded index as an index verification key, which subsequently the SNARG verifier can use to
authenticate answers about the encoded index claimed by the SNARG prover.

An important technical difference here is the fact that the soundness error of the resulting preprocessing
SNARG is not related to the soundness error of the holographic IOP but, instead, to its state-restoration
soundness (SRS) error, a stronger notion of soundness introduced in [BCS16]. Namely, we prove that if
the SRS error of the holographic PCP is εsr(t) then the soundness error of the preprocessing SNARG is
εsr(t) +O(t2 · 2−λ). This phenomenon is inherited from the (unmodified) BCS transformation.

PoK and ZK. If the holographic IOP is a proof of knowledge, our transformation yields a preprocessing
SNARG of knowledge (SNARK). If the holographic IOP is honest-verifier zero knowledge, the preprocessing
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SNARG is statistical zero knowledge. These features are inherited from the BCS transformation.

2.3 An efficient holographic proof for constraint systems

We describe the main ideas behind Theorem 2, which provides an efficient construction of a holographic IOP
for rank-1 constraint satisfiability (R1CS). See Definition 1 for the indexed relation representing this problem.

Our starting point: Marlin. Our construction borrows ideas from the algebraic holographic proof (AHP)
underlying Marlin, a pairing-based zkSNARK due to [CHMMVW19]. An AHP is similar to a holographic IOP,
except that the indexer and the prover (both honest and malicious) send low-degree univariate polynomials
rather than evaluations of functions. The verifier may evaluate these polynomials at any point in the field.

To understand how AHPs and holographic IOPs differ, it is instructive to consider how one might
construct a holographic IOP from an AHP. A natural approach is to construct the indexer and prover for the
hIOP as follows: run the indexer/prover of the AHP, and whenever the indexer/prover outputs a polynomial,
evaluate it and send this evaluation as the oracle. There are several issues with this approach. First, hIOPs
require a stronger soundness guarantee: soundness must hold against malicious provers that send arbitrary
oracles. Second, evaluating the polynomial requires selecting a set L ⊆ F over which to evaluate it. In
general, since the verifier in the AHP may query any point in F, we would need to take L := F, which
is prohibitively expensive for the indexer and prover if F is much larger than the instance size (as it often
is, for both soundness and application reasons). Third, assuming that one manages to decouple L and F,
the soundness error of one invocation of the AHP will (at best) decrease with 1/|L| instead of 1/F, which
requires somehow reducing the soundness error of the AHP to, say, 1/2λ, and simply re-running in parallel
the AHP for λ− log |L| would be expensive in all relevant parameters.

The first issue could be resolved by composing the resulting protocol with a low-degree test. This
introduces technicalities because we cannot hope to check that the oracle is exactly low-degree (as required in
an AHP) — we can only check that the oracle is close to low-degree. The best way to resolve the second issue
depends on the AHP itself, and would likely involve out-of-domain sampling [BGKS19]. Finally, resolving
the third issue may not be possible in general (in fact, we do not see how resolve it for the AHP in Marlin.)

These above issues show that, despite some similarities, there are markedly different design considerations
on hIOPs versus AHPs. For this reason, while we will follow some of the ideas outlined above, we do not
take the Marlin AHP as a black box. Instead, we will draw on the ideas underlying the Marlin AHP in order
to build a suitable hIOP for this paper. Along the way, we also show how to reduce the round complexity of
the Marlin AHP from 3 to 2, an ideas that we use to significantly improve the efficiency of our construction.

Aurora. The structure of our holographic IOP, like the Marlin AHP, follows the one of Aurora [BCRSVW19],
an IOP for R1CS that we now briefly recall. Given an R1CS instance (A,B,C), the prover sends to the verifier
fz , the RS-encoding of a vector z, and three oracles fA, fB, fC which are purportedly the RS-encodings of
the three vectors Az,Bz,Cz respectively. The prover and verifier then engage in subprotocols to prove that
(i) fA, fB, fC are indeed encodings of Az,Bz,Cz, and (ii) fA · fB − fC is an encoding of the zero vector.

Together these checks ensure that (A,B,C) is a satisfiable instance of R1CS. Testing (ii) is a straightfor-
ward application of known probabilistic checking techniques, and can be achieved with a logarithmic-time
verifier. The primary challenge in the Aurora protocol (and protocols based on it) is testing (i).

In the Aurora protocol this is achieved via a reduction to univariate sumcheck, a univariate analogue of the
[LFKN92] sumcheck protocol. Univariate sumcheck also has a logarithmic verifier, but the reduction itself
runs in time linear in the number of nonzero entries in the matrices A,B,C. A key technical contribution of
the Marlin AHP is showing how to shift most of the cost of the reduction to the indexer in order to reduce the
online cost of verification to logarithmic, as we now explain.
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Challenges. We describe the original lincheck protocol of [BCRSVW19], and explain why it is not
holographic. The lincheck protocol, on input a matrix M ∈ Fk×k and RS-encodings of vectors ~x, ~y ∈ Fk,
checks whether ~x = M~y. It makes use of the following two facts: (i) for a vector of linearly-independent
polynomials ~u ∈ F[X]k and any vectors ~x, ~y ∈ Fk, if ~x 6= ~y then the polynomials 〈~u, ~x〉 and 〈~u, ~y〉
are distinct, and so differ with high probability at a random α ∈ F, and (ii) for any matrix M ∈ Fk×k,
〈~u,M~y〉 = 〈~uM, ~y〉. The lincheck verifier sends a random α ∈ F to the prover, and the prover then convinces
the verifier that 〈~uM, ~y〉(α)− 〈~u, ~x〉(α) = 0 using the univariate sumcheck protocol.

This requires the verifier to evaluate the low-degree extensions of ~uα and ~uαM at a point β ∈ F, where
~uα ∈ Fk is obtained by evaluating each entry of ~u at α. This is equivalent to evaluating the bivariate
polynomials u(X,Y ), uM (X,Y ) ∈ F[X,Y ], obtained respectively by extending ~u, ~uM over Y , at a random
point in (α, β) ∈ F2. By choosing ~u appropriately, we can ensure that u(X,Y ) can be evaluated in logarithmic
time [BCGGRS19]. But, without help from an indexer, evaluating uM (α, β) requires time Ω(‖M‖).

A natural suggestion in the holographic setting is to have the indexer evaluate uM over some domain
S ⊆ F× F, and make this evaluation part of the encoded index. This does achieve the goal of logarithmic
verification time. Unfortunately, the degree of uM in each variable is about k, and so even writing down the
coefficients of uM requires time Ω(k2), which for sparse M is quadratic in ‖M‖.

In the Marlin lincheck the indexer instead computes a certain linear-size (polynomial) encoding of M ,
which the verifier then uses in a multi-round protocol with the prover to evaluate uM at its chosen point. Our
holographic lincheck improves upon this protocol, reducing the number of rounds by one; we describe it next.
Our holographic lincheck. Recall from above that the lincheck verifier needs to check that 〈~u, ~x〉 and
〈~uM, ~y〉 are equal as polynomials in X . To do this, it will choose a random α ∈ F and send it to the prover,
then engage in the univariate sumcheck protocol to show that

∑
h u(α, h)x̂(h)− uM (α, h)ŷ(h) = 0, where

x̂, ŷ are low-degree extensions of x and y.
To verify the above sum, the verifier must compute u(α, β) and uM (α, β) for some β ∈ F. The former

can be computed in by the verifier in logarithmic time as discussed; for the latter, we ask the prover to help.
Specifically, we show that uM ≡ M̂∗, the unique bivariate low-degree extension of a matrix M∗ which
can be computed in quasilinear time from M (and in particular has ‖M∗‖ = ‖M‖). Hence to show that
uM (α, β) = γ the prover and verifier can engage in a holographic matrix arithmetization protocol for M∗

to show that M̂∗(α, β) = γ. Marlin makes use of a similar matrix arithmetization protocol, but for M
itself, with a subprotocol to compute uM from M̂ , which is a cost that we completely eliminate. Another
improvement is that for our matrix arithmetization protocol we can efficiently reduce soundness error even
when using a low-degree test, due to its non-recursive use of the sumcheck protocol.
Matrix arithmetization. Our matrix arithmetization protocol is a holographic IOP for computing the
low-degree extension of a matrix M ∈ FH×H (provided in the index). It is useful here to view M in its
sparse representation as a map 〈M〉 : K → H ×H × F for some K ⊆ F, where if 〈M〉(k) = (a, b, γ) for
some k ∈ K then Ma,b = γ, and Ma,b = 0 otherwise.

The indexer computes ˆrow, ĉol, v̂al which are the unique low-degree extensions of the functions K → F
induced by restricting 〈M〉 to its first, second, and third coordinates respectively, and outputs their evaluations
over L. It is not hard to verify that

M̂(α, β) =
∑
k∈K

LH, ˆrow(k)(α)LH,ĉol(k)(β)v̂al(k) ,

for any α, β ∈ F, where LH,a is the polynomial of minimal degree which is 1 on a and 0 on H \ {a}. In
order to check this equation using the sumcheck protocol we must modify the right-hand side: the summand
must be a polynomial which can be efficiently evaluated. To this end, we make use of the “unnormalized
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Lagrange” polynomial uH(X,Y ) := (vH(X)− vH(Y ))/(X −Y ) from [BCGGRS19]. This polynomial has
the property that for every a, b ∈ H , uH(a, b) is 0 if a 6= b and nonzero if a = b; and it is easy to evaluate at
every point in F. By having the indexer renormalize v̂al appropriately, we obtain

M̂(X,Y ) ≡
∑
k∈K

uH( ˆrow(k), α)uH(ĉol(k), β)v̂al(k) .

We have made progress, but now the summand has quadratic degree: Ω(|H||K|) because we compose the
polynomials uH and ˆrow, ĉol. Next we show how to remove this composition.

Observe that since the image of K under ˆrow, ĉol is contained in H , vH( ˆrow(k)) = vH(ĉol(k)) = 0.
Hence the rational function

vH(α)

(α− ˆrow〈M〉(X))
· vH(β)

(β − ĉol〈M〉(X))
· v̂al〈M〉(X)

agrees with the summand on K; it is a rational extension of the summands. Moreover, the degrees of the
numerator and denominator of the function are both O(|K|). Now it remains to design a protocol to check
the sum of a univariate rational function.

Rational sumcheck. Suppose that we want to check that
∑

k∈K p(k)/q(k) = γ, where p, q are low-degree
polynomials. First, we have the prover send the (evaluation of the) unique polynomial f of degree |K| − 1
which agrees with p/q on K; that is, the unique low-degree extension of p/q viewed as a function from K to
F. We can use the standard univariate sumcheck protocol from [BCRSVW19] to test that

∑
k∈K f(k) = γ.

It then remains to check that f does indeed agree with p/q on K. This is achieved using standard
techniques: if p(k)/q(k) = f(k) for all k ∈ K, then p(k) = q(k) · f(k) for all k ∈ K (at least if q does
not vanish on K). Then p − q · f is a polynomial vanishing on K, and so is divisible by vK . This can be
checked using low-degree testing; for more details, see Section 5. Moreover, the degree of this equation is
max(deg(p), deg(q) + |K|); in the matrix arithmetization protocol, this is O(|K|).

Proof of knowledge and zero knowledge. Our full protocol for R1CS is a proof of knowledge, because
when the verifier accepts with high enough probability it is possible to decode fz into a satisfying assignment.
We further achieve zero knowledge via techniques inherited from [BCRSVW19]. (Note that zero knowledge
is not relevant for the matrix arithmetization protocol because the constraint matrices A,B,C are public.)

2.4 Post-quantum and transparent preprocessing

If we apply the compiler described in Section 2.2 (as captured in Theorem 1) to the efficient holographic
proof for R1CS described in Section 2.3 (as captured in Theorem 2) then we obtain an efficient preprocessing
zkSNARK for R1CS that is unconditionally secure in the (quantum) random oracle model (as captured in
Theorem 3). We refer to the resulting construction as FRACTAL.

Implementation. We have implemented FRACTAL by extending the libiop library to support generic
compilation of holographic proofs into preprocessing SNARGs, and then writing in code our holographic
proof for R1CS. Our implementation supports a range of security levels and fields. (The only requirement on
the field is that it contains certain smooth subgroups.) See Section 12.1 for more details on the implementation.

Clearly, the security of our implementation relies on the random oracle methodology applied to prepro-
cessing SNARGs produced by our compiler, namely, we assume that if we replace every call to the random
oracle with a call to a cryptographic hash function then the resulting construction, which formally is in the
URS model, inherits the relevant security properties that we proved in the (quantum) random oracle model.
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Evaluation. We have evaluated FRACTAL, and its measured performance is consistent with asymptotic
predictions. In particular, the polylogarithmic argument size and verification time quickly become smaller
than native witness size and native execution time as the size of the checked computation increases.

We additionally compare the costs of FRACTAL to prior preprocessing SNARGs, finding that (a) our
prover and verifier times are comparable to prior constructions; (b) argument sizes are larger than prior
constructions (that have an SRS). The larger argument sizes of FRACTAL are nonetheless comparable with
other post-quantum transparent non-preprocessing SNARGs. See Section 13.1 for more details on evaluation.

2.5 Post-quantum and transparent recursive composition

We summarize the ideas behind our contributions to recursive composition of SNARKs.
Proof-carrying data. Recursive composition is captured by a cryptographic primitive called proof-carrying
data (PCD) [CT10; BCCT13], which will be our goal. Consider a network of nodes, where each node
receives messages from other nodes, performs some local computation, and sends the result on. PCD is a
primitive that allows us to check the correctness of such distributed computations by recursively producing
proofs of correctness for each message. Here “correctness” is locally specified by a compliance predicate
Φ, which takes as input the messages received by a node and the message sent by that node (and possibly
some auxiliary local data). A distributed computation is then considered Φ-compliant if, for each node, the
predicate Φ accepts the node’s messages (and auxiliary local data).

PCD captures proving the iterated application of a circuit as in Section 2.1, in which case the distributed
computation evolves along a path. PCD also captures more complex topologies, which is useful for support-
ing distributed computations on long paths (via “depth-reduction” techniques [Val08; BCCT13]) and for
expressing dynamic distributed computations (such as MapReduce computations [CTV15]).
From random oracle model to the URS model. While we have so far discussed constructions that are
unconditionally secure in the (quantum) random oracle model, for recursion we now leave this model (by
heuristically instantiating the random oracle with a cryptographic hash function) and start from preprocessing
SNARKs in the URS model. The reason for this is far from mundane (and not motivated by implementation),
as we now explain. The verifiers from Theorem 1 make calls to the random oracle, and therefore proving that
the verifier has accepted would require using a SNARK that can prove the correctness of computations in a
relativized world where the oracle is a random function. There is substantial evidence from complexity theory
that such SNARKs do not exist (e.g., the PCP Theorem does not relativize with respect to a random oracle
[CCRR92; For94]). By instantiating the random oracle, all oracle calls can be “unrolled” into computations
that do not involve oracle gates, and thus we can prove the the correctness of the resulting computation.6

We stress that random oracles cannot be securely instantiated in the general case [CGH04], and so we will
assume that there is a secure instantiation of the random oracle for the preprocessing SNARKs produced via
Theorem 1 (which, in particular, preserves proof of knowledge).
From SNARK to PCD. We prove that any preprocessing SNARK in the URS model can be transformed
into a preprocessing PCD scheme in the URS model (Theorem 11.5).7 The construction, described in
Section 11, realizes recursive composition by following the template given in Section 2.1, except that the
compliance predicate Φ may expect multiple input messages. This construction simplifies that of [BCCT13]

6The necessity to instantiate the random oracle before recursion also arises in the first construction of incrementally verifiable
computation [Val08]. One way to circumvent this difficulty is to consider oracles that are equipped with a public verification
procedure [CT10], however this requires embedding a secret in the oracle, which does not lend itself to straightforward software
realizations and so we do not consider this approach in this paper.

7Analogously to a SNARK, here preprocessing denotes the fact that the PCD scheme enables succinct verification regardless of
the computation expressed by the compliance predicate Φ (as opposed to only for structured computations).
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for preprocessing SNARKs in the SRS model: we do not need to rely on collision-resistant hash functions to
shrink the verification key ivk because we require it to be succinct, as captured in Lemma 11.8.8

Security against quantum adversaries. A key feature of our result (Theorem 11.5) is that we prove that
if the SNARK is secure (i.e., is a proof of knowledge) against quantum adversaries then so is the resulting
PCD scheme (i.e., it is also a proof of knowledge). Therefore, if we assume that FRACTAL achieves proof of
knowledge against quantum adversaries when the random oracle is suitably instantiated, then by applying our
result to FRACTAL we obtain a post-quantum preprocessing PCD scheme in the URS model.

We highlight here an important subtlety that arises when proving security against quantum adversaries.
The proof of [BCCT13] makes use of the fact that, in the classical case, we may assume that the adversary
is deterministic by selecting its randomness. This is not the case for quantum adversaries, since a quantum
circuit can create its own randomness (e.g. by measuring a qubit in superposition). This means that we must
be careful in defining the proof-of-knowledge property we require of the underlying SNARK. In particular,
we must ensure that when we recursively extract proofs, these proofs are consistent with previously extracted
proofs. When the adversary is deterministic, this is trivially implied by standard proof of knowledge; for
quantum adversaries, it is not. We give a natural definition of proof of knowledge that suffices for the security
reduction, and prove that it is realized by our SNARK construction (in the random oracle model).

2.6 The verifier as a constraint system

In order to recursively compose FRACTAL (the preprocessing zkSNARK discussed in Section 2.4), we need
to express FRACTAL’s verifier as a constraint system. The size of this constraint system is crucial because
this determines the threshold at which recursive composition becomes possible. Towards this goal, we design
and implement a constraint system that applies to a general class of verifiers, as outlined below. FRACTAL’s
verifier is obtained as an instantiation within this class. See Section 12.2 for details.

Hash computations introduced by the compiler. Our compiler (Theorem 1) transforms any holographic
IOP into a corresponding preprocessing SNARG, while preserving relevant zero knowledge or proof of
knowledge properties. The preprocessing SNARG verifier makes a black-box use of the holographic
IOP verifier, which means that we can design a single (parametrized) constraint system representing the
transformation that works for any holographic IOP. All additional computations introduced by the compiler
involve cryptographic hash functions (which heuristically instantiate the random oracle). In particular, there
are two types of hash computations: (1) a hash chain computation used to derive the randomness for each
round of the holographic IOP verifier, based on the Merkle roots provided by the preprocessing SNARG
prover; and (2) verification of Merkle tree authentication paths in order to ensure the validity of the query
answers provided by the preprocessing SNARG prover. We design generic constraint systems for both of
these tasks. Since we are designing constraint systems it is more efficient to consider multiple hash functions
specialized to work in different roles: a hash function to absorb inputs or squeeze outputs in the hash chain; a
hash function to hash leaves of the Merkle tree; a many-to-one hash function for the internal nodes of the
Merkle tree; and others.

Choice of hash function. While our implementation is generic with respect to the aforementioned hash
functions (replacing any one of them with another would be a rather straightforward task), the choice of hash
function is nonetheless critical for concrete efficiency as we now explain. Expressing standard cryptographic
hash functions, such as from the SHA or Blake family, as a constraint system requires more than 20,000
constraints. While this is acceptable for certain applications, these costs are prohibitive for hash-intensive

8In contrast, the verification key ivk in [BCCT13] is allowed to grow linearly with the public input to the circuit that it summarizes,
and so recursion required replacing ivk with a short hash of it, and moving ivk to the witness of the recursion circuit.
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computations, as is the case for the verifiers output by our compiler. Fortunately, the last few years have seen
exciting progress in the design of algebraic hash functions [AD18; Alb+19a; GKKRRS19; AABSDS19;
Alb+19b], which by design can be expressed via a small number of arithmetic constraints over large finite
fields. While this is an active research front, and in particular no standards have been agreed upon, many of
the proposed functions are significantly cheaper than prior ones, and their security analyses are promising. In
this work we decide to use one of these as our choice of hash function (Rescue [AABSDS19]). We do not
claim that this is the “best” choice among the currently proposed ones. (In fact, we know how to achieve
better results via a combination of different choices.) We merely make one choice that we believe to be
reasonable, and in particular suffices to demonstrate the feasibility of our methodology in practice.

Holographic IOP computations. The constraint system that represents the holographic IOP verifier will,
naturally, depend on the specific protocol that is provided as input to the compiler.

That said, all known efficient IOPs, holographic or otherwise, are obtained as the combination of two
ingredients: (1) a low-degree test for the Reed–Solomon (RS) code; and (2) an RS-encoded IOP, which is a
protocol where the verifier outputs a set of algebraic claims, known as rational constraints, about the prover’s
messages. Examples of IOPs that fall in this category include our holographic IOP for R1CS, as well as
protocols for R1CS in [AHIV17; BCRSVW19; BCGGRS19] and for AIRs in [BBHR19].

We thus provide two constraint systems that target these two components. First, we provide a constraint
system that realizes the FRI low-degree test [BBHR18], which is used in many efficient IOPs, including in
our holographic IOP for R1CS. Second, we provide infrastructure to write constraint systems that express a
desired RS-encoded IOP. This essentially entails specifying how many random elements the verifier should
send in each round of the protocol, and then specifying constraints that express the rational constraints output
by the verifier at the end of the RS-encoded IOP.

We then use the foregoing infrastructure to express the verifier of our holographic IOP for R1CS as a
constraint system. We note that the very same generic infrastructure would make it straightforward to express
the verifiers of other protocols with the same structure [AHIV17; BBHR19; BCRSVW19; BCGGRS19].

Remark 2.1 (succinct languages). Our work in writing constraints for the verifier is restricted to non-uniform
computation models such as R1CS (i.e., we are not concerned about the global structure of the constraint
system). We do not claim to have an efficient way to express the same verifier via succinct languages such as
AIR [BBHR19] or Succinct-R1CS [BCGGRS19]. Doing so remains an open problem that, if addressed, may
lead to additional opportunities in recursive composition (through non-preprocessing SNARKs).
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3 Preliminaries

We state time costs in terms of basic operations over a given field F, and size costs in terms of field elements
in F. We use the “big-oh” notation OF to remind the reader that F-operations and F-elements have unit cost.

3.1 Sparse representations of matrices

Our protocols leverage sparse representations of matrices for efficiency, following the definition below. The
definition is primarily for convenience in the sense that any reasonable sparse representation of a matrix can
be transformed, in linear time, into one that follows the definition that we use.

Definition 3.1. Let H,K ⊆ F. A sparse representation of a matrix is a function 〈M〉 : K → H ×H × F
that is injective when its output is restricted to H ×H . The matrix M ∈ FH×H is obtained from 〈M〉 by
setting, for a, b ∈ H , Ma,b := γ if there exists k ∈ K such that 〈M〉(k) = (a, b, γ) and Ma,b := 0 otherwise.

Note that a matrix M ∈ FH×H has many possible sparse representations. In particular, we may choose
any large enough K and any injection from K to H ×H that “covers” the nonzero entries of M .

3.2 Indexed relations

An indexed relationR is a set of triples (i,x,w) where i is the index, x the instance, and w the witness; the
corresponding indexed language L(R) is the set of pairs (i,x) for which there exists a witness w such that
(i,x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits consists of triples where i is
the description of a boolean circuit, x is an assignment some of the input wires, and w is an assignment to
the remaining input wires that makes the circuit output 0.

In this paper we build protocols for the indexed relation that represents rank-1 constraint satisfiability
(R1CS), a generalization of arithmetic circuits where the “circuit description” is given by coefficient matrices.

Definition 3.2 (R1CS indexed relation). The indexed relationRR1CS is the set of all triples

(i,x,w) =
(
(F, H,K, 〈A〉, 〈B〉, 〈C〉), (I, x), w

)
where F is a finite field, H,K are subsets of F, 〈A〉, 〈B〉, 〈C〉 : K → H ×H × F are sparse representations
of H ×H matrices over F, I is a subset of H , x ∈ FI , w ∈ FH\I , and z := (x,w) ∈ FH is a vector such
that Az ◦Bz = Cz. (Here “◦” denotes the entry-wise product between two vectors.)

Remark 3.3. The above definition can be generalized to the case where the matrices are non-square, namely,
the matrices are in FH1×H2 for possibly distinct domains H1, H2 ⊆ F [BCRSVW19]. All results stated in
this paper extend to this non-square case. Our focus on the square case is only for simplicity of exposition.

3.3 Algebra

Polynomial encodings. For a finite field F, subset S ⊆ F, and function f : S → F we denote by f̂ the
(unique) univariate polynomial over F with degree less than |S| such that f̂(a) = f(a) for every a ∈ S. More
explicitly, f̂(X) :=

∑
a∈S f(a)La,S(X), where La,S (for a ∈ S) is the unique (Lagrange) polynomial of

degree less than |S| such that La,S(a) = 1 and La,S(b) = 0 for all b ∈ S \ {a}.
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Reed–Solomon code. Given a subset L of a field F and degree bound d < |L|, we denote by RS[L, d] ⊆ FL
all evaluations over L of univariate polynomials of degree at most d:

RS[L, d] :=
{
f : L→ F s.t. ∃ f̂ ∈ F[X] with deg(f̂) ≤ d and f̂(L) = f

}
.

Whenever a polynomial f̂ as above exists, then f̂ is unique. The rate of RS[L, d] is ρ := (d+1)/|L| ∈ (0, 1),
and its distance is 1 − ρ. The message encoded by f ∈ RS[L, d] is the restriction of f̂ to a distinguished
subset H ⊆ F of size d + 1. (Note that H need not be a subset of L.) Observe that for every polynomial
f̂ ∈ F[X] with degree less than |L| it holds that the word fL := f̂ |L is in RS[L,deg(f̂)] (we will drop the
subscript when the choice of domain L is clear from context). This means that there is a bijection between
words in RS[L, d] and polynomials in F[X] of degree at most d.

We frequently move between univariate polynomials over F and their evaluations on domains L ⊆ F.
We use plain letters like f, g, h to denote functions from L to F, and “hatted letters” f̂ , ĝ, ĥ to denote the
polynomials of minimal degree that agree with the corresponding functions on L. Conversely, if we “drop the
hat” from a polynomial, then we consider its evaluation over L (which will always be larger than the degree).
Domains with subgroup structure. For a finite field F, by “subgroup of F” we mean either a subgroup of
the additive group of F or a subgroup of F∗. By “coset of F” we mean a coset of a subgroup of F (additive
or multiplicative). Throughout the paper we assume that the domain L for the Reed–Solomon code has
“smooth” subgroup structure, meaning that it factors as a direct product of small (i.e., constant-size) subgroups.
Under this assumption we can encode a message using the Reed–Solomon code in time OF(|L| log |L|). This
assumption is also required by the low-degree test that we use [BBHR18; BGKS19].
Vanishing polynomials. For a finite field F and subset S ⊆ F, we denote by vS the unique non-zero monic
polynomial of degree at most |S| that is zero on S; vS is called the vanishing polynomial of S. If S is a coset
in F then the coefficients of vS can be found in time OF(log2 |S|), and subsequently vS can be evaluated
at any point in time OF(log |S|).9 In the holographic setting we can have the indexer find vS for any S of
interest, so that the verifier can evaluate vS in time OF(log |S|). In this paper we assume that this is the case,
so that for any coset S in F we can evaluate its vanishing polynomial at any point in time OF(log |S|).
Derivative of vanishing polynomials. We rely on various properties of the bivariate polynomial uS related
to the formal derivative of vS , first exploited to obtain efficient probabilistic proofs in [BCGGRS19]. For a
finite field F and subset S ⊆ F, we define

uS(X,Y ) :=
vS(X)− vS(Y )

X − Y
,

which is a polynomial of individual degree |S| − 1 because X − Y divides Xi− Y i for any positive integer i.
Note that uS(X,X) is the formal derivative of the vanishing polynomial vS(X).10

The bivariate polynomial uS(X,Y ) satisfies two useful algebraic properties. First, it is strongly related
to the Lagrange polynomials La,S for a ∈ S. Specifically, uS(X, a) ≡ uS(a,X) ≡ La,S(X) · uS(a, a) for
all a ∈ S. In particular, this implies that the polynomials (uS(X, a))a∈S are linearly independent. Second,
the (unique) low-degree extension (in Y ) of the vector (uS(X, a))a∈S ∈ F[X]S is precisely uS(X,Y ).

9If S is a multiplicative subgroup of F then vS(X) = X |S| − 1. More generally, if S is a ξ-coset of a multiplicative subgroup S0

(namely, S = ξS0) then vS(X) = ξ|S|vS0(X/ξ) = X |S| − ξ|S|. In either case, vS can be found and then evaluated at any point in
time OF(log |S|). If instead S is an additive subgroup then there is an algorithm to find the coefficients of vS in time OF(log2 |S|).
Being a linearized polynomial, vS has only O(log |S|) nonzero coefficients, and in particular can be evaluated at any point in time
OF(log |S|). An analogous statement holds if S is a coset of an additive subgroup.

10This follows from the general fact that, for g(X,Y ) := (f(X)− f(Y ))/(X − Y ), g(X,X) is the formal derivative of f(X).
To see this, observe that (Xn − Y n)/(X − Y ) =

∑n−1
i=0 X

iY n−i−1. Setting Y := X yields nXn−1, the derivative of Xn.
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If S is a coset in F, an expression for uS(X,Y ) can be found in time OF(log2 |S|), and subsequently one
can use this expression to evaluate uS(X,Y ) at any point (α, β) ∈ F2 in time OF(log |S|). 11

Univariate sumcheck for cosets. For S ⊆ F, ĝ ∈ F[X], σ ∈ F, define the polynomial:

ΣS(ĝ, σ) :=

{
Xĝ(X) + σ/|S| if S is a multiplicative coset of F
ĝ(X) + σX |S|−1/

∑
α∈S α

|S|−1 if S is an additive coset of F
.

Note that ΣS(· , ·) may be viewed as an arithmetic circuit. We will use the following lemma from [BCRSVW19],
which leads to a univariate analogue of the multivariate sumcheck protocol [LFKN92].

Lemma 3.4 ([BCRSVW19]). Let S be a coset of F, and let f̂ ∈ F[X] be such that deg(f̂) < |S|. Then∑
α∈S f̂(α) = σ if and only if there exists ĝ with deg(ĝ) < |S| − 1 such that f̂ ≡ ΣS(ĝ, σ).

11If S is a multiplicative coset in F then uS(X,Y ) = (X |S| − Y |S|)/(X − Y ) and uS(X,X) = |S|X |S|−1, so both can be
evaluated in time OF(log |S|). If S is an additive coset in F then uS(X,Y ) is obtained directly from the linearized polynomial vS ,
and uS(X,X) is the constant polynomial that equals the coefficient of the linear term in the linearized polynomial vS .
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4 Definition of holographic IOPs

A holographic IOP for an indexed relation R is specified by a tuple HOL = (I,P,V), where I is the
indexer, P the prover, and V the verifier. The indexer is a deterministic polynomial-time algorithm, while
the prover and verifier are probabilistic polynomial-time interactive algorithms. In an offline phase, given an
index i, the indexer I computes an encoding of i, denoted I(i). Subsequently, in an online phase, the prover
P receives as input a triple (i,x,w), while the verifier V receives as input x and is granted oracle access to
the encoded index I(i). The online phase consists of multiple rounds, and in each round the verifier V sends
a message ρi and the prover P replies with a proof string Πi, which the verifier can query at any location. At
the end of the interaction, the verifier V accepts or rejects.

We say that HOL has perfect completeness and soundness error ε if the following holds.

• Completeness. For every index-instance-witness triple (i,x,w) ∈ R, the probability that P(i,x,w)
convinces VI(i)(x) to accept in the interactive oracle protocol is 1.

• Soundness. For every index-instance pair (i,x) /∈ L(R) and prover P̃, the probability that P̃ convinces
VI(i)(x) to accept in the interactive oracle protocol is at most ε.

The round complexity k is the number of back-and-forth message exchanges between the verifier and the
prover. The proof length l is the sum of the length of the encoded index plus the lengths of all proof strings
sent by the prover. The query complexity q is the total number of queries made by the verifier; this includes
queries to the encoded index and to the oracles sent by the prover.

The holographic IOPs that we construct achieve the stronger property of knowledge soundness and
optionally also zero knowledge. We define both of these properties below.

Knowledge soundness. HOL has knowledge error κ if there exists a probabilistic polynomial-time extractor
E such that for every unbounded prover P̃:

Pr

 ∃ j s.t. (ij ,xj ,wj) 6∈ R
∧

〈Pj ,V
I(ij)(xj)〉 = 1

∣∣∣∣∣∣ (~i, ~x, ~P, aux, ~w)← EP̃(1n)

 ≤ κ
and, moreover, the following distributions are identical:{

(~i, ~x, ~P, aux)
∣∣∣ (~i, ~x, ~P, aux)← P̃

}
and

{
(~i, ~x, ~P, aux)

∣∣∣ (~i, ~x, ~P, aux, ~w)← EP̃(1n)
}

.

Zero knowledge. HOL has (perfect) zero knowledge with query bound b if there exists a probabilistic
polynomial-time simulator S such that for every (i,x,w) ∈ R and b-query algorithm Ṽ the random variables
View(P(i,x,w), Ṽ) and SṼ(i,x), defined below, are identical. (An algorithm is b-query if it makes less
than b queries in total to any oracles it has access to.)

• View(P(i,x,w), Ṽ) is the view of Ṽ, i.e., is the random variable (r, a1, . . . , aq) where r is Ṽ’s random-
ness and a1, . . . , aq are the responses to Ṽ’s queries determined by the oracles sent by P.

• SṼ(i,x) is the output of S(i,x) when given straightline access to Ṽ (S may interact with Ṽ, without
rewinding, by exchanging messages with Ṽ and answering its oracle queries), prepended with Ṽ’s
randomness r. Note that r could be of super-polynomial size, so S cannot sample r on Ṽ’s behalf and
then output it; instead, we restrict S to not see r, and prepend r to S’s output.
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Public coins. HOL is public-coin if each verifier message to the prover is a random string. This means
that the verifier’s randomness is its messages ρ1, . . . , ρk ∈ {0, 1}∗ and possibly additional randomness
ρk+1 ∈ {0, 1}∗ used after the interaction. All verifier queries can be postponed, without loss of generality, to
a query phase that occurs after the interactive phase with the prover.

4.1 Reed–Solomon encoded holographic IOPs

Reed–Solomon encoded IOPs (RS-encoded IOPs) were introduced in [BCRSVW19] to provide a formal
framework for separating protocol design from the technical issues introduced by low-degree testing. We
adopt this formalism in this paper as well, with straightforward modifications for the holographic setting.

Informally, in an RS-encoded IOP, the prover and verifier engage in a public-coin IOP interaction
and, after the interaction, the verifier outputs a set of algebraic claims about the prover’s messages. The
completeness condition requires that in the “yes” case, when the verifier interacts with the honest prover, the
output claims are true with probability 1. The soundness condition requires that in the “no” case, when the
verifier interacts with a malicious prover, at least one of the output claims will be false with high probability
no matter what the prover’s messages are. The holographic setting introduces the sole difference that the
verifier’s algebraic claims may include statements about the codewords output by the indexer.

In more detail, by “algebraic claim” we specifically mean a rational constraint, defined next.

Definition 4.1. A rational constraint is a tuple c = (p, q, d) where p : F1+` → F and q : F → F are
arithmetic circuits, and d ∈ N is a degree bound. The arithmetic circuits (p, q) and a list of words
f1, . . . , f` : L→ F jointly define the word (p, q)[f1, . . . , f`] : L→ F given by

∀ a ∈ L , (p, q)[f1, . . . , f`](a) :=
p(a, f1(a), . . . , f`(a))

q(a)
.

A rational constraint c = (p, q, d) is satisfied with respect to f1, . . . , f` if (p, q)[f1, . . . , f`] ∈ RS[L, d].12

When describing rational constraints, we will often use the shorthand notation “deg(f̂) ≤ d”, where
f : L → F is defined as a rational equation over some oracles. This should be taken to mean the rational
constraint c = (p, q, d) that is naturally induced by the expression that defines f .

A special type of rational constraint is a boundary constraint, defined next.

Definition 4.2. A boundary constraint is a rational constraint that expresses a condition such as “f̂(α) = β”
for some word f : L→ F and elements α, β ∈ F. Such a condition is represented via the rational constraint
c = (p, q,deg(f̂) − 1) where p(X,Y ) := Y − β and q(X) := X − α, which can be summarized as

“deg(ĝ) ≤ deg(f̂)−1” where g(a) := (f(a)−β)/(a−α). We denote this constraint simply by “f̂(α) = β”.

In the following we use RS[L, (d1, . . . , dk)] ⊆ (Fk)L to denote the interleaved Reed–Solomon code over
L with degree bounds (d1, . . . , dk), i.e., the set of k × |L| matrices where the i-th row is a codeword of
RS[L, di] (which itself is all evaluations over L of univariate polynomials of degree at most di).

A Reed–Solomon encoded holographic IOP (RS-hIOP) for an indexed relationR is a tuple

(I,P,V, {~dI, ~dP,1, . . . , ~dP,k})

where I is a deterministic algorithm, P and V are probabilistic interactive algorithms, and ~dI ∈ N`0 , ~dP,i ∈
N`i are vectors of degree bounds, that satisfies the following properties.

12For a ∈ L, if q(a) = 0 then we define (p, q)[f1, . . . , f`](a) := ⊥. Note that if this holds for some a ∈ L then, for any words
f1, . . . , f` and degree bound d, the rational constraint (p, q, d) is not satisfied by f1, . . . , f`.
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Degree bounds: On input any i, the indexer I outputs a codeword of RS[L, ~dI]. Moreover, on input any
(i,x,w) ∈ R and for every round i, the i-th message of P(i,x,w) is a codeword of RS[L, ~dP,i].

Completeness: For every (i,x,w) ∈ R, all rational constraints output by VI(i)(x) after interacting with
P(i,x,w) are satisfied with respect to I(i) and P(i,x,w)’s messages with probability 1.

Soundness: For every (i,x) /∈ L(R) and unbounded malicious prover P̃ whose i-th message is a codeword
of RS[L, ~dP,i], all rational constraints output by VI(i)(x) after interacting with P̃ are satisfied with
respect to I(i) and the prover’s messages with probability at most ε.

Often we will write that V “accepts”, which means that all of the rational constraints it outputs are satisfied,
or that it “rejects”, which means that at least one rational constraint is not satisfied.

We conclude by discussing useful complexity measures for RS-encoded IOPs.

• The query evaluation time tq is the natural complexity measure for V, and equals the sum of the query
evaluation times of the rational constraints output by V. The query evaluation time of a single rational
constraint c = (p, q, d) is the time required to compute (p, q)[f1, . . . , f`](a) ∈ F given a ∈ L and oracle
access to f1, . . . , f` (and possibly additional information provided by the indexer). That is, it is the time
needed to (construct and) evaluate the arithmetic circuits (p, q) at a single point.

• The maximum degree is a pair (dc, de) ∈ N× N defined as follows.

dc is the “constraint degree”, defined as the maximum specified degree of any oracle sent by the prover
and any constraint output by the verifier, i.e., dc := max ~dP,1 ∪ · · · ∪ ~dP,k ∪ {d : V outputs (p, q, d)}.
de is the “effective degree”, which is a quantity arising from the compilation from an RS-encoded IOP to a
standard IOP via low-degree testing that is defined as follows:

de := max {dc} ∪
{

deg(p; ~dI, ~dP,1, . . . , ~dP,k), d+ deg(q) : V outputs (p, q, d)
}

where deg(P ; ~d) for an arithmetic circuit P : F1+m → F and degree bounds d ∈ Fm denotes the degree of
the composed polynomial P (X,Q1(X), . . . , Qm(X)) when deg(Qi) = di. Note that de ≥ dc.

4.2 Stronger notions of soundness

Aside from the standard notion of soundness above, there are two further soundness notions that arise when
constructing non-interactive arguments from IOPs. These are round-by-round soundness [CCHLRR18;
CMS19] and state-restoration soundness [BCS16], adapted to holographic IOPs. We discuss these below.

Round-by-round soundness. We begin by defining the notion of a (partial) transcript of an IOP, which
means all verifier messages and proof strings up to a point where the prover is about to move

Definition 4.3. A transcript tr of a holographic IOP (I,P,V) is a tuple of the form (Π1,m1, . . . ,Πi,mi)
for some i ∈ [k], where each Πj is a prover (oracle) message and each mj is a verifier message. We denote
the empty transcript by ∅. A transcript is full if i = k, where k is the round complexity of (I,P,V).

A protocol HOL = (I,P,V) has round-by-round soundness error εrbr if there exists a function State
from the set of transcripts to {accept, reject} such that for every transcript tr:
• if (i,x) /∈ L(R) and tr = ∅, then State(i,x, tr) = reject;
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• if State(i,x, tr) = reject, then rbr(tr) ≤ εrbr where

rbr(tr) := max
Π

Pr
m

[State(x, i, tr‖Π‖m) = accept] ;

• if State(i,x, tr) = reject and tr is a full transcript, then VI(i)(x; tr) rejects.
The notion of round-by-round soundness for RS-encoded holographic IOPs is as above, except that the
maximum in the definition of rbr is taken over Πi ∈ RS[L, ~dP,i], for tr a transcript of i− 1 rounds, and the
third condition above need only hold for full transcripts tr where Πi ∈ RS[L, ~dP,i] for all i. In particular,
State(tr) can be taken to be accept for any tr where the prover messages are not of the prescribed degrees.

State-restoration soundness. State-restoration soundness captures the ability of the prover to cheat when
it is able to rewind the verifier a bounded number of times. State-restoration soundness essentially exactly
captures the soundness of non-interactive arguments derived from IOPs via the BCS transform [BCS16]. In
Section 10 we prove that continues to be true when we modify the BCS transform to construct preprocessing
non-interactive arguments from holographic IOPs. However here we do not define state-restoration soundness
because in our proof of the compiler we will rely on the BCS transform as a black box. We note only that if a
protocol has round-by-round soundness error εrbr then it has state-restoration soundness error εsr(t) ≤ t · εrbr,
where t is the bound on the number of rewinds. This fact is relevant because in Section 8 we will prove that
the efficient holographic IOP for R1CS that we construct has small round-by-round soundness error.

Knowledge analogues. Each of the above notions of soundness induces a corresponding definition of
knowledge soundness, whose details we omit for simplicity. See [CMS19] for the definition of round-by-round
knowledge error, and see [BCS16] for the definition of state-restoration knowledge error.
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5 Sumcheck for rational functions

We describe how to extend the univariate sumcheck protocol of [BCRSVW19] from univariate polynomials
to univariate rational functions. We thus obtain a protocol for checking the value of the sum of a rational
function p̂(X)/q̂(X) ∈ F(X) over a subgroup K of F.

Definition 5.1. LetR be the set of all pairs (x,w) =
(
(F, L,K, dp, dq, σ), (p, q)

)
such that p ∈ RS[L, dp],

q ∈ RS[L, dq], and q̂(a) 6= 0 for all a ∈ K. The promise relationRRSUM = (RYES
RSUM,RNO

RSUM) is defined as
follows: RYES

RSUM is the subset of pairs inR such that
∑

a∈K p̂(a)/q̂(a) = σ, andRNO
RSUM := R \RYES

RSUM.

Let σ ∈ F be the claimed value for the sum. We know from Lemma 3.4 that a polynomial f̂(X) of degree
at most |K| − 1 sums to σ over K if and only if there exists a polynomial ĝ(X) with degree at most |K| − 2
such that ΣK(ĝ, σ)(X) equals f̂(X). While we do not know how to obtain an equivalence like this one for
the case of rational functions, there is a natural approach to build on the case of polynomials.

The prover computes the polynomial f̂(X) of minimal degree that agrees with the rational function
p̂(X)/q̂(X) on K, and then sends (the evaluation of) the corresponding polynomial ĝ guaranteed by
Lemma 3.4 (i.e., such that ΣK(ĝ, σ)(X) ≡ f̂(X)). The verifier can check that ΣK(ĝ, σ)(X) sums to
σ via the rational constraint “deg(ĝ) ≤ |K| − 2”. Then the verifier is left to check that ΣK(ĝ, σ)(X) agrees
with p̂(X)/q̂(X) on K, which is equivalent to checking that ΣK(ĝ, σ)(X)q̂(X)− p̂(X) vanishes on K (as
q̂(a) 6= 0 for all a ∈ K), which can be done via a standard use of a second rational constraint.

Construction 5.2 (rational sumcheck). Let (x,w) =
(
(F, L,K, dp, dq, σ), (p, q)

)
be a pair in R. In the

rational sumcheck protocol, the honest prover P receives as input (x,w), and sends a codeword g ∈
RS[L, |K| − 2] that is obtained as follows: compute the unique polynomial f̂ of degree at most |K| − 1 that
agrees with p̂(X)/q̂(X) on K; compute the unique polynomial ĝ(X) of degree at most |K| − 2 such that
ΣK(ĝ, σ)(X) ≡ f̂(X); evaluate ĝ(X) over L to obtain g. The honest verifier V receives as input x, and
outputs the following two rational constraints: “deg(ĝ) ≤ |K| − 2” and “deg(ê) ≤ de”, where e : L→ F is
a function and de ∈ N is a degree bound that are defined as follows:

∀ a ∈ L , e(a) :=
ΣK(g, σ)(a) · q(a)− p(a)

vK(a)
and de := max(dp, |K| − 1 + dq)− |K| . (1)

Formally, the above is an RS-encoded PCP of proximity forRRSUM (see [BCRSVW19] for definitions).
For simplicity, in the lemma below we directly establish the properties that we need without this abstraction.

Lemma 5.3. Let (x,w) =
(
(F, L,K, dp, dq, σ), (p, q)

)
∈ R be such that L ∩K = ∅, K is a subgroup of F,

and max(dp, |K| − 1 + dq) < |L|. The protocol (P,V) in Construction 5.2 satisfies the following.
1. Completeness: if (x,w) ∈ RYES

RSUM then V(x) outputs rational constraints that are satisfied by (p, q, g),
where g is the oracle sent by the honest prover P(x,w).

2. Soundness: if (x,w) ∈ RNO
RSUM then for every malicious prover P̃ at least one of the rational constraints

output by V(x) is not satisfied by (p, q, g), where g is the oracle sent by the malicious prover P̃.
The protocol has constraint degree max(dp−|K|, dq−1, |K|−2) and effective degree max(dp, |K|−1+dq).
The query evaluation time of the verifier is OF(log |K|).

Proof. We first argue completeness and then soundness.

Completeness. Suppose that
∑

a∈K p̂(a)/q̂(a) = σ. The honest prover P sends the polynomial ĝ(X) with
degree at most |K| − 2 such that ΣK(ĝ, σ)(X) agrees with p̂(X)/q̂(X) on K; the existence of ĝ(X) is
guaranteed by Lemma 3.4. Since q̂(a) 6= 0 for all a ∈ K, we also have that ΣK(ĝ, σ)(a) · q̂(a) = p̂(a) for all
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a ∈ K. Thus the polynomial ΣK(ĝ, σ)(X) · q̂(X)− p̂(X) is divisible by the vanishing polynomial vK(X).
We conclude that the two rational constraints “deg(ĝ) ≤ |K| − 2” and “deg(ê) ≤ de” are satisfied.

Soundness. Suppose that
∑

a∈K p̂(a)/q̂(a) 6= σ. Let g be the oracle sent by P̃ and suppose that the
rational constraint “deg(ĝ) ≤ |K| − 2” is satisfied (or else we are done). By Lemma 3.4 we know that∑

a∈K ΣK(ĝ, σ)(a) = σ. Hence there must exist a∗ ∈ K such that ΣK(ĝ, σ)(a∗) · q̂(a∗) 6= p̂(a∗), so
a∗ is not a root of the polynomial ΣK(ĝ, σ)(X) · q̂(X) − p̂(X). By definition of e, the polynomials
ΣK(ĝ, σ)(X) · q̂(X)− p̂(X) and ê(X) ·vK(X) agree on L. Since de+ |K| = max(dp, |K|−1 +dq) < |L|,
if the rational constraint “deg(ê) ≤ de” is also satisfied, then we can conclude that these two polynomials are
identical, which is a contradiction because a∗ is a root of ê(X) · vK(X).

Efficiency. The verifier outputs a rational constraint on g, which is the oracle sent by the prover, and
a rational constraint on e, which is the virtual oracle defined in Eq. (1). So the query evaluation time is
dominated by the number of field operations to evaluate e at a single point, which is O(log |K|) (due to the
need to evaluate the vanishing polynomial vK at that point). The stated constraint and effective degrees can
be obtained by keeping track of the degrees of the relevant real and virtual oracles in the protocol (as in the
table) and then using the definitions in Section 4.1.

oracle type constraint degree numerator degree denominator degree

g real |K| − 2 – –
e virtual de max(dp, |K| − 1 + dq) |K|

Remark 5.4 (zero knowledge). In Section 6, the above construction will be used as a subprotocol to evaluate
the arithmetization of a public matrix. For this reason, we do not require any zero knowledge properties
of the above construction (and indeed, the construction as described is not zero knowledge). Nonetheless,
it is relatively straightforward to obtain a zero knowledge variant of this construction by using bounded
independence and zero knowledge sumcheck as in [BCRSVW19].
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6 Holographic lincheck

We describe a holographic variant of the lincheck protocol of [BCRSVW19]. The lincheck problem involves
checking linear relations between encodings: given H ⊆ F, Reed–Solomon codewords f, g ∈ RS[L, d], and
matrix M ∈ FH×H , check that f̂ |H = M · ĝ|H . Below we consider matrices M that are given in a sparse
representation (see Definition 3.1), as the protocol that we describe leverages this sparsity for efficiency.

Definition 6.1. Let R be the set of all pairs (i,x,w) =
(
(F, L,H,K, d, 〈M〉), 1log |K|, (f1, f2)

)
such that

F is a finite field, L,H,K are subsets of F, 〈M〉 : K → H ×H × F is a sparse representation of a matrix
M ∈ FH×H , d ∈ N is a degree bound, and f1, f2 ∈ RS[L, d] are codewords. The indexed promise relation
RLIN = (RYES

LIN ,RNO
LIN) is such thatRYES

LIN is the subset ofR with f̂1|H = M · f̂2|H , andRNO
LIN :=R \RYES

LIN .

The goal of this section is to prove the following lemma.

Lemma 6.2. Let (i,x,w) =
(
(F, L,H,K, d, 〈M〉), 1log |K|, (f1, f2)

)
∈ R be such thatH,K are subgroups

of F, |L| ≥ |K|, and L ∩ (H ∪K) = ∅. The protocol (I,P,V) in Construction 6.8 satisfies the following.
1. Completeness: if (i,x,w) ∈ RYES

LIN then V(x) outputs rational constraints that are satisfied by (f, g) and
the oracles sent by the honest prover P(i,x).

2. Soundness: if (i,x,w) ∈ RNO
LIN then for every malicious prover P̃ all of the rational constraints output by

V(x) are satisfied by (f1, f2) and the oracles sent by P̃ with probability at most 2(|H| − 1)/(|F| − |H|).
Moreover, the construction can be made zero knowledge; the soundness error is then 2|H|/(|F| − |H|).

The prover and indexer run in timeOF(|L| log |L|), and the verifier’s query evaluation time isOF(log |K|).
The constraint degree is max(d−1, |H|−2, 2|K|−3) and the effective degree is max(|H|−1+d, 3|K|−3).

Formally, Construction 6.8 is an RS-encoded IOP of proximity for RLIN. However, for simplicity, we
directly establish the properties we need without this abstraction. The notion of zero knowledge is as usual
for proximity notions: we require that if a malicious verifier Ṽ makes t queries across all of the oracles
available to it, the simulator can reproduce its view by making t queries to each of the witness oracles.

The remainder of this section proceeds as follows. In Section 6.1, we describe a subprotocol for checking
an evaluation of the low-degree (bivariate) extension of a matrix. In Section 6.2, we describe how to use this
subprotocol to build a holographic lincheck protocol, proving Lemma 6.2. Throughout this section we rely on
the notion of a sparse representation of a matrix (see Section 3.1) and on facts about vanishing polynomials
and their derivatives (see Section 3.3).

6.1 Holographic proof for sparse matrix arithmetization

The bivariate low-degree extension of a given matrix M ∈ FH×H is the unique polynomial M̂ ∈ F[X,Y ]
of minimal degree such that M̂(a, b) = Ma,b for all a, b ∈ H . We wish to check statements of the form
“M̂(α, β) = γ” for α, β chosen (almost) arbitrarily in F.

Definition 6.3. The indexed relationRMAT is the set of triples (i,x,w) =
(
(F, H,K, 〈M〉), (α, β, γ),⊥

)
where F is a finite field, H and K are subsets of F, 〈M〉 : K → H ×H × F is a sparse representation of a
matrix M ∈ FH×H , α, β, γ ∈ F are field elements, and M̂(α, β) = γ. (This relation has no witnesses.)

The indexed relation RMAT is tractable: one can check if M̂(α, β) = γ in time OF(‖M‖) by directly
computing the value of the low-degree extension M̂(X,Y ) at (α, β). Without holography, it is not possible
to verify this equation in time oF(‖M‖) since in general M̂(α, β) depends on every entry of M .

We show how to significantly reduce this cost via a protocol that holographically stores information about
M in the encoded index in order to achieve an online verification time of O(log‖M‖). Our protocol relies on
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expressing the bivariate low-degree extension M̂(X,Y ) in terms of univariate low-degree extensions that
describe the non-zero entries of M . We explain this algebraic identity, and then how our protocol uses it.

Given a sparse representation 〈M〉 : K → H ×H × F, define ˆrow〈M〉, ĉol〈M〉 : K → H, v̂al〈M〉 ∈ F[X]
to be the unique polynomials of minimal degree such that for each k ∈ K, letting (a, b, α) := 〈M〉(k),

ˆrow〈M〉(k) := a , ĉol〈M〉(k) := b , v̂al〈M〉(k) :=
α

uH(a, a) · uH(b, b)
.

The following claim expresses M̂ in terms of ˆrow〈M〉, ĉol〈M〉, v̂al〈M〉.

Claim 6.4. For any sparse representation 〈M〉 : K → H ×H × F of a matrix M ∈ FH×H ,

M̂(X,Y ) ≡
∑
k∈K

vH(X)

(X − ˆrow〈M〉(k))
· vH(Y )

(Y − ĉol〈M〉(k))
· v̂al〈M〉(k) .

Proof. Denote the right-hand side of the equation by P (X,Y ). Since ˆrow〈M〉(k), ĉol〈M〉(k) ∈ H for
all k ∈ K, P (X,Y ) is a polynomial of degree at most |H| − 1 in both X and Y . We now argue that
P (a, b) = Ma,b for arbitrary a, b ∈ H (which implies thatP agrees with M̂ onH×H and hence thatP ≡ M̂ ).
Suppose first that there is no k ∈ K, γ ∈ F such that 〈M〉(k) = (a, b, γ). By definition of M , Ma,b = 0;
moreover for any k ∈ K either vH(X)/(X− ˆrow〈M〉(k)) has a root at a or vH(Y )/(Y −ĉol〈M〉(k)) has a root
at b, and so P (a, b) = 0 as well. Now suppose that there exists k ∈ K, γ ∈ F such that 〈M〉(k) = (a, b, γ);
note that k is unique because 〈M〉 is injective. Hence P (a, b) = uH(a, a) ·uH(b, b) · v̂al〈M〉(k) = Ma,b.

Construction 6.5. The indexer I receives as input an index i = (F, H,K, 〈M〉) along with an evaluation do-
main L ⊆ F, computes the low-degree extensions ˆrow〈M〉, ĉol〈M〉, v̂al〈M〉, and then outputs their evaluations
row〈M〉, col〈M〉, val〈M〉 ∈ RS[L, |K| − 1]. The indexer I also outputs descriptions of F, H,K.

Subsequently, given an instance x = (α, β, γ), the honest prover P receives as input (i,x) and the honest
verifier V receives as input x and oracle access to I(i). The prover P and verifier V engage in the rational
sumcheck protocol (see Section 5) to show that∑

k∈K

vH(α)

(α− ˆrow〈M〉(k))
· vH(β)

(β − ĉol〈M〉(k))
· v̂al〈M〉(k) = γ .

In particular, the verifier V outputs the rational constraints “deg(ĝ) ≤ |K| − 2” for g sent by P, and
“deg(ê) ≤ 2|K| − 3” for e : L→ F defined as

∀ a ∈ L , e(a) :=
ΣK(g, γ)(a) · (α− row〈M〉(a))(β − col〈M〉(a))− vH(α)vH(β)val〈M〉(a)

vK(a)
. (2)

Lemma 6.6. For any field F and evaluation domain L ⊆ F, Construction 6.5 is an RS-encoded holographic
PCP over domain L for the indexed relation RMAT with perfect completeness and perfect soundness, for
indices i = (F, H,K, 〈M〉) and instances x = (α, β, γ) with H,K subgroups of F, |L| ≥ |K|, L ∩K = ∅,
and α, β ∈ F \H . In particular, the following properties hold.
1. Completeness: if (i,x,⊥) ∈ RMAT then VI(i)(x) outputs rational constraints that are satisfied by the

oracles sent by the honest prover P(i,x).
2. Soundness: if (i,x,⊥) 6∈ RMAT then for every malicious prover P̃ at least one of the rational constraints

output by VI(i)(x) is not satisfied by the oracles sent by P̃.
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The constraint degree is 2|K| − 3, and the effective degree is 3|K| − 3. The indexer and prover run in time
OF(|L| log |L|), and the query evaluation time of the verifier is OF(log |K|).

Proof. Completeness and soundness follow immediately from Claim 6.4, the completeness and soundness
of the rational sumcheck protocol, and the observation that the denominator of the rational summand for
M̂(α, β) is nonzero for all k ∈ K when α, β ∈ F \H . The query evaluation time is dominated by the cost
of evaluating vH and vK at a point, which is OF(log |H|+ log |K|) = OF(log |K|). The constraint degree
and effective degree are obtained from setting dp := |K| − 1 and dq := 2|K| − 2 in the rational sumcheck
protocol (see Lemma 5.3).

6.2 The protocol

Recall from Section 3.3 that ~r :=
(
uH(a, Y ))a∈H ∈ F[Y ]H is a vector of linearly independent polynomials

in Y . The primary computational task in the lincheck protocol is to evaluate the low-degree extension
uM (X,Y ) of ~rM ∈ F[Y ]H at a uniformly chosen point in F× F. For this, we use the protocol for sparse
matrix arithmetization discussed above, along with an observation showing that it suffices to compute the
arithmetization of a matrix M∗ related to M .

Claim 6.7. For any matrix M ∈ FH×H , let M∗ ∈ FH×H be the matrix given by M∗a,b := Mb,a · uH(b, b)
for all a, b ∈ H; note that ‖M∗‖ = ‖M‖. Then

uM (X,Y ) ≡ M̂∗(X,Y ) .

Proof. By the definition of low-degree extension,

uM (X,Y ) ≡
∑
a∈H

(~rM)a · La,H(X) ≡
∑
a∈H

La,H(X)
∑
b∈H

Mb,a · uH(b, Y ) .

Recall that uH(b, Y ) ≡ uH(b, b)Lb,H(Y ). Hence

uM (X,Y ) ≡
∑
a∈H

∑
b∈H

La,H(X)Lb,H(Y )Mb,auH(b, b) ≡ M̂∗(X,Y ) .

Construction 6.8 (holographic lincheck). The indexer I receives as input an index i = (F, L,H,K, d, 〈M〉),
computes a sparse representation 〈M∗〉 of the matrix M∗ (as in Claim 6.7), and then runs the indexer of the
sparse matrix arithmetization protocol (Construction 6.5) on the index (F, H,K, 〈M∗〉); note that the output
of the latter includes descriptions of F, H,K.

Subsequently, given an instance x = 1log |K| and witness w = (f1, f2), the honest prover P receives
as input (i,x), the honest verifier V receives as input x and oracle access to I(i), and they engage in the
following protocol.
1. V sends α ∈ F \H uniformly at random.
2. P sends the evaluation t ∈ RS[L, |H| − 1] of the polynomial t̂(X) := uM (X,α).
3. P,V engage in the sumcheck protocol to show that

∑
b∈H uH(b, α)f̂1(b)− t̂(b)f̂2(b) = 0.

That is, P sends g1 ∈ RS[L, |H| − 2] and V outputs the rational constraints “deg(ĝ1) ≤ |H| − 2” and
“deg(ĥ) ≤ d− 1” where

∀ b ∈ L , h(b) :=
uH(b, α)f1(b)− t(b)f2(b)− ΣH(g1, 0)(b)

vH(b)
.
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4. V sends β ∈ F \H uniformly at random.
5. P sends the field element γ := uM (β, α) = t̂(β), and V outputs the boundary constraint “t̂(β) = γ”.
6. P,V engage in the matrix arithmetization protocol (Construction 6.5) to show that M̂∗(β, α) = γ.

That is, P sends g2 ∈ RS[L, |K| − 2] and V outputs the rational constraints “deg(ĝ2) ≤ |K| − 2” and
“deg(ê) ≤ 2|K| − 3”, where e : L→ F is as in Eq. (2) with g2 in place of g and M∗ in place of M .

Proof of Lemma 6.2. Forα ∈ F, let ~rα :=
(
uH(b, α)

)
b∈H ∈ FH . One can verify that ~rαM =

(
uM (b, α)

)
b∈H .

Completeness. Suppose that f̂1|H = M · ĝ|H . Then for every α ∈ F \H it holds that∑
b∈H

uH(b, α)f̂1(b) = 〈~rα, f̂1|H〉 = 〈~rα,M · f̂2|H〉 = 〈~rαM, f̂2|H〉 =
∑
b∈H

uM (b, α)f̂2(b) =
∑
b∈H

t̂(b)f̂2(b)

and so the sumcheck protocol in Step 3 succeeds. Next, Claim 6.7 tells us that uM (X,Y ) ≡ M̂∗(X,Y ) and
so for every β ∈ F \H it holds that uM (β, α) = M̂∗(β, α). This means that M̂∗(β, α) = t̂(β) = γ, and so
the matrix arithmetization subverifier accepts, and the boundary constraint “t̂(β) = γ” is satisfied.

Soundness. Suppose that f̂1|H 6= M · f̂2|H . Then Prα∈F\H [〈~rα, f̂1|H〉 = 〈~rα,M · f̂2|H〉] ≤ (|H| −
1)/(|F| − |H|). Suppose that this does not occur; then if t̂(X) ≡ uM (X,α), the sumcheck constraint
is satisfied with probability zero, by the soundness of the sumcheck protocol. Hence we may assume
t̂(X) 6≡ uM (X,α), so Prβ∈F\H [t̂(β) = uM (β, α)] ≤ (|H| − 1)/(|F| − |H|). Thus assuming that the
sumcheck constraint is satisfied, Prα,β∈F\H [t̂(β) = uM (β, α)] ≤ 2(|H| − 1)/(|F| − |H|). If this does not
occur, and the boundary constraint “t̂(β) = γ” is satisfied, then γ 6= uH(β, α) = M̂∗(β, α), and so the
matrix arithmetization subverifier outputs a rational constraint that is not satisfied.

Zero knowledge. Note that since M is part of the index rather than the witness, it is not relevant for zero
knowledge; in particular, the simulator has access to M . Hence to ensure zero knowledge we need only
modify Step 3 to use the zero knowledge sumcheck protocol. This adds an additional oracle (the random
mask) but not an additional round, since we can run the protocols in parallel. The soundness error increases
by 1/|F|. The sumcheck simulator satisfies the property that the view of a malicious verifier making t queries
across all oracles can be simulated by making t queries to the summand. Since the summand is defined
pointwise with respect to (f1, f2), this results in at most t queries to each of f1, f2.

Efficiency. The indexer runs the indexer of the holographic protocol for sparse matrix arithmetization on (a
modification of) the given matrix, and so runs in timeOF(|L| log |L|). The first message of the prover is for the
sumcheck protocol and the second message of the prover is for the sparse matrix arithmetization protocol, and
so the prover runs in time OF(|L| log |L|). The query evaluation time of the verifier is dominated by the cost
to evaluate the vanishing polynomials vH and vK at a point, and so is OF(log |H|+ log |K|) = OF(log |K|).

The constraint degree is max(d − 1, |H| − 2, 2|K| − 3) and the effective degree is max(|H| − 1 +
d, 3|K| − 3), as can be seen by keeping track of the degrees of all relevant real and virtual oracles in the
protocol (as in the table) and then using the definitions in Section 4.1.

oracle type constraint degree numerator degree denominator degree

g1 real |H| − 2 – –
h virtual d− 1 |H| − 1 + d |H|
g2 real |K| − 2 – –
e virtual 2|K| − 3 3|K| − 3 |K|
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7 RS-encoded holographic IOP for R1CS

We describe an RS-encoded holographic IOP for R1CS. The main subroutine that we use is the RS-encoded
holographic protocol for lincheck that we obtained in Section 6.

Theorem 7.1. Fix some L ⊆ F and b ∈ N. Construction 7.2 below is a RS-encoded holographic IOP of
knowledge forRR1CS (Definition 3.2) over domain L for indices (F, H,K, 〈A〉, 〈B〉, 〈C〉) such that H,K
are subgroups of F, |L| ≥ |K|, and L ∩ (H ∪K) = ∅. The protocol has 5 messages (prover moves first), is
zero knowledge against verifiers making less than b queries, and has soundness error |H|/(|F| − |H|). The
index length is OF(|L|), and the proof length is OF(|L|). The prover and indexer run in time OF(|L| log |L|)
and the verifier runs in time OF(|x|+ log |K|). The constraint degree is max(|H|+ b− 2, 2|K| − 3), and
the effective degree is max(2|H|+ b− 2, 3|K| − 3).

Construction 7.2. We describe an RS-encoded holographic IOP (I,P,V) for R1CS. (See Fig. 4 for a
diagram of this protocol after applying optimizations described in Remark 7.3 below.) In the description below
we denote by (ILIN,PLIN,VLIN) the zero knowledge holographic protocol for lincheck (Construction 6.8).

The indexer I receives as input an index i = (F, H,K, 〈A〉, 〈B〉, 〈C〉), computes the encoded index
IM ← ILIN(iMLIN) where iMLIN := (F, L,H,K, |H| + b − 1, 〈M〉) for each M ∈ {A,B,C} for each M ∈
{A,B,C}, and then outputs the tuple (IA, IB, IC). (Implicitly this includes descriptions of F, H,K; recall
also that in an RS-encoded protocol all parties have access to a description of the evaluation domain L.)

Subsequently, the prover P receives as input the index i, an instance x = (I, x), and a witness w = w;
the verifier V receives as input the instance x only. Let z := (x,w) ∈ FH be the full variable assignment.
1. Compute LDE of the input. Before the interaction, the prover P constructs f̂x(X), the unique polyno-

mial of degree less than |I| such that, for all b ∈ I , f̂x(b) = xb. Define fx := f̂x|L. Note that the verifier
V, which knows x, can evaluate f̂x(X) at any point in F in time OF(|x|).

2. Witness and auxiliary oracles. The prover P sends to the verifier V the oracles

fw ∈ RS[L, |H| − |I|+ b− 1] and fAz, fBz, fCz ∈ RS[L, |H|+ b− 1]

defined as follows.

• fw := f̄w|L where f̄w is a random polynomial of degree less than |H| − |I|+ b such that

∀ a ∈ H \ I , f̄w(a) =
wa − f̂x(a)

vI(a)
.

• fAz := f̄Az|L where f̄Az is a random polynomial of degree less than |H|+ b such that, for all a ∈ H ,
f̄Az(a) =

∑
b∈H Aa,b · zb = (Az)a. The other codewords, fBz and fCz , are defined similarly.

The codewords fx and fw implicitly define the “virtual oracle” fz ∈ RS[L, |H|+ b− 1] where fz(a) :=
fw(a)vI(a) + fx(a) for a ∈ L. Note that f̂z(a) = za for all a ∈ H , so f̂z is a low-degree extension of z.

3. Rowcheck. To test that f̂Az|H ◦ f̂Bz|H = f̂Cz|H , the verifier V outputs the rational constraint “deg(ŝ) ≤
|H|+ 2b− 2” where s : L→ F is defined as

∀ a ∈ L , s(a) :=
fAz(a) · fBz(a)− fCz(a)

vH(a)
.

4. Linchecks. To test that f̂Mz|H = M · f̂z|H for each M ∈ {A,B,C}, the prover P and verifier V run
the following in parallel. Recall that the verifier V has oracle access to the encoded index is (IA, IB, IC).
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(a)
(
PLIN(iALIN, 1

log |K|, (fAz, fz)),V
fAz ,fz ,IA
LIN (1log |K|)

)
.

(b)
(
PLIN(iBLIN, 1

log |K|, (fBz, fz)),V
fBz ,fz ,IB
LIN (1log |K|)

)
.

(c)
(
PLIN(iCLIN, 1

log |K|, (fCz, fz)),V
fCz ,fz ,IC
LIN (1log |K|)

)
.

Proof. Fix an index i = (F, H,K, 〈A〉, 〈B〉, 〈C〉) and instance x = (I, x).

Completeness. Suppose that (i,x, w) ∈ RR1CS, and let z := (x,w). Note that, by construction, f̂z is a low-
degree extension of z. Since Az ◦Bz = Cz, we know that f̂Az|H ◦ f̂Bz|H = f̂Cz|H and f̂Mz|H = M · f̂z|H
for each M ∈ {A,B,C}. Hence, for all a ∈ H it holds that fAz(a) · fBz(a)− fCz(a) = 0, and so ŝ(X) is
a polynomial of degree at most 2(|H|+ b− 1)− |H| = |H|+ 2b− 2, so the rational constraint in Step 3
is satisfied. Moreover, the holographic lincheck protocol in Step 4a yields rational constraints which are
satisfied; by a similar argument, Steps 4b and 4c yield satisfied rational constraints.

Soundness. Suppose that (i,x) /∈ L(RR1CS). Let fz be the virtual oracle induced by fw as sent by P̃. Then
either f̂Az|H ◦ f̂Bz|H 6= f̂Cz|H , or there exists M ∈ {A,B,C} such that f̂Mz|H 6= M · f̂z|H . In the former
case, the rational constraint output in Step 3 is not satisfied (it is satisfied with probability 0). In the latter
case, by the soundness of the holographic lincheck protocol the probability that all of the rational constraints
output by the verifier in Steps 4a, 4b and 4c are satisfied is at most |H|/(|F| − |H|). The soundness error is
given by maximizing over these two cases.

Proof of knowledge. The extractor E operates as follows: run P̃ to obtain (~i, ~x, ~P, aux). For each
Pj , run it until it outputs fw and output f̂w|H\I . From the soundness analysis, it holds that if extraction
fails to produce a valid witness, the verifier accepts with probability at most ε := |H|/(|F| − |H|). Let
S := {fw : (ij ,xj , f̂w|H\I) ∈ RR1CS}. Then

Pr[V accepts] = Pr[V accepts|fw ∈ S] Pr[fw ∈ S] + Pr[V accepts|fw /∈ S] Pr[fw /∈ S]

≤ Pr[E succeeds] + ε · Pr[E fails] = (1− ε) Pr[E succeeds] + ε

And so if V accepts with probability µ, then E succeeds with probability at least (µ− ε)/(1− ε). Taking a
union bound over all j yields a knowledge error of k · (µ− ε)/(1− ε) when P̃ outputs k instances.

Zero knowledge. The simulator S simulates the oracles fw, fAz, fBz, fCz by answering Ṽ’s queries with
uniformly random elements of F. It runs the simulator for the zero knowledge holographic lincheck protocol
as appropriate, answering the subsimulators’ queries to the oracles with uniformly random field elements.
Since Ṽ makes t < b queries across all oracles, the guarantees of the subsimulators ensure that we only need
to simulate at most t evaluations of each of fw, fAz, fBz, fCz in L (with L ∩H = ∅), which by bounded
independence properties of random polynomials will be uniformly random elements of F. For a detailed
simulator construction for a similar protocol, see [BCRSVW19, Section 7.1].

Efficiency. The running time of the indexer follows from the running time of the lincheck indexer; in
particular, its computation cost is dominated by the cost of a constant number of FFTs over L. The running
time of the prover is similarly dominated. The constraint cost of the verifier consists of evaluating the low
degree extension of x at a single point in F, and running the lincheck and rowcheck subverifiers whose cost is
dominated by evaluating vH and vK ; using preprocessing this can be achieved for H,K subgroups of F in
time OF(log |K|).

Remark 7.3 (batching linchecks). We would like to batch the three lincheck protocols from Steps 4a to 4c
into a single one, similarly to what is done in the non-holographic protocol for R1CS of [BCRSVW19].
Informally, we want the verifier to send random elements ηA, ηB, ηC and then run a holographic lincheck for
the matrix ηAA+ ηBB + ηCC. However doing this requires some care because the verifier only has access
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to the encoded indices (IA, IB, IC) for the matrices A,B,C, as opposed to an encoded index for the matrix
ηAA+ ηBB + ηCC, and our holographic lincheck protocol is not linear in the encoded indices.

We now explain how to overcome this issue by “opening up” the lincheck protocol into its components,
described in Construction 6.8 in Section 6. The resulting protocol is summarized in Fig. 4.

The first message of the verifier consists of random elements ηA, ηB, ηC for the random linear combina-
tion, along with the random challenge α prescribed by Step 1 of the holographic lincheck protocol.

The subsequent two steps are straightforward to adapt due to linearity:

• In Step 2, the prover must send the evaluation of the polynomial t̂(X) := uηAA+ηBB+ηCC(X,α), which
by linearity equals to

∑
M∈{A,B,C} ηMuM (X,α). The prover thus sends t := t̂ |L∈ RS[L, |H| − 1].

• In Step 3, the prover and verifier must run the zero knowledge sumcheck protocol (relative to a random
mask r sent earlier) to show that

∑
b∈H uH(b, α)f̂$(b) − t̂(b)f̂z(b) = 0 where f̂$(X) is the low-degree

extension of the vector (
∑

M∈{A,B,C} ηMM)z. By linearity, f̂$(X) =
∑

M∈{A,B,C} ηM f̂M (X), which
means that the verifier can do this since the prover has sent fz, fA, fB, fC .

Then there are two steps that remain unchanged: the verifier sends the random challenge β prescribed by
Step 4 of the holographic lincheck protocol, and the prover answers with the evaluation γ := t̂(β) prescribed
in Step 5 of the holographic lincheck protocol.

The final step of the holographic lincheck protocol, Step 6, involves a rational sumcheck checking that γ
is the value of the low-degree extension of

∑
M∈{A,B,C} ηMM at (β, α). This is the step that lacks linear

structure and we need to modify it. Specifically we need to turn the expression∑
M∈{A,B,C}

ηM
vH(α)

(α− ˆrow〈M∗〉(X))
· vH(β)

(β − ĉol〈M∗〉(X))
· v̂al〈M∗〉(X)

into a rational function in X . This is achieved by “multiplying up” denominators, to obtain the rational
function p̂(X)/q̂(X) where

p̂(X) := vH(α)vH(β)
∑

M∈{A,B,C}

ηM v̂al〈M∗〉(X)
∏

N∈{A,B,C}\{M}

(α− ˆrow〈N∗〉(X))(β − ĉol〈N∗〉(X)) (3)

q̂(X) :=
∏

M∈{A,B,C}

(α− ˆrow〈M∗〉(X))(β − ĉol〈M∗〉(X)) . (4)

Crucially, the verifier can easily evaluate p̂ and q̂ at any point on L by having oracle access to the encoded
indices (IA, IB, IC).
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P((F, H,K, 〈A〉, 〈B〉, 〈C〉), (x, I), w) V{row〈M∗〉,col〈M∗〉,val〈M∗〉}M∈{A,B,C}(F, H,K, (x, I))

sample fw ∈ RS[L, |w|+ b− 1]
sample fAz, fBz, fCz ∈ RS[L, |H|+ b− 1]
sample r ∈ RS[L, 2|H|+ b− 2] s.t.

∑
a∈H r̂(a) = 0

fw, fAz, fBz, fCz, r

fz := fw · vI + fx

s :=
fAzfBz − fCz

vH
“deg(ŝ) ≤ |H|+ 2b− 2”

Holographic Lincheck
ηA, ηB, ηC ← F

α← F \H
ηA, ηB, ηC , α

compute t̂(X) :=
∑

M∈{A,B,C} ηMuM (X,α)

t := t̂ |L∈ RS[L, |H| − 1]

t

Polynomial Sumcheck for
∑

b∈H f̂(b) = 0

where f(b) = r(b)− t(b)fz(b) +
∑

M∈{A,B,C} ηM uH(b, α)fM (b)

compute g1 ∈ RS[L, |H| − 2]
where ĝ1 is unique s.t. ∃ ĥ
ΣH(ĝ1, 0) + ĥvH = f̂

g1

h := f−ΣH(g1,0)
vH

“deg(ĥ) ≤ |H|+ b− 2”

β ← F \Hβ
γ := t̂(β)

γ “t̂(β) = γ”

Rational Sumcheck for
∑

k∈K
p̂(k)
q̂(k) = γ

where p(k)
q(k) =

∑
M∈{A,B,C} ηM

vH(α)
(α− ˆrow〈M∗〉(k)) ·

vH(β)

(β−ĉol〈M∗〉(k))
· v̂al〈M∗〉(k)

compute g2 ∈ RS[L, |K| − 2]
where ĝ2 is unique s.t. ∃ ê
ΣK(ĝ2, γ)q̂ − p̂ = êvK

g2

e := ΣK(g2,γ)q−p
vK

“deg(ê) ≤ max

{
deg(p̂)− |K|
deg(q̂)− 1

}
”

where
deg(p̂) = 5|K| − 5
deg(q̂) = 6|K| − 6

Figure 4: Diagram of our RS-encoded holographic IOP for R1CS (Construction 7.2), after applying the optimiza-
tions described in Remark 7.3 (which batch the three holographic linchecks into one holographic protocol).
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8 Holographic IOP for R1CS

We construct an efficient holographic IOP for rank-1 constraint satisfiability (R1CS). Our preprocessing
zkSNARK is obtained by applying our compiler to this protocol (reparametrized to reduce soundness error).

Theorem 8.1. There exists a public-coin holographic IOP HOL = (I,P,V) for the indexed relationRR1CS

(Definition 3.2) that is a zero knowledge proof of knowledge with the following efficiency features.

• Indexing. The indexer I, given an index i = (F, H,K, 〈A〉, 〈B〉, 〈C〉), where H,K are subgroups of F,
runs in time OF(|K| log |K|) to compute an encoded index I(i) of size OF(|K|). Note that |I(i)| = O(|i|).

• Proving and verification. To achieve zero knowledge against b queries, the prover P and verifier V interact
overO(log(|K|+b)) rounds with a round-by-round soundness (and knowledge) error ofO((|K|+b)/|F|+
εFRI(F, ρ, δ)) where ρ, δ = Θ(1). The prover P runs in time OF((|K|+ b) log(|K|+ b)), and the total
length of the proof oracles that it outputs isOF(|K|+b). The verifier V runs in timeOF(|x|+log(|K|+b)),
and makes O(log(|K|+ b)) queries to the encoded index and proof oracles.

Above, εFRI(F, ρ, δ) denotes the round-by-round soundness error of the FRI low-degree test [BBHR18]
over the field F for proximity parameter δ and rate parameter ρ.

The rest of this section is organized as follows: (1) we introduce a generic theorem (Theorem 8.2) that
allows us to “compile” an RS-encoded holographic IOP into a holographic IOP via a low-degree test; then
(2) we show how to apply this theorem with the FRI low-degree test [BBHR18] to prove Theorem 8.1.
The generic theorem, stated next, is adapted from [BCRSVW19] to handle holography and round-by-round
soundness, and to more carefully account for the running time of the verifier.

Theorem 8.2 (adapted from [BCRSVW19]). Suppose that we are given:
• an RS-encoded holographic IOP HOLR = (IR,PR,VR, {~dI, ~dP,1, . . . , ~dP,k}) over L, with maximum

degree (dc, de), for an indexed relationR;
• a low-degree test (PLDT,VLDT) for the Reed–Solomon code RS[L, dc].
Fix any proximity parameter δLDT such that

δLDT < min

(
1− 2ρc

2
,
1− ρc

3
, 1− ρe

)
where ρc :=

dc + 1

|L|
and ρe :=

de + 1

|L|
.

Then we can combine the above two ingredients to obtain a holographic IOP (I,P,V) forR with kR+ kLDT

rounds, query complexity qLDT
π +qLDT

w ·(kR+1), proof length lR+ lLDT, soundness error εR+εLDT +|L|/|F|,
and round-by-round soundness error max(εRrbr, ε

LDT
rbr , |L|/|F|). The new indexer I equals IR; the new

prover P runs in time time(PLDT) + time(PR); and the new verifier V runs in time time(VLDT) + qLDT
π ·

tRq . (Parameters with superscript “R” and “LDT” are parameters for (IR,PR,VR) and (PLDT,VLDT)
respectively.)

If (IR,PR,VR) is zero-knowledge, then (I,P,V) is also zero-knowledge (with the same query bound).
If (IR,PR,VR) has round-by-round knowledge error κRrbr then (I,P,V) has round-by-round knowl-

edge error max(κRrbr, ε
LDT
rbr , |L|/|F|).

Proof. The proof is essentially identical to [BCRSVW19, Theorem 8.1]; note, however, that we do not need
to low-degree test the encoded index since it is honestly generated.

To show round-by-round soundness, we define a state function State using the state functions StateR

and StateLDT of the holographic IOP and low-degree test, respectively. Since the protocols are sequentially
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composed, we can split the transcript into three parts: trR, the first kR rounds; ~z, the verifier message in
round kR + 1 (to make a full round we precede this with a “dummy” prover message); and trLDT, the last
kLDT rounds. The state function is described by the following algorithm:

State(i,x, trR, ~z, trLDT):
1. Let (Π1,m1, . . . ,Πj ,mj) := trR (for some j ≤ kR). If Πi is δLDT-close

to RS[L, ~dP,i] for all i ∈ [j], output StateR(Π′1,m1, . . . ,Π
′
j ,mj) where Π′i ∈

RS[L, ~dP,i] is the closest codeword to Πi.
2. If ~z is empty then output reject; if ~zTΠ is δLDT-close to RS[L, dc] then output

accept, where Π is the “stacked” proof matrix (see [BCRSVW19, Protocol 8.2]).
3. Otherwise, output StateLDT(i,x, trLDT).

Clearly State(i,x, ∅) = StateR(i,x, ∅) = reject. For any partial transcript tr, if tr ends during the first
stage of the protocol then rbr(tr) ≤ εRrbr. If tr ends with round kR and State(i,x, tr) = reject then the
probability that ~zTΠ is δLDT-close to RS[L, dc] is bounded by |L|/|F|; hence rbr(tr) ≤ |L|/|F|. Finally, if tr
ends after round kR + 1, if State(i,x, tr) = reject then ~zTΠ is δLDT-far from RS[L, dc], and so by the RBR
soundness guarantee of the low-degree test rbr(i,x, tr) ≤ εLDT

rbr .
The same state function witnesses round-by-round knowledge soundness. Suppose that for some transcript

tr with State(i,x, tr) = reject, rbr(tr) > max(κRrbr, ε
LDT
rbr , |L|/|F|). Since rbr(tr) > max(εLDT

rbr , |L|/|F|),
it must be that Πi is δLDT-close to RS[L, ~dP,i] for all i; hence State(i,x, trRc ) = State(i,x, tr) = accept.
We apply the knowledge extractor of the RS-hIOP to P̃c, which runs P̃ and corrects its output words. The
knowledge soundness guarantee for the RS-hIOP ensures that this extractor succeeds.

Proof of Theorem 8.1. The two main ingredients in the proof are the RS-hIOP of Theorem 7.1 and the FRI
low-degree test [BBHR18]. These are combined using Theorem 8.2 to build the described IOP. The indexer
in our construction will choose L to be a coset of a smooth subgroup of F with, say, 8|K| ≤ |L| ≤ 16|K|,
and (H ∪K) ∩ L = ∅.
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9 Definition of preprocessing non-interactive arguments in the ROM

We denote by U(λ) the set of all functions that map {0, 1}∗ to {0, 1}λ. A random oracle with security
parameter λ is a function ρ : {0, 1}∗ → {0, 1}λ sampled uniformly at random from U(λ).

A tuple of algorithms ARG = (I,P,V) is a preprocessing non-interactive argument in the random oracle
model (ROM) for an indexed relationR if the following properties hold.

• Completeness. For every adversary A,

Pr

 (i,x,w) 6∈ R
∨

Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

(i,x,w)← Aρ
(ipk, ivk)← Iρ(i)
π ← Pρ(ipk,x,w)

 = 1 .

• Soundness. For every t-query adversary P̃ ,

Pr

 (i,x) 6∈ L(R)
∧

Vρ(ivk,x, π) = 1

∣∣∣∣∣∣
ρ← U(λ)

(i,x, π)← P̃ρ
(ipk, ivk)← Iρ(i)

 ≤ ε(t, λ) .

The above formulation of completeness allows (i,x,w) to depend on the random oracle ρ, and the above
formulation of soundness allows (i,x) to depend on the random oracle ρ.

All constructions in this paper achieve the stronger property of knowledge soundness, and optionally also
the property of (statistical) zero knowledge. We define both of these properties below.
Knowledge soundness. We say that ARG = (I,P,V) has knowledge error κ if there exists an efficient
extractor E such that for every t-query adversary P̃

Pr

 ∃ j s.t. (ij ,xj ,wj) 6∈ R
∧

Vρ(ivkj ,xj , πj) = 1

∣∣∣∣∣∣
ρ← U(λ)

(~i, ~x, ~π, aux, ~w)← Eρ,P̃(1t, 1λ)
∀ j , (ipkj , ivkj)← Iρ(ij)

 ≤ κ(λ)

and, moreover, the following distributions are statistically close (as a function of λ){
(~i, ~x, ~π, aux)

∣∣∣∣ ρ← U(λ)

(~i, ~x, ~π, aux)← P̃ρ

}
and

{
(~i, ~x, ~π, aux)

∣∣∣∣ ρ← U(λ)

(~i, ~x, ~π, aux, ~w)← Eρ,P̃(1t, 1λ)

}
.

The above definition is polynomially related to the standard definition of knowledge soundness, which does
not consider a vector of outputs or an auxiliary output by the prover.
Zero knowledge. We say that ARG = (I,P,V) has (statistical) zero knowledge if there exists a probabilistic
polynomial-time simulator S such that for every (i,x,w) ∈ R the distributions below are statistically close
(as a function of λ):(ρ, π)

∣∣∣∣∣∣
ρ← U(λ)

(ipk, ivk)← Iρ(i)
π ← Pρ(ipk,x,w)

 and
{

(ρ[µ], π)

∣∣∣∣ ρ← U(λ)
(µ, π)← Sρ(i,x)

}
.

Above, ρ[µ] is the function that, on input x, equals µ(x) if µ is defined on x, or ρ(x) otherwise. This
definition uses explicitly-programmable random oracles [BR93]. (Non-interactive zero knowledge with
non-programmable random oracles is impossible for non-trivial languages [Pas03; BCS16].)
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Post-quantum security. The above definitions consider security against classical adversaries that make a
bounded number of queries to the oracle (and are otherwise computationally unbounded). We also consider
security against quantum adversaries, whose queries to the oracle can be in superposition. This setting is
known as the quantum random oracle model (QROM) [BDFLSZ11], and is the established model to study
post-quantum security for constructions that use random oracles. The soundness definition and knowledge
soundness definition for post-quantum security are identical to the ones above, except that P̃ρ is now taken to
mean that P̃ has superposition query access to ρ; the zero knowledge definition remains unchanged because
indistinguishability holds against unbounded adversaries that see the whole oracle.

We do not know if, in the quantum setting, knowledge soundness with auxiliary output is polynomially
related to knowledge soundness without auxiliary output.
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10 From holographic IOPs to preprocessing arguments

We describe how to transform any public-coin holographic IOP (Section 4) into a corresponding preprocessing
non-interactive argument in the ROM (Section 9). After that we explain how the same transformation achieves
post-quantum security in the QROM (see Theorem 10.4 towards the end of the section).

Theorem 10.1. There exists a polynomial-time transformation T such that if HOL = (I,P,V) is a public-
coin holographic IOP for an indexed relation R then ARG = (I,P,V) := T(HOL) is a preprocessing
non-interactive argument in the ROM forR. In more detail, the transformation T has the following properties:
• if HOL has state-restoration soundness error εsr(t) then ARG has soundness error εsr(t) +O(t2 · 2−λ);
• if HOL has oracle length l and query complexity q then ARG has argument size O(λ · q · log l);
• the time complexities of the argument indexer, prover, and verifier are as follows

time(I) = time(I) +O(λl) ,

time(P) = time(P) +O(λl) ,

time(V) = time(V) +O(λ · q · log l) .

Moreover the transformation T preserves zero knowledge and knowledge soundness in the following sense:
if HOL is honest-verifier zero knowledge then ARG is statistical zero knowledge; and if HOL has state-
restoration knowledge error κsr(t) then ARG has knowledge error κsr(t) +O(t2 · 2−λ).

The transformation T has two parts. First, we apply the BCS transformation [BCS16] to the holographic
IOP to obtain a “holographic” non-interactive argument, namely, a non-interactive argument where the
(deterministic) argument verifier is fast when given oracle access to the encoded index. Next, we transform this
into a preprocessing non-interactive argument by having the argument indexer output a Merkle commitment
to the encoded index, and having the argument prover additionally output Merkle openings to the positions of
the encoded index queried by the IOP verifier.

We now describe the transformation T in more detail: in Construction 10.2 we recall the transformation
TBCS of [BCS16], adapting its presentation to holographic IOPs (but the construction is identical otherwise);
then in Construction 10.3 we describe the transformation T, using TBCS as a subroutine.

Construction 10.2 (TBCS). The transformation TBCS takes as input a holographic IOP HOL = (I,P,V) and
outputs the (standard) non-interactive argument ARG = (PBCS,VBCS) defined below.

PρBCS(i,x,w):
1. Set σ0 := ivk‖x, where (ivk, ipk)← I(i).
2. For i = 1, . . . , k:

(a) Compute randomness ρi := ρ(σi−1) for the i-th round.
(b) Provide ρi to the IOP prover P(i,x,w) to obtain a proof oracle Πi.
(c) Use ρ to compute a Merkle tree on Πi, and in particular to obtain a Merkle root rti.
(d) Set σi := ρ(σi−1‖rti).

3. Compute randomness ρk+1 := ρ(σk) for the query phase.
4. Run the IOP verifier VI(i)(x; ρ1, . . . , ρk, ρk+1), answering queries via the proof oracles

(Π1, . . . ,Πk), so to deduce the set of queriesQ that are asked on randomness (ρ1, . . . , ρk, ρk+1).
5. Output the proof string π that contains all the Merkle roots (rt1, · · · , rtk) and, for each query

in Q, an answer supported by an authentication path (against the appropriate root).
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VρBCS(i,w, π) ≡ Vρ,I(i)BCS (x, π):
1. Set σ0 := ivk‖x and use the i-th root rti in π to set σi := ρ(σi−1‖rti) for i = 1, . . . , k.
2. Compute each randomness: ρ1 := ρ(σ0), . . . , ρk := ρ(σk−1), ρk+1 := ρ(σk).
3. Run the IOP verifier VI(i)(x; ρ1, . . . , ρk, ρk+1). Whenever V queries a proof oracle Πi,

validate the authentication path for this query in π, and answer the query with the corresponding
value in π. (If π contains no entry for a query, reject.) Accept if and only if V accepts.

We write VBCS as an algorithm with oracle access to I(i) to emphasize that TBCS is black-box with respect to
V: the queries VBCS makes to I(i) are exactly the queries V makes to I(i) (on appropriate randomness).

Construction 10.3 (T). The transformation T takes as input a public-coin holographic IOP HOL = (I,P,V)
and outputs the preprocessing non-interactive argument ARG = (I,P,V) defined below. We let (PBCS,VBCS)
be the BCS prover and verifier output by TBCS(I,P,V), and view VBCS as having oracle access to I(i).
• Indexer. On input i, Iρ computes the encoded index I(i), computes a Merkle commitment rt to I(i) using
ρ, and outputs the key pair (ipk, ivk) := ((i, I(i)), rt).
• Prover. On input (ipk,x,w), Pρ parses the proving key ipk as (i, I(i)), computes the output of the BCS

prover πBCS := PρBCS(i,x,w), simulates the BCS verifier Vρ,I(i)BCS (x, πBCS) letting api be the authentication
path for its i-th query to I(i), and outputs the proof string π := (πBCS, (ap1, . . . , apk)).
• Verifier. On input (ivk,x, π), Vρ parses the proof string π as (πBCS, (ap1, . . . , apk)), runs the BCS verifier
Vρ,•BCS(x, πBCS) and answers its i-th query to the second oracle (denoted via the symbol “•”) using the
provided authentication paths. If for any i, api is not a valid authentication path with respect to the Merkle
root in ivk and the position requested in the i-th query, then V rejects. Otherwise, V accepts if VBCS does.

Proof of Theorem 10.1. Completeness of the argument system is straightforward from the protocol descrip-
tion. For soundness, consider an index-instance pair (i,x) that is not in L(R) and a t-query malicious
prover P̃ . Let E be the event that, over a random oracle ρ ← U(λ) and letting (ipk, ivk) ← Iρ(i), for the
proof string π̃ = (πBCS, (ap1, . . . , apk)) output by P̃ρ there exists an authentication path api for some query
location j ∈ |I(i)| that is valid with respect to ivk, ρ but the opened value is not equal to I(i)j . If E occurs
then we can find a collision in ρ via O(log |I(i)|) additional queries. Therefore

Pr
ρ

[Vρ(ivk,x, π̃) = 1]

≤Pr
ρ

[Vρ(ivk,x, π̃) = 1 | ¬E] + Pr
ρ

[E]

≤Pr
ρ

[Vρ,I(i)BCS (x, π̃) = 1] + (t+O(log l))2/2λ .

The soundness guarantee of TBCS ensures that Prρ[Vρ,I(i)BCS (x, π̃) = 1] ≤ εsr(t) +O(t2 · 2−λ), which yields
the stated bound (since the query bound t is at least log l without loss of generality).

Efficiency. The proof string π output by the argument prover P has two components: the proof string
πBCS output by the BCS prover PBCS, and authentication paths (ap1, . . . , apk) that answer queries by the IOP
verifier V to the encoded index. Each of these components has size O(λ · q · log l). We now discuss time
complexities. The overhead of the argument indexer I with respect to the IOP indexer I is O(λ · l), due to the
cost of committing to the encoded index output by I. The overhead of the argument prover P with respect
to the IOP prover P is O(λ · l), due to the cost of committing to each oracle output by P (and the cost to
answer queries by the IOP verifier V to the oracles or the encoded index). The overhead of the argument
verifier V with respect to the IOP verifier V is O(λ · q · log l), due to the cost to validate the authentication
path associated to each query made by V (to a proof oracle or the encoded index).
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Zero knowledge. The fact that the transformation T preserves zero knowledge follows from the fact that the
BCS transformation TBCS preserves zero knowledge (if leaves in the Merkle tree are suitably salted), because
the simulator is given the index i as input. See [BCS16] for details on why if HOL is honest-verifier zero
knowledge (when viewed as a non-holographic proof system) then (PBCS,VBCS) is statistical zero knowledge.

Knowledge soundness. The fact that the transformation T preserves knowledge soundness follows from
the fact that the BCS transformation TBCS preserves knowledge soundness and the query lower bound for
finding collisions in the random oracle. Namely, the same derivation above for soundness shows that if HOL
has state-restoration knowledge error κsr(t) then ARG has knowledge error κsr(t) +O(t2 · 2−λ).

Theorem 10.4. The transformation T of Theorem 10.1 also satisfies the following: if HOL has round-by-
round soundness error εrbr then ARG has soundness error t2 · εrbr +O(t3 · 2−λ) in the QROM; if HOL has
round-by-round knowledge error κrbr then ARG has knowledge error t2 · κrbr +O(t3 · 2−λ) in the QROM.

Proof. The proof is almost identical to the proof of Theorem 10.1, where we now use the result of [CMS19]
to bound the probability that the BCS verifier accepts in the QROM and the quantum query lower bound for
collisions [AS04] to bound the probability of the event E (which implies that a collision was found).
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11 Recursive composition in the URS model

We describe how to transform any preprocessing SNARK in the URS model into a preprocessing PCD
scheme in the URS model. The transformation preserves post-quantum security.

This section is organized as follows. In Section 11.1 we define preprocessing SNARKs in the URS
model. In Section 11.2 we define preprocessing PCD schemes in the URS model. In Section 11.3 we
state the properties of the transformation from SNARK to PCD. In sec:recursion-efficiency we describe the
construction and prove its efficiency properties. In Section 11.5 we prove the security properties.

In this section by “polynomial-size” we mean a (non-uniform) family of polynomial-size circuits.

11.1 Preprocessing non-interactive arguments (of knowledge) in the URS model

Informally, the definition of a preprocessing SNARK in the URS model is similar to the definition of a
preprocessing SNARK in the random oracle model (see Section 9) except that the random oracle is replaced
by a poly(λ)-size uniform random string urs. The formal definition follows.

A tuple of algorithms ARG = (I,P,V) is a preprocessing non-interactive argument (of knowledge) in
the uniform random string (URS) model for an indexed relationR if the following properties hold.
Completeness. For every adversary A,

Pr

 (i,x,w) 6∈ R
∨

V(urs, ivk,x, π) = 1

∣∣∣∣∣∣∣∣
urs← {0, 1}poly(λ)

(i,x,w)← A(urs)
(ipk, ivk)← I(urs, i)
π ← P(urs, ipk,x,w)

 = 1 .

The above formulation of completeness allows (i,x,w) to depend on the reference string urs.
Knowledge soundness. We say that ARG = (I,P,V) has knowledge error κ if for every polynomial-size
adversary P̃ there exists a polynomial-size extractor E such that

Pr

 ∃ j s.t. (ij ,xj ,wj) 6∈ R
∧

V(urs, ivkj ,xj , πj) = 1

∣∣∣∣∣∣
urs← {0, 1}poly(λ)

(~i, ~x, ~π, aux, ~w)← E(urs)
∀ j , (ipkj , ivkj)← I(urs, ij)

 ≤ κ(λ)

and, moreover, the following distributions are κ(λ)-close in statistical distance:{
(~i, ~x, ~π, aux)

∣∣∣∣ urs← {0, 1}poly(λ)

(~i, ~x, ~π, aux)← P̃(urs)

}
and

{
(~i, ~x, ~π, aux)

∣∣∣∣ urs← {0, 1}poly(λ)

(~i, ~x, ~π, aux, ~w)← E(urs)

}
.

The above definition is polynomially related to the standard definition of knowledge soundness, which does
not consider a vector of outputs or an auxiliary output by the prover.
Zero knowledge. We say that ARG = (I,P,V) has (statistical) zero knowledge if there exists a probabilistic
polynomial-time simulator S such that for every honest adversary A the distributions below are statistically
close (as a function of λ):(urs, π)

∣∣∣∣∣∣∣∣
urs← {0, 1}poly(λ)

(i,x,w)← A(urs)
(ipk, ivk)← I(urs, i)
π ← P(urs, ipk,x,w)

 and

(urs, π)

∣∣∣∣∣∣
(urs, τ)← S(1λ)

(i,x,w)← A(urs)
π ← S(i,x, τ)

 .

In this case, an adversary A is honest if it outputs (i,x,w) ∈ R with probability 1.
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Remark 11.1 (post-quantum security). The above definitions consider security against classical polynomial-
size adversaries. We also consider security against quantum polynomial-size adversaries. The definitions for
this case are identical, except that P̃ is a (non-uniform) family of polynomial-size quantum circuits. We do
not know if, in the quantum setting, knowledge soundness with auxiliary output (which we achieve in the
random oracle model) is polynomially related to knowledge soundness without auxiliary output.

11.2 Preprocessing PCD in the URS model

We have informally introduced PCD in in Section 2.5. Formally, a triple of algorithms PCD = (I,P,V)
is a proof-carrying data scheme (PCD scheme) in the uniform random string (URS) model for a class of
compliance predicates F if the properties below hold.

Definition 11.2. A transcript T is a directed acyclic graph where each vertex u ∈ V (T) is labeled by a
local data z(u)

loc and each edge e ∈ E(T) is labeled by a message z(e) 6= ⊥. The output of a transcript T,
denoted o(T), is z(e) where e = (u, v) is the lexicographically-first edge such that v is a sink.

Definition 11.3. A vertex u ∈ V (T) is Φ-compliant for Φ ∈ F if for all outgoing edges e = (u, v) ∈ E(T):
• (base case) if u has no incoming edges, Φ(z(e), z

(u)
loc ,⊥, . . . ,⊥) accepts;

• (recursive case) if u has incoming edges e1, . . . , em, Φ(z(e), z
(u)
loc , z

(e1), . . . , z(em)) accepts.
We say that T is Φ-compliant if all of its vertices are Φ-compliant.

Completeness. For every adversary A,

Pr


Φ /∈ F
∨

T is not Φ-compliant
∨

V(urs, ivk, o(T), π) = 1

∣∣∣∣∣∣∣∣∣∣
urs← {0, 1}poly(λ)

Φ← A(urs)
(ipk, ivk)← I(urs,Φ)

(T, π)← ProofGen(urs,P, ipk,A)

 = 1 .

Above, ProofGen is an interactive protocol betweenA and P that proceeds as follows. The protocol maintains
a computation graph T with node and edge labels, which is initially empty. In each round of the interaction,
A may choose to add a node or an edge to the computation graph. Nodes correspond to local computations,
and labeled edges to passed messages. If A chooses to add an edge (u, v) with label z, P must generate
a proof that sending z from u to v is compliant with Φ, and label (u, v) with that proof. When A halts,
ProofGen outputs the labeled graph T along with the proof π corresponding to the output edge.
Knowledge soundness. We say that PCD = (I,P,V) has knowledge error κ if there exists some polynomial
e such that for every polynomial-size adversary P̃ there exists an extractor E of size at most e(|P̃|) such that

Pr


Φ ∈ F
∧

T is not Φ-compliant or o(T) 6= o
∧

V(urs, ivk, o, π) = 1

∣∣∣∣∣∣∣∣∣∣
urs← {0, 1}poly(λ)

(Φ, o, π,T)← E(urs)
(ipk, ivk)← I(urs,Φ)

 ≤ κ(λ) .

and, moreover, the following distributions are κ(λ)-close in statistical distance:{
(Φ, o, π)

∣∣∣∣ urs← {0, 1}poly(λ)

(Φ, o, π)← P̃(urs)

}
and

{
(Φ, o, π)

∣∣∣∣ urs← {0, 1}poly(λ)

(Φ, o, π,T)← E(urs)

}
.

42



Efficiency. The indexer I runs in time poly(λ, |Φ|). The prover P runs in time poly(λ, |Φ|). The verifier V
runs in time poly(λ, |o|, log |Φ|). A proof π has size poly(λ, log |Φ|).
Zero knowledge. We say that PCD = (I,P,V) has (statistical) zero knowledge if there exists a probabilistic
polynomial-time simulator S such that for every honest adversary A the distributions below are statistically
close (as a function of λ):(urs, π)

∣∣∣∣∣∣∣∣
urs← {0, 1}poly(λ)

(Φ, o)← A(urs)
(ipk, ivk)← I(urs,Φ)

(T, π)← ProofGen(urs,P, ipk,A)

 and

(urs, π)

∣∣∣∣∣∣
(urs, τ)← S

(Φ, o)← A(urs)
π ← S(Φ, o, τ)

 .

In this case, A is honest if it outputs, with probability 1, (Φ, o) such that the resulting transcript T is
Φ-compliant and o(T) = o.

11.3 Theorem statement

The key parameter that determines the efficiency of the preprocessing PCD scheme is the size of the
preprocessing SNARK verifier as a circuit (or constraint system), as captured by the following definition.

Definition 11.4. Let ARG = (I,P,V) be a preprocessing non-interactive argument in the URS model.
We denote by V(λ,N,k) the circuit (or constraint system) corresponding to the computation of the SNARK
verifier V , for security parameter λ, when checking indices of size at most N and instances of size at most k.
Hence, for every urs ∈ {0, 1}poly(λ) and index-instance pair (i,x) with |i| ≤ N and |x| ≤ k, index key pair
(ipk, ivk) ∈ I(urs, i), and candidate proof π, we have V(λ,N,k)(urs, ivk,x, π) = V(urs, ivk,x, π). We denote
by v(λ,N, k) the size of the circuit V(λ,N,k), and by |ivk(λ,N)| the size of the index verification key ivk.

The depth of a compliance predicate Φ: F(m+2)` → F, denoted d(Φ), is the maximum depth of any
Φ-compliant transcript T. We prove the following theorem, which constructs a PCD system for constant-depth
compliance predicates from any sufficiently efficient preprocessing SNARK.

Theorem 11.5. There exists a polynomial-time transformation T such that if ARG = (I,P,V) is a prepro-
cessing SNARK for RR1CS in the URS model then PCD = (I,P,V) := T(ARG) is a preprocessing PCD
scheme in the URS model for constant-depth compliance predicates, provided

∃ ε ∈ (0, 1) and a polynomial α s.t. v(λ,N, |ivk(λ,N)|+ `) = O(N1−ε · α(λ, `)) .

Moreover, if the size of the predicate Φ: F(m+2)` → F is f = ω((m · α(λ, `))1/ε) then the PCD indexer,
PCD prover, and PCD verifier run in time that equal those of the SNARK indexer, SNARK prover, and SNARK
verifier on R1CS indices i of size f + o(f) (and R1CS instances x of size O(λ) + `).

If ARG is zero knowledge, then PCD is zero knowledge.
If ARG is secure against quantum adversaries, then PCD is secure against quantum adversaries.

Remark 11.6. Our preprocessing zkSNARK for R1CS, FRACTAL, achieves the following verifier size:

v(λ,N, |ivk(λ,N)|+ `) = O(λ`+ λ2 log2(N)) ,

assuming a choice of cryptographic hash function that can be expressed via a constraint system of size O(λ).
This means that we may take any ε ∈ (0, 1) and α(λ, `) := λ(λ+ `). In particular, if the size of a compliance
predicate Φ grows as (mλ(λ+ `))1+δ for any δ > 0, then the time bounds in Theorem 11.5 hold for us.
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11.4 Construction and its efficiency

We describe how to construct the preprocessing PCD scheme, and then prove the efficiency properties stated
in Theorem 11.5. We defer proving the security properties to Section 11.5.

Construction 11.7 (from SNARK to PCD). Let ARG = (I,P,V) be a preprocessing SNARK for R1CS.
We describe how to construct a preprocessing PCD scheme PCD = (I,P,V).

Given a compliance predicate Φ: F(m+2)` → F, the circuit that realizes the recursion is as follows.

R
(λ,N,k)
V,Φ,urs

(
(ivk, zout), (zloc, (z

(i)
in , π

(i)
in )i∈[m])

)
:

1. Check that the compliance predicate Φ(zout, zloc, z
(1)
in , . . . , z

(m)
in ) accepts.

2. If there exists i such that (z
(i)
in , π

(i)
in ) 6= ⊥:

check that, for every i ∈ [m], the SNARK verifier V(λ,N,k)(urs, ivk, (ivk, z
(i)
in ), π

(i)
in ) accepts.

3. If the above checks hold, output 0; otherwise, output 1.

Next we describe the indexer I, prover P, and verifier V of the PCD scheme.

• I(urs,Φ):
1. Compute N := N(λ, |Φ|,m, `), where N is as defined in Lemma 11.8 below.
2. Construct the circuit R := R

(λ,N,|ivk(λ,N)|+`)
V,Φ,urs .

3. Compute the index key pair (ipk, ivk)← I(urs, R).
• P(urs, ipk, zout, zloc, ~zin, ~πin): output the proof πout ← P

(
urs, ipk, (ivk, zout), (zloc, ~zin, ~πin)

)
.

• V(urs, ivk, zout, πout): accept if V(urs, ivk, (ivk, zout), πout) accepts.

Proof of Theorem 11.5 (efficiency). Denote by f the size of Φ as an R1CS instance. In Construction 11.7,
the explicit input consists of the index verification key ivk, whose size depends on N and λ, and a message z
whose size is ` (independent of N ). The security parameter λ is also independent of N . The circuit on which
we wish to invoke V is of size

S(λ, f,m, `,N) = S0(f,m, `) +m · v(λ,N, |ivk(λ,N)|+ `) for some S0(f,m, `) = f +O(m`) .

We want to find a function N such that S(λ, f,m, `,N(λ, f,m, `)) ≤ N(λ, f,m, `) and N is not too large.

Lemma 11.8. Suppose that for every security parameter λ ∈ N and message size ` ∈ N the ratio of verifier
circuit size to index size v(λ,N, |ivk(λ,N)|+ `)/N is monotone decreasing in N . Then there exists a size
function N(λ, f,m, `) such that

∀λ, f,m, ` ∈ N S(λ, f,m, `,N(λ, f,m, `)) ≤ N(λ, f,m, `) .

Moreover if for some ε > 0 and some increasing function α it holds that, for all N,λ, ` sufficiently large,

v(λ,N, |ivk(λ,N)|+ `) ≤ N1−εα(λ, `)

then, for all λ, ` sufficiently large,

N(λ, f,m, `) ≤ O(f) + (2m · α(λ, `))1/ε .

44



Proof. Let N0 := N0(λ,m, `) be the smallest integer such that v(λ,N, |ivk(λ,N)|+ `)/N < 1/(2m); this
exists because of the monotone decreasing condition. Let N(λ, f,m, `) := max(N0(λ,m, `), 2S0(f,m, `)).
Then for N := N(λ, f,m, `) it holds that

S(λ, f,m, `,N) = S0(f,m, `) +mN · v(λ,N, |ivk(λ,N)|+ `)/N < N/2 +N/2 = N .

Clearly S0(f,m, `) = O(f). Now suppose that v(λ,N, |ivk(N)|+ `) ≤ (N1−εα(λ, `)) for all sufficiently
large N,λ, `. Let N ′(λ,m, `) := (2m · α(λ, `))1/ε. Then for all m and sufficiently large λ, `, for N ′ :=
N ′(λ,m, `),

v(λ,N ′, |ivk(λ,N ′)|+ `)/N ′ < α(λ, `) · (2m · α(λ, `))−1 = 1/(2m) .

Hence N0 ≤ N ′ = (2m · α(λ, `))1/ε.

The size of the circuit R(λ,N,k)
V,Φ,urs for N := N(λ, f,m, `) and k := |ivk(λ,N)|+ ` is at most

S(λ, f,m, `,N) = f +O(m`) +m · v(λ,N, |ivk(λ,N)|+ `)

= f +O(N1−εmα(λ, `))

= f +O(f1−εm · α(λ, `) + (m · α(λ, `))1/ε) .

In particular if f = ω((m · α(λ, `))1/ε) then this is f + o(f), and so the stated efficiency bounds hold.

11.5 Security reduction

We establish the security properties in Theorem 11.5. We discuss knowledge soundness in Section 11.5.1,
post-quantum security in Section 11.5.2, and zero knowledge in Section 11.5.3.

11.5.1 Knowledge soundness

In the following, since the extracted transcript T will be a tree, we find it convenient to associate the label
(z(u,v), π(u,v)) of the unique outgoing edge of a node uwith the node u itself, so we refer to this as (z(u), π(u)).
It is straightforward to transform such a transcript into one that satisfies Definition 11.2.

Given a malicious prover P̃, we will define an extractor EP̃ that satisfies knowledge soundness. In the
process we construct a sequence of extractors E1, . . . ,Ed for d := d(Φ) (the depth of Φ); Ej outputs a tree of
depth j + 1. Let E0(urs) run (Φ, o, π)← P̃(urs) and output (Φ,T0), where T0 is a single node labeled with
(o, π). Let lT(j) denote the vertices of T at depth j; lT(0) := ∅ and lT(1) is the singleton containing the root.

Now we define the extractor Ej inductively for each j ∈ {1, . . . , d}. Suppose we have already constructed
Ej−1. We construct a SNARK prover P̃j as follows:

P̃j(urs):
1. Run (Φ,Tj−1)← Ej−1(urs); for each vertex v ∈ lTj−1

(j), denote its label by (z(v), π(v)).

2. Run the indexer (ipk, ivk)← I(urs, R
(λ,N,k)
V,Φ,urs ).

3. Output

(~i, ~x, ~π, aux) :=
(
~R, (ivk, z(v))v∈lTj−1

(j), (π
(v))v∈lTj−1

(j), (Φ,Tj−1)
)

where ~R is the vector (R
(λ,N,k)
V,Φ,urs , . . . , R

(λ,N,k)
V,Φ,urs ) of the appropriate length.
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Next let EP̃j
be the extractor that corresponds to P̃j , via the knowledge soundness of the non-interactive

argument ARG. Finally the extractor Ej is defined as follows:

Ej(urs):
1. Run the extractor (~i, ~x, ~π, aux, ~w)← EP̃j

(urs), and parse the auxiliary output aux as (Φ,T′).
2. If T′ is not a transcript of depth j, abort.
3. Output (Φ,Tj) where Tj is the transcript constructed from T′ by doing the following for each

vertex v ∈ lT′(j):
• obtain the local data z(v)

loc and input messages
(
z

(i)
in , π

(i)
in

)
i∈[m]

from w
(v);

• append z(v)
loc to the label of v, and if there exists any z(i)

in with z(i)
in 6= ⊥, attach m children to

v where the i-th child is labeled with (z
(i)
in , π

(i)
in ).

The extractor EP̃ runs (Φ,Td)← Ed(urs) and outputs (Φ, o, π,Td), where (o, π) labels the root node.
We now show that EP̃ has polynomial size and that it outputs a transcript that is Φ-compliant.

Size of the extractor. P̃j is a circuit of size |Ej−1| + |I| + O(2j), so EP̃j
is a circuit of size e(|Ej−1| +

|I|+O(2j)) Then |Ej | ≤ e(|Ej−1|+ |I|+ c · 2j) for some c ∈ N.
A solution to this recurrence (for e(n) ≥ n) is |Ej | ≤ e(j)(|P̃| + j · |I| + 2c · 2j), where e(j) is the

function e iterated j times. Hence in particular if d(Φ) is a constant, EP̃ is a circuit of polynomial size.

Correctness of the extractor. We show by induction that, for all j ∈ {0, . . . , d}, the transcript Tj output
by Ej is Φ-compliant up to depth j, and that V(λ,N,k)(urs, ivk, (ivk, z(v)), π(v)) accepts for all v ∈ T, with
probability 1− 2j · κ(λ).

For j = 0 the statement is implied by V accepting.
Now suppose that Tj−1 ← Ej−1 is Φ-compliant up to depth j−1, and that V(λ,N,k)(urs, ivk, (ivk, z(v)), π(v))

accepts for all v ∈ Tj−1, with probability 1−2(j−1)·κ(λ). Let (~i, (ivkv, z
(v))v, (π

(v))v, (Φ,T
′), ~w)← EP̃j

.
By knowledge soundness, with probability 1− 2κ(λ):

• for every vertex v ∈ lT′(j), (R
(λ,N,k)
V,Φ,urs , (ivkv, z

(v)),w(v)) ∈ RR1CS,
• by induction T′ is Φ-compliant up to depth j − 1, and
• for v ∈ lT′(j), v is labeled with (z(v), π(v)) and ivkv = ivk where (ipk, ivk)← I(urs,Φ).
Here we use the auxiliary output in the knowledge soundness definition of ARG to ensure consistency between
the values z(v) and T′, and to ensure that T′ is Φ-compliant.

Now since (R
(λ,N,k)
V,Φ,urs , (ivkv, z

(v)),w(v)) ∈ RR1CS, we obtain from w
(v) either

• local data z(v)
loc and input messages

(
z

(i)
in , π

(i)
in

)
i∈[m]

such that Φ(z(v), z
(v)
loc , z

(1)
in , . . . , z

(m)
in ) accepts and for

all i ∈ [m] the SNARK verifier V(λ,N,k)(urs, ivk, (ivk, z
(i)
in ), π

(i)
in ) accepts; or

• local data z(v)
loc such that Φ(z(v), z

(v)
loc ,⊥, . . . ,⊥) accepts.

In both cases we append z(v)
loc to the label of v. In the former case we label the children of v with (z

(i)
in , π

(i)
in ),

and so v is Φ-compliant, and all of its descendants w have that V(λ,N,k)(urs, ivk, (ivk, z(w)), π(w)) accepts.
In the latter case, v has no children and so is Φ-compliant by the base case condition.

Hence by induction, (Φ, o, π,T)← E has Φ-compliant T, and o(T) = o by construction.
Since (Φ, o, π) are “passed up” from P̃ via a series of d extractors, the distribution output by E is

d · κ(λ)-close, in statistical distance, to the output of P̃ by the knowledge soundness of ARG.
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11.5.2 Post-quantum security

In the quantum setting, P̃ is taken to be a polynomial-size quantum circuit; hence also P̃j , EP̃j
,Ej are

quantum circuits for all j, as is the final extractor E. Our definition of knowledge soundness is such that
this proof then generalizes immediately to show security against quantum adversaries. In particular, the
only difficulty arising from quantum adversaries is that they can generate their own randomness, whereas in
the classical case we can force an adversary to behave deterministically by fixing its randomness. This is
accounted for by the distributional requirement placed on the extractor of the argument system ARG.

11.5.3 Zero knowledge

Zero knowledge follows immediately from the zero knowledge guarantee of ARG, applied to the honest
adversary A′ which runs the honest PCD adversary (Φ, o)← A(urs) and outputs (R

(λ,N,k)
V,Φ,urs , (ivk, o)) where

(ipk, ivk) ← I(urs, R
(λ,N,k)
V,Φ,urs ). Note that here quantum adversaries are irrelevant since we are considering

statistical zero knowledge.
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12 Implementation of recursive composition

In Section 12.1 we describe our implementation work to realize our preprocessing zkSNARK (FRACTAL),
and in Section 12.2 we describe our implementation work to realize recursive composition.

12.1 The preprocessing zkSNARK

Our starting point is libiop [SCI19], a library that provides (a) an implementation of the BCS transfor-
mation, which compiles any public-coin IOP into a corresponding SNARG by using (instantiated) random
oracles; and (b) the non-holographic IOPs for R1CS underlying Aurora [BCRSVW19] and Ligero [AHIV17].

Our work to implement FRACTAL consists of (1) extending the BCS transformation to compile any
public-coin holographic IOP into a corresponding preprocessing SNARG (following Section 10); and
(2) implementing our efficient holographic IOP for R1CS (following Section 8). We discuss each in turn.

(1) From holography to preprocessing. Our transformation from Section 10 is a black-box extension of
the BCS transformation (see Construction 10.3), which made it possible to extend the current implementation
of the BCS transformation while re-using much of the existing infrastructure. We modified the generic IOP
infrastructure in libiop to additionally support expressing holographic IOPs, by providing an indexer
algorithm (in addition to the prover and verifier algorithms). We modified the transformation to determine if
the input IOP is holographic and, if so, to additionally produce an indexer for the argument system, which
uses a Merkle tree on the encoded index to produce an index proving key and index verification key. In
this case, the prover and verifier for the argument use these keys to produce/authenticate answers about the
encoded index, following our construction. Overall, our implementation simultaneously supports the old
transformation (from IOP to SNARG) and our new one (from holographic IOP to preprocessing SNARG).

(2) Holographic IOP for R1CS. Our holographic IOP is built from two components (see Theorem 8.2):
an RS-encoded holographic IOP and a low-degree test. For the latter, we reuse the generic low-degree testing
infrastructure in libiop: the randomized reduction from testing multiple words to testing single words, and
the FRI low-degree test [BBHR18]. Our implementation work is about the former component.

Specifically we implement the RS-encoded holographic IOP summarized in Fig. 4 (or, more precisely, an
optimized and parametrized refinement of it), along with its indexer algorithm (not part of the figure). We
reuse the reduction from R1CS to lincheck from the Aurora protocol in libiop (as our protocol shares
the same reduction). The new key component that we implement is a holographic multi-lincheck, which
simultaneously supports checking multiple linear relations that were holographically encoded. We believed
that this building block of the protocol is of independent interest for the design of holographic proofs.

In addition to enabling sublinear verification, the holographic setting also presents new opportunities for
improvements in the concrete efficiency of certain subroutines of the verifier, because we can use the indexer
to provide useful precomputed information to the verifier. We leverage such opportunities to precompute
various algebraic objects (such as vanishing polynomials), achieving noticeable efficiency improvements.

12.2 Designing the verifier’s constraint system

In order to recursively compose FRACTAL, we need to design a constraint system that expresses its verifier.
We describe a general method for designing constraint systems for the verifiers of SNARGs obtained by
combining an RS-encoded IOP and the FRI low-degree test (as in Theorem 8.2) and then transforming the
resulting IOP into a SNARG using Theorem 10.1 (henceforth referred to as the “BCS transformation”).

The verifier in such SNARGs splits naturally into an “algebraic” part arising from the underlying IOP
(hereafter the “IOP verifier”) and a “hash-based” part arising from the BCS transformation (described in
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Construction 10.2, hereafter the “BCS verifier”). We treat them separately: the BCS verifier is discussed in
Section 12.2.1 and the IOP verifier in Section 12.2.2.

12.2.1 The BCS verifier

The BCS verifier can be further broken down into two subcomponents. The first is a hashchain that ensures
that the IOP verifier’s randomness for each round is correctly derived from the Merkle roots (Steps 1 and 2 of
the BCS verifier in Construction 10.2). The second is the verification of the Merkle tree authentication paths
to ensure the validity of the query answers (Step 3 of the BCS verifier in Construction 10.2).

The hashchain. The hashchain computation of the BCS verifier is as follows: intialize σ0 := ivk‖x; then,
for each round i ∈ {1, . . . , k}, derive the randomness ρi := ρ(σi−1) and use the i-th root rti in the argument
π to compute σi := ρ(σi−1‖rti); finally, derive the post-interaction randomness ρk+1 := ρ(σk). We require a
constraint system S that, given assignments to the variables (ivk,x, rt1, ρ1, . . . , rtk, ρk), is satisfiable if and
only if these assignments are consistent with this hashchain computation.

We realize S via a sponge construction [BDPV08], where first ivk and x are absorbed into the state and
then, for each round i ∈ {1, . . . , k}, the randomness ρi is squeezed from the state and the i-th root rti is
absorbed into the state; the post-interaction randomness ρk+1 is then squeezed from the state. See Fig. 5 for a
diagram of this. The size of the constraint system S is

Sin(|ivk|+ |x|) +

(
k∑
i=1

Sin(|rti|) + Sout(|ρi|)

)
+ Sout(|ρk+1|)

where Sin(n) denotes the number of constraints to absorb n field elements and Sout(n) denotes the number
of constraints to squeeze n field elements. Naturally, these numbers depend on the particular choice of state
transformation that is used to instantiate the sponge (see our evaluation in Section 13.2).

The above discussion omits some details. First, in some rounds the prover sends auxiliary information
beyond the Merkle root (e.g., the third message of the prover in Fig. 4 includes a field element that allegedly
equals an evaluation of the polynomial t̂), and this auxiliary information must be absorbed together with
the Merkle root. Second, Fig. 5 suggests that the rate of the sponge is large enough to absorb/squeeze any
round’s root/randomness with a single application of the state transformation, but this need not be the case,
especially if sizes vary across rounds (e.g., we expect |ivk| + |x| to be larger than |rti|). Indeed, in our
implementation we pick the rate of the sponge in such a way as to minimize the overall number of constraints
for the hashchain, which means that some information may be absorbed/squeezed across multiple applications
of the state transformation.

!
⊕
ivk,# rt1 $k

%

%
!

⊕
! !

rtk $k+1

!
⊕

$1

!

Figure 5: We use a sponge construction to realize the hashchain in the BCS verifier.

Authentication paths. For every query made by the IOP verifier to the encoded index or to a proof oracle,
the BCS prover provides an authentication path for that query relative to the appropriate Merkle root. Recall
that the index verification key ivk contains the root rt0 of the Merkle tree on the encoded index I(i); and the
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argument π contains the roots rt1, . . . , rtk of the k Merkle trees that correspond to the k rounds of interaction.
For every i ∈ {0, 1, . . . , k}, we denote by Qi the queries to the leaves of the i-th Merkle tree, by Ai the
claimed query answers, and by Wi the corresponding auxiliary information to validate them. Both Ai and Wi

are provided in the argument π for all i (including i = 0). Overall, we require a constraint system S that,
given assignments to the variables (rti, Qi, Ai,Wi)

k
i=0, is satisfiable if and only if, for every i ∈ {0, 1, . . . , k},

the auxiliary information Wi validates the claimed answers in Ai with respect to the queries in Qi.
Below we describe the basic approach to designing the constraint system. Afterward we describe how to

significantly reduce the number of constraints via several optimizations.
The basic approach is to individually validate an authentication path for each query via a separate

constraint system. Namely, let rt be a root, j =
∑d

k=1 jk2
k−1 a query location (in binary representation),

a a claimed answer, s a salt used for hiding, and (uk)
d
k=1 an authentication path. We require a constraint

system that, given assignments to the variables (rt, j, a, s, (uk)
d
k=1), is satisfiable if and only if the check in

the following computation passes: (1) let vd be the hash of the salted answer a‖s; (2) for each k = d, . . . , 1:
if the k-th bit of j is 0 then let vk−1 be the hash of vk‖uk, and if instead it is 1 then let vk−1 be the hash of
uk‖vk; (3) check that v0 = rt. See Fig. 6 for a diagram of this constraint system.

If we denote by S2→1 the number of constraints to hash two hashes into a single hash, by Scswap the
number of constraints for a “controlled swap” on two hashes, and by Sleaf(n) the number of constraints to
hash the answer and salt into a single hash, then the number of constraints for the above computation is

Sleaf(|a|+ |s|) + d · (Scswap + S2→1) .

If we replicate the above strategy for each round i ∈ {0, 1, . . . , k} and each query in the query set Qi,
then the total number of constraints to validate all the query answers is:

k∑
i=0

|Qi| ·
(
Sleaf(αi + σi) + di · (Scswap + S2→1)

)
, (5)

where αi ∈ N denotes the number of field elements to answer a query in round i, σi ∈ N the number of field
elements in a salt in round i, and di ∈ N the depth of the Merkle tree in round i. (Note that σ0 is always 0
because no hiding is needed for the round that involves the encoded index; σi may also be 0 for i > 0 in
some protocols because zero knowledge may not rely on any query bound to oracles in the i-th round.)
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Figure 6: Diagram of a constraint system for validating an authentication path.

We can do significantly better than Eq. (5) if we leverage the structure of query sets, as we now describe.
First, there are known optimizations that increase “leaf size” to reduce argument size [BBHR19;

BCRSVW19] that we use to also reduce the number of constraints in our setting. We explain these below.

• Hash by column. In protocols derived from RS-encoded IOPs using Theorem 8.2, each round’s oracles are
over the same domain and the IOP verifier queries the same locations across those oracles. This includes
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the “0-th round oracles”, i.e., the oracles in the encoded index I(i). Hence, for i = 0, 1, . . . , k, the BCS
prover can hash the i-th round oracles column-wise: if `i ∈ N is the number of oracles in the i-th round
then each leaf in the i-th Merkle tree contains a vector in F`i (the “column”) representing one symbol from
each of the `i oracles. Thus a single authentication path suffices to authenticate all the answers from a
query to the entire leaf. This not only reduces argument size (fewer authentication paths are included in
the argument) but also reduces the number of constraints (fewer authentication paths are validated).
• Hash by subset. The low-degree test that we use (see Section 12.2.2) yields queries that consider each

domain as partitioned into subsets of equal size and each query requests the values of all locations in a
subset, i.e., for each round i there is a parameter mi ∈ N for which queries to oracles in the i-th round are
always grouped in disjoint subsets of size mi. Hence the BCS prover can hash all of these locations as
part of the same leaf, which now is expanded from a vector in F`i to a matrix in Fmi×`i . This reduces the
number of authentication paths, and also reduces the depth of the i-th Merkle tree by log2mi levels.

Second, there are optimizations that pertain only to the goal of reducing the number of constraints, as we
now exemplify. Since each oracle is queried at several locations, many authentication paths will overlap in
the top layers of the Merkle trees. For argument size, this leads to the optimization of path pruning where
the argument will contain the minimal collection of hashes that suffices to authenticate a set of queries.
This optimization (which we continue to use for argument size) does not significantly reduce the number of
constraints because validating the set of queries still involves re-computing the omitted hashes. Even worse,
since query locations are random, we cannot hard-code in the constraint system which hash computations are
repeated. We mitigate this problem via the following hybrid approach.

• Tree cap. By the pigeonhole principle, any set of authentication paths must overlap towards the top of
the tree. To take advantage of this, we modify the Merkle tree in each round i by connecting the vertices
at layer ti (to be chosen later) directly to the root (and discarding the layers in between), so that the
root has degree 2ti . We then compute the Merkle tree root using a “tree cap” hash function taking in 2ti

hashes. Letting Scap(n) denote the number of constraints for such a hash of n hashes, the total number of
constraints across all rounds for the first layer alone is

∑k
i=0 Scap(2ti).

• Other layers. For the other layers, we treat the authentication paths as disjoint, and allocate a separate
constraint system to validate the segment of each such path. This amounts to invoking the basic strategy
described above, whose cost is summarized in Eq. (5), with the modification that the authentication path is
reduced from length di to length di − ti. Note that, in light of the above discussions on answer size, we
know that the answer in round i is of size αi := mi · `i.

The above hybrid approach yields a total number of constraints equal to

k∑
i=0

Scap(2ti) + |Qi| ·
(
Sleaf(mi · `i + σi) + (di − ti) · (Scswap + S2→1)

)
.

The constants ti are chosen to minimize the above expression. In Section 13.2 we discuss the concrete
improvements of the hybrid approach over the simplistic approach.

Remark 12.1 (arity of the Merkle tree). There are algebraic hash functions for which using Merkle trees
with large arity significantly reduces the number of constraints required to check many authentication paths
[Alb+19a; GKKRRS19]. This comes at the cost of a larger argument size, and our implementation currently
does not provide the option of such tradeoffs.
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Representing query locations. We have so far assumed that the inputs and outputs of hash functions are
field elements, as opposed to bits. This is because we instantiate all hash functions via algebraic constructions
that require fewer constraints to express (see Section 13.2) and also because certain aspects of the verifier
are simpler (e.g., the verifier’s randomness in the protocol is essentially uniformly random in F). That said,
for the query part, the verifier does not draw query locations from the whole field F but, instead, from an
evaluation domain contained in F, and we need to obtain a bit-representation of these locations to check
Merkle tree authentication paths. Recall also that queries are grouped into subset, and so the location will
refer to the subset in the evaluation domain rather than to a single element in the evaluation domain.

We thus perform a bit decomposition of the field elements output by the hash function, split the resulting
string into substrings of appropriate size, and regard each substring as a bit-representation of the queried subset.
In more detail, for each round i ∈ {0, 1, . . . , k}, let Li ⊆ F be the evaluation domain of round i and recall that
queries in round i are on subsets of size mi. This means that we can obtain blog2 |F|c/(log2 |Li| − log2mi)
subsets in Li for each element in F output by the hash function. Therefore, if we need to sample q subsets in
Li, the number of field elements that we need to allocate in ρk+1 is dq · log2 |Li|−log2mi

blog2 |F|c
e. Obtaining from these

field elements the corresponding bit representations requires about q · (log2 |Li| − log2mi + 2) constraints.
We stress that queries across rounds need not be independent. Indeed, for the IOP verifiers that we

consider (see Section 12.2.2), it will hold that each round receives the same number of queries (informally,
there exists q such that q = |Q0| = |Q1| = · · · = |Qk|) and all the queries are correlated in that the q subsets
for each round can all be derived from q samples of a certain length.

12.2.2 The IOP verifier

We describe the design of a constraint system that can express the verifier of any (holographic) IOP derived
from an RS-encoded (holographic) IOP and a low-degree test, according to the construction underlying
Theorem 8.2. Informally, the RS-encoded (holographic) IOP is an interactive reduction that leads to a set of
algebraic claims about the prover’s oracles (and possibly also about the encoded index); and the low-degree
test is an interactive protocol that is used to ensure that these algebraic claims hold.
Outline. Let (I,P,V) be a holographic IOP for an indexed relationR constructed via Theorem 8.2. Note
thatR need not be the R1CS indexed relation. Below we recall the two ingredients of the construction.

• A kR-round RS-encoded holographic IOP (IR,PR,VR, {~dI, ~dP,1, . . . , ~dP,kR}) over a domain L, with
maximum degree (dc, de), for the indexed relation R. In each of kR rounds, the RS-hIOP verifier VR
sends randomness and the RS-hIOP prover PR sends an oracle; after the interaction, the RS-hIOP verifier
VR outputs a set of rational constraints (the algebraic claims, see Definition 4.1). We view the RS-hIOP
verifier VR as a function that maps an instance x and randomness ρR to a set of rational constrains C.

• A kLDT-round low-degree test (PLDT,VLDT) for the Reed–Solomon code RS[L, dc]. In each of kLDT

rounds, the LDT verifier VLDT sends randomness and the LDT prover PLDT sends an oracle; after the
interaction, the LDT verifier VLDT makes qLDT queries, and then accepts or rejects. We can view the
LDT verifier VLDT as two algorithms: a query algorithm VLDT.Q such that (Q0, Q1, . . . , QkLDT ) :=
VLDT.Q(ρLDT) are the queries to the tested oracle and the kLDT prover oracles on randomness ρLDT; and
a decision algorithm VLDT.D such that VLDT.D(A0, A1, . . . , AkLDT ,ρLDT) is the decision of the verifier
given answers to the queries and the same randomness.

We need to design a constraint system to express the computation of the holographic IOP verifier V, and so
we are faced with three sub-tasks: (1) design a constraint system for the RS-hIOP verifier VR; (2) design a
constraint system for the LDT verifier VLDT; (3) combine these two into a constraint system for V.
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We review features of the construction in Theorem 8.2 relevant for designing the constraint system.

• Randomness. The verifier V has kR + kLDT rounds of interaction where the first kR rounds are for VR
and the remaining kLDT rounds are for VLDT. This means that we can split the randomness ρ of V into
randomness ρR for VR and randomness ρLDT for VLDT.

• Domains. The oracles in the encoded index and in the first kR rounds are all over the domain L, while
oracles in the other kLDT rounds are over domains determined by the LDT.

• Queries. The queries to the oracles in the encoded index and in the first kR rounds are all the same, i.e.,
they are specified by the query set Q0 ⊆ L for the tested oracle determined by the LDT verifier.

• Tested oracle. The low-degree test is invoked on a “virtual oracle” f : L→ F defined as a random linear
combination of rational constraints output by the RS-hIOP verifier. Namely, if ((pk, qk, dk))

r
k=1 are the

rational constraints output by VR(x;ρR), α1, . . . , αk are the random coefficients, and f1, . . . , f` : L→ F
are the oracles sent by the RS-hIOP prover across the kR rounds, then f is defined as follows:

∀ a , f(a) :=
∑
k=1

αk ·
pk(a, f1(a), . . . , f`(a))

qk(a)
.

The low-degree test will read f at the query setQ0, which means that all oracles f1, . . . , f` will also be read
at Q0, and their answers must be combined according to the rational constraints and random coefficients.

(1) RS-hIOP. First we note that the structure of the interactive phase of the RS-hIOP for R determines
what the hashchain described in Section 12.2.1 needs to squeeze and absorb for the first kR rounds. In the
case of our RS-hIOP for R1CS this round information can be directly read off from Fig. 4.

We now turn to discussing the constraint system associated to VR, which is tasked to evaluate the rational
constraints output by VR at a set of locations Q ⊆ L (the queries for the oracle tested by the LDT).

Suppose that the number of oracles sent by the RS-hIOP prover across the kR rounds is `, and suppose
that the number of rational constraints output by the RS-hIOP verifier is r. We seek a constraint system
that, given as input an instance x, randomness ρR, query set Q, answers from all oracles (βa,j)a∈Q,j∈[`]

and claimed evaluations (γa,k)a∈Q,k∈[r], is satisfiable if and only if, letting ((pk, qk, dk))
r
k=1 be the rational

constraints output by VR(x;ρR), it holds that

∀ a ∈ Q , ∀ k ∈ [r] , γa,k =
pk(a, βa,1, . . . , βa,`)

qk(a)
.

In all known RS-encoded protocols, including the RS-hIOP for R1CS in Fig. 4, the rational constraints
output by the RS-hIOP verifier depend on the instance x and randomness ρR in an algebraic way, in the
sense that we can view x and ρR as auxiliary variables of the arithmetic circuits (pk)

r
k=1. This means that

the cost to check all the equations above is

|Q| ·

(
r∑

k=1

|pk|+ |qk|+ 1

)
,

where |pk| and |qk| denote the sizes of the arithmetic circuits for pk and qk. (The additive 1 accounts for
checking the equality given variables that contain the outputs of the two arithmetic circuits.) Note that these
complexity measures are related to, but different from, the query evaluation time defined in Section 4.1: query
evaluation time is a uniform complexity measure, whereas circuit size is non-uniform.
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In our implementation we additionally reuse sub-computations across constraint systems and across
evaluation points to reduce the size of the constraint system. For example, if qk = qk′ for distinct k, k′ then
we know that we only need to compute qk(a) once; similarly if pk and pk′ share sub-computations. One can
verify that there are several such opportunities for the RS-hIOP for R1CS in Fig. 4.

(2) Low-degree test. The low-degree test that we use in this paper is FRI [BBHR18], which is a logarithmic-
round logarithmic-query protocol. Below we describe a constraint system that represents the FRI verifier.

Let L be the domain of the oracle to be tested (i.e., the domain of the RS-hIOP). The size of L induces a
list of “localization parameters” (η1, . . . , ηkLDT ) which in turn induces a list of domains (L1, . . . , LkLDT ) with
progressively smaller sizes, |Li| = |Li−1|/2ηi = |L|/2η1+···+ηi with L0 := L. Each domain Li is obtained
from Li−1 as the image of a 2ηi-to-1 map hi that maps cosets of size 2ηi in Li−1 to single points in Li. Any
coset U0 of size 2η1 in the domain L0 = L determines kLDT − 1 cosets (U1, . . . , UkLDT−1) of respective sizes
(2η2 , . . . , 2k

LDT
) contained in (L1, . . . , LkLDT−1) as follows: for each i ∈ {1, . . . , kLDT − 1}, Ui is the unique

coset of size 2ηi+1 that contains the point hi(Ui−1).
We separately address the interactive phase and the query phase.

• Interactive phase. For i ∈ {1, . . . , kLDT}, in round i the FRI verifier sends a random field element αi and
the FRI prover replies with an oracle fi : Li → F if i < kLDT, or with a (non-oracle) message containing
the coefficients of a polynomial f̂kLDT (X) if i = kLDT. If the degree to be tested is d then the degree of
f̂kLDT (X) is dkLDT := d/2η1+···+ηkLDT . Queries to domain Li−1 are grouped in cosets of size 2ηi . Hence
larger localization parameters lead to fewer rounds, at the expense of querying larger cosets. (Choosing
these parameters well is crucial to minimizing constraint complexity, as we discuss in Section 13.2.)

Since the FRI verifier is public-coin, its interactive phase does not yield any special constraints. However the
specifics of the interaction affect the hashchain described in Section 12.2.1, which is responsible to squeeze
verifier randomness and absorb prover messages. We deduce that, for each round i ∈ {1, . . . , kLDT − 1}:
the hashchain is required to squeeze a single field element and then to absorb a single Merkle root, and the
depth of the corresponding Merkle tree is log2 |L| − (η1 + · · ·+ ηi+1). In the last round (i = kLDT), the
hashchain is required to squeeze a single field element and then to absorb dkLDT + 1 field elements.

• Query phase. The FRI verifier repeats the following q times, for a number q that controls soundness error.

– Queries. The FRI verifier samples a random coset U0 of size 2η1 in the domain L0 = L, and reads the
values of the oracle to be tested at U0. The coset U0 determines, for each i ∈ {1, . . . , kLDT − 1}, a coset
Ui of size 2ηi+1 in the domain Li, and the FRI verifier reads the values of the oracle fi in round i at Ui.
Finally, the FRI verifier also reads all the dkLDT + 1 coefficients of the polynomial sent in round kLDT.

– Decision. For each i ∈ {0, 1, . . . , kLDT − 1}, let pi(X) be the polynomial of degree less than 2ηi+1

that equals the interpolation of the values read for the i-th coset Ui. Let f̂kLDT (X) be the polynomial of
degree dkLDT sent by the prover in the last round (round i = kLDT).
The FRI verifier performs the following kLDT consistency checks: for each i ∈ {1, . . . , kLDT − 1},
check that pi−1(αi) = fi(hi(Ui−1)); also check that pkLDT−1(αkLDT ) = f̂kLDT (αkLDT ).

The implication of the first item above to the constraint system is that the hashchain described in Sec-
tion 12.2.1 needs to squeeze enough field elements to determine q samples of starting cosets in the domain
L0 = L (with each sample indexed in binary as already discussed). Moreover, the constraint system needs
to check, for each starting coset U0, that the remaining kLDT − 1 cosets Ui are correctly chosen. For this,
since hi has degree 2ηi , we need at most 2ηi constraints. Hence, the total constraint cost for checking q

lists of cosets is q ·
∑kLDT

i=1 2ηi . (In fact, we can avoid this cost altogether: by choosing an appropriate
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bit representation, we can obtain the bit decomposition of the index of coset Ui by truncating the bit
decomposition of the index of coset Ui−1, in which case no constraints are needed.)

The implication of the second item above to the constraint system is that the FRI verifier, for each of q
runs, needs to evaluate the interpolation of kLDT cosets at a single point and also evaluate the polynomial
contained in the last message at a single point. This number of constraints for this is

q ·

Seval( d

2η1+···+ηkLDT

)
+

kLDT∑
i=1

Slde(2
ηi)

 ,

where Seval(n) = n is the number of constraints to evaluate a polynomial of degree n (say, via a constraint
system that follows Horner’s method), and Slde(n) = 2n + O(log n) is the number of constraints to
evaluate at a single point the interpolation of a function defined over a size-n coset. We justify this latter
cost below, because the design of the constraint system for interpolation requires some care.

Coset interpolation. We require a constraint system that, given the identifier of a coset S in a domain L, a
function f : S → F, an evaluation point γ ∈ F, and a claimed evaluation v ∈ F, is satisfiable if and only if
v =

∑
a∈S f(a)La,S(γ), where {La,S(X)}a∈S are the Lagrange polynomials for S.

We describe a constraint system of size 2|S| + O(log(|S|)). Given the Lagrange coefficients, we can
compute the inner product of the function and the Lagrange coefficients with |S| constraints. This leaves
|S|+O(log(|S|)) constraints to compute the Lagrange coefficients, as we discuss below.

A simplistic approach would be to deduce the coefficients of each Lagrange polynomial {La,S(X)}a∈S ,
hardcode these coefficients in the constraint system, and then let the constraint system compute {La,S(γ)}a∈S
for the given evaluation point γ ∈ F. However, the choice of coset S is not known at “compile time” (when
constructing the constraint system) because the identifier of S in the domain L is an input to the constraint
system. We now explain how to efficiently compute all the evaluations without “generically” deriving the
coefficients of each Lagrange polynomial (which would be much more expensive).

Observe that, at compile time, we know some information about S: the base coset (i.e., subgroup) S∗ from
which the coset S is derived as a shift (S∗ need not be in L). Namely, in the additive case S = S∗+ξ for some
ξ ∈ F, and in the multiplicative case S = ξS∗ for some ξ ∈ F. Thus the identifier of S in L can be viewed as
encoding the shift ξ that determines S from S∗. This is useful because: (a) the vanishing polynomial of a
coset S is closely related to the vanishing polynomial of its base coset S∗; and (b) each Lagrange polynomial
can be expressed via the vanishing polynomial vS(X) and its derivative v′S(X). Specifically, for every a ∈ S,
La,S(X) = 1

v′S(a)
· vS(X)
X−a . This enables us to hardcode in the constraint system information about the base

coset S∗, and task the constraint system with a cheap computation that depends on the shift ξ.
We describe this approach for the additive and multiplicative cases separately.

• Additive case. The derivative v′S(X) is a constant cS∗ ∈ F that only depends on the base coset S∗.
Hence all the values {v′S(a)}a∈S (and their inverses) are known at compile time, as they all equal cS∗ .
The polynomial vS(X) equals vS∗(X − ξ), which has O(log(|S|)) non-zero monomials. Hence, if we
hardcode the polynomial vS∗ in the constraint system, we can compute vS(γ) = vS∗(γ − ξ) ∈ F, and also
vS(γ)/cS∗ = vS∗(γ − ξ)/cS∗ ∈ F (common to all Lagrange coefficients) with O(log(|S|)) constraints.

Next, note that each element a ∈ S can be written as a = a∗ + ξ for a corresponding element a∗ ∈ S∗.
This means that {X−a}a∈S = {X−a∗− ξ}a∗∈S∗ , where the elements a∗ are hardcoded in the constraint
system and ξ is an input to the constraint system. In particular, given vS∗(γ − ξ)/cS∗ ∈ F we can compute
{La,S(γ)}a∈S = {vS∗ (γ−ξ)

cS∗
· 1
γ−a∗−ξ}a∗∈S∗ with |S| additional constraints.
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• Multiplicative case. The polynomial vS(X) is the polynomial X |S| − ξ|S|, and its derivative v′S(X) is
the polynomial |S|X |S|−1; recall that |S| = |S∗| and so this quantity is known at compile time. Moreover,
each element a ∈ S can be written as a = ξa∗ for a corresponding element a∗ ∈ S∗. Therefore we can
re-write each Lagrange polynomial as:

La,S(X) =
1

v′S(a)
· vS(X)

X − a

=
1

|S|(ξa∗)|S|−1
· X
|S| − ξ|S|

X − ξa∗

=
1

|S|(ξa∗)|S|
· X |S| − ξ|S|

X(ξa∗)−1 − 1

=
1

|S|ξ|S|
· X |S| − ξ|S|

X(ξa∗)−1 − 1
.

The above expression leads to the following strategy. The constraint system first uses the shift ξ and evalua-
tion point γ to compute, viaO(log(|S|)) constraints, the value γ|S|−ξ|S|

|S|ξ|S| ; and also one constraint to compute

γξ−1. Then, the constraint system computes the values {La,S(γ)}a∈S = {γ
|S|−ξ|S|
|S|ξ|S| ·

1
γ(ξa∗)−1−1

}a∗∈S∗
with |S| additional constraints.
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13 Evaluation

In Section 13.1 we evaluate our implementation of the preprocessing zkSNARK, and in Section 13.2 we
evaluate our implementation of recursive composition.

All reported measurements were run in single-threaded mode on a machine with an Intel Xeon 6136 CPU
at 3.0 GHz with 252 GB of RAM (no more than 32 GB of RAM were used in any experiment).

13.1 Performance of the preprocessing zkSNARK

We report on the performance of FRACTAL, the preprocessing zkSNARK for R1CS that we have implemented
by extending libiop as described in Section 12.1. We configure our implementation to achieve 128 bits of
security, for constraints expressed over a prime field of 181 bits. This field choice is illustrative, as the only
requirement on the field is that it should contain suitable subgroups for us to use.

In Fig. 8 we report the costs for several efficiency measures, and for each measure also indicate how
much of the cost is due to the probabilistic proof and how much is due to the cryptographic compiler. The
costs depend on the number of constraints n in the R1CS instance,13 and so we report how the costs change
as we vary n over the range {210, 211, . . . , 220}. Below, by native execution time we mean the time that it
takes to check that an assignment satisfies the constraint system, and by native witness size we mean the
number of bytes required to represent an assignment to the constraint system.

• Indexer time. In the upper left, we plot the running time of the indexer, as absolute cost (top graph) and as
relative cost when compared to native execution time (bottom graph). Indexer times range from fractions
of a second to several minutes, and the plot confirms the quasilinear complexity of the indexer. Indexer
time is dominated by the cost of running the underlying HIOP indexer.

• Prover time. In the upper right, we plot the running time of the prover, as absolute cost (top graph) and as
relative cost when compared to native execution time (bottom graph). Prover times range from fractions of
a second to several minutes, and the plot confirms the quasilinear complexity of the prover. Prover time is
dominated by the cost of running the underlying HIOP prover.

• Argument size. In the lower left, we plot argument size, as absolute cost (top graph) and as relative cost
when compared to native witness size (bottom graph). Argument sizes range from 80 kB to 200 kB with
compression (argument size is smaller than native witness size) occurring for n ≥ 8, 000, and the plot
confirms the polylogarithmic complexity of the argument. Argument size is dominated by the cryptographic
digests to authenticate query answers.

• Verifier time. In the lower right, we plot the running time of the verifier, as absolute cost (top graph) and as
relative cost when compared to native execution time (bottom graph). Verifier times are several milliseconds
and become faster than native execution for n ≥ 65, 000, and the plot confirms the polylogarithmic
complexity of the verifier. Verifier time is dominated by the cost of running the underlying HIOP verifier.

Finally, in Fig. 9, we compare FRACTAL with the state of the art in several types of zkSNARKs for R1CS:
13More precisely, the costs in general depend on (a) n, the number of constraints (i.e., number of rows in each matrix); (b) n′,

the number of variables (i.e., number of columns in each matrix); (c) m, the number of non-zero entries in a matrix; and (d) k, the
number of public inputs. The number of constraints n and the number of variables n′ are typically approximately equal, and indeed
in this paper we have assumed for simplicity that n = n′ (the matrices in Definition 3.2 are square); so we only keep track of n. The
number of non-zero entries m is typically within a small factor of n, and in our experiments m/n is approximately 1. Finally, the
number of public inputs k is at most n′, and in typical applications it is much smaller than n′, so we do not focus on it.
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(1) Aurora, a non-preprocessing zkSNARK in the (quantum) random oracle model [BCRSVW19];
(2) Groth16, a preprocessing zkSNARK with circuit-specific SRS [Gro16];
(3) Marlin, a preprocessing zkSNARK with universal SRS [CHMMVW19].
The first protocol is configured the same as our protocol (128 bits of security over a prime field of 181 bits),
and the implementation that we use is from libiop [SCI19]. The second and third protocols require a
choice of pairing-friendly elliptic curve, which we take to be bls12-381; the implementation of the second
protocol is from bellman [bell15] and the implementation of the third protocol is from marlin [mar19].

13.2 Performance of recursive composition

We report on the performance of recursive composition based on FRACTAL, by discussing verifier size: the
number of constraints to express the verifier’s computation. This metric is significantly affected by the choice
of hash function to instantiate the random oracle. So we first discuss a representative choice of hash function,
and after that discuss verifier size.
A choice of hash function. In the evaluation of this section, we choose to instantiate the various hash
functions introduced in Section 12.2.1 via Rescue [AABSDS19], which is a sponge hash function [BDPV08].
This means that the hash function maintains a state that is split into two parts: the rate part of the state,
which is used to absorb inputs and squeeze outputs; and the capacity part of the state, which is only used for
security purposes. The cost of absorbing and squeezing in Rescue is linear in its state size. We choose rate
and capacity for all of the different hash functions of Section 12.2.1, by picking the smallest rate and capacity
parameters that suffice to absorb the relevant input or squeeze the relevant output in a single application of
Rescue.14 In line with minimizing capacity, here we assume for simplicity of exposition that blog(|F|)c ≥ 2λ,
which allows us to set the capacity to be one field element, and the hash output size as one field element;15

moreover, in our experiments, we set the α parameter of Rescue (which determines the S-box permutations)
to 3 (as it is co-prime with the size of the multiplicative subgroup of the field in the experiments). Using the
above ideas, we summarize the rate, capacity, and constraint complexities for the various hash functions in
Fig. 7 in the case of 128 bits of security.

hash type notation rate capacity rounds number of constraints

absorb Sin(n) 1 1 64 256 · n
squeeze Sout(n) 1 1 64 256 · n

leaf hash Sleaf(n)
n ≥ 6 1 10 40 · (n+ 1)
n < 6 1 2d 32

n+1e 8 · d 32
n+1e · (n+ 1)

2-to-1 hash S2→1 2 2 † 16 256

cap hash Scap(2t), t > 2 2t 1 10 40 · (2t + 1)

Figure 7: Parameterization of Rescue to realize each hash function from Section 12.2.1, along with respective costs
as number of constraints. The constraint complexity of a single Rescue sponge permutation is 4 ·state-size · rounds.
The number of rounds is max(10, 2 · d λ

4·state sizee) (†: Due to rounding effects for small input sizes, it is more
efficient to set 2 here.)

Verifier size. The size of the verifier as a circuit (or constraint system) determines the “minimal payload”
14The alternative of using a smaller rate and rely on multiple applications of Rescue would increase circuit size, because each

application would incur the costs for the capacity.
15For smaller fields, we accordingly increase the rate and capacity (which in turn moderately increases the number of constraints).
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that needs to be proved in each recursion. For example, in the construction of PCD described in Section 11, if
one wishes to recursively check a given compliance predicate Φ taking m prior messages then (informally)
one has to prove the satisfiability of a circuit that contains Φ plus m copies of the verifier. Therefore, the
smaller the verifier circuit, the better. Recall from Definition 11.4 that V(λ,N,k) denotes a circuit corresponding
to the computation of the SNARK verifier V , for security parameter λ, when checking indices of size at most
N and instances of size at most k. Our goal is to minimize the size of this circuit. We shall fix the security
parameter to be 128 bits, so we are only left with two parameters.

We have described our design of a verifier circuit in Section 12.2, leaving several parameters as unspecified
(e.g., the number of commitments sent by the prover in a particular round, the number of field elements sent
by the verifier in a particular round, the specific rational constraints, and so on). We now specialize this
design for the verifier for FRACTAL, and then assemble these expressions in order to derive the cost of the
verifier as the following cost model (which we have experimentally validated in our circuit writing):

2644 · log(N)2 + 19058 · log(N) + 368 · k + 94432 .

In Fig. 10 we plot the measured number of constraints in the verifier together with the number of constraints
that the verifier is checking. The graph shows that for all computations of more than 2 million constraints,
the number of constraints of the verifier smaller than the number of constraints that it is checking. This
demonstrates feasibility of recursion for our implementation.
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Figure 8: Performance of FRACTAL.
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