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Abstract

We construct the first adaptively secure garbling scheme based on standard public-
key assumptions for garbling a circuit 𝐶 ∶ {0, 1}𝑛 ↦ {0, 1}𝑚 that simultaneously
achieves a near-optimal online complexity 𝑛 + 𝑚 + poly(𝜆, log |𝐶|) (where 𝜆 is the secu-
rity parameter) and preserves the parallel efficiency for evaluating the garbled circuit;
namely, if the depth of 𝐶 is 𝑑, then the garbled circuit can be evaluated in parallel
time 𝑑 ⋅ poly(log |𝐶|, 𝜆). In particular, our construction improves over the recent semi-
nal work of [GS18], which constructs the first adaptively secure garbling scheme with a
near-optimal online complexity under the same assumptions, but the garbled circuit can
only be evaluated gate by gate in a sequential manner. Our construction combines their
novel idea of linearization with several new ideas to achieve parallel efficiency without
compromising online complexity.

We take one step further to construct the first adaptively secure garbling scheme
for parallel RAM (PRAM) programs under standard assumptions that preserves the
parallel efficiency. Previous such constructions we are aware of is from strong assump-
tions like indistinguishability obfuscation [ACC+16]. Our construction is based on the
work of [GOS18] for adaptively secure garbled RAM, but again introduces several new
ideas to handle parallel RAM computation, which may be of independent interests.
As an application, this yields the first constant round secure computation protocol for
persistent PRAM programs in the malicious settings from standard assumptions.
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1 Introduction
Garbled Circuits. The notion of garbled circuits were introduced by Yao [Yao82] for
secure computations. Yao’s construction of garbled circuits is secure in the sense that given
a circuit 𝐶 and an input 𝑥, the scheme gives out a garbled circuit ̃𝐶 and a garbled input

̃𝑥 such that it only allows adversaries to recover 𝐶(𝑥) and nothing else. The notion of
garbled circuits has found an enormous number of applications in cryptography. It is well
established that garbling techniques is one of the important techniques in cryptography
[BHR12b, App17].

Garbled RAM. Lu and Ostrovsky [LO13] extended the garbling schemes to the RAM
settings and its applications to delegating database and secure multiparty RAM program
computation, and it has been an active area of research in garbling ever since [GHL+14,
GLOS15, GLO15, CH16, CCC+16]. Under this settings, it is possible to reduce the size
of the garbled program to grow only linearly in the running time of the RAM program
(and sometimes logarithmically in the size of the database), instead of the size of the
corresponding circuit (which must grow linearly with the size of the database).

Parallel cryptography. It is a well established fact that parallelism is able to speed up
computation, even exponentially for some problems. Yao’s construction of garbled circuits is
conceptually simple and inherently parallelizable. Being able to evaluate in parallel is more
beneficial in the RAM settings where the persistent database can be very large, especially
when it is applied to big data processing. The notion of parallel garbled RAM is introduced
by Boyle et al [BCP16]. A black-box construction of parallel garbled RAM is known from
one-way function [LO17].

Adaptively secure garbling. Bellare, Hoang, and Rogaway [BHR12a] showed that in
many applications of garbling, a stronger notion of adaptive security is usually required.
We note that the notion of adaptive security is tightly related to efficiency.

For the circuit settings, the adversary is allowed to pick the input 𝑥 to the program
𝐶 after he has seen the garbled version of the program ̃𝐶. In particular, for the circuit
settings, we refer to the size of ̃𝐶 as offline complexity and that of the garbled input ̃𝑥
as online complexity. The efficiency requirement says that the online complexity should
not scale linearly with the size of the circuit1. Constructing adaptively secure garbling
schemes for circuits with small online complexity has been an active area of investigation
[HJO+16, JW16, JKK+17, JSW17, GS18].

For the RAM settings, the adversary is allowed to adaptively pick multiple programs
Π1, ..., Π𝑡 and their respective inputs 𝑥1, ..., 𝑥𝑡 to be executed on the same persistent database
𝐷, after he has seen the garbled version of the database �̃�, and having executed some gar-
bled programs on the database and obtained their outputs Π𝑖(𝑥𝑖). Furthermore, he can
choose his input after having seen the garbled program. The efficiency requirement is that
the time for garbling the database, each program (and therefore the size of the garbled

1Note that without this efficiency requirement, any selectively secure garbled circuit can be trivially made
adaptively secure, simply by sending everything only in the online phase. This also holds similarly for the
RAM setting.
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program) and the respective input should depend linearly only on the size of the database,
the program, and the input respectively (up to poly logarithmic factors). Adaptively secure
garbled RAM is also known from indistinguishability obfuscation [CCHR16, ACC+16].

Parallel complexity of adaptively secure garbling. In two recent seminal works
[GS18, GOS18], Garg et al. introduce an adaptively secure garbling scheme for circuits with
near-optimal online complexity as well as for RAM programs. However, both constructions
explicitly (using a linearization technique for circuits) or implicitly (serial execution of RAM
programs) requires the evaluation process to proceed in a strict serial manner. Note that
this would cause the parallel evaluation time of garbled circuits to blow up exponentially
if the circuit depth is exponentially smaller than the size of the circuit. We also note
that the linearization technique is their main technique for achieving near-optimal online
complexity. On the other hand, such requirement seems to be at odds with evaluating the
garbled version in parallel, which is something previous works [HJO+16] can easily achieve
(however, Hemenway et al.’s construction has asymptotically greater online complexity).
It’s also not clear how to apply the techniques used in [GOS18] for adaptive garbled RAM
to garble parallel RAM (PRAM) programs. In this work, we aim to find out whether such
trade-off is inherent, namely,

Can we achieve adaptively secure garbling with parallel efficiency from standard
assumptions?

1.1 Our Results
In this work, we obtained a construction of adaptively secure garbling schemes that allows
for parallel evaluation, incurring only a logarithmic loss in the number of processors in
online complexity based on the assumption that laconic oblivious transfer exists. Laconic
oblivious transfer can be based on a variety of public-key assumptions [CDG+17, DG17,
BLSV18, DGHM18]. More formally, our main results are:

Theorem 1.1. Let 𝜆 be the security parameter. Assuming laconic oblivious transfer, there
exists a construction of adaptively secure garbling schemes,

• for circuits 𝐶 with optimal online communication complexity up to additive poly(𝜆, log |𝐶|)
factors, and can be evaluated in parallel time 𝑑 ⋅ poly(𝜆, log |𝐶|) given 𝑤 processors,
where 𝑑 and 𝑤 are the depth and width of circuit 𝐶 respectively;

• for PRAM programs on persistent database 𝐷, and can be evaluated in parallel time
𝑇 ⋅ poly(𝜆, log 𝑀, log |𝐷|, log 𝑇 ), where 𝑀 is the number of processors and 𝑇 is the
parallel running time for the original program.

This result closes the gap between parallel evaluation and online complexity for circuits,
and also is the first adaptively secure garbling scheme for parallel RAM program from
standard assumptions. Previous construction for adaptively secure garbled PRAM we are
aware of is from strong assumptions like indistinguishability obfuscation [ACC+16].

We present our constructions formally in Section 4 for circuits and in Section 5 for
PRAM.
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1.2 Applications
In this section, we briefly mention some applications of our results.

Applications for parallelly efficient adaptive garbled circuits. Our construction of
parallel adaptively secure garbled circuits can be applied the same way as already mentioned
in previous works like [HJO+16, GS18], e.g. to one-time program and compact functional
encryption. Our result enables improved parallel efficiency for such applications.

Applications for adaptive garbled PRAM. This yields the first constant round se-
cure computation protocol for persistent PRAM programs in the malicious settings from
standard assumptions [GGMP16]. Prior works did not support persistence in the mali-
cious setting. As a special case, this also allows for evaluating garbled PRAM programs on
delegated persistent database.

2 Techniques
2.1 Parallelizing Garbled Circuits
Our starting point is to take Garg and Srinivasan’s construction of adaptively secure garbled
circuit with near-optimal online complexity [GS18] and allow it to be evaluated in parallel.
Recall that the main idea behind their construction is to “linearize” the circuit before
garbling it. Unfortunately, such transformation also ruins the parallel efficiency of their
construction. We first explain why linearization is important to achieving near-optimal
online complexity.

Pebbling game. Hemenway et al. [HJO+16] introduced the notion of somewhere equiv-
ocal encryption, which enables us to equivocate a part of the garbled “gate” circuits and
send them in the online phase. By using such technique, online complexity only needs to
grow linearly in the maximum number of equivocated garbled gates at the same time over
the entire hybrid argument, which could be much smaller than the length of the entire
garbled circuit. Since an equivocated gate can be opened to be any gate, the simulator can
simulate the gate according to the input chosen by the adversary, and send the simulated
gate in the online phase. The security proof involves a hybrid argument, where in each step
we change which gates we equivocate and show that this change is indistinguishable to the
adversary. At a high level, this can be abstracted into a pebbling game.

Given a directed acyclic graph with a single sink, we can put or remove a pebble on a
node if its every predecessor has a pebble on it or it has no predecessors. The game ends
when there is a pebble on the unique sink. The goal of the pebble game is to minimize
the maximum number of pebbles simultaneously on the graph throughout the game. In
our case, the graph we need to pebble is what is called simulation dependency graph, where
nodes represent garbled gates in the construction; and an edge from 𝐴 to 𝐵 represents that
the input label for a piece 𝐵 is hardcoded in 𝐴, thus to turn 𝐵 into simulation mode, it
is necessary to first turn 𝐴 also into simulation mode. The simulation dependency graph
directly corresponds to the circuit topology. The game terminates when the output gate is
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turned into simulation mode. As putting pebbles corresponds to equivocating the circuit
in the online phase, the goal of the pebbling game also directly corresponds to the goal of
minimizing online complexity.

Linearizing the circuit. It is known that there is a strong lower bound Ω( 𝑛
log 𝑛) for

pebbling an arbitrary graph with 𝑛 being the size of the graph [PTC76]. Since the circuits
to be garbled can also be arbitrary, this means that the constructions of Hemenway et al. still
have large online complexity for those “bad” circuits. Thus, Garg and Srinivasan pointed
out that some change in the simulation dependency graph was required. In their work, they
were able to change the simulation dependency graph to be a line, i.e. the simulation of
any given garbled gate depends on only one other garbled gate. There’s a good pebbling
strategy using only 𝑂(log 𝑛) pebbles. On the other hand, using such technique also forces
the evaluation to proceed sequentially, which would cause the parallel time complexity of
wide circuits to blow up, in the worst case even exponentially.

We now describe how they achieved such linearization. In their work, instead of gar-
bling the circuit directly, they “weakly” garble a special RAM program that evaluates the
circuit. Specifically, this is done by having an external memory storing the values of all the
intermediate wires and then transforming the circuit into a sequence of CPU step circuit,
where each step circuit evaluates a gate and performs reads and writes to the memory to
store the results. The step circuits are then garbled using Yao’s garbling scheme and the
memory is protected with one-time pad and laconic oblivious transfer (ℓ𝑂𝑇 ). This garbling
is weak since it does not protect the memory access pattern (which is fixed) and only con-
cerns this specific type of program. Note that with this way, the input and output to the
circuit can be revealed by revealing the one-time pad protecting the memory that store the
circuit output, which only takes online complexity 𝑛 + 𝑚.

Overview of our approach. A natural idea is that we can partially keep the linear
topology, for which we know a good pebbling strategy; and at the same time, we would
use 𝑀 processors for each time step, each evaluating a gate in parallel. We then store the
evaluation results by performing reads and writes on our external memory.

However, there are two challenges with this approach.

• Parallel writes. Read procedure in the original ℓ𝑂𝑇 scheme can be simply evaluated
in parallel for parallel reads. On the other hand, since (as we will see later) the write
procedure outputs an updated digest of the database, some coordination is obviously
required, and simply evaluating writes in serial would result in a blow up in parallel
time complexity. Therefore, we need to come up with a new parallel write procedure
for this case.

• Pebbling complexity. Since now there are 𝑀 gates being evaluated in parallel and
looking ahead, they also need to communicate with each other to perform parallel
writes, this will introduce complicated dependencies in the graph, and in the end,
we could incur a loss in online complexity. Therefore, we must carefully layout our
simulation dependency graph and find a good pebbling strategy for that graph.
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2.1.1 Laconic OT

As mentioned earlier, we cannot use the write procedure in laconic oblivious transfer in a
black-box way to achieve parallel efficiency. Thus, first we will elaborate on laconic oblivious
transfer. Laconic oblivious transfer allows a receiver to commit to a large input via a short
message of length 𝜆. Subsequently, the sender responds with a single short message (which
is also referred to as ℓ𝑂𝑇 ciphertext) to the receiver depending on dynamically chosen two
messages 𝑚0, 𝑚1 and a location 𝐿 ∈ [|𝐷|]. The sender’s response, enables the receiver to
recover 𝑚𝐷[𝐿], while 𝑚1−𝐷[𝐿] remains computationally hidden. Note that the commitment
does not hide the database and one commitment is sufficient to recover multiple bits from
the database by repeating this process. ℓ𝑂𝑇 is frequently composed with Yao’s garbled
circuits to make a long process non-interactive. There, the messages will be chosen as input
labels to the garbled circuit.

First, we briefly recall the original construction of ℓ𝑂𝑇 . The novel technique of laconic
oblivious transfer was introduced in [CDG+17], where the scheme is constructed as a Merkle
tree of “laconic oblivious transfer with factor-2 compression”, which we denote as ℓ𝑂𝑇const,
where the database is of length 2𝜆 instead of being arbitrarily large. For the read procedure,
we simply start at the root digest, traverse down the Merkle tree by using ℓ𝑂𝑇const to read
out the digest for the next layer. Such procedure is then made non-interactive using Yao’s
garbled circuits (see Section 5.4 for details on this). For writes, similar techniques apply
except that in the end, a final garbled circuit would take another set of labels for the digests
to evaluate the updated root digest.

From the view of applying ℓ𝑂𝑇 to garbling RAM programs, an ℓ𝑂𝑇 scheme allows to
compress a large database into a small digest of length 𝜆 that binds the entire database.
In particular, given the digest, one can efficiently (in time only logarithmic in the size of
the database) and repeatedly (ask the database holder to) read the database (open the
commitment) or update the database and obtain the (correctly) updated digest. For both
cases, as the evaluation results are returned as labels, the privacy requirement achieves
“authentication”, meaning the result has to be evaluated honestly as the adversary cannot
obtain the other label.

Now, we will describe how we solve these two challenges.

2.1.2 Solving Parallel Writes

First attempt. Now we address how to parallelize ℓ𝑂𝑇 writes, in particular the garbled
circuit evaluating the updated digest. First, we examine the task of designing a parallel
algorithm with 𝑀 processors that jointly compute the updated digest after writing 𝑀 bits.
At a high level, this can be done using the following procedure: all processors start from
the bottom, make their corresponding modifications, and hash their ways up in the tree
to compute the new digest; in each round, if two processors move to the same node, one
of them is marked inactive and moved to the end using a sorting network. This intuitive
parallel algorithm runs in parallel time poly(log 𝑀, log |𝐶|, 𝜆). By plugging such parallel
algorithm back to the single write procedure for ℓ𝑂𝑇 , we obtain a parallel write procedure
for ℓ𝑂𝑇 .

However, there are some issues for online complexity when we combine this intuitive
algorithm with garbling and somewhere equivocal encryption. First, if we garble the entire

8



parallel write circuit using Yao’s garbling scheme, we would have to equivocate the entire
parallel write circuit in the online phase at some point. Since the size of such circuit must be
Ω(𝑀), this leads to a large block length and we will get high online complexity. Therefore,
we will have to split the parallel write circuit into smaller components and garble them
separately so that we can equivocate only some parts of the entire write circuit in the
online phase. However, this does not solve the problem completely, as in the construction
of parallel writes for ℓ𝑂𝑇 given above, inter-CPU communications like sorting networks
take place. In the end, this causes high pebbling complexity of Ω(𝑀). This is problematic
since 𝑀 can be as large as the width of the circuit.

Block-writing ℓ𝑂𝑇 . To fix this issue, we note that for circuits, we can arbitrarily specify
the memory locations for each intermediate wires, and this allows us to arrange the locations
such that the communication patterns can be simplified to the extent that we can reduce
the pebbling complexity to 𝑂(log 𝑀). One such good arrangement is moving all 𝑀 updated
locations into a single continuous block.

We give a procedure for handling such special case of updating the garbled database
with ℓ𝑂𝑇 . Recall that in ℓ𝑂𝑇 , memory contents are hashed together using Merkle trees.
Here, to simplify presentation, we assume the continuous block to be an entire subtree of the
Merkle tree. In this case, it’s easy to compute the digest of the entire subtree efficiently in
parallel, after which we can just update the rest of the Merkle tree using a single standard
but truncated writing procedure with time poly(log |𝐶|, 𝜆), as we only need to pass and
update the digest of the root of that sub-tree; and the security proof is analogous to that
of a single write.

2.1.3 Pebbling Strategy

Before examining the pebbling strategy, we first give the description of the evaluation
procedure and our transformed simulation dependency graph using the ideas mentioned in
the previous section. In each round, 𝑀 garbled circuits take the current database digest
as input and each outputs a ℓ𝑂𝑇 ciphertext that allows the evaluator to obtain the input
for a certain gate. Another garbled circuit would then take the input and evaluate the gate
and output the label for the output for that gate. In order to hash together the output of
𝑀 values for the gates we just evaluated, we use a Merkle tree of garbled circuits where
each circuit would be evaluating a ℓ𝑂𝑇 hash with factor-2 compression. At the end of the
Merkle tree, we would obtain the digest of the sub-tree we wish to update, which would
then allow us to update the database and compute the updated digest. We can then use
the updated digest to enable the evaluation of the next round.

Roughly, the pebbling graph we are dealing with is a line of “gadgets”, and each gadget
consists of a tree with children with an edge to their respective parents. One illustration
of such gadget can be seen in Figure 9. One important observation here is that in order
to start putting pebbles on any gadget, one only needs to put a pebble at the end of the
previous gadget. Therefore, it’s not hard to prove that the pebbling cost for the whole
graph is the pebbling cost for a single gadget plus the pebbling cost for a line graph, whose
length is the parallel time complexity of evaluating the circuit.
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Pebbling line graph. Garg and Srinivasan used a pebbling strategy for pebbling line
graphs with the number of pebbles logarithmic in the length of the line graph. Such strategy
is optimal for the line graph. [Ben89]

Pebbling the gadget. For the gadget, the straightforward recursive strategy works very
well:2

1. To put a pebble at the root, we first recursively put a pebble at its two children
respectively;

2. Now we can put pebble at the root;

3. We again recursively remove the pebbles at its two children.

By induction, it’s not hard to prove that such strategy uses the number of pebbles linear in
the depth of the tree (note that at any given time, there can be at most 2 pebbles in each
depth of the tree) and the number of steps is polynomial in the size of the graph.

Putting the two strategy together, we achieve online complexity 𝑛+𝑚+poly(𝜆, log |𝐶|, log 𝑀),
where 𝑛, 𝑚 is the length of the input and the output respectively. Note that 𝑀 is certainly
at most |𝐶|, so the online complexity is in fact 𝑛 + 𝑚 + poly(𝜆, log |𝐶|), which matches the
online complexity in [GS18].

2.2 Garbling Parallel RAM
Now we expand our previous construction of garbled circuits (which is a “weak” garbling
of a special PRAM program) to garble more general PRAM programs, employing similar
techniques from the seminal work of [GOS18]. We start by bootstrapping the garbling
scheme into an adaptive garbled PRAM with unprotected memory access (UMA).

As with parallelizing adaptive garbled circuits, here we also face the issue of handling
parallel writes. Note that here the previous approach of rearranging write locations would
not work since due to the nature of RAM programs, the write locations can depend dynam-
ically on the input. Therefore, we have to return to our first attempt of parallel writes and
splitting the parallel evaluation into several circuits so that we can garble them separately
for equivocation. Again, we run into the issue of communications leading to high pebbling
complexity.

Solution: Parallel Checkpoints. Our idea is to instead put the parallel write procedure
into the PRAM program and use a technique called “parallel checkpoints” to allow for
arbitrary inter-CPU communications. At a high level, at the end of each parallel CPU step,
we store all the CPUs’ encrypted intermediary states into a second external memory and
compute a digest using laconic oblivious transfer. Such digest can then act like a checkpoint
in parallel computation, which is then used to retrieve the states back from the new database
using another garbled circuit and ℓ𝑂𝑇 .

2This strategy is similar to the second strategy in [HJO+16]. However, here the depth of the tree is only
logarithmic in the number of processors so we can prevent incurring an exponential loss.
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Figure 1: Transforming a toy sorting network using “parallel checkpoints.” The undashed
vertices corresponds to the step circuits that do the actual sorting.

To see how this change affects the simulation dependency graph and why it solves the
complexity issue, consider the following toy example where we have a small sorting network,
as seen in the left side of Figure 1. Note that applying the two pebbling strategeies from
[HJO+16] directly on the untransformed network will result in an online complexity linear
in either the number of processors 𝑀 , or the running time 𝑇 (and in this case also a security
loss exponential in 𝑇 ). However, by doing the transformation as shown in Figure 1, we can
pebble this graph with only 𝑂(log 𝑀) pebbles, by moving the pebble on the final node
of each layer forward (and we can move the pebble forward by one layer using 𝑂(log 𝑀)
pebbles). We can also see that using this change, the size of the garbled program will only
grow by a factor of 2, and the parallel running time will only grow by a factor of log 𝑀 .
In general, this transformation allows us to perform arbitrary inter-CPU communications
without incuring large losses in online complexity, which resolves the issue.

For a more extended version of this construction, see Section 5.3.

Remark 2.1. This technique would also work for parallelizing adaptive garbled circuits, but
doing it this way would be way more complicated and less efficient.

Pebbling game for parallel checkpoints. As mentioned above, such parallel check-
points are implemented via creating a database using ℓ𝑂𝑇 . Thus the same strategy for
pebbling the circuit pebble graph can be directly applied here. The key size of somewhere
equivocal encryption is therefore only poly(𝜆, log |𝐷|, log 𝑀, log 𝑇 ).

With preprocessing and parallel checkpoints, we can proceed in a similar way to con-
struct adaptively secure garbled PRAM with unprotected memory access. In order to
bootstrap it from UMA to full security, the same techniques, i.e. timed encryption and
oblivious RAM compiler from [GOS18] can be used in a similar way to handle additional
complications in the RAM settings. In particular, we argue that the oblivious parallel RAM
compiler from [BCP16] can be modified in the same way to achieve their strengthened notion
of strong localized randomness in the parallel setting and handle the additional subtleties
there. In the end, this allows us to construct a fully adaptively secure garbled PRAM.
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3 Preliminaries
3.1 Garbled Circuits
In this section, we recall the notion of garbled circuits introduced by Yao [Yao82]. We will
follow the same notions and terminologies as used in [CDG+17]. A circuit garbling scheme
GC is a tuple of PPT algorithms (GCircuit, GCEval).

• C̃ ← GCircuit (1𝜆, C, {key𝑤,𝑏}𝑤∈inp(C),𝑏∈{0,1}). It takes as input a security parameter 𝜆,
a circuit C, a set of labels key𝑤,𝑏 for all the input wires 𝑤 ∈ inp(C) and 𝑏 ∈ {0, 1}.
This procedure outputs a garbled circuit C̃.

• 𝑦 ← GCEval (C̃, {key𝑤,𝑥𝑤
}𝑤∈inp(C)). Given a garbled circuit C̃ and a garbled input

represented as a sequence of input labels {key𝑤,𝑥𝑤
}𝑤∈inp(C), GCEval outputs 𝑦.

Correctness. For correctness, we require that for any circuit C and input 𝑥 ∈ {0, 1}𝑚,
where 𝑚 is the input length to C, we have that

Pr [C(𝑥) = GCEval (C̃, {key𝑤,𝑥𝑤
}𝑤∈inp(C))] = 1,

where C̃ ← GCircuit (1𝜆, C, {key𝑤,𝑏}𝑤∈inp(C),𝑏∈{0,1}).

Security. We require that there is a PPT simulator GCircSim such that for any C, 𝑥, and
for {key𝑤,𝑏}𝑤∈inp(C),𝑏∈{0,1} uniformly sampled,

(C̃, {key𝑤,𝑥𝑤
}𝑤∈inp(C))

𝑐≈ (GCircSim (1𝜆, 1|C|, {key𝑤,𝑥𝑤
}𝑤∈inp(C), 𝑦) , {key𝑤,𝑥𝑤

}𝑤∈inp(C)) ,

where C̃ ← GCircuit (1𝜆, C, {key𝑤,𝑏}𝑤∈inp(C),𝑏∈{0,1}) and 𝑦 = C(𝑥).

Parallel efficiency. For parallel efficiency, we require that the parallel runtime of GCircuit
on a PRAM machine with 𝑀 processors is poly(𝜆) ⋅ |𝐶|/𝑀 if |𝐶| ≥ 𝑀 , and the parallel
runtime of GCEval on a PRAM machine with 𝑤 processors is poly(𝜆) ⋅ 𝑑, where 𝑤, 𝑑 is the
width and depth of the circuit respectively.

3.2 Somewhere Equivocal Encryption
In this section, we recall the definition of Somewhere Equivocal Encryption from the work
of [HJO+16].

Definition 3.1. A somewhere equivocal encryption scheme with block-length 𝑠, message
length 𝑛 (in blocks) and equivocation parameter 𝑡 (all polynomials in the security parameter)
is a tuple of PPT algorithms (KeyGen, Enc, Dec, SimEnc, SimDec) such that:

• key ← KeyGen(1𝜆): It takes as input the security parameter 𝜆 and outputs a key key.

• ̄𝑐 ← Enc(key, �̄�): It takes as input a key key and a vector of messages �̄� = 𝑚1...𝑚𝑛
with each 𝑚𝑖 ∈ {0, 1}𝑠 and outputs a ciphertext ̄𝑐.
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SimEncExpt𝑏∈{0,1}(1𝜆, 𝒜)
Let 𝐼0 = 𝐼 and 𝐼1 = 𝐼 ∪ {𝑗}
(st, ̄𝑐) ← SimEnc((𝑚𝑖)𝑖∉𝐼𝑏

, 𝐼𝑏)
((𝑚𝑖)𝑖∈𝐼 , st′) ← 𝒜1( ̄𝑐)
key ← SimKey(st, (𝑚𝑖)𝑖∈𝐼𝑏

)
Output 𝒜2(st′, key)

Figure 2: Simulated Encryption Experiment

• �̄� ← Dec(key, ̄𝑐): It is a deterministic algorithm that takes as input a key key and a
ciphertext ̄𝑐 and outputs a vector of messages �̄� = 𝑚1...𝑚𝑛.

• (st, ̄𝑐) ← SimEnc((𝑚𝑖)𝑖∉𝐼 , 𝐼): It takes as input a set of indices 𝐼 ⊆ [𝑛] and a vector of
messages (𝑚𝑖)𝑖∉𝐼 and outputs a ciphertext ̄𝑐 and a state st.

• key′ ← SimKey(st, (𝑚𝑖)𝑖∈𝐼): It takes as input the state information st and a vector of
messages (𝑚𝑖)𝑖∈𝐼 and outputs a key key′.

It is required to satisfy the following properties:

Correctness. For every key ← KeyGen(1𝜆), every �̄� ∈ {0, 1}𝑠×𝑛, we require that

Dec(key, Enc(key, �̄�)) = �̄�.

Simulation with No Holes. We require that simulation when 𝐼 = ∅ is identical to
the honest key generation and encryption, i.e. the distribution of ( ̄𝑐, key) computed via
(st, ̄𝑐) ← SimEnc(�̄�, ∅) and key ← SimKey(st, ∅) to be identical to key ← KeyGen(1𝜆) and

̄𝑐 ← Enc(key, �̄�).

Security. For any non-uniform PPT adversary 𝒜 = (𝒜1, 𝒜2), for any 𝐼 ⊆ [𝑛] s.t. |𝐼| ≤ 𝑡,
𝑗 ∈ [𝑛] − 𝐼 and vector (𝑚𝑖)𝑖∉𝐼, there exists a negligible function negl(⋅) s.t.

| Pr[SimEncExpt0(1𝜆, 𝒜) = 1] − Pr[SimEncExpt1(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

where SimEncExpt0 and SimEncExpt1 are described in Figure 2.

Theorem 3.2 ([HJO+16]). Assuming the existence of one-way functions, there exists a
somewhere equivocal encryption scheme for any polynomial message-length 𝑛, block-length 𝑠
and equivocation parameter 𝑡, having key size 𝑡 ⋅𝑠 ⋅poly(𝜆) and ciphertext of size 𝑛⋅𝑠 ⋅poly(𝜆)
bits.
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3.3 Parallel RAM Programs
We follow the formalization of parallel RAM (PRAM) programs used in [LO17]. A 𝑀
parallel random-access machine is a collection of 𝑀 processors CPU1, ..., CPU𝑚, having
concurrent access to a shared external memory 𝐷.

A PRAM program Π, given input 𝑥1, ..., 𝑥𝑀 , provides instructions to the CPUs that
can access to the shared memory 𝐷. The CPUs execute the program until a halt state is
reached, upon which all CPUs collectively output 𝑦1, ..., 𝑦𝑀 .3

Here, we formalize each processor as a step circuit, i.e. for each step, CPU𝑖 evaluates the
circuit 𝐶Π

CPU𝑖
(state, wData) = (state′, R/W, 𝐿, rData). This circuit takes as input the current

CPU state state and the data rData read from the database, and it outputs an updated state
state′, a read or write bit R/W, the next locations to read/write 𝐿, and the data wData to
write to that location. We allow each CPU to request up to 𝛾 bits at a time, therefore here
rData, wData are both bit strings of length 𝛾. For our purpose, we assume 𝛾 ≥ 2𝜆. The
(parallel) time complexity 𝑇 of a PRAM program Π is the number of time steps taken to
evaluate Π before the halt state is reached.

We note that the notion of parallel random-access machine is a commonly used extension
of Turing machine when one needs to examine the concrete parallel time complexity of a
certain algorithm.

Memory access patterns. The memory access pattern of PRAM program Π(𝑥) is a
sequence (R/W𝑖, 𝐿𝑖)𝑖∈[𝑇 ], each element represents at time step 𝑖, a read/write R/W𝑖 was
performed on memory location 𝐿𝑖.

3.4 Sorting Networks
Our construction of parallel ℓ𝑂𝑇 uses sorting networks, which is a fixed topology of compar-
isons for sorting values on 𝑛 wires. In our instantiation, 𝑛 equals the number of processors
𝑀 in the PRAM model. As PRAM can simulate circuits efficiently, on a high level, a sorting
network of depth 𝑑 corresponds to a parallel sorting algorithm with parallel time complexity
𝑂(𝑑). As mentioned previously, the topology of the sorting network is not relevant to our
construction.

Theorem 3.3 ([AKS83]). There exists an 𝑛-wire sorting network of depth 𝑂(log 𝑛).

3.5 Laconic Oblivious Transfer
Definition 3.4 ([CDG+17]). An updatable laconic oblivious transfer (ℓ𝑂𝑇 ) scheme consists
of four algorithms crsGen, Hash, Send, Receive, SendWrite, ReceiveWrite.

• crs ← crsGen(1𝜆). It takes as input the security parameter 1𝜆 and outputs a common
reference string crs.

• (digest, D̂) ← Hash(crs, 𝐷). It takes as input a common reference string crs and a
database 𝐷 ∈ {0, 1}∗ and outputs a digest digest of the database and a state D̂.

3Similarly, here we assume the program is deterministic. We can allow for randomized execution by
providing it random coins as input.
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• e ← Send(crs, digest, 𝐿, 𝑚0, 𝑚1). It takes as input a common reference string crs, a
digest digest, a database location 𝐿 ∈ N and two messages 𝑚0 and 𝑚1 of length 𝜆,
and outputs a ciphertext e.

• 𝑚 ← ReceiveD̂(crs, e, 𝐿). This is a RAM algorithm with random read access to D̂. It
takes as input a common reference string crs, a ciphertext e, and a database location
𝐿 ∈ N. It outputs a message 𝑚.

• ew ← SendWrite (crs, digest, {𝐿𝑘}𝑘∈[𝑀], {𝑏𝑘}𝑘∈[𝑀], {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1}). It takes as input
the common reference string crs, a digest digest, 𝑀 locations {𝐿𝑘}𝑘 with the corre-
sponding bits {𝑏𝑘}𝑘, and 𝜆 pairs of messages {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1}, where each 𝑚𝑗,𝑐 is of
length 𝜆. It outputs a ciphertext ew.

• {𝑚𝑗}𝑗∈[𝜆] ← ReceiveWriteD̃(crs, {𝐿𝑘}𝑘∈[𝑀], {𝑏𝑘}𝑘∈[𝑀], ew). This is a RAM algorithm
with random read/write access to D̃. It takes as input the common reference string
crs, 𝑀 locations {𝐿𝑘}𝑘∈[𝑀] and bits to be written {𝑏𝑘}𝑘∈[𝑀] and a ciphertext ew. It
updates the state D̃ (such that 𝐷[𝐿𝑘] = 𝑏𝑘 for every 𝑘 ∈ [𝑀]) and outputs messages
{𝑚𝑗}𝑗∈[𝜆].

It is required to satisfy the following properties:

• Correctness: For any database 𝐷 of size at most poly(𝜆) for any polynomial function
poly(⋅), any memory location 𝐿 ∈ [|𝐷|], and any pair of messages (𝑚0, 𝑚1) ∈ {0, 1}𝜆 ×
{0, 1}𝜆 that

Pr
⎡
⎢⎢⎢⎢
⎣

𝑚 = 𝑚𝐷[𝐿]

∣
∣
∣
∣
∣
∣

crs ← crsGen(1𝜆)
(digest, D̂) ← Hash(crs, 𝐷)

e ← Send(crs, digest, 𝐿, 𝑚0, 𝑚1)
𝑚 ← ReceiveD̂(crs, e, 𝐿)

⎤
⎥⎥⎥⎥
⎦

= 1,

where the probability is taken over the random choices made by crsGen and Send.

• Correctness of Writes: For any database 𝐷 of size at most poly(𝜆) for any poly-
nomial function poly(⋅), any 𝑀 memory locations {𝐿𝑗}𝑗 ∈ [|𝐷|]𝑀 and any bits {𝑏𝑗}𝑗,
and any pairs of messages {𝑚𝑗,𝑐}𝑗,𝑐 ∈ {0, 1}2𝜆2, let 𝐷∗ be the database to be 𝐷 after
making the modifications 𝐷[𝐿𝑗] ← 𝑏𝑗 for 𝑗 = 1, ..., 𝑀 , we require that

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑚′
𝑗 = 𝑚𝑗,𝐷[𝐿]

∀𝑗 ∈ [𝜆]

∣
∣
∣
∣
∣
∣
∣

crs ← crsGen(1𝜆)
(d, D̂) ← Hash(crs, 𝐷)

(d∗, ̂D∗) ← Hash(crs, 𝐷∗)
e ← SendWrite (crs, d, {𝐿𝑘}𝑘, {𝑏𝑘}𝑘, {𝑚𝑗,𝑐}𝑗,𝑐)

{𝑚′
𝑗}𝑗 ← ReceiveWriteD̃(crs, {𝐿𝑘}𝑘, {𝑏𝑘}𝑘, e)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 1,

where the probability is taken over the random choices made by crsGen and Send.
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SenPrivExpt𝜏∈{real, ideal}(1𝜆, 𝒜)
crs ← crsGen(1𝜆)
(𝐷, 𝐿, 𝑚0, 𝑚1, st) ← 𝒜1(crs)
(𝑑, �̂�) ← Hash(crs, 𝐷)
If 𝜏 is real, e ← Send(crs, d, 𝐿, 𝑚0, 𝑚1)
If 𝜏 is ideal, e ← ℓOTSim(crs, 𝐷, 𝐿, 𝑚𝐷[𝐿])
Output 𝒜2(st, e)

Figure 3: Sender Privacy Security Game

SenPrivWriteExpt𝜏∈{real, ideal}(1𝜆, 𝒜)
crs ← crsGen(1𝜆)
(𝐷, 𝑀, {𝐿𝑗}𝑗∈[𝑀], {𝑚𝑗,𝑐}𝑗,𝑐, st) ← 𝒜1(crs)
(𝑑, �̂�) ← Hash(crs, 𝐷)
(𝑑∗, �̂�∗) ← Hash(crs, 𝐷∗) where 𝐷∗ is 𝐷 after making the modifications 𝐷[𝐿𝑗] ← 𝑏𝑗

for 𝑗 = 1, ..., 𝑀
If 𝜏 is real, e ← SendWrite (crs, d, {𝐿𝑘}𝑘, {𝑏𝑘}𝑘, {𝑚𝑗,𝑐}𝑗,𝑐)
If 𝜏 is ideal, e ← ℓOTSimWrite(crs, 𝐷, {𝐿𝑘}𝑘, {𝑚𝑗,𝑑∗

𝑗
}𝑗)

Output 𝒜2(st, e)

Figure 4: Sender Privacy Security Game for Writes

• Sender Privacy: There exists a PPT simulator ℓOTSim such that for any non-
uniform PPT adversary 𝒜 = (𝒜1, 𝒜2) there exists a negligible function negl(⋅) s.t.

| Pr[SenPrivExptreal(1𝜆, 𝒜) = 1] − Pr[SenPrivExptideal(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),
where SenPrivExptreal and SenPrivExptideal are described in Figure 3.

• Sender Privacy for Writes: There exists a PPT simulator ℓOTSimWrite such that
for any non-uniform PPT adversary 𝒜 = (𝒜1, 𝒜2) there exists a negligible function
negl(⋅) s.t.

| Pr[SenPrivWriteExptreal(1𝜆, 𝒜) = 1] − Pr[SenPrivWriteExptideal(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

where SenPrivWriteExptreal and SenPrivWriteExptideal are described in Figure 4.

• Efficiency: The algorithm Hash runs in time |𝐷|poly(log |𝐷|, 𝜆). The algorithms
Send, Receive run in time poly(log |𝐷|, 𝜆), and the algorithms SendWrite, ReceiveWrite
run in time 𝑀 ⋅ poly(log |𝐷|, 𝜆).

It is also helpful to introduce the ℓ𝑂𝑇 scheme with factor-2 compression, which is used
in ℓ𝑂𝑇 ’s original construction [CDG+17].
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Definition 3.5. An ℓ𝑂𝑇 scheme with factor-2 compression ℓ𝑂𝑇const is an ℓ𝑂𝑇 scheme
where the database 𝐷 has to be of size 2𝜆.

Remark 3.6. The sender privacy requirement here is from [GS18]. It requires crs to be
given to the adversary before the adversary chooses his challenge instead of after, and is
therefore stronger than the original security requirement [CDG+17]. But we note that in
the security proof of laconic oblivious transfer, such adaptive security requirement can be
directly reduced to adaptive security for ℓ𝑂𝑇const. And in the construction of [CDG+17], in
every hybrid, crs is generated either truthfully, or generated statistically binding to one of
2𝜆 possible positions. Therefore, we will incur at most a 1/2𝜆 loss in the security reduction,
simply by guessing which position we need to bind to in those hybrids. This also applies to
the sender privacy for parallel writes we will discuss later.

Theorem 3.7 ([CDG+17, DG17, BLSV18, DGHM18]). Assuming either the Computa-
tional Diffie-Hellman assumption or the Factoring assumption or the Learning with Errors
assumption, there exists a construction of laconic oblivious transfer.

4 Adaptive Garbled Circuits Preserving Parallel Runtime
In this section, we construct an adaptively secure garbling scheme for circuits that allows
for parallel evaluation without compromising near-optimal online complexity. We follow
the definition of adaptive garbled circuits from [HJO+16].

Definition 4.1. An adaptive garbling scheme for circuits is a tuple of PPT algorithms
(AdaGCircuit, AdaGInput, AdaEval) such that:

• ( ̃𝐶, st) ← AdaGCircuit (1𝜆, 𝐶). It takes as input a security parameter 𝜆, a circuit
𝐶 ∶ {0, 1}𝑛 ↦ {0, 1}𝑚 and outputs a garbled circuit ̃𝐶 and state information st.

• ̃𝑥 ← AdaGInput(st, 𝑥): It takes as input the state information st and an input 𝑥 ∈
{0, 1}𝑛 and outputs the garbled input ̃𝑥.

• 𝑦 ← AdaEval( ̃𝐶, ̃𝑥). Given a garbled circuit C̃ and a garbled input ̃𝑥, AdaEval outputs
𝑦 ∈ {0, 1}𝑚.

Correctness. For any 𝜆 ∈ N circuit C ∶ {0, 1}𝑛 ↦ {0, 1}𝑚 and input 𝑥 ∈ {0, 1}𝑛, we
have that

Pr [𝐶(𝑥) = AdaEval( ̃𝐶, ̃𝑥)] = 1,

where ( ̃𝐶, st) ← AdaGCircuit (1𝜆, 𝐶) and ̃𝑥 ← AdaGInput(st, 𝑥).

Adaptive Security. There is a PPT simulator AdaGSim = (AdaGSimC, AdaGSimIn) such
that, for any non-uniform PPT adversary 𝒜 = (𝒜1, 𝒜2, 𝒜3) there exists a negligible function
negl(⋅) such that

| Pr[AdaGCExptreal(1𝜆, 𝒜) = 1] − Pr[AdaGCExptideal(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

where AdaGCExptreal and AdaGCExptideal are described in Figure 5.
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AdaGCExpt𝜏∈{real, ideal}[1𝜆, 𝒜]
(𝐶, 𝑠) ← 𝒜1(1𝜆)
If 𝜏 is real, ( ̃𝐶, st) ← AdaGCircuit (1𝜆, 𝐶)
If 𝜏 is ideal, ( ̃𝐶, st) ← AdaGSimC (1𝜆, 1|𝐶|)
(𝑥, 𝑠) ← 𝒜2(𝑠, ̃𝐶)
If 𝜏 is real, ̃𝑥 ← AdaGInput(st, 𝑥)
If 𝜏 is ideal, ̃𝑥 ← AdaGSimIn(st, 𝐶(𝑥))
Output 𝒜3(𝑠, ̃𝑥)

Figure 5: Adaptive Security Game of Adaptive Garble Circuits

Online Complexity. The running time of AdaGInput is called the online computational
complexity and | ̃𝑥| is called the online communication complexity. We require that the online
computational complexity does not scale linearly with the size of the circuit |𝐶|.

Furthermore, we call the garbling scheme is parallelly efficient, if the algorithms are
given as probabilistic PRAM programs with 𝑀 processors, and the parallel runtime of
AdaGCircuit is poly(𝜆) ⋅ |𝐶|/𝑀 if |𝐶| ≥ 𝑀 , the parallel runtime of AdaGInput on a PRAM
machine to be 𝑛/𝑀 ⋅ poly(𝜆, log |𝐶|), and the parallel runtime of AdaEval is poly(𝜆) ⋅ 𝑑 if
𝑀 ≥ 𝑤, where 𝑤, 𝑑 is the width and depth of the circuit respectively.

4.1 Construction Overview
First, we recall the construction of [GS18], which we will use as a starting point. At a high
level, their construction can be viewed as a “weak” garbling of a special RAM program that
evaluates the circuit.

In the ungarbled world, a database 𝐷 is used as RAM to store all the wires (including
input, output, and intermediate wires). Initially, 𝐷 only holds the input and everything
else is uninitialized. In each iteration, the processor takes a gate, read two bits according
to the gate, evaluate the gate, and write the output bit back into the database. Finally,
after all iterations are finished, the output of the circuit is read from the database.

In the garbled world, the database 𝐷 will be hashed as �̂� using ℓ𝑂𝑇 and protected with
an one-time pad 𝑟 as ℓ𝑂𝑇 does not protect its memory content. The evaluation process is
carried out by a sequence of Yao’s garbled circuits and laconic OT “talking” to each other.
In each iteration, two read operations correspond to a selectively secure garbled circuit,
which on given digest as input, outputs two ℓ𝑂𝑇 read ciphertexts that the evaluator can
decrypt to the input label for the garbled gate, which is a selectively secure garbled circuit
that unmasks the input, evaluates the gate, and then unmasks the output. To store the
output, the garbled gate generates a ℓ𝑂𝑇 block-write ciphertext, which also enables the
evaluator to obtain the input labels for the updated digest in the next iteration. This
garbled RAM program is then encrypted using a somewhere equivocal encryption, after
which it is given to the adversary as the garbled circuit. On given input 𝑥, we generate the
protected database �̂� and compute the input labels for the initial digest, and we give out
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the labels, the masked input, the decryption key, and masks for output in the database.
This garbling is weak as in it only concerns a particular RAM program, and it does not

protect the memory access pattern, but it is sufficient for the adaptive security requirement
of garbled circuits as the pattern is fixed and public. As we will see in the security proof
that online complexity is tightly related to the pebbling complexity of a pebbling game.
The pebbling game is played on a simulation dependency graph, where pieces of garbled
circuits in the construction correspond to nodes and hardwiring of input labels correspond
to edges. As the input labels for every selectively secure circuit is only hardcoded in the
previous circuit, the simulation dependency is a line and there is a known good pebbling
strategy.

To parallelize this construction, we naturally wish to evaluate 𝑀 gates in parallel using a
PRAM program instead of evaluating sequentially. This way, we preserve its mostly linear
structure, for which we know a good pebbling strategy. Reading from the database is inher-
ently parallelizable, but writing is more problematic as the processors need to communicate
with each other to compute the updated digest and we need to be more careful.

4.2 Block-writing Laconic OT
Recall from Section 2.1 that we cannot hope to use ℓ𝑂𝑇 as a black box in parallel, thus
we first briefly recall the techniques used in [CDG+17] to bootstrap an ℓ𝑂𝑇 scheme with
factor-2 compression ℓ𝑂𝑇const into a general ℓ𝑂𝑇 scheme with an arbitrary compression
factor.

Consider a database 𝐷 with size |𝐷| = 2𝑑 ⋅ 𝜆. In order to obtain a hash function with
arbitrary (polynomial) compression factor, it’s natural to use a Merkle tree to compress
the database. The Hash function outputs (digest, D̂), where D̂ is the Merkle tree and digest
is the root of the tree. Using ℓ𝑂𝑇const combined with a Merkle tree, the sender is able to
traverse down the Merkle tree, simply by using ℓ𝑂𝑇const.Send to obtain the digest for any
child he wishes to, until he reaches the block he would like to query. For writes, the sender
can read out all the relevant neighbouring digests from the Merkle tree and compute the
updated digest using the information. In order to compress the round complexity down to
1 from 𝑑, we can use Yao’s garble circuit to garble ℓ𝑂𝑇const.Send so that the receiver can
evaluate it for the sender, until he gets the final output. On a high level, the receiver makes
the garbled circuits and ℓ𝑂𝑇const talk to each other to evaluate the read/write ciphertexts.

As mentioned in Section 2.1, we wish to construct a block-write procedure such that the
following holds:

• The parallel running time should be poly(𝜆, log |𝐶|);
• For near-optimal online complexity, both the size of each piece of the garbled circuit

and the pebbling complexity needs to be poly(𝜆, log |𝐶|).
Note that changing the ciphertext to contain all 𝑀 bits directly do not work in this

context, as now the write ciphertext would be of length Ω(𝑀), therefore the garbled circuit
generating it must be of length Ω(𝑀), which violates what we wish to have. The way to fix
this is to instead let the ciphertext only hold the digest of the sub-tree, and the block write
ciphertext simply needs to perform a “partial” write to obtain the updated digest, therefore
its size is no larger than an ordinary write ciphertext. As it turns out, a tree-like structure
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ℓOTSimWriteBlock(crs, 𝐷, 𝐿, {𝑏𝑗}𝑗∈[𝜆], {𝑚𝑗,digest∗
𝑗
}𝑗∈[𝜆])

Output ℓOTSimWrite(crs, 𝐷, {𝐿||𝑗}𝑗∈[𝜆], {𝑏𝑗}𝑗∈[𝜆], {𝑚𝑗,digest∗
𝑗
}𝑗∈[𝜆])

Figure 6: Block-writing security simulator

in the simulation dependency graph also has good pebbling complexity and we can obtain
the sub-tree digest using what we call a garbled Merkle tree, which we will construct in the
next section. This way, we resolve all the issues.

Now, we first direct our attention back to constructing block-writes. Formally, we will
construct two additional algorithms for updatable laconic oblivious transfer that handles a
special case of parallel writes. As we will see later, these algorithms can be used to simplify
the construction of adaptive garbled circuit.

• ew ← SendWriteBlock (crs, digest, 𝐿, d, {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1}). It takes as input the com-
mon reference string crs, a digest digest, a location prefix 𝐿 ∈ {0, 1}𝑃 with length 𝑃 ≤
log |𝐷| and the digest of the subtree d to be written to location 𝐿00...0, 𝐿00...1, ..., 𝐿11...1,
and 𝜆 pairs of messages {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1}, where each 𝑚𝑗,𝑐 is of length 𝜆. It outputs
a ciphertext ew.

• {𝑚𝑗}𝑗∈[𝜆] ← ReceiveWriteBlockD̃(crs, 𝐿, {𝑏𝑘}𝑘∈[2𝑀 ], ew). This is a RAM algorithm with
random read/write access to D̃. It takes as input the common reference string crs, 𝑀
locations {𝐿𝑘}𝑘∈[𝑀] and bits to be written {𝑏𝑘}𝑘∈[𝑀] and a ciphertext ew. It updates
the state D̃ (such that 𝐷[𝐿𝑘] = 𝑏𝑘 for every 𝑘 ∈ [𝑀]) and outputs messages {𝑚𝑗}𝑗∈[𝜆].

The formal construction of block-writing ℓ𝑂𝑇 is as follows:

• SendWriteBlock (crs, digest, 𝐿, d, {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1})
Reinterpret the ℓ𝑂𝑇 Merkle tree by truncating at the |𝐿|-th layer
Output ℓ𝑂𝑇 .SendWrite (crs, digest, 𝐿, d, {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1})

• ReceiveWriteBlockD̃(crs, 𝐿, {𝑏𝑘}𝑘∈[2𝑀 ], ew)
Compute the digest d of database {𝑏𝑘}𝑘∈[2𝑀 ]
Reinterpret the ℓ𝑂𝑇 Merkle tree by truncating at the |𝐿|-th layer and D̃ as the

corresponding truncated version of the database
Label ← ℓ𝑂𝑇 .ReceiveWriteD̃(crs, 𝐿, {𝑏𝑘}𝑘∈[2𝑀 ], ew)
Update D̃ at block location 𝐿 using data {𝑏𝑘}𝑘∈[2𝑀 ]
Output Label

We require similar security and efficiency requirements for block-writing ℓ𝑂𝑇 . It’s not
hard to see that the update part of ReceiveWriteBlock can be evaluated efficiently in parallel
(and the call to normal ReceiveWrite only needs to run once), and the security proof can be
easily reduced to that of SendWrite.
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Hashing Sub-Circuit C
Hardwired Values/Circuit: 𝐻, Keys
Input: 𝑥 ∈ {0, 1}2𝜆

Output Keys𝐻(𝑥)

Figure 7: Hashing Sub-Circuit

4.3 Garbled Merkle Tree
We will now describe an algorithm called garbled Merkle tree. Roughly speaking, a garbled
Merkle tree is a binary tree of garbled circuits, where each of the circuit takes arbitrary
2𝜆 bits as input and outputs the labels of 𝜆 bit digest. Looking ahead, this construction
allows for exponentially smaller online complexity compared to simply garbling the entire
hash circuit when combined with adaptive garbling schemes we will construct later, since
its tree structure allows for small pebbling complexity.

A garbled Merkle tree has very similar syntax as the one for garbled circuit. It consists
of 2 following PPT algorithms:

• GHash(1𝜆, 𝐻, {Key𝑖}𝑖∈[|𝐷|], {Key′
𝑖}𝑖∈[𝜆]): it takes as input a security parameter 𝜆, a

hashing circuit H that takes 2𝜆 bits as input and outputs 𝜆 bits, keys {Key𝑖}𝑖∈[|𝐷|] for
all bits in the database 𝐷 and {Key′

𝑖}𝑖∈[𝜆] for all output bits
Keys1 ← {Key′

𝑖}𝑖∈[𝜆]
Sample {Keys𝑖}𝑖=2,...,|𝐷|/𝜆−1
{Keys𝑖}𝑖=|𝐷|/𝜆,...,2|𝐷|/𝜆−1 ← {Key𝑖}𝑖∈[|𝐷|]
For 𝑖 = 1 to |𝐷|/𝜆 − 1 do

̃𝐶𝑖 ← GCircuit(1𝜆, C[𝐻, Keys𝑖], (Keys2𝑖, Keys2𝑖+1))
Output { ̃𝐶𝑖}𝑖∈[|𝐷|/𝜆−1]

The circuit C here is given in Figure 7.

• GHEval ({ ̃𝐶𝑖}, {lab𝑖}𝑖∈[|𝐷|]): it takes as input the garbled circuits { ̃𝐶𝑖}𝑖∈[|𝐷|/𝜆−1] and
input labels for the database {lab𝑖}𝑖∈[|𝐷|]

{Label𝑖}𝑖=|𝐷|/𝜆,...,2|𝐷|/𝜆−1 ← {lab𝑖}𝑖∈[|𝐷|]
For 𝑖 = |𝐷|/𝜆 − 1 down to 1 do

Label𝑖 ← GCEval( ̃𝐶𝑖, (Label2𝑖, Label2𝑖+1))
Output Label1

Later, we will also invoke this algorithm in garbled PRAM for creating parallel check-
points.

4.4 Construction
We will now give the construction of our adaptive garbled circuits. Let ℓ𝑂𝑇 be a laconic
oblivious transfer scheme, (GCircuit, GCEval) be a garbling scheme for circuits, (GHash, GHEval)
be a garbling scheme for Merkle trees, and SEE be a somewhere equivocal encryption scheme
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with block length poly(𝜆, log |𝐶|) to be the maximum size of garbled circuits {C̃
eval
𝑖,𝑘 , C̃

hash
𝑖,𝑗 , C̃

write
𝑖 },

message length 2𝑀ℓ = 𝑂(|𝐶|2) (we will explain ℓ shortly after) and equivocation parameter
log ℓ + 2 log 𝑀 + 𝑂(1) (the choice comes from the security proof).

Furthermore, we assume both 𝑀 and 𝜆 is a power of 2 and 𝜆 divides 𝑀 . We also have
a procedure {𝑃𝑖}𝑖∈[ℓ] ← Partition(𝐶, 𝑀) (as an oracle) that partition the circuit’s wires
1, 2, ..., |𝐶| into ℓ continuous partitions of size 𝑀 , such that for any partition 𝑃𝑖, its size
is at most 𝑀 (allowing a few extra auxilary wires and renumbering wires), and every gate
in the partition can be evaluated in parallel once every partition 𝑃𝑗 with 𝑗 < 𝑖 has been
evaluated. Clearly 𝑑 ≤ ℓ ≤ |𝐶|, but it’s also acceptable to have a sub-optimal partition
to best utilize the computational resources on a PRAM machine. We assume the input
wires are put in partition 0. This preprocessing is essentially scheduling the evaluation
of the circuit to a PRAM machine and it is essential to making our construction’s online
complexity small.

We now give an overview of our construction. At a high level, instead of garbling the
circuit directly, our construction can be viewed as a garbling of a special PRAM program
that evaluates the circuit in parallel. The database 𝐷 will be hashed as �̂� using ℓ𝑂𝑇 and
protected with an one-time pad 𝑟 as ℓ𝑂𝑇 does not protect its memory content. In each iter-
ation, two read operations for every processor correspond to two selectively secure garbled
circuits, which on given digest as input, outputs a ℓ𝑂𝑇 read ciphertext that generates the
input label for the garbled gate; the garbled gate unmasks the input, evaluates the gate,
and then output the masked output of the gate. After all 𝑀 processors have done evalu-
ating their corresponding gates, a garbled Merkle tree will take their outputs as input to
obtain the digest for the 𝑀 bits of output, and then generate a ℓ𝑂𝑇 block-write ciphertext
to store the outputs into the database. During evaluation, this block-write ciphertext can
be used to obtain the input labels for the read circuits in the next iteration. This garbled
PRAM program is then encrypted using a somewhere equivocal encryption, after which it
is given to the adversary as the garbled circuit. On given input 𝑥, we generate the protected
database �̂� and compute the input labels for the initial digest, and we give out the labels,
the masked inputs, the decryption key, and masks for outputs in the database.

Now we formally present the construction. Inside the construction, we omit 𝑘 ∈ [𝑀]
when the context is clear. It might also be helpful to see Figure 9 for how the garbled
circuits are organized.

• AdaGCircuitPartition (1𝜆, 𝐶):
crs ← ℓ𝑂𝑇 .crsGen(1𝜆)
key ← SEE.KeyGen(1𝜆)
𝐾 ← PRFKeyGen(1𝜆)
{𝑃𝑖}𝑖∈[ℓ] ← Partition(𝐶)
Sample 𝑟 ← {0, 1}𝑀ℓ

For 𝑖 = 1 to ℓ do:
Let 𝐶𝑔,1, 𝐶𝑔,2 denote the two input gates of gate 𝑔
C̃

eval
𝑖,𝑘 ← GCircuit(1𝜆, Creal

eval[crs, 𝐶𝑃𝑖,𝑘,1, 𝐶𝑃𝑖,𝑘,2, 𝑃𝑖,𝑘, (𝑟𝐶𝑃𝑖,𝑘,1
, 𝑟𝐶𝑃𝑖,𝑘,2

, 𝑟𝑃𝑖,𝑘
),

PRF𝐾(1, 𝑖, 𝑘, 0), PRF𝐾(1, 𝑖, 𝑘, 1)],
{PRF𝐾(0, 𝑖, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1})
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Circuit C𝜏∈{real, ideal}
eval

Hardwired Values: crs, 𝑖, 𝑗, 𝑔, (𝑟𝑖, 𝑟𝑗, 𝑟𝑔), lab0, lab1
Input: d
If 𝜏 is real, define for all 𝛼, 𝛽 ∈ {0, 1}, 𝛾(𝛼, 𝛽) ∶= NAND(𝛼 ⊕ 𝑟𝑖, 𝛽 ⊕ 𝑟𝑗) ⊕ 𝑟𝑔
If 𝜏 is ideal, define for all 𝛼, 𝛽 ∈ {0, 1}, 𝛾(𝛼, 𝛽) ∶= 𝑟𝑔
𝑓𝑏 ← Send (crs, d, 𝑗, (𝛾(𝑏, 0), lab𝛾(𝑏,0)), (𝛾(𝑏, 1), lab𝛾(𝑏,1))) for each 𝑏 ∈ {0, 1}
Output Send(crs, d, 𝑖, 𝑓0, 𝑓1)

Figure 8: Description of the Evaluation Circuit

Let keyEval = {PRF𝐾(1, 𝑖, 𝑘, 𝑏)}𝑘∈[𝑀],𝑏∈{0,1}
Let keyHash = {PRF𝐾(2, 𝑖, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1}

{C̃
hash
𝑖,𝑗 }𝑗∈[𝑀−1] ← GHash(1𝜆, ℓ𝑂𝑇const.Hash, keyEval, keyHash)

Let 𝐶write
𝑖 = ℓ𝑂𝑇 .SendWriteBlock (crs, ⋅, 𝑖, {PRF𝐾(0, 𝑖 + 1, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1})

C̃
write
𝑖 ← GCircuit (1𝜆, 𝐶write

𝑖 , keyHash)
𝑐 ← SEE.Enc (key, {C̃

eval
𝑖,𝑘 , C̃

hash
𝑖,𝑗 , C̃

write
𝑖 })

Output ̃𝐶 ∶= (crs, 𝑐, {𝑃𝑖}𝑖∈[ℓ]) and st ∶= (crs, 𝑟, key, ℓ, 𝐾)

• AdaGInput(st, 𝑥):
Parse st ∶= (crs, 𝑟, key, ℓ, 𝐾)
𝐷 ← 𝑟1 ⊕ 𝑥1||...||𝑟𝑛 ⊕ 𝑥𝑛||0𝑀ℓ−𝑛

(d, �̂�) ← ℓ𝑂𝑇 .Hash(crs, 𝐷)
Output ({PRF𝐾(0, 1, 𝑗, d𝑗)}𝑗∈[𝜆], 𝑟1 ⊕ 𝑥1||...||𝑟𝑛 ⊕ 𝑥𝑛, key, 𝑟𝑁−𝑚+1||...||𝑟𝑁)

• AdaEval( ̃𝐶, ̃𝑥):
Parse ̃𝐶 ∶= (crs, 𝑐, {𝑃𝑖}𝑖∈[ℓ])
Parse ̃𝑥 ∶= ({lab0,𝑗}𝑗∈[𝜆], 𝑠1||...||𝑠𝑛, key, 𝑟𝑁−𝑚+1||...||𝑟𝑁)
𝐷 ← 𝑠1||...||𝑠𝑛||0𝑀ℓ−𝑛

(d, �̂�) ← ℓ𝑂𝑇 .Hash(crs, 𝐷)
{C̃

eval
𝑖,𝑘 , C̃

hash
𝑖,𝑗 , C̃

write
𝑖 } ← SEE.Dec(key, 𝑐)

For 𝑖 = 1 to ℓ do:
Let 𝐶𝑔,1, 𝐶𝑔,2 denote the two input gates of gate 𝑔
e ← GCEval(C̃

eval
𝑖,𝑘 , {lab0,𝑗}𝑗∈[𝜆])

e ← ℓ𝑂𝑇 .Receive�̂�(crs, e, 𝐶𝑃𝑖,𝑘,1)
(𝛾𝑘, lab1,𝑘) ← ℓ𝑂𝑇 .Receive�̂�(crs, e, 𝐶𝑃𝑖,𝑘,2)
{lab2,𝑗}𝑗∈[𝜆] ← GHEval({C̃

hash
𝑖,𝑗 }𝑗∈[𝑀−1], {lab1,𝑘}𝑘∈[𝑀])

e ← GCEval(C̃
write
𝑖 , {lab2,𝑗}𝑗∈[𝜆])
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… …

…

…

Figure 9: Illustration of the pebbling graph for one layer: C̃
eval
𝑖,𝑘 are leaf nodes, C̃

hash
𝑖,𝑗 are

intermediate nodes and the root node, finally C̃
write
𝑖 is the extra node at the end. Dotted

edges indicate where ℓ𝑂𝑇 is invoked. Note that WriteBlock is only invoked once and its
result is reused 𝑀 times.

{lab0,𝑗}𝑗∈[𝜆] ← ℓ𝑂𝑇 .ReceiveWriteBlockD̃(crs, 𝑖, {𝛾𝑘}𝑘∈[𝑀], e)
Recover the contents of the memory 𝐷 from the final state �̂�
Output 𝐷𝑁−𝑚+1 ⊕ 𝑟𝑁−𝑚+1||...||𝐷𝑁 ⊕ 𝑟𝑁

Communcation Complexity of AdaGInput. It follows from the construction that the
communication complexity of AdaGInput is 𝜆2 +𝑛+𝑚+|key|. From the parameters used in
the somewhere equivocal encryption and the efficiency of block writing for laconic oblivious
transfer, we note that |key| = poly(𝜆, log |𝐶|).

Computational Complexity of AdaGInput. The running time of AdaGInput grows lin-
early with |𝐶|. However, it’s possible to delegate the hashing of zeros to the offline phase,
i.e. AdaGCircuit. In that case, the running time only grows linearly with 𝑛 + log |𝐶|.

Parallel Efficiency. With a good Partition algorithm and number of processors as many
as the width of the circuit, AdaEval is able to run in 𝑑 ⋅ poly(𝜆, log |𝐶|) where 𝑑 is the depth
of the circuit.

24



Correctness. We note that for each wire (up to permutation due to rewiring), our con-
struction manipulates the database and produces the final output the same way as the
construction given by [GS18]. Therefore by the correctness of their construction, our con-
struction outputs 𝐶(𝑥) with probability 1.

Adaptive Security. We formally prove the adaptive security in Appendix A.

5 Adaptive Garbled Parallel RAM
In this section, we will give a construction of adaptive garbled parallel RAM from public
key assumptions.

Definition 5.1. An adaptive garbled PRAM scheme GPRAM consists of the following
PRAM programs.

• (�̃�, 𝑆𝐾) ← GPRAM.Memory(1𝜆, 𝐷): It takes as input the security parameter 𝜆 and a
database 𝐷 as input and outputs a garbled database, and outputs a garbled database
�̃� and a secret key 𝑆𝐾;

• ̃𝑃 ← GPRAM.Program(𝑆𝐾, 𝑖, Π): It takes as input the secret key 𝑆𝐾, a sequence
number 𝑖 and a PRAM program Π as input, and outputs a garbled program ̃𝑃 ;

• ̃𝑥 ← GPRAM.Input(𝑆𝐾, 𝑖, 𝑥): It takes as input the secret key 𝑆𝐾, a sequence number
𝑖 and input string 𝑥, and outputs the garbled input ̃𝑥;

• (𝑦, st′) ← GPRAM.Eval�̃�(st, Π̃, ̃𝑥): It has random read-write access to �̃�. It takes as
input the state information st (empty for the first program), garbled program Π̃, and the
garbled input ̃𝑥, outputs the evaluation result 𝑦 and the updated state informationst′,
and updates the database �̃� accordingly.

Correctness. We require that for every database 𝐷, 𝑡 = poly(𝜆) and every sequence of
program Π1, ..., Π𝑡 and their respective inputs 𝑥1, ..., 𝑥𝑡, we have that

Pr[GPRAMCorrectExpt(1𝜆) = 1] ≤ negl(𝜆),

where GPRAMCorrectExpt(1𝜆) is described in Figure 10.

Adaptive Security. We require that there exists stateful PPT simulators (SimMemory,
SimProgram, SimInput), such that for all non-uniform PPT stateful adversary 𝒜 and 𝑡 =
poly(𝜆), we have that:

| Pr[GPRAMSecExptreal(1𝜆, 𝒜) = 1] − Pr[GPRAMSecExptideal(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

where GPRAMSecExpt𝑏(1𝜆, 𝒜) is described in Figure 11.
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GPRAMCorrectExpt(1𝜆)
(�̃�, 𝑆𝐾) ← Memory(1𝜆, 𝐷)
st ← ⊥
For 𝑖 ∈ [𝑡] do

Π̃𝑖 ← Program(𝑆𝐾, 𝑖, Π𝑖)
̃𝑥𝑖 ← Input(𝑆𝐾, 𝑖, 𝑥𝑖)

𝑦𝑖 ← Π𝐷
𝑖 (𝑥𝑖)

( ̃𝑦𝑖, st) ← Eval�̃�(𝑖, st, Π̃𝑖, ̃𝑥𝑖)
Output 1 if there exists an 𝑖 ∈ [𝑡] such that ̃𝑦𝑖 ≠ 𝑦𝑖.

Figure 10: GPRAM Correctness Experiment

GPRAMSecExpt𝑏∈{real, ideal}(1𝜆, 𝒜)
(𝐷, 1𝑛, 1𝑡) ← 𝒜(1𝜆)
If 𝜏 is real, (�̃�, 𝑆𝐾) ← Memory(1𝜆, 𝐷)
If 𝜏 is ideal, (�̃�, 𝑆𝐾) ← SimMemory(1𝜆, 1|𝐷|)
For 𝑖 ∈ [𝑡] do

(Π𝑖, 𝑇𝑖) ← 𝒜(�̃�, {Π̃𝑗, ̃𝑥𝑗}𝑗∈[𝑖−1])
If 𝜏 is real, Π̃𝑖 ← Program(𝑆𝐾, 𝑖, Π𝑏)
If 𝜏 is ideal, Π̃𝑖 ← SimProgram(1|𝑇𝑖|)
𝑥𝑖 ← 𝒜(st, {Π̃𝑗, ̃𝑥𝑗}𝑗∈[𝑖−1], Π̃𝑖)
If 𝜏 is real, ̃𝑥𝑖 ← Input(𝑆𝐾, 𝑖, 𝑥𝑖)
If 𝜏 is ideal, Π̃𝑖 ← SimInput(Π𝐷

𝑖 (𝑥𝑖))
Output 𝒜(st, {Π̃𝑗, ̃𝑥𝑗}𝑗∈[𝑡]) if Π𝐷

𝑖 (𝑥𝑖) runs in time 𝑇𝑖 for every 𝑖 ∈ [𝑡]

Figure 11: GPRAM Adaptive Security Game

26



Parallel Efficiency. We require the following efficiency properties:

• The parallel running time of Memory should be bounded by |𝐷|/𝑀 ⋅ poly(log |𝐷|, 𝜆),
assuming |𝐷| ≥ 𝑀 ;

• The parallel running time of Program should be bounded by 𝑇 ⋅poly(log 𝑀, log |𝐷|, 𝑛, 𝜆),
where 𝑇 is the parallel running time for the program;

• The running time of Input should be bounded by 𝑛 ⋅ poly(𝜆, log |𝐷|, log 𝑇 , log 𝑛, log 𝑀);

• The parallel running time of Eval should be bounded by 𝑇 ⋅poly(log 𝑀, log |𝐷|, log 𝑇 , 𝑛, 𝜆),
where 𝑇 is the parallel running time for the program.

Remark 5.2. In order to simplify the presentation, here we simply use 𝑛 as the size of
local CPU state, thus the size of both the input and the output is 𝑛𝑀 . However, in our
construction, we can also hardwire some of the initial CPU states by sending that part of
the garbled input in Program, so that the size of the garbled input will only scale linearly
with the length of the actual input instead of the entire local state space; we can also omit
sending the labels for the part of CPU states that are not a part of the output, so the size
of the garbled input will also only scale linearly with the length of the actual output.

5.1 Garbling with Unprotected Memory Access
Following the general techniques used to construct garbled PRAM in previous works [BCP16,
LO17, GOS18], we first construct an intermediate premitive with weaker security require-
ments called adaptive garbled PRAM with unprotected memory acccess. Informally, a gar-
bled PRAM scheme has unprotected memory access if both the contents of the database
and the access to the database are revealed in the clear to the evaluator. We mostly follow
the definition given in [GOS18].

Definition 5.3. An adaptive garbled PRAM scheme with unprotected memory access UG-
PRAM consists of the following parallel PPT algorithms:

• (�̃�, 𝑆𝐾) ← Memory(1𝜆, 𝐷): It takes as input the security parameter 𝜆, a database
𝐷 ∈ {0, 1}2𝑑⋅𝜆 and outputs a garbled database �̃� and a secret key 𝑆𝐾.

• Π̃ ← Program(𝑆𝐾, 𝑖, Π): It takes as input a secret key 𝑆𝐾, a sequence number 𝑖, and
a PRAM program Π as input (represented as a set of CPU step circuits) and outputs
a garbled program Π̃.

• ̃𝑥 ← Input(𝑆𝐾, 𝑖, {𝑥𝑘}𝑘∈[𝑀]): It takes as input a secret key 𝑆𝐾, a sequence number 𝑖,
and 𝑀 input strings (which acts as its initial CPU state) for each processor {𝑥𝑘}𝑘∈[𝑀]
and outputs the garbled input ̃𝑥.

• (𝑦, st′) ← Eval�̃�(𝑖, st, Π̃, ̃𝑥): It is a PRAM program with random read-write access to
�̃�. It takes a sequence number 𝑖, the state information st, garbled program Π̃, garbled
input ̃𝑥, outputs the evaluation result 𝑦 and the updated state information st′, and
updates the database accordingly.
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UGPRAMCorrectExpt(1𝜆)
(�̃�, 𝑆𝐾) ← Memory(1𝜆, 𝐷)
st ← ⊥
For 𝑖 ∈ [𝑡] do

Π̃𝑖 ← Program(𝑆𝐾, 𝑖, Π𝑖)
̃𝑥𝑖 ← Input(𝑆𝐾, 𝑖, 𝑥𝑖)

𝑦𝑖 ← Π𝐷
𝑖 (𝑥𝑖)

( ̃𝑦𝑖, st) ← Eval�̃�(𝑖, st, Π̃𝑖, ̃𝑥𝑖)
Output 1 if there exists an 𝑖 ∈ [𝑡] such that ̃𝑦𝑖 ≠ 𝑦𝑖.

Figure 12: UGPRAM Correctness Experiment

UGPRAMSecExpt(1𝜆, 𝒜, 𝑏)
(𝐷, 1𝑛, 1𝑡) ← 𝒜(1𝜆)
(�̃�, 𝑆𝐾) ← Memory(1𝜆, 𝐷)
For 𝑖 ∈ [𝑡] do

(Π0, Π1) ← 𝒜(�̃�, {Π̃𝑗, ̃𝑥𝑗}𝑗∈[𝑖−1])
Π̃𝑖 ← Program(𝑆𝐾, 𝑖, Π𝑏)
𝑥𝑖 ← 𝒜(st, {Π̃𝑗, ̃𝑥𝑗}𝑗∈[𝑖−1], Π̃𝑖)

̃𝑥𝑖 ← Input(𝑆𝐾, 𝑖, 𝑥𝑖)
Output 𝒜(st, {Π̃𝑗, ̃𝑥𝑗}𝑗∈[𝑡]) if the output of each ungarbled step circuit is the same for

all pairs of (Π0, Π1)

Figure 13: UGPRAM Adaptive Security Game

Correctness. For every database 𝐷, 𝑡 = poly(𝜆) and every sequence of program and input
pairs {(𝑃𝑖, 𝑥𝑖)}𝑖∈[𝑡], we have that

Pr[UGPRAMCorrectExpt(1𝜆) = 1] = 0,
where UGPRAMCorrectExpt(1𝜆) is described in Figure 12.

Adaptive Security. For any non-uniform PPT stateful adversary 𝒜 and 𝑡 = poly(𝜆) we
require that:

| Pr[UGPRAMSecExpt(1𝜆, 𝒜, 0) = 1] − Pr[UGPRAMSecExpt(1𝜆, 𝒜, 1) = 1]| ≤ negl(𝜆),
where UGPRAMSecExpt(1𝜆, 𝒜, 𝑏) is described in Figure 13.

Parallel Efficiency. We require the following efficiency properties:

• The parallel running time of Memory should be bounded by |𝐷|/𝑀 ⋅ poly(log |𝐷|, 𝜆),
assuming |𝐷| ≥ 𝑀 ;
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• The parallel running time of Program should be bounded by 𝑇 ⋅poly(log 𝑀, log |𝐷|, 𝑛, 𝜆),
where 𝑇 is the parallel running time for the program;

• The running time of Input should be bounded by 𝑛 ⋅ poly(𝜆, log |𝐷|, log 𝑇 , log 𝑛, log 𝑀);

• The parallel running time of Eval should be bounded by 𝑇 ⋅poly(log 𝑀, log |𝐷|, log 𝑇 , 𝑛, 𝜆),
where 𝑇 is the parallel running time for the program.

5.2 Inter-CPU Communications for PRAM Programs
Recall from Section 2.2 that in our construction, we also need to allow PRAM programs to
have inter-CPU communications (communications without using the memory) for parallel
writes. We formalize such inter-CPU communication with one CPU reading state infor-
mation from another CPU. Say CPU𝑖 needs to read from CPU𝑗, this can be formalized as
evaluating the step circuit 𝐶Π

CPU𝑖
(state𝑖, state𝑗) = state′

𝑖, which takes as input the old states
of two CPUs state𝑖, state𝑗 and outputs the updated states state′

𝑖. This formalization enables
two CPUs communicating with each other as well as broadcasts. Say CPU𝑗 wants to trans-
mit a message to CPU𝑖, it can prepare its message inside state𝑗, and in the next time-step
CPU𝑖 can read the message from the state𝑗 and update its own state.

Here, we assume that the program that we are given is in the standard PRAM model,
i.e. it does not use inter-CPU communication at all (this would not impact their compu-
tational power as they can use RAM as a medium to communicate). Similarly, inter-CPU
communications in our construction can also be emulated by the standard PRAM model
with constant overhead, but using inter-CPU communications enable us to more easily dis-
tinguish the memory accesses that do not need extra protections. Looking ahead, as we
only need to invoke inter-CPU communications in parallel writes, security still holds since
the communication patterns are fixed and do not leak any information about the database,
the program nor the input.

5.3 Roadmap for UMA Security
To construct a GPRAM, we first construct a GPRAM with unprotected memory access
(UGPRAM), which we later bootstrap to full security using techniques from [GOS18]. We
will handle the additional subtleties in the full security case in Section 5.6. For now, we
focus our attention to constructing UGPRAM.

The main idea is to expand our weak garbling scheme from Section 4 to a full garbling
scheme for PRAM programs with unprotected memory access. The main difficulty here is
that in PRAM programs since the memory location we access will depend on the input, we
cannot simply rearrange the memory access into a single continuous block. Thus, a more
general parallel write for ℓ𝑂𝑇 is required. We will highlight some of the changes we made
to ℓ𝑂𝑇 in this section, with the full construction presented in Section 5.4.

Recall Figure 1 for the transformation toy example. In the ungarbled world, there are
𝑀 CPU step circuits for each parallel time-step, which naturally corresponds to 𝑀 Yao’s
garbled circuits in the garbled world. Since we need to use inter-CPU communications in
our update phase (there are two outgoing edges in the transformed graph), the garbled step
circuit for CPU 𝑖 needs to hardwire not only the input label for the next step circuit for

29



CPU 𝑖, but also labels for message sent to CPU 𝑗. This introduces intricate simulation
dependencies that we do not know how to pebble efficiently.

In order to tackle this issue, we employ the technique of “parallel checkpoints,” similar
to branch and combine transformation from [CCC+16], which is a technique that allow us
to compile arbitrary PRAM programs such that the compiled programs have good pebbling
complexity. On a high level, after every CPU has evaluated a time-step on its own, instead
of every CPU routes its messages (which we simply formalize as CPU states) on its own, we
first aggregate all the CPU states into a single garbled circuit that acts like a checkpoint,
and the garbled step circuits in the next time-step takes their input labels directly from this
single garbled circuit. With this change, we break up the intricate simulation dependencies
by aggregating all the simulation dependencies into this single circuit, and in order to pebble
circuits in the next parallel time-step, it is sufficient to pebble this single checkpoint.

However, the size of all CPU states is Ω(𝑀), so the size of the checkpoint is too large.
To fix this, instead of simply aggregating the states, we use a garbled Merkle tree from
Section 4.3 (for which there is a good pebbling strategy) that evaluates the ℓ𝑂𝑇 hash for an
ephemeral database that holds all CPU states. Since the digest binds the entire database
(in this case, all CPU states), this allows us to compress the ephemeral database into a
short string and all the circuits in the garbled Merkle tree is small. Overall, we maintain
the linear structure in the simulation dependency graph.

Finally, in order to keep the write ciphertext small so that all the intermediate circuit
is of small size, here we break the parallel write into three procedures:

1. (inside garbled PRAM) A send phase where each processor 𝑘 ∈ [𝑀] decides a location
𝐿𝑘 to write to independently, and generates a parallel write ciphertext 𝑒𝑘, which is a
sequence of garbled circuits that reads out all the labels for the neighbouring digests;

2. (outside garbled PRAM) A receive phase where the receiver can evaluate the parallel
write ciphertexts in parallel, and return all the labels for the neighbouring digests;

3. (inside garbled PRAM) Finally an update phase where processors on receiving the
labels, jointly computes the updated digest in parallel using inter-CPU communica-
tions.

With these three parallel write procedures, we wrap all the memory access in the original
PRAM program with ℓ𝑂𝑇 procedures to access the memory.

5.4 Parallel Updatable Laconic OT
Recall that ℓ𝑂𝑇 already allows for parallel reads. In this section, we will formalize the
syntax for parallel writes.

Definition 5.4 (Parallel Updatable ℓ𝑂𝑇 ). A parallel updatable ℓ𝑂𝑇 scheme consists of
algorithms crsGen, Hash, Send, Receive as in Definition 3.4 and additionally three algorithms
SendPWrite, ReceivePWrite, and UpdatePWrite with the following syntax.

• e𝑘 ← SendPWrite (crs, digest, 𝐿𝑘, {𝑚𝑘,𝑖,𝑗,𝑐}𝑖∈[𝑑],𝑗∈[2𝜆],𝑐∈{0,1})4. It takes as input the
common reference string crs, a digest digest, one location 𝐿𝑘, and some pairs of

4As we will see later, SendPWrite only prepares the ciphertext for preparing the write, so 𝑏𝑘 is not needed.
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messages {𝑚𝑘,𝑖,𝑗,𝑐}𝑖∈[𝑑],𝑗∈[2𝜆],𝑐∈{0,1}, where each 𝑚𝑘,𝑖,𝑗,𝑐 is of length 𝜆. We require that
each 𝐿𝑘 is different. It outputs a ciphertext e𝑘.

• trace ← ReceivePWriteD̃(crs, {𝐿𝑘}𝑘∈[𝑀], {𝑏𝑘}𝑘∈[𝑀], {e𝑘}𝑘∈[𝑀]). This is a PRAM algo-
rithm with random read/write access to D̃. It takes as input the common reference
string crs, 𝑀 locations {𝐿𝑘}𝑘∈[𝑀] and bits to be written {𝑏𝑘}𝑘∈[𝑀], and 𝑀 ciphertexts
{e𝑘}𝑘∈[𝑀]. It updates the state D̃ (such that 𝐷[𝐿𝑘] = 𝑏𝑘 for every 𝑘 ∈ [𝑀]) and outputs
its computation trace trace.

• digest∗ ← UpdatePWrite(crs, {𝐿𝑘}𝑘, {𝑏𝑘}𝑘, {𝑚𝑘,𝑖,𝑗,𝑐}𝑖,𝑗,𝑐, trace). This is a PRAM algo-
rithm that takes as input the common reference string crs, a digest digest, 𝑀 locations
{𝐿𝑘}𝑘∈[𝑀], 𝑀 bits {𝑏𝑘}𝑘∈[𝑀], the same pairs of messages {𝑚𝑘,𝑖,𝑗,𝑐}𝑖∈[𝑑],𝑗∈[2𝜆],𝑐∈{0,1} as
used in SendPWrite, and the trace trace computed by ReceivePWrite. It outputs the
new digest digest∗ using only inter-CPU communications.

On a high level, for the parallel version of SendWrite and ReceiveWrite, we basically
do the same except that we need to send back all the digest since the computation of the
updated digest now happens in the UpdatePWrite PRAM program, where all processors
collaboratively update the partial Merkle tree in the input and compute the updated root
hash. This is a clean way to keep each pieces in SendPWrite independent from each other.
Looking ahead, this change will help us to use this construction in a black-box way without
compromising online complexity.

Formally, similarly to updatable ℓ𝑂𝑇 , we require the following properties for the parallel
write procedures:

• Correctness of Parallel Writes: Let database 𝐷 be of size at most poly(𝜆) and
let {𝐿𝑘}𝑘∈[𝑀] be 𝑀 non-overlapping memory locations. Let 𝐷∗ be a database that
is identical to 𝐷 except that 𝐷∗[𝐿𝑘] = 𝑏𝑘 for every 𝑘 ∈ [𝑀]. For any sequence of
messages {𝑚𝑗,𝑐}𝑗∈[2𝜆],𝑐∈{0,1}, we require that

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d′ = d∗

∣
∣
∣
∣
∣
∣
∣
∣
∣

crs ← crsGen(1𝜆)
(d, D̃) ← Hash(crs, 𝐷)

(d∗, D̃
∗
) ← Hash(crs, 𝐷∗)

e𝑘 ← SendPWrite (crs, d, 𝐿𝑘, {𝑚𝑘,𝑖,𝑗,𝑐}𝑖,𝑗,𝑐) ∀𝑘
trace ← ReceivePWriteD̃(crs, {𝐿𝑘}𝑘, {𝑏𝑘}𝑘, {e𝑘}𝑘)

d′ ← UpdatePWrite(crs, {𝐿𝑘}𝑘, {𝑏𝑘}𝑘, {𝑚𝑘,𝑖,𝑗,𝑐}𝑖,𝑗,𝑐, trace)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1,

• Sender Privacy Against Semi-Honest Receivers With Regard To Parallel
Writes: There exists a PPT simulator ℓOTSim such that for any non-uniform PPT
adversary 𝒜 = (𝒜1, 𝒜2) there exists a negligible function negl(⋅) s.t.

| Pr[PWriSenPrivreal(1𝜆, 𝒜) = 1] − Pr[PWriSenPrivideal(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

where PWriSenPrivreal and PWriSenPrivideal are described in Figure 14.
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PWriSenPriv𝜏∈{real, ideal}(1𝜆, 𝒜)
crs ← crsGen(1𝜆)
(𝐷, 𝐿𝑘, {𝑚𝑘,𝑖,𝑗,𝑐}𝑖∈[𝑑],𝑗∈[𝜆],𝑐∈{0,1}, st) ← 𝒜1(crs)
(𝑑, �̂�) ← Hash(crs, 𝐷)
Let D̂𝑖,𝑗 be the 𝑗-th bit of the digest on the 𝑖-th item in path 𝐿𝑘
If 𝜏 is real

e𝑘 ← SendPWrite (crs, d, 𝐿𝑘, {𝑚𝑘,𝑖,𝑗,𝑐}𝑖∈[𝑑],𝑗∈[2𝜆],𝑐∈{0,1})
If 𝜏 is ideal

e𝑘 ← ℓOTSimPWrite (crs, 𝐷, 𝐿𝑘, {𝑚𝑘,𝑖,𝑗,D̂𝑖,𝑗
}𝑖∈[𝑑],𝑗∈[2𝜆])

Output 𝒜2(st, e𝑘)

Figure 14: Sender Privacy for Parallel Writes Security Game

Circuit Ctrav

Hardwired Values: crs, 𝑏, Keys, K̃eys, 𝑟, ̃𝑟
Input: sbl
Parse sbl = (sbl0, sbl1)
e ← ℓ𝑂𝑇const.Send(crs, sbl𝑏, Keys; 𝑟)
̃e ← ℓ𝑂𝑇const.Send(crs, sbl𝑏, K̃eys; ̃𝑟)

Output (e, ̃e)

Figure 15: The Traversing Circuit Ctrav [crs, 𝑏, Keys, K̃eys, 𝑟, ̃𝑟] from [CDG+17]

• Efficiency Requirements: We require that all three algorithms run in time poly(log |𝐷|, 𝜆, log 𝑀)
on a PRAM machine with 𝑀 processors using only local inter-CPU communications.

Theorem 5.5. Assuming the existence of laconic oblivious transfer, there exists laconic
oblivious transfer with parallel writes.

We now give the formal construction of the three new algorithms in parallel updatable
ℓ𝑂𝑇 . In the construction, for each 𝑘 ∈ [𝑀] is implied.

• crsGen(1𝜆), Hash(crs, 𝐷), Send(crs, digest, 𝐿, 𝑚0, 𝑚1) and ReceiveD̂(crs, e, 𝐿) is constructed
in the same way as in updatable ℓ𝑂𝑇 given in [CDG+17].

• SendPWrite (crs, digest, 𝐿𝑘, {𝑚𝑘,𝑖,𝑗,𝑐}𝑖∈[𝑑],𝑗∈[2𝜆],𝑐∈{0,1}):
Parse 𝐿𝑘 = (𝑏𝑘,1, 𝑏𝑘,2, ..., 𝑏𝑘,𝑑−1, 𝑡𝑘)
Let Keys𝑑

𝑘 be 0∗

Let K̃eys
𝑖
𝑘 to be {𝑚𝑘,𝑖,𝑗,𝑐}𝑗∈[2𝜆],𝑐∈{0,1}

For 𝑖 = 𝑑 − 1 downto 1:
Pick Keys𝑖

𝑘 as input keys for Ctrav
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Pick 𝑟𝑖
𝑘, ̃𝑟𝑖

𝑘 as random coins for ℓ𝑂𝑇const.Send
C̃

𝑖
𝑘 ← GCircuit (1𝜆, Ctrav [crs, 𝑏𝑘,𝑖, Keys𝑖+1

𝑘 , K̃eys
𝑖+1
𝑘 , 𝑟𝑖

𝑘, ̃𝑟𝑖
𝑘] , Keys𝑖

𝑘)
e0

𝑘 ← ℓ𝑂𝑇const.Send(crs, digest, Keys1
𝑘)

̃e0
𝑘 ← ℓ𝑂𝑇const.Send(crs, digest, K̃eys

1
𝑘)

Output e𝑘 = (e0
𝑘, ̃e0

𝑘, {C̃
𝑖
𝑘}𝑖∈[𝑑−1])

• ReceivePWriteD̃(crs, {𝐿𝑘}𝑘∈[𝑀], {𝑏𝑘}𝑘∈[𝑀], {e𝑘}𝑘∈[𝑀]):
Parse e𝑘 = (e0

𝑘, ̃e0
𝑘, {C̃

𝑖
𝑘}𝑖∈[𝑑−1])

Parse 𝐿𝑘 = (𝑏𝑘,1, 𝑏𝑘,2, ..., 𝑏𝑘,𝑑−1, 𝑡𝑘)
Parse D̂ as a Merkle tree
Denote the end node of path 𝑏1𝑏2...𝑏𝑖 by D̂𝑏1𝑏2...𝑏𝑖

.
For 𝑖 = 1 to 𝑑 − 1:

sbl𝑖𝑘 ← (D̂𝑏𝑘,1...𝑏𝑘,𝑖−10, D̂𝑏𝑘,1...𝑏𝑘,𝑖−11)
Labels𝑖

𝑘 ← ℓ𝑂𝑇const.Receive(crs, e𝑖−1
𝑘 , sbl𝑖𝑘)

L̃abels
𝑖
𝑘 ← ℓ𝑂𝑇const.Receive(crs, ̃e𝑖−1

𝑘 , sbl𝑖𝑘)
(e𝑖

𝑘, ̃e𝑖
𝑘) ← GCEval (C̃

𝑘
𝑖 , {Labels𝑖

𝑘}
𝑖∈[𝑑]

𝑘∈[𝑀]
)

leaf𝑘 ← (D̂𝑏𝑘,1...𝑏𝑘,𝑑−10, D̂𝑏𝑘,1...𝑏𝑘,𝑑−11)
L̃abels

𝑑
𝑘 ← ℓ𝑂𝑇const.Receive(crs, ̃e𝑑−1

𝑘 , leaf)
Update the Merkle tree as in UpdatePWrite

Output trace = {L̃abels
𝑖
𝑘}

𝑖∈[𝑑]

𝑘∈[𝑀]

• UpdatePWrite(crs, {𝐿𝑘}𝑘∈[𝑀], {𝑏𝑘}𝑘∈[𝑀], {𝑚𝑘,𝑖,𝑗,𝑐}𝑖∈[𝑑],𝑗∈[2𝜆],𝑐∈{0,1}, trace):

Parse trace = {L̃abels
𝑖
𝑘}

𝑖∈[𝑑]

𝑘∈[𝑀]
Recover (sbl1𝑘, ..., sbl𝑑−1

𝑘 , leaf𝑘)𝑘∈[𝑀] from trace with {𝑚𝑘,𝑖,𝑗,𝑐}𝑖,𝑗,𝑐 as keys
Parse 𝐿𝑘 = (𝑏𝑘,1, 𝑏𝑘,2, ..., 𝑏𝑘,𝑑−1, 𝑡𝑘)
Parse sbl𝑖𝑘 = (sbl𝑖,0𝑘 , sbl𝑖,1𝑘 ) for 𝑖 ∈ [𝑑 − 1]
leaf𝑘[𝑡𝑘] ← 𝑏𝑘
sbl𝑑𝑘 ← leaf𝑘
For 𝑖 = 𝑑 − 1 downto 1:

Sort by {𝐿𝑘} and move inactive processors to the end
mark𝑘 ← 0
If neighboring processor’s path is the same up to 𝑖

Mark the processor with larger 𝑘 inactive and “terminate” it
Update sbl𝑖,1𝑘 with the value from the neighboring processor

sbl𝑖,𝑏𝑘,𝑖
𝑘 ← ℓ𝑂𝑇const.Hash(crs, sbl𝑖+1

𝑘 )
Output digest∗ = ℓ𝑂𝑇const.Hash(crs, sbl11)

Here for the sake of presentation, we assume that each 𝐿𝑘 is not only different, but
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also belongs to different blocks in the Merkle tree. However, it is very easy to extend the
construction to handle writing to the same block and we will only incur an extra factor of
𝑂(min{log 𝑀, 𝜆}) in runtime.

Efficiency. Send and Receive can be run independently, therefore its parallel run time is
poly(log |𝐷|, 𝜆). It can be seen that both the running time of SendPWrite and the parallel
running time of ReceivePWrite is poly(log |𝐷|, 𝜆, log 𝑀), and the latter only uses local inter-
CPU communications.

Correctness. Correctness with regard to parallel writes can easily be argued by the
correctness of the garbling scheme and the correctness of ℓ𝑂𝑇const.

Security. For proof of security, see Appendix B.1.

5.5 Construction of UGPRAM
In this subsection, we give a construction of adaptive garbled PRAM with unprotected
memory access. Formally,

Theorem 5.6. Assuming the existence of parallel updatable laconic oblivious transfer, some-
where equivocal encryption, a pseudorandom function and garbling scheme for circuits with
selective security, there exists adaptive garbled PRAM with unprotected memory access,
where the time required to garble a database, a PRAM program and an input grows linearly
(up to polylogarithmic factors) with the size of the database, parallel running time of the
PRAM program and length of the input respectively.

First, we give an overview of the construction. Similar to how we garble the circuit
PRAM program, here we simply protect the database with ℓ𝑂𝑇 as we do not need to
protect the memory (yet). We preprocess the PRAM program by appending the instruction
ℓ𝑂𝑇 .UpdatePWrite after each parallel write operation, and then broadcasting the computed
updated digest to all processors for the next instruction. For each PRAM timestep, each
processor evaluates a selectively secure garbled step circuit, taking labels for the current
database digest d, local CPU memory state (which consists of two local CPU memories) and
possibly some data read according to the previous request rData as input; outputs a ℓ𝑂𝑇
read (or parallel write) ciphertext, and updates local CPU memory and database digest
accordingly. Furthermore, each processor outputs two copies of the same updated local
CPU memory, one stored in the clear state′, one as labels for the input to a garbled Merkle
tree. Using these two copies, the evaluator can put all the local memory together into a new
database 𝐷′ (the checkpoint), as well as evaluating the garbled Merkle tree to obtain labels
d′ for 𝐷′. After that, each processor evaluates another selectively secure garbled circuit
to read out labels for the next garbled step circuit from 𝐷′, after which 𝐷′ can be safely
discarded and replaced by the new database in the next iteration. The garbled program is
simply the somewhere equivocal encryption of all the garbled circuits, and the garbled input
consists of the decryption key and the input labels for the first 𝑀 garbled step circuits.

Now we give the formal description of the construction. We use a somewhere equivocal
encryption with block length set to |C̃|, where |C̃| denotes the largest garbled circuit in the
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Step Circuit Ceval

Hardwired Values/Circuit: crs, 𝜏 , {lab𝑗,𝑏}𝑗∈[𝜆],𝑏∈{0,1}, 𝐶
Input: d, state, rData
(state′, R/W, 𝐿, wData) ← 𝐶Π

CPU𝑖
(state, rData)

If 𝜏 = 𝑇 , reset lab𝑗+𝜆,𝑏 = 𝑏 for all 𝑗 ∈ [𝑛]
If 𝜏 is at the end of ℓ𝑂𝑇 .UpdatePWrite, d ← tr𝑘
If R/W = write

𝑒 ← ℓ𝑂𝑇 .SendPWrite(crs, d, 𝐿, {𝑏||lab𝑗+𝜆+𝑛,𝑏⊕𝑟𝑛+𝑗
}𝑗∈[2𝑑𝜆],𝑏∈{0,1})

Else if R/W = read
𝑒 ← ℓ𝑂𝑇 .Send(crs, d, 𝐿, {𝑏||lab𝑗+𝜆+𝑛,𝑏⊕𝑟𝑛+𝑗

}𝑗∈[2𝜆],𝑏∈{0,1})
Else 𝑒 ← ⊥
Output (R/W, 𝐿, 𝑒, wData, state′, {lab𝑗,d𝑗

}𝑗∈[𝜆], {lab𝑗+𝜆,state′
𝑗
}𝑗∈[𝑛])

Figure 16: Description of the Step (evaluation) Circuit

Step Circuit Cread

Hardwired Values/Circuit: crs, {𝐿𝑗}𝑗∈[2𝑛+2𝑑𝜆], {lab𝑗,𝑏}𝑗∈[𝑛+2𝑑𝜆],𝑏∈{0,1}
Input: d′

Output ℓ𝑂𝑇 .Send(crs, d′, {𝐿𝑗}𝑗, {lab𝑗,𝑏}𝑗,𝑏)

Figure 17: Description of the Read Circuit

construction; the message length to be 𝑇 (which is the running time of the preprocessed
version of program Π̂) and the equivocation parameter to be log 𝑇 + log 𝑛 + log 𝑀 + 𝑂(1).

• Memory(1𝜆, 𝐷):
crs ← crsGen(1𝜆, 1|𝐷|)
𝐾 ← PRFKeyGen(1𝜆)
lab1

𝑗,𝑏 ← PRF𝐾(1, 𝑗, 0, 𝑏), ∀𝑗 ∈ [𝜆], 𝑏 ∈ {0, 1}
(d, �̂�) ← ℓ𝑂𝑇 .Hash(crs, 𝐷)
Output �̂�, {lab1

𝑗,d𝑗
}𝑗∈[𝜆] as the garbled memory and 𝑆𝐾 = (𝐾, crs, |𝐷|)

• Program(𝑆𝐾, 𝑖, Π):
Parse 𝑆𝐾 = (𝐾, crs, |𝐷|)
Expand every processor’s local memory for temporary storage used by ℓ𝑂𝑇 .UpdatePWrite,

this region will be referred to as tr𝑘 for CPU 𝑘
Preprocess the program Π into Π̂ by inserting instructions after every parallel write

in Π̂:
tr1 ← ℓ𝑂𝑇 .UpdatePWrite(crs, {𝐿𝑘}𝑘∈[𝑀], {𝑏𝑘}𝑘∈[𝑀], {𝑚𝑘,𝑖,𝑗,𝑐}𝑖∈[𝑑],𝑗∈[𝜆],𝑐∈{0,1}, {rData𝑘}𝑘)
tr𝑘 ← tr1∀𝑘 ∈ [𝑀]

Let 𝑇 be the parallel execution time of Π̂
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Sample lab𝜏,𝑘
𝑗,𝑏 , lab𝜏,𝑘

𝑗,𝑏 for 𝑗 ∈ [𝜆 + 𝑛 + 2𝑑𝜆], 𝑏 ∈ {0, 1}, 𝜏 ∈ [2, 𝑇 ], 𝑘 ∈ [𝑀] u.a.r.
lab1,𝑘

𝑗,𝑏 ← PRF𝐾(𝑖, 𝑗, 0, 𝑏) for 𝑗 ∈ [𝜆 + 𝑛 + 2𝑑𝜆], 𝑏 ∈ {0, 1}, 𝑘 ∈ [𝑀]
lab𝑇 +1

𝑗,𝑏 ← PRF𝐾(𝑖 + 1, 𝑗, 𝑘, 𝑏) for 𝑗 ∈ [𝜆 + 𝑛 + 2𝑑𝜆], 𝑏 ∈ {0, 1}, 𝑘 ∈ [𝑀]
Let {lab𝜏,𝑘

𝑗,𝑏 } denote {lab𝜏,𝑘
𝑗,𝑏 }𝑗∈[𝜆+𝑛+2𝑑𝜆],𝑏∈{0,1}

For 𝜏 = 1 to 𝑇 do
Let {𝐶𝑘}𝑘∈[𝑀] be the parallel step circuits at time step 𝜏 , {𝐿𝑘,𝑗}𝑘∈[𝑀],𝑗∈[2𝑛+2𝑑𝜆]

be the input locations of the step circuits at time step 𝜏 + 1 (for circuits without
inter-CPU communications, the second read is performed at arbitrary location)

C̃
eval
𝜏,𝑘 ← GCircuit(1𝜆, Ceval[crs, 𝜏 , {lab𝜏,𝑘

𝑗,𝑏 }, 𝐶𝑘], {lab𝜏,𝑘
𝑗,𝑏 }) for every 𝐶𝑘

Let keyEval = {lab𝜏,𝑘
𝜆+𝑗,𝑏}𝑗∈[𝑛+2𝑑𝜆],𝑏∈{0,1},𝑘∈[𝑀]

Let keyHash = {lab𝜏,𝑘
𝑗,𝑏 }𝑗∈[𝜆],𝑏∈{0,1},𝑘∈[𝑀]

{C̃
hash
𝜏,𝑗 }𝑗∈[(𝑛+2𝑑𝜆)𝑀−1] ← GHash(1𝜆, ℓ𝑂𝑇const.Hash, keyEval, keyHash)

C̃
read
𝜏,𝑘 ← GCircuit(1𝜆, Cread[crs, {𝐿𝑘,𝑗}𝑗, {lab𝜏+1,𝑘

𝑗,𝑏 }], {lab𝜏,𝑘
𝑗,𝑏 }) for every 𝐶𝑘

key ← SEE.KeyGen(1𝜆; PRF𝐾(𝑖, 0, 0, 0))
Output Π̃ ∶= SEE.Enc(key, {C̃

eval
𝜏,𝑘 , C̃

hash
𝜏,𝑗 , C̃

read
𝜏,𝑘 }𝜏,𝑗,𝑘)

• Input(𝑆𝐾, 𝑖, {𝑥𝑘}𝑘∈[𝑀]):
Parse 𝑆𝐾 = (𝐾, crs, |𝐷|)
lab1,𝑘

𝑗,𝑏 ← PRF𝐾(1, 𝑗, 𝑘, 𝑏) for 𝑗 ∈ [𝜆 + 𝑛 + 2𝑑𝜆], 𝑏 ∈ {0, 1}, 𝑘 ∈ [𝑀]
lab𝑇 +1,𝑘

𝑗,𝑏 ← PRF𝐾(𝑇 + 1, 𝑗, 𝑘, 𝑏) for 𝑗 ∈ [𝜆 + 𝑛 + 2𝑑𝜆], 𝑏 ∈ {0, 1}, 𝑘 ∈ [𝑀]
key ← SEE.KeyGen(1𝜆; PRF𝐾(𝑖, 0, 0, 0))
Output (key, {lab1,𝑘

𝜆+𝑗,𝑥𝑘,𝜆+𝑗
}𝑗∈[𝑛],𝑘∈[𝑀], {lab𝑇 +1,𝑘

𝜆+𝑗,𝑥𝑘,𝜆+𝑗
}𝑗∈[𝑛],𝑘∈[𝑀], {lab1,𝑘

𝜆+𝑛+𝑗,0}𝑗∈[2𝑑𝜆],𝑘∈[𝑀])

• Eval�̃�(𝑖, st, Π̃, ̃𝑥):
Parse ̃𝑥 = (key, {lab1,𝑘

𝜆+𝑗,𝑥𝑘,𝜆+𝑗
}𝑗∈[𝑛], outlab, {lab1,𝑘

𝜆+𝑛+𝑗,0}𝑗∈[2𝑑𝜆])
If 𝑖 = 1, obtain {lab𝑗}𝑗∈[𝜆] from �̃� and for every 𝑘 ∈ [𝑀] let {lab𝑗,𝑘}𝑗∈[𝜆] ←

{lab𝑗}𝑗∈[𝜆],
else parse st as {lab𝑗,𝑘}𝑗∈[𝜆],𝑘∈[𝑀]

{C̃
eval
𝜏,𝑘 , C̃

hash
𝜏,𝑗 , C̃

read
𝜏,𝑘 }𝜏,𝑗,𝑘 ← SEE.Dec(key, ̃𝑃 𝑖)

lab𝑘 ← {lab𝑗,𝑘}𝑗∈[𝜆+𝑛+2𝑑𝜆]
For 𝜏 = 1 to 𝑇 do

(R/W, 𝐿𝑘, 𝑒𝑘, wData𝑘, state′
𝑘, {lab𝑗}𝑗∈[𝜆], lab) ← GEval(C̃

eval
𝜏,𝑘 , lab) for each C̃

eval
𝜏,𝑘

If R/W = write,
{rData𝑗,𝑘||lab𝜆+𝑛+𝑗,𝑘}𝑗∈[2𝑑𝜆],𝑘 ← ℓ𝑂𝑇 .ReceivePWriteD̃(crs, {𝐿𝑘}𝑘, {wData𝑘}𝑘, {e𝑘}𝑘)

Else if R/W = read,
{rData𝑗,𝑘||lab𝜆+𝑛+𝑗,𝑘}𝑗∈[2𝜆] ← ℓ𝑂𝑇 .ReceiveD̃(crs, 𝐿, e𝑘) for every 𝑘 ∈ [𝑀]

(�̃�′, d′) ← ℓ𝑂𝑇 .Hash(crs, 𝐷′) where 𝐷′ = {state′
𝑘, rData𝑗,𝑘}𝑘∈[𝑀],𝑗∈[2𝑑𝜆]

̃d
′

← GHEval({C̃
hash
𝜏,𝑗 }𝑗, {lab𝑗}𝑗)

lab𝑘 ← {lab𝑗,𝑘}𝑗∈[𝜆] + ℓ𝑂𝑇 .Receive(GEval(C̃
read

, ̃d
′
))
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Decrypt output 𝑦 from {lab𝜆+𝑗,𝑘}𝑗∈[𝑛],𝑘∈[𝑀] using outlab
Output 𝑦 and st ∶= {lab𝑗,𝑘}𝑗∈[𝜆],𝑘∈[𝑀]

Remark 5.7. For a cleaner presentation, we require the program Π to be garbled to satisfy
the following properties: (it is already satisfied by the OPRAM compiler we use when
composed with full security compiler, but it can be easily satisfied by general programs with
preprocessing)

1. Read/writes happen simultaneously, that is, at any given time step, either all processors
perform a read, or all of them perform a write;

2. There are no write collisions, that is, at any given time step of doing wirtes, any pair
of processors attempt to write to two different memory locations.

Correctness. Like the construction in [GOS18], the correctness of the above construction
also follows from an inductive argument that for each step state and the database are
updated correctly.

Efficiency. The efficiency of our construction directly follows from the efficiency of parallel
updatable laconic oblivious transfer and the parameters set for somewhere equivocal encryp-
tion. In particular, the parallel running time of Memory is |𝐷|/𝑀 ⋅ poly(log |𝐷|, 𝜆), Program
is 𝑇 ⋅poly(log 𝑀, log |𝐷|, 𝑛, 𝜆), and that of Input is 𝑛⋅poly(𝜆, log |𝐷|, log 𝑇 , log 𝑛, log 𝑀). The
parallel running time of Eval is 𝑇 ⋅ poly(log 𝑀, log |𝐷|, log 𝑇 , 𝑛, 𝜆).

Adaptive Security. We argue the adaptive security of UGPRAM in Appendix B.

5.6 Full Security
Theorem 5.8. Assuming the existence of a timed encryption scheme, a puncturable pseu-
dorandom function, an oblivious PRAM scheme with strong localized randomness, and an
adaptive garbled PRAM scheme with unprotected memory access with equivocability of size
2, there exists adaptive garbled PRAM, where the time required to garble a database, garble
or evaluate a PRAM program, and garble an input grows linearly (up to polylogarithmic
factors) with the size of the database, parallel running time of the PRAM program and
length of the input respectively.

To achieve full adaptive security, techniques used to construct adaptive garbled RAM
[GOS18] can be easily generalized here, namely, they use ORAM to hide memory access
pattern, and timed encryption to be able to encrypt memory content and retrieve it at a later
time. Here, in place of oblivious RAM, we use the oblivious PRAM with strong localized
randomness to achieve fully secure adaptive garbled PRAM. For timed encryption, we assign
each garbled step circuit 𝐶 an order 𝜋(𝐶) as the timestamp used by the timed encryption,
such that the garbled circuits can be evaluated in order 𝜋−1(1), 𝜋−1(2), ... sequentially.

Now, we recall the security proof for adaptive garbled RAM from [GOS18]. First, the
simulated database is simply a garbled database of all zeroes; the simulated program is
a garbled stub program; and the simulated input is a garbled zero string and the correct
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output XOR the random mask. To change the garbled program into the simulator indis-
tinguishably, they change the RAM program from the last step circuit to the first to their
corresponding simulated versions using a sequence of carefully chosen hybrids, and finally
by the security of the encryption and the fact that the database and the input was not
read by the simulated program at all, they can change the database and the input string
to zeroes.

This security proof also naturally extends to our construction of adaptive GPRAM. We
change the garbled step circuit one by one from real world to ideal world in the reverse
order of 𝜋.

Equivocability for UGPRAM. On a high level, equivocability says that one can com-
putationally indistinguishably equivocate poly-logarithmically (but a priori bounded) many
step circuits. This property follows naturally from the security proof of the adaptive secu-
rity. We argue this property in Appendix B.3.

Oblivious PRAM with strong localized randomness. In Appendix C, we will show
that the BCP OPRAM scheme [BCP16] can be bootstrapped to have strong localized
randomness assuming puncturable PRF, using similar techniques from [GOS18]. We note
that our definition of strong localized randomness requires that the “intervals” of step circuit
are of size at most constant instead of poly-logarithmic so that it would work in the PRAM
case.
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A Security of Adaptive Garbled Circuits
In this section, we prove that the construction of adaptive garbled circuits presented previ-
ously satisfies adaptive security.

A.1 Simulators
The proof of security proceeds via a hybrid argument over different circuit configurations
which we will first describe in this section. We denote a circuit configuration with conf ∶
{C̃

eval
𝑖,𝑘 , C̃

hash
𝑖,𝑗 , C̃

write
𝑖 } ↦ {White, Gray, Black}5, which describes the mode of operation of the

garbled circuit. White mode corresponds to real garbling, Gray mode corresponds to Input
Dependent Simulation (where the step circuit for this gate is in simulation but depends on
the input, and is garbled and sent in the online phase), and Black mode corresponds to
Input Independent Simulation which matches the ideal simulator execution.

Valid configurations. We associate the configurations with a directed graph illustrated
in Figure 9. We say that a configuration conf is valid if and only if: for every 𝐶 if conf(𝐶) =
Black then for every other node 𝐶′ reachable from 𝐶, conf(𝐶′) = Black.

Simulation in a valid configuration. We will now describe the simulator for the adap-
tive garbling scheme. Note that the final ideal world simulation does not use the circuit
𝐶 nor the input 𝑥. Let 𝐼 denote the set of circuits that are operating in Gray mode, i.e.
𝐼 ∶= {𝐶 ∶ conf(𝐶) = Gray}.

5The mapping described here is “symbolic”: even though the circuits would be garbled in different ways
under different modes, here we map the symbol of the garbled circuits to configurations instead of the garbled
circuit itself.
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• SimCPartition (1𝜆, 𝐶):
crs ← ℓ𝑂𝑇 .crsGen(1𝜆)
𝐾 ← PRFKeyGen(1𝜆)
{𝑃𝑖}𝑖∈[ℓ] ← Partition(𝐶)
Sample 𝑟 ← {0, 1}𝑀ℓ

For 𝑖 = 1 to ℓ do:
Let 𝐶𝑔,1, 𝐶𝑔,2 denote the two input gates of gate 𝑔
If conf(C̃

eval
𝑖,𝑘 ) = White then

C̃
eval
𝑖,𝑘 ← GCircuit(1𝜆, Creal

eval[crs, 𝐶𝑃𝑖,𝑘,1, 𝐶𝑃𝑖,𝑘,2, 𝑃𝑖,𝑘, (𝑟𝐶𝑃𝑖,𝑘,1
, 𝑟𝐶𝑃𝑖,𝑘,2

, 𝑟𝑃𝑖,𝑘
),

PRF𝐾(1, 𝑖, 𝑘, 0), PRF𝐾(1, 𝑖, 𝑘, 1)],
{PRF𝐾(0, 𝑖, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1})

If conf(C̃
eval
𝑖,𝑘 ) = Black then

C̃
eval
𝑖,𝑘 ← GCircuit(1𝜆, Cideal

eval [crs, 𝐶𝑃𝑖,𝑘,1, 𝐶𝑃𝑖,𝑘,2, 𝑃𝑖,𝑘, (0, 0, 𝑟𝑃𝑖,𝑘
),

PRF𝐾(1, 𝑖, 𝑘, 0), PRF𝐾(1, 𝑖, 𝑘, 1)],
{PRF𝐾(0, 𝑖, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1})

Let keyEval = {PRF𝐾(1, 𝑖, 𝑘, 𝑏)}𝑘∈[𝑀],𝑏∈{0,1}
Let keyHash = {PRF𝐾(2, 𝑖, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1}

{C̃
hash
𝑖,𝑗 }𝑗∈[𝑀−1] ← GHash(1𝜆, ℓ𝑂𝑇const.Hash, keyEval, keyHash)

If conf(C̃
write
𝑖 ) ≠ Gray then

Let 𝐶write
𝑖 = ℓ𝑂𝑇 .SendWriteBlock (crs, ⋅, 𝑖, {PRF𝐾(0, 𝑖 + 1, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1})

C̃
write
𝑖 ← GCircuit (1𝜆, 𝐶write

𝑖 , {PRF𝐾(2, 𝑖, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1})
(st1, 𝑐) ← SEE.SimEnc (𝐼, {C̃

eval
𝑖,𝑘 , C̃

hash
𝑖,𝑗 , C̃

write
𝑖 ∶ conf(𝐶) ≠ Gray})

Output ̃𝐶 ∶= (crs, 𝑐) and st ∶= (𝐶, crs, 𝑟, st1, {𝑃𝑖}𝑖∈[ℓ], 𝐾)
• SimIn(st, 𝑥, 𝑦):

Parse st ∶= (𝐶, crs, 𝑟, st1, {𝑃𝑖}𝑖∈[ℓ], 𝐾)
Evaluate the circuit 𝐶(𝑥), let 𝑒𝑗 be the bit assigned to wire 𝑗
For 𝑖 ∈ [ℓ], let 𝐷𝑖 be such that

𝐷𝑖,𝑗 =
⎧{
⎨{⎩

𝑥 ⊕ 𝑟1..𝑛||0𝑀−𝑛, 𝑗 = 0;
𝐸𝑗 ⊕ 𝑟𝑗||0log 𝑀..𝑗||1log 𝑀 , 0 < 𝑗 < 𝑖;
0, otherwise,

where 𝐸𝑗 is the bits assigned to wires in 𝑃𝑗 of the circuit 𝐶 computed on input 𝑥
Let d𝑖 be the digest of 𝐷𝑖, i.e. (d𝑖, ⋅) ∶= ℓ𝑂𝑇 .Hash(crs, 𝐷𝑔).
For each C̃

eval
𝑖,𝑘 ∈ 𝐼 :

𝑤 ← 𝑒𝑃𝑖,𝑘
⊕ 𝑟𝑃𝑖,𝑘

out ← ℓOTSim(crs, 𝐷𝑖, 𝐶𝑃𝑖,𝑘,1, ℓOTSim(crs, 𝐷𝑖, 𝐶𝑃𝑖,𝑘,2, (𝑤, PRF𝐾(1, 𝑖, 𝑘, 𝑤))))
C̃

eval
𝑖,𝑘 ← GCircSim(1𝜆, 1|𝐶eval|, {PRF𝐾(0, 𝑖, 𝑗, 𝑑𝑖,𝑗)}𝑗∈[𝜆], out)
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For each C̃
hash
𝑖,𝑗 ∈ 𝐼 :

Generate appropriate labels labs and output out using PRF𝐾 for the circuit ac-
cording to the evaluation

C̃
hash
𝑖,𝑗 ← GCircSim(1𝜆, 1|ℓ𝑂𝑇const.Hash|, labs, out)

For each C̃
write
𝑖 ∈ 𝐼 :

out ← ℓOTSimWriteBlock(crs, 𝐷𝑖, d𝑖, 𝑖, 𝐸𝑖⊕𝑟𝑖||0log 𝑀..𝑖||1log 𝑀 , {PRF𝐾(0, 𝑖+1, 𝑗, 𝑑𝑖+1,𝑗)}𝑗∈[𝜆])
C̃

write
𝑖 ← GCircSim(1𝜆, 1|ℓ𝑂𝑇 .SendWriteBlock|, {PRF𝐾(2, 𝑖, 𝑗, 𝑑𝑖+1,𝑗)}𝑗∈[𝜆], out)

key ← SEE.SimKey(st1, 𝐼)
For each 𝑔 ∈ [𝑁 − 𝑚 + 1, 𝑁]:

Let C̃
eval
𝑖,𝑘 be the evaluation circuit corresponding to 𝑔

If conf(C̃
eval
𝑖,𝑘 ) = Black then set 𝑟𝑔 ← 𝑟𝑔 ⊕ 𝑦𝑔−𝑁+𝑚

Output ({PRF𝐾(0, 1, 𝑗, d𝑗)}𝑗∈[𝜆], 𝑟1 ⊕ 𝑥1||...||𝑟𝑛 ⊕ 𝑥𝑛, key, 𝑟𝑁−𝑚+1||...||𝑟𝑁)

A.2 Pebbling Game
Like previous works in constructing adaptive garbling schemes in which garbled circuits
talk to each other [HJO+16, GS18, GOS18], our proof of security is also associated with
a pebbling game. A pebbling game is a game played on a DAG 𝐺 = (𝑉 , 𝐸), where each
vertex represents a garbled circuit, and each edge (𝑎, 𝑏) represents the garbled circuit 𝑎
“talks” to garbled circuit 𝑏, either directly (𝑎’s output is simply 𝑏’s label) or indirectly (𝑎
outputs an ℓ𝑂𝑇 ciphertext, when received outputs labels for 𝑏). We put a gray pebble
on a node to represent that the underlying circuit is operating in Gray mode, and a black
pebble to represent that the underlying circuit is in Black mode. There are 2 rules for
putting/removing the pebbles.

Rule A: We can put a gray pebble on a vertex, if either all of its predecessors are pebbled
gray or it’s the source code. Looking ahead, since indistinguishability proofs work both
ways, we can also remove a gray pebble under the same conditions. We refer to those
invocations of the rule as inverse rule A.

Rule B: We can put a black pebble on a vertex, if all nodes reachable from the circuit
are also pebbled black and all its direct predecessor are pebbled gray.

The goal of the game is to put a black pebble over every single vertex of the graph,
which indicates that we have reached the simulation mode. The optimization goal of the
pebbling game is to minimize the pebbling complexity, which is the maximum number of
gray pebbles that are present on the graph over the course of the game. Intuitively, we can
think of gray pebbles as a stronger simulated garbled circuit, but also more expensive to
use.

A.3 Pebbling Merkle Tree
In this section, we first look at the pebbling complexity of our garbled Merkle tree algorithm
given in Section 4.3. Recall that the hierarchy of the garbled Merkle tree is a complete binary
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tree, with edges from children to their parent.

Lemma A.1. For any 𝑑 ∈ N, there exists a strategy for putting a gray pebble at only
the root of the Merkle tree graph of depth 𝑑 using at most 2𝑑 − 1 gray pebbles and making
poly(2𝑑) moves.

Proof. We prove this by induction. For 𝑑 = 1, the root is also the leaf node, therefore we
can directly put a gray pebble at the root and we are done.

Assuming the statement is true for 𝑑 − 1, in order to put a gray pebble at the root, we
first recursively use the strategy to put a gray pebble at its two children recursively, then
put a gray pebble at the root, and finally recursively use the strategy again to remove the
two pebbles at its two children. Note that by induction at any point in this process, there
can only be at most 2 gray pebbles in each layer of the tree, therefore 2𝑑 − 1 gray pebbles
suffice and it requires 𝑂(4𝑑) moves.

Theorem A.2. For any 𝑑 ∈ N, there exists a strategy for pebbling the Merkle tree graph
of depth 𝑑 according to rules using at most 2𝑑 pebbles and making poly(2𝑑) moves, i.e. the
garbled Merkle tree has pebbling complexity 2𝑑.

Proof. The strategy is also similar to pebbling the line graph [GS18].

1. Use the strategy in Lemma A.1 to place a gray pebble in the root;

2. If 𝑁 > 1, use the strategy again to place two gray pebbles in its children as well;

3. Replace the gray pebble in the root with a black pebble;

4. Repeat 2-3 for each children recursively until the tree is covered by black pebbles.

Similar to Lemma A.1, at any point in this process, there can only be at most 2 gray pebbles
in each layer of the tree, 2𝑑 − 1 gray pebbles suffice and it also requires 𝑂(4𝑑) moves.

Finally, we note that the fact that such strategy works only depends on the structure
of the DAG, but regardless of what each circuit is computing.

A.4 Pebbling Strategy
We now direct our attention back to proving security for our adaptive garbled circuits. We
move through different configurations using the same rules as given in Appendix A.2.6. We
will later prove that changing according to these 2 rules is computationally indistinguishable
in Lemmas A.5 and A.6. By a standard hybrid argument, we prove that our construction
indeed satisfies the security requirement of adaptive garbled circuits.

Recall that the pebbling graph for our scheme is a series of tree graphs as seen in
Figure 9. We will first show a good strategy for pebbling a single layer of this graph. The
idea is to use Lemma A.1 and Theorem A.2 as a black box and pebble the layer with this

6Note that in our construction, hash circuits and write circuits are exactly the same under White and
Black mode, therefore we can have an additional rule that will help us save a few steps in the hybrids, but
as this change does not affect the number of hybrids asymptotically, we will keep things simple and only use
these two rules.
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strategy as a subroutine. Therefore we can pebble each layer with pebbling complexity
𝑂(log 𝑀). As the whole graph is a “line” of tree graphs, it would be helpful to recall the
lemma for pebbling the line graph:

Lemma A.3 ([GS18], Lemma 5.2). For any 𝑁 ∈ N, there exists a strategy for pebbling the
line graph [𝑁] according to rule using at most log 𝑁 pebbles and making 𝑂(𝑁 log2 3) moves.

Theorem A.4. Assuming the existence of laconic oblivious transfer scheme, selectively se-
cure circuit garbling scheme, somewhere equivocal encryption scheme and PRFs, there exists
an adaptively secure garbled circuit scheme with online complexity 𝑛 + 𝑚 + poly(𝜆, log |𝐶|)
whose parallel evaluation time is 𝑑 ⋅ poly(𝜆, log |𝐶|), where 𝑛 and 𝑚 is the size of the input
and output respectively, and 𝑑 is the depth of the circuit.

Proof. First, we will describe our pebbling strategy. The idea is to use Lemma A.3 with
some modifications:

1. Every time we need to put/remove a gray pebble on a tree, we invoke Lemma A.1 to
put/remove the gray pebble at the end of the tree graph. Note that in the tree graph,
only the last node can be the predecessor of any node in the next tree graph, and
since we only care about whether the direct predecessor of any given node is gray, it
would be sufficient.

2. Every time we need to replace the gray pebble on a tree with black pebbles, we invoke
Theorem A.2 to replace the entire tree with black pebbles.

It’s not hard to see that we can implement this strategy with the only two rules we have.
We will be able to pebble the entire graph using at most log ℓ + 2 log 𝑀 + 𝑂(1) pebbles
(this corresponds to the equivocation parameter for somewhere equivocal encryption) and
making poly(|𝐶|) moves.

Using this strategy yields a sequence of configurations conf0, ..., conf𝛼 for 𝛼 = poly(|𝐶|).
Let Hybridconf denote the distribution of the output of the simulators using configuration
conf. By Lemmas A.5 and A.6, we have that Hybridconf𝑖−1

𝑐≈ Hybridconf𝑖
. Finally, note

that the initial configuration and the honest evaluation is the same as guaranteed by the
simulation with no holes property of somewhere equivocal encryption. This completes the
proof of adaptive security.

A.5 Implementing the Rules
Lemma A.5 (Rule A). Let conf and conf′ be two valid circuit configurations satisfying
the constraints of rule A, then assuming the security of somewhere equivocal encryption,
garbling scheme for circuits and updatable ℓ𝑂𝑇 , we have that Hybridconf

𝑐≈ Hybridconf′.

Proof. We prove this via a hybrid argument. Let ̃𝐶 be the circuit that are generated
differently between conf and conf′.

• Hybridconf: This is our starting hybrid.
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• Hybrid1: In this hybrid, we move the generation of ̃𝐶 to SimIn but is generated honestly.
Computational indistinguishability of Hybridconf and Hybrid1 reduces directly to the
security of somewhere equivocal encryption scheme.

• Hybrid2: By conditions of rule A, all the predecessors of ̃𝐶 must be operating in gray
mode. Therefore in this hybrid, we can change all PRF invocations for generating the
input labels for ̃𝐶 to freshly sampled randomness in SimIn. Computational indistin-
guishability of Hybrid1 and Hybrid2 reduces directly to the security of PRF.

• Hybrid3: In this hybrid, we will only sample the input labels that will be used and
instead use GCircSim to generate the garbled circuit ̃𝐶. Computational indistinguisha-
bility of Hybrid2 and Hybrid3 reduces directly to the selective security of the garbling
scheme.

• Hybrid4: (for C̃
eval
𝑖,𝑘 only) In this hybrid, we change the output value hardwired in ̃𝐶 -

instead of using ℓ𝑂𝑇 .Send, it invokes ℓOTSim. Computational indistinguishability of
Hybrid3 and Hybrid4 reduces directly to sender privacy of ℓ𝑂𝑇 .

• Hybrid5: (for C̃
eval
𝑖,𝑘 only) In this hybrid, we change the output value hardwired in

ℓOTSim, i.e. we change the inner ℓ𝑂𝑇 .Send to ℓOTSim as well. Computational
indistinguishability of Hybrid4 and Hybrid5 also reduces directly to sender privacy of
ℓ𝑂𝑇 .

• Hybrid6: (for C̃
write
𝑖 only) In this hybrid, we change the output value hardwired in ̃𝐶

- instead of using ℓ𝑂𝑇 .SendWriteBlock, it invokes ℓOTSimWriteBlock. Computational
indistinguishability of Hybrid5 and Hybrid6 reduces directly to sender privacy of ℓ𝑂𝑇
in the block writing settings.

• Hybrid7: In this hybrid, we revert the changes in Hybrid2, namely we use the PRF to
generate the keys. Computational indistinguishability of Hybrid6 and Hybrid7 reduces
directly to the security of PRF.

Finally observe that Hybrid7 is the same as Hybridconf′ .

Lemma A.6 (Rule B). Let conf and conf′ be two valid circuit configurations satisfying
the constraints of rule B, then assuming the security of somewhere equivocal encryption,
garbling scheme for circuits and updatable ℓ𝑂𝑇 , we have that Hybridconf

𝑐≈ Hybridconf′.

Proof. We prove this via a hybrid argument. Let ̃𝐶 be the circuit that are generated
differently between conf and conf′. In order to keep the proof close to Lemma A.5, we will
proceed the hybrid argument in reverse order, i.e. we will change the circuit from Black
mode to Gray mode.

• Hybridconf’: This is our starting hybrid.

• Hybrid1: In this hybrid, we move the generation of ̃𝐶 to SimIn but is generated honestly.
Computational indistinguishability of Hybridconf and Hybrid1 reduces directly to the
security of somewhere equivocal encryption scheme.
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• Hybrid2: By conditions of rule A, all the predecessors of ̃𝐶 must be operating in gray
mode. Therefore in this hybrid, we can change all PRF invocations for generating the
input labels for ̃𝐶 to freshly sampled randomness in SimIn. Computational indistin-
guishability of Hybrid1 and Hybrid2 reduces directly to the security of PRF.

• Hybrid3: In this hybrid, we will only sample the input labels that will be used and
instead use GCircSim to generate the garbled circuit ̃𝐶. Computational indistinguisha-
bility of Hybrid2 and Hybrid3 reduces directly to the selective security of the garbling
scheme.

• Hybrid4: (for C̃
eval
𝑖,𝑘 only) In this hybrid, we change the output value hardwired in ̃𝐶 -

instead of using ℓ𝑂𝑇 .Send, it invokes ℓOTSim. Computational indistinguishability of
Hybrid3 and Hybrid4 reduces directly to sender privacy of ℓ𝑂𝑇 .

• Hybrid5: (for C̃
eval
𝑖,𝑘 only) In this hybrid, we change the output value hardwired in

ℓOTSim, i.e. we change the inner ℓ𝑂𝑇 .Send to ℓOTSim as well. Computational
indistinguishability of Hybrid4 and Hybrid5 also reduces directly to sender privacy of
ℓ𝑂𝑇 .

• Hybrid6: (for C̃
write
𝑖 only) In this hybrid, we change the output value hardwired in ̃𝐶

- instead of using ℓ𝑂𝑇 .SendWriteBlock, it invokes ℓOTSimWriteBlock. Computational
indistinguishability of Hybrid5 and Hybrid6 reduces directly to sender privacy of ℓ𝑂𝑇
in the block writing settings.

• Hybrid7: In this hybrid, we revert the changes in Hybrid2, namely we use the PRF to
generate the keys. Computational indistinguishability of Hybrid6 and Hybrid7 reduces
directly to the security of PRF.

Finally if the circuit is C̃
eval
𝑖,𝑘 (otherwise we are done), observe that the only difference between

Hybrid7 and Hybridconf is how 𝐷𝑖+1,𝑃𝑖,𝑘
is set. However, we argue that the distributions are

in fact identical. Let 𝑔 ∶= 𝑃𝑖,𝑘 be the gate evaluated by the circuit and 𝑤𝑔 be the value of
the wire under honest evaluation.

• If 𝑔 ≤ 𝑁 − 𝑚, note that since 𝑟𝑔 is not anywhere else we have that the distribution
𝑟𝑔 and 𝑟𝑔 ⊕ 𝑤𝑔 are both uniform and identical.

• If 𝑔 > 𝑁 − 𝑚, we have that 𝑟𝑔 = 𝑤𝑔 ⊕ 𝑟′
𝑔 which is identical to the distribution in

Hybridconf.

This completes the proof of the lemma.

B Security of UGPRAM
B.1 Security of Parallel Laconic OT
Now, we prove that the parallel updatable laconic oblivious transfer we constructed is secure.
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Theorem B.1 (Sender Privacy against Semi-honest Receiver). Given that ℓ𝑂𝑇const has
sender privacy and that the garbled circuit scheme GCircuit is secure, the parallel updatable
laconic oblivious transfer scheme �OThas sender privacy.

Proof. The proof of sender privacy in the read-only setting in [CDG+17] directly applies
since we are using the same construction. For the parallel write setting, we first provide the
simulator ℓOTSimPWrite.
ℓOTSimPWrite (crs, 𝐷, 𝐿𝑘, {𝑚𝑘,𝑖,𝑗,D̂𝑖,𝑗

}𝑖∈[𝑑],𝑗∈[2𝜆]):
(digest, D̂) ← Hash(crs, 𝐷)
Parse 𝐿𝑘 = (𝑏𝑘,1, 𝑏𝑘,2, ..., 𝑏𝑘,𝑑−1, 𝑡𝑘)
Sample {Labels𝑖

𝑘}
𝑖∈[𝑑−1]

u.a.r.

Let L̃abels
𝑖
𝑘 to be {𝑚𝑘,𝑖,𝑗,D̂𝑖,𝑗

}𝑗∈[2𝜆]

leaf𝑘 ← (D̂𝑏𝑘,1...𝑏𝑘,𝑑−10, D̂𝑏𝑘,1...𝑏𝑘,𝑑−11)
e𝑑−1

𝑘 ← ℓOTSimconst(crs, leaf𝑘, 0∗)
̃e𝑑−1
𝑘 ← ℓOTSimconst (crs, leaf𝑘, L̃abels

𝑑
𝑘)

For 𝑖 = 𝑑 − 1 downto 1:
C̃

𝑖
𝑘 ← GCircSim (1𝜆, 1|Ctrav|, {Labels𝑖

𝑘}
𝑖∈[𝑑]

, (e𝑖
𝑘, ̃e𝑖

𝑘))
sbl𝑖𝑘 ← (D̂𝑏𝑘,1...𝑏𝑘,𝑖−10, D̂𝑏𝑘,1...𝑏𝑘,𝑖−11)
e𝑖−1

𝑘 ← ℓOTSimconst(crs, sbl𝑖𝑘, L̃abels
𝑖
𝑘)

̃e𝑖−1
𝑘 ← ℓOTSimconst (crs, sbl𝑖𝑘, L̃abels

𝑖
𝑘)

Output e𝑘 = (e0
𝑘, ̃e0

𝑘, {C̃
𝑖
𝑘}𝑖∈[𝑑−1])

A very similar indistinguishability proof can also be applied to the parallel write settings,
namely, we can prove indistinguishability for the first 2𝑑 − 1 hybrids using the argument
from [CDG+17]. Finally, note that the (2𝑑 − 1)-th hybrid and is exactly the same as the
simulated experiment.

B.2 Adaptive Security
Adaptive security for unprotected memory access garbled PRAM can be argued the same
way as Theorem A.4, except with a few changes. Recall that in order to prove adaptive
security for our construction of garbled circuits, we start with the real world construction,
and use a sequence of hybrids to change each evaluation circuit from the real evaluation
mode to the ideal evaluation mode, so that we erase the real functionality that we are
computing inside the garbled circuit. At a high level, we abstract this hybrid sequence
into a pebbling game as described in Appendix A.2. In each configuration of the pebbling
game, we assign each step circuit a mode, where White corresponds to real garbling, Gray
corresponds to equivocated garbling, and Black corresponds to ideal garbling. To finish
the security proof, we show that each pebbling rule can be implemented, i.e. the output
distributions are computationally indistinguishable before and after the change.

In this section, we will highlight the key differences in the security proof.
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The pebbling graph for this garbling scheme actually looks almost identical to that for
our garbled circuits. In this construction, the width of the garbled Merkle tree is 𝑂(𝑛𝑀),
and the length of the line is 𝑂(𝑇 ). Thus using the same pebbling strategy as in Theorem A.4,
we can pebble the pebbling graph using at most log 𝑇 + log 𝑛 + log 𝑀 + 𝑂(1) pebbles.

Now to complete the security proof, we will show how to implement the rules for the
pebbling game for adaptive garbled PRAM with UMA. The simulator SimMemory is identi-
cal to Memory. We will layout the simulator (SimProgram, SimInput) through describing the
changes we made in the security proof. We define circuit configurations and valid configura-
tions analogous to Appendix A.1, the only difference is that the circuits in the configuration
are replaced with the circuits in this construction. Let Hybridconf denote the distribution of
the output of the simulators using configuration conf.

At the beginning of the hybrid argument, the simulators are identical to the honest
evaluation of Program and Input, except that we replace the invocations of somewhere
equivocal encryption with its simulators, analogous to Appendix A.1. The distribution of
this hybrid is completely identical to that of the honest evaluation, due to simulation with
no holes property of somewhere equivocal encryption.

Lemma B.2 (Rule A). Let conf and conf′ be two valid circuit configurations satisfying
the constraints of rule A, then assuming the security of somewhere equivocal encryption,
garbling scheme for circuits and updatable ℓ𝑂𝑇 , we have that Hybridconf

𝑐≈ Hybridconf′.

Proof. We prove this via a hybrid argument. Recall that for Rule A, we equivocate a circuit
so that we can determine what to send while we garble the input. Let ̃𝐶 be the circuit that
are generated differently between conf and conf′.

• Hybridconf: This is our starting hybrid.

• Hybrid1: In this hybrid, we move the generation of ̃𝐶 from SimProgram to SimInput
but is generated honestly. Computational indistinguishability of Hybridconf and Hybrid1
reduces directly to the security of somewhere equivocal encryption scheme.

• Hybrid2: By conditions of rule A, all the predecessors of ̃𝐶 must be operating in gray
mode. Therefore in this hybrid, we can change all PRF invocations for generating
the input labels for ̃𝐶 to freshly sampled randomness in SimInput. Computational
indistinguishability of Hybrid1 and Hybrid2 reduces directly to the security of PRF.

• Hybrid3: In this hybrid, we will only sample the input labels that will be used and
instead use GCircSim to generate the garbled circuit ̃𝐶. Computational indistinguisha-
bility of Hybrid2 and Hybrid3 reduces directly to the selective security of the garbling
scheme.

• Hybrid4: (for C̃
eval
𝜏,𝑘 only) In this hybrid, we change the output value hardwired in ̃𝐶 -

instead of using ℓ𝑂𝑇 .Send, it invokes ℓOTSim. Computational indistinguishability of
Hybrid3 and Hybrid4 reduces directly to sender privacy of ℓ𝑂𝑇 .

• Hybrid5: (for C̃
eval
𝜏,𝑘 only) In this hybrid, we change the output value hardwired in ̃𝐶

- instead of using ℓ𝑂𝑇 .SendPWrite, it invokes ℓOTSimPWrite. Computational indis-
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tinguishability of Hybrid4 and Hybrid5 reduces directly to sender privacy for parallel
writes of ℓ𝑂𝑇 .

• Hybrid6 (Hybridconf′): In this hybrid, we revert the changes in Hybrid2, namely we
use the PRF to generate the keys. Computational indistinguishability of Hybrid5 and
Hybrid6 reduces directly to the security of PRF.

This completes the proof of the lemma.

Lemma B.3 (Rule B). Let conf and conf′ be two valid circuit configurations satisfying
the constraints of rule B, then assuming the security of somewhere equivocal encryption,
garbling scheme for circuits and updatable ℓ𝑂𝑇 , we have that Hybridconf

𝑐≈ Hybridconf′.

Proof. We prove this via a hybrid argument. For Rule B, we change a previously equivocated
circuit to the corresponding step circuit in the other garbled program. Let ̃𝐶 be the circuit
that are generated differently between conf and conf′. In order to keep the proof close to
Lemma B.2, we will proceed the hybrid argument in reverse order, i.e. we will change the
circuit from Black mode to Gray mode.

• Hybridconf’: This is our starting hybrid. Note that the step circuit ̃𝐶 comes from the
second program that we are given.

• Hybrid1: In this hybrid, we move the generation of ̃𝐶 to SimInput but is generated
honestly. Computational indistinguishability of Hybridconf and Hybrid1 reduces directly
to the security of somewhere equivocal encryption scheme.

• Hybrid2: By conditions of rule A, all the predecessors of ̃𝐶 must be operating in gray
mode. Therefore in this hybrid, we can change all PRF invocations for generating
the input labels for ̃𝐶 to freshly sampled randomness in SimInput. Computational
indistinguishability of Hybrid1 and Hybrid2 reduces directly to the security of PRF.

• Hybrid3: In this hybrid, we will only sample the input labels that will be used and
instead use GCircSim to generate the garbled circuit ̃𝐶. Computational indistinguisha-
bility of Hybrid2 and Hybrid3 reduces directly to the selective security of the garbling
scheme.

• Hybrid4: (for C̃
eval
𝜏,𝑘 only) In this hybrid, we change the output value hardwired in ̃𝐶 -

instead of using ℓ𝑂𝑇 .Send, it invokes ℓOTSim. Computational indistinguishability of
Hybrid3 and Hybrid4 reduces directly to sender privacy of ℓ𝑂𝑇 .

• Hybrid5: (for C̃
eval
𝜏,𝑘 only) In this hybrid, we change the output value hardwired in ̃𝐶

- instead of using ℓ𝑂𝑇 .SendPWrite, it invokes ℓOTSimPWrite. Computational indis-
tinguishability of Hybrid4 and Hybrid5 reduces directly to sender privacy for parallel
writes of ℓ𝑂𝑇 .

• Hybrid6 (Hybridconf): In this hybrid, we revert the changes in Hybrid2, namely we use
the PRF to generate the keys. Computational indistinguishability of Hybrid5 and
Hybrid6 reduces directly to the security of PRF.

This completes the proof of the lemma.
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EquivExpt𝜏∈{real, ideal}(1𝜆, 𝒜)
(𝐷, 1𝑇 ) ← 𝒜(1𝜆)
If 𝜏 is real, (�̃�, 𝑆𝐾) ← Memory(1𝜆, 𝐷)
If 𝜏 is ideal, �̃� ← Sim(1𝜆, 𝐷)
For 𝑖 ∈ [𝑇 ] do

(Π𝑖, 𝐼) ← 𝒜(�̃�, {Π̃𝑗, ̃𝑥𝑗}𝑗∈[𝑖−1]) where 𝐼 ⊂ [|Π𝑖|] and |𝐼| ≤ 𝑄
If 𝜏 is real, Π̃𝑖 ← Program(𝑆𝐾, 𝑖, Π𝑖)
If 𝜏 is ideal, Π̃𝑖 ← Sim(𝑖, Π𝑖 − 𝐼)
𝑥𝑖 ← 𝒜2(st, {Π̃𝑗, ̃𝑥𝑗}𝑗∈[𝑖−1], Π̃𝑖)
If 𝜏 is real, ̃𝑥𝑖 ← Input(𝑆𝐾, 𝑖, 𝑥𝑖)
If 𝜏 is ideal, ̃𝑥𝑖 ← Sim(𝑖, 𝑥𝑖, Π𝑖 − 𝐼, {𝑦𝐶}𝐶∈𝐼) where 𝑦𝐶 is the output of 𝐶 when Π𝑖

is executed with 𝑥𝑖
Output 𝒜3(st, e)

Figure 18: Equivocability Security Game

B.3 Equivocability of UGPRAM
Similar to [GOS18], our construction of fully secure GPRAM also requires UGPRAM to have
the property of equivocability. On a high level, equivocability says that we can equivocate
up to 𝑄 blocks of messages (garbled circuits) indistinguishably. Looking ahead, in the full
security proof, we actually only need to equivocate at most 2 garbled circuits simultaneously,
which is always satisfied by our construction.

Definition B.4 (Equivocability of UGPRAM). We call UGPRAM has equivocability of
size 𝑄 if there exists a stateful simulator Sim such that for any non-uniform PPT stateful
adversary 𝒜, s.t.

| Pr[EquivExptreal(1𝜆, 𝒜) = 1] − Pr[EquivExptideal(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

where EquivExptreal and EquivExptideal are described in fig. 18.

Proof sketch of equivocability. To prove that our construction has equivocability of
size 2, we employ a similar sequence of hybrids as in adaptive security proof, namely, for
each circuit that we needs to equivocate, we use Rule A (Lemma B.2) and our pebbling
strategy in the pebbling game to put a gray pebble on that circuit. It is not hard to see
that our construction will always have equivocability of size 2 as long as there are at least
2 pieces of garbled circuits.

C Oblivious Parallel RAM with Strong Localized Random-
ness

The notion of oblivious parallel RAM (OPRAM) compiler is introduced by [BCP16], which
extends the standard ORAM compiler for compiling parallel programs.
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Definition C.1 (Oblivious Parallel RAM). An oblivious Parallel RAM scheme is a pair of
PRAM programs (OPProg, OPData) with the following syntax:

• Π∗ ← OPProg(1𝜆, |𝐷|, 1𝑇 , Π): Given security parameter 𝜆, the size of the memory
|𝐷|, a PRAM program Π that runs in parallel time 𝑇 with 𝑀 processors, OPProg
outputs an probablistic oblivious program Π∗ which uses also 𝑀 processors and 𝐷∗ as
RAM. A probabilistic PRAM program is modeled exactly as a deterministic program
except that each step ccircuit additionally take random coins as input;

• 𝐷∗ ← OPData(1𝜆, 𝐷): Given security parameter 𝜆, the contents of the database 𝐷,
outputs the oblivious database 𝐷∗.7

Correctness. For any sequence of programs Π1, ..., Πℓ and inputs 𝑥1, ..., 𝑥ℓ,

Pr [(Π1(𝑥1), ..., Πℓ(𝑥ℓ))𝐷 = (Π∗
1(𝑥∗

1), ..., Π∗
ℓ(𝑥∗

ℓ))𝐷∗] ≥ 1 − negl(𝜆).

Obliviousness. There exists a PPT simulator OPSim such that for any sequence of PRAM
programs and inputs Π1, Π2, ..., Πℓ with 𝑀 processors whose running times are bounded by
𝑇1, ..., 𝑇ℓ respectively, the memory access patterns produced by sequentially running these
programs are computationally indistinguishable to OPSim(1𝜆, 1𝑇1 , ..., 1𝑇ℓ).

Efficiency. For any input 𝑥, the parallel running time of OPProg should be 𝑇 ⋅poly(𝜆, log 𝑀, log |𝐷|),
and the parallel running time of OPData should be |𝐷|/𝑀 ⋅ poly(𝜆, log 𝑀, log |𝐷|). Finally,
the parallel running time 𝑇 ∗ of Π∗𝐷∗(𝑥) is bounded by 𝑇 ⋅ poly(𝜆, log 𝑀, log |𝐷|), where 𝑇 is
the parallel running time of Π𝐷(𝑥).

Remark C.2. In order to simplify the presentation, we implicitly operate over large blocks,
as required by OPRAM. Our construction does not care about block sizes and our efficiency
will hold as long as the block sizes do not exceed poly(𝜆, log 𝑀, log |𝐷|), which is satisfied by
[BCP16].

In our construction, we also need the OPRAM compiler to have the property of being
collision free.

Definition C.3 (Collision-Free). An OPRAM compiler is said to be collision free if for any
program Π, the program that the OPRAM compiler outputs Π⋆ has the property that if any
two processors access the same data address in the same timestep, both of their operations
are reads.

Remark C.4. As noted in [BCP16], it is possible to construct an OPRAM compiler with
neither read collisions nor write collisions. For our construction, it is sufficient to have
write-collision-freeness, but by plugging the stronger OPRAM compiler into our construction
of GPRAM, our GPRAM can also satisfy this stronger notion of collision-freeness.

Theorem C.5. There exists a collision-free OPRAM compiler.
7We can always implement OPData using OPProg only, by compiling a PRAM program that writes 𝐷 to

the memory and evaluating the compiled program honestly.
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Proof. [BCP16] gave a construction of collision-free OPRAM compiler. We note that our
definition of OPRAM is different from the definition there in the following ways:

1. We assume all CPUs are active at all time by making idle CPUs spin waiting, therefore,
we do not need activation patterns in the definition.

2. Our correctness requires the protocol to succeed with probability 1 − negl(𝜆) instead
of 1 − negl(|𝐷|). This can be achieved by running 𝑂(𝜆) parallel copies of OPRAM of
the original compiler.

3. Our definition allows for persistent database, namely, we need to evaluate multiple
programs. We note that the construction from [BCP16] already can satisfy this gen-
eralization.

4. Our obliviousness is simulation-based instead of indistinguishability-based. The con-
struction from [BCP16] can satisfy this generalization, since we can implement the
simulator by compiling a stub program that does reads and writes and invoke the
indistinguishability security argument.

Finally, we note that this OPRAM compiler is statistically secure, meaning that the output
of the simulator is actually statistically indistinguishable to the real memory access pattern.

For our construction of adaptively secure garbled PRAM, we need an additional property
called as strong localized randomness property, similar to the stronger formalization from
[GOS18].

Definition C.6 (Strong Localized Randomness). An OPRAM compiler is said to have
strong localized randomness property if given program Π (given as a set of all CPU step
circuits and their layout) and input 𝑥,

1. There exists an efficiently computable (from 𝐶, Π but not 𝑥) function 𝐼Π(𝐶), given as
input any step circuit 𝐶 ∈ Π∗, outputs an interval of size at most poly(log 𝑀, log |𝐷|, 𝜆),
s.t. the random tape accessed by 𝐶 is given by 𝑅𝐼Π(𝐶), meaning the random tape re-
stricted to the interval 𝐼𝑗;

2. For every 𝐶, 𝐶′ ∈ Π∗ and 𝐶 ≠ 𝐶′, 𝐼Π(𝐶) ∩ 𝐼Π(𝐶′) = ∅.

3. For every 𝐶 ∈ Π∗, there exists a (possibly empty) set 𝑃Π(𝐶) of size at most 𝑂(1), s.t.
given 𝑅¬𝐼Π(𝑃Π(𝐶)) (where 𝑅¬𝐼Π(𝑃Π(𝐶)) denotes the content of the random tape except
in positions ⋃𝐶′∈𝑃Π(𝐶) 𝐼Π(𝐶′)) and the outputs of step circuits in 𝑃Π(𝐶), the memory
access pattern of 𝐶 is computationally indistinguishable to random.

C.1 Puncturable PRF
We recall the definition of puncturable PRF from [GOS18].

Definition C.7. A puncturable pseudorandom function (PRF) PP is a tuple of PPT algo-
rithms (KeyGen, Eval, Punc) with the following properties:
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• Functionality is preserved under puncturing: For all 𝜆, 𝑥, 𝑦 such that 𝑥 ≠ 𝑦,

Pr[Eval(𝐾[𝑥], 𝑦) = Eval(𝐾, 𝑦))] = 1,

where 𝐾 ← KeyGen(1𝜆) and 𝐾[𝑥] ← Punc(𝐾, 𝑥).
• Pseudorandomness at punctured points: For all 𝜆, 𝑥 and for all polynomial sized

adversaries 𝒜,

| Pr[𝒜(𝐾[𝑥], Eval(𝐾, 𝑥)) = 1] − Pr[𝒜(𝐾[𝑥], 𝑟) = 1]| ≤ negl(𝜆),

where 𝐾 ← KeyGen(1𝜆) and 𝐾[𝑥] ← Punc(𝐾, 𝑥) and 𝑟 is a random string of length
|Eval(𝐾, 𝑥)|.

Theorem C.8 ([GGM86, BW13, BGI14, KPTZ13, SW14]). Assuming the existence of
one-way functions, there exists puncturable pseudorandom functions.

C.2 Strong Localized Randomness
In this section, we show that OPRAM construction from [BCP16], instantiated with the
following special encryption scheme, constructed from puncturable PRF PP, satisfies the
strong localized randomness property.

1. KeyGen(1𝜆): Sample 𝐾 ← PP.KeyGen(1𝜆);
2. Enc(𝐾, 𝜏, 𝑣): The encryption algorithm takes as input the key 𝐾, the timestep 𝜏 and

the value 𝑣. It samples a random string 𝑟 ← {0, 1}𝜆 and outputs (𝜏||𝑟, PP.Eval(𝐾, (𝜏||𝑟))⊕
𝑣) as the ciphertext.

3. Dec(𝐾, 𝑐): The ciphertext 𝑐 is parsed as (𝑐1, 𝑐2) and the value 𝑣 is recovered by
computing PP.Eval(𝐾, 𝑐1) ⊕ 𝑐2.

Now, we recall the BCP OPRAM scheme [BCP16]. In their compiler, the database 𝐷∗

is maintained as a complete binary tree of depth log(|𝐷|/𝛼). The memory cell associated
with leaf ℓ will be stored at one of the nodes on the path from the root to the leaf ℓ. Each
parallel memory access operation Access(𝑟, 𝑣) at time step 𝜏 is replaced by a subrouting
OPAccess(𝑟, 𝑣), where processor 𝑖 ∈ [𝑀] requests a data cell 𝑟𝑖 (within some 𝛼-block 𝑏𝑖 ∈
[|𝐷|/𝛼]) and some action to be taken (either 𝜏 to denote read, or 𝑣𝑖 to denote rewriting cell
𝑟𝑖 with value 𝑣𝑖). The subroutine OPAccess does the following:

1. Conflict Resolution: Run OblivAgg on inputs {(𝑏𝑖, 𝑣𝑖)}𝑖∈[𝑚] to select a unique rep-
resentative rep(𝑏𝑖) for each queried block 𝑏𝑖 and aggregate all CPU instructions for
this 𝑏𝑖 (denoted ̄𝑣𝑖).

2. (Recursive) Access to Position Map: Each representative CPU rep(𝑏𝑖) samples
a fresh random leaf id ℓ′

𝑖 ← [|𝐷|/𝛼] in the tree and performs a (recursive) Read/Write
access command on the position map database to fetch the current position map value
ℓ𝑖 for block 𝑏𝑖 and rewrite it with the newly sampled value ℓ′

𝑖. Each dummy CPU
performs an arbitrary dummy access, e.g. reading block 1 and rewrite it with some
garbage.
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3. Look Up Current Memory Values: Each CPU rep(𝑏𝑖) fetches memory from the
database nodes down the path to leaf ℓ𝑖; when 𝑏𝑖 is found, it copies its value 𝑣𝑖 into
local memory. Each dummy CPU chooses a random path and amke analogous dummy
data fetches along it, ignoring all read values.

4. Remove Old Data: Aggregate instructions across CPUs accessing the same “buck-
ets” of memory (corresponding to nodes of the tree) on the server side. For each
bucket 𝑏 to be modified, the CPU with the smallest id from those who wish to modify
𝑏 executes the aggregated block-removal instruction. Note that this aggregation step
is purely for correctness and not security.

5. Insert Updated Data into Database in Parallel: Run Route on inputs {(𝑚, (msg𝑖, addr𝑖))}𝑖∈[𝑀],
where for each rep(𝑏𝑖), msg𝑖 = (𝑏𝑖, ̄𝑣𝑖, ℓ′

𝑖) (i.e., updated block data) and addr𝑖 = [ℓ′
𝑖]log 𝑀

(i.e., level-(log 𝑀)-truncation of the path ℓ′
𝑖), and for each dummy CPU, msg𝑖 =

addr𝑖 = ∅.

6. Flush the ORAM Database: In parallel, each CPU initiates an independent flush
of the ORAM tree. (Recall that this corresponds to selecting a random path down the
tree, and pushing all data blocks in this path as far as they will go). To implement
the simultaneous flush commands, as before, commands are aggregated across CPUs
for each bucket to be modified, and the CPU with the smallest id performs the corre-
sponding aggregated set of commands. (For example, all CPUs will wish to access to
root node in their flush; the aggregation of all corresponding commands to the root
node data will be executed by the lowest-numbered CPU who wishes to access this
bucket, in this case CPU 1).

7. Return Output: Run OblivMCast on inputs {(𝑏𝑖, ̂𝑣𝑖)}𝑖∈[𝑚] (where for dummy CPUs,
𝑏𝑖 = ̂𝑣𝑖 = ∅) to communicate the original (pre-updated) value of each data block 𝑏𝑖
to the subset of CPUs that originally requested it.

For the full description of OblivAgg, Route, and OblivMCast, see [BCP16]. Here, we simply
make the observation that all 3 parallel algorithms are deterministic and therefore irrelevant
to our discussions below.

Remark C.9 (Local CPU Communcations). In their construction of OPRAM, they also
use local CPU communications that are deterministic and independent of input (i.e. obliv-
iousness). This can be emulated in the standard PRAM model with constant overhead by
communicating through memory, or composed directly into our construction (its oblivious-
ness guarantees that it would not break the security). For the rest of the discussion, we will
work with the first case (memory-emulated communications) as it is more general.

Modified OPRAM scheme. The modification that we make to BCP OPRAM scheme
is that every values {𝑣𝑖}𝑖∈[𝑀] that is being written to the database at timestep 𝜏 is encrypted
using the special encryption scheme with respect to the timestep 𝜏 . The encryption key
is sampled outside of the scheme. Note that these values also include all the temporary
memory used for emulating local CPU communications.
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Theorem C.10. Assuming the existence of a puncturable pseudorandom function, there
exists a collision-free oblivious PRAM scheme with strong localized randomness.

Proof. The original OPRAM scheme already satisfies collision-freeness. Since the only
change we made is composing it with an encryption layer at the database, correctness
and efficiency follows from the correctness and efficiency of both the original scheme and
those of our special encryption scheme, and obliviousness preserves as there is no change to
its read/write access pattern.

We will argue that our modification satisfies strong localized randomness. Every step
samples fresh independent randomness, which directly shows the first two properties in
Definition C.6.

We now argue the third property. Note that the memory locations accessed by oblivious
inter-CPU communications are determinstic and independent of input, and those accessed
by flushing are freshly independently sampled. The only issue is step 3, where the path
used by the lookup is read from the position map. In order to make them random and
independent, we need to use the special encryption scheme to change the position map. For
a particular memory access to a location 𝐿, let 𝐶 be the step circuit (if there is any) such that
the value of the position map for location 𝐿 is last sampled by 𝐶. Now, instead of pushing
the correct leaf node in the position map it samples, we use the security of the special
encryption scheme to push a junk value. With this change, the memory locations accessed
by step 3 are also random. We can make the computational indistinguishability argument
even when using the encryption key punctured at where the encryption is invoked.

D Fully Secure GPRAM
D.1 Range Constrained PRF
We use the definition of Range Constrained PRF from [GOS18].

Definition D.1. A Range Constrained PRF RC is a tuple of PPT algorithms (KeyGen, Constrain, Eval)
with the following syntax:

• 𝐾 ← KeyGen(1𝜆): It takes the security parameter 𝜆 as input and generates a PRF key
𝐾. We implicitly assume that the key 𝐾 defines an efficiently computable function
PRF𝐾 ∶ {0, 1}𝑛(𝜆) ↦ {0, 1}𝜆. For brevity, we use 𝑛 to denote 𝑛(𝜆).

• 𝐾[𝑇 ] ← Constrain(𝐾, 𝑇 ): It takes the PRF key 𝐾 and a value 𝑇 ∈ {0, 1}𝑛, and
deterministically outputs a constrained key 𝐾[𝑇 ].

• 𝑦 ← Eval(𝐾[𝑇 ], 𝑥): It takes as input a constrained key 𝐾[𝑇 ] and an input 𝑥 and
outputs either a string 𝑦 or ⊥.

Correctness. We say that a range constrained PRF to be correct if for all 𝐾, 𝑇 ∈ {0, 1}𝑛

and 𝑥 ∈ [0, 𝑇 ], we have Eval(𝐾[𝑇 ], 𝑥) = PRF𝐾(𝑥), where 𝐾[𝑇 ] ← Constrain(𝐾, 𝑇 ).
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Security. For security, we require that for any 𝑇1, ..., 𝑇ℓ ∈ {0, 1}𝑛 and any 𝑦 > 𝑇𝑖 for all
𝑖 ∈ [ℓ],

{{𝐾[𝑇𝑖]}𝑖∈[ℓ], PRF𝐾(𝑦)} 𝑐≈ {{𝐾[𝑇𝑖]}𝑖∈[ℓ], 𝑟},
where 𝐾 ← KeyGen(1𝜆), 𝐾[𝑇𝑖] ← Constrain(𝐾, 𝑇𝑖) for all 𝑖 ∈ [ℓ] and 𝑟 is a random bit string
of length 𝜆.

Theorem D.2 ([GOS18]). Assuming the existence of one-way functions, there exists a
construction of range-constrained PRFs.

D.2 Timed Encryption
Timed encryption schemes are introduced by [GOS18] for constructing adaptive garbled
RAM. At a high level, it is a symmetric key encryption scheme where every message is
encrypted with respect to a timestamp time. Additionally, there is a special algorithm that
time-constrains the encryption key 𝐾 by time time′. This time constrained key 𝐾[time′]
can then be used to decrypt any ciphertext that is encrypted with respect to timestamp
time < time′, but encryptions “in the future” retains their semantic security.

Definition D.3. A timed encryption scheme TE is a tuple of polynomial-time algorithms
(KeyGen, Enc, Dec, Constrain, StrongConstrain) with the following syntax:

• 𝐾 ← KeyGen(1𝜆): It is a randomized algorithm that takes the security parameter 𝜆
as input and a outputs a key 𝐾;

• 𝐾[time] ← Constrain(𝐾, time): It is a deterministic algorithm that takes as input a
key 𝐾 and a timestamp time ∈ [0, 2𝜆) and outputs a time-constrained key 𝐾[time];

• 𝐾𝑆[time] ← StrongConstrain(𝐾, time): It is a deterministic algorithm that takes as
input a key 𝐾 and a timestamp time ∈ [0, 2𝜆) and outputs a strongly time-constrained
key 𝐾𝑆[time];

• 𝑐 ← Enc(𝐾, time, 𝑚): It is a randomized algorithm that takes a key 𝐾, a timestamp
time and a message 𝑚 as input, and outputs either the corresponding ciphertext 𝑐 or
⊥;

• 𝑚 ← Dec(𝐾, 𝑐): It is a deterministic algorithm that takes a key 𝐾 and a ciphertext 𝑐
as input and outputs either the corresponding message 𝑚 or ⊥.

Correctness. For any message 𝑚 and timestamps time1 ≤ time2:

Pr[Dec(𝐾[time2], Enc(𝐾, time1, 𝑚)) = 𝑚] = 1,

where 𝐾 ← KeyGen(1𝜆) and 𝐾[time2] ← Constrain(𝐾, time2).

Encrypting with Constrained Key. For any message 𝑚 and timestamps time1 ≤
time2, the distributions {Enc(𝐾, time1, 𝑚)} and {Enc(𝐾[time2], time1, 𝑚)} are identical,
where 𝐾 ← KeyGen(1𝜆) and 𝐾[time2] ← Constrain(𝐾, time2).
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Encrypting with Strongly Constrained Key. For any message 𝑚 and timestamps
time1 ≤ time2, the distributions {Enc(𝐾, time, 𝑚)} and {Enc(𝐾𝑆[time], time, 𝑚)} are iden-
tical, where 𝐾 ← KeyGen(1𝜆) and 𝐾[time] ← StrongConstrain(𝐾, time).

Security. For any two messages 𝑚0, 𝑚1 and timestamps (time, {time𝑖, time′
𝑖}𝑖∈[𝑡]) such

that time𝑖 < time and time′
𝑖 ≠ time for all 𝑖 ∈ [𝑡]:

{keys, Enc(𝐾, time, 𝑚0)} 𝑐≈ {keys, Enc(𝐾, time, 𝑚1)},

where 𝐾 ← KeyGen(1𝜆), keys = {𝐾[time𝑖], 𝐾𝑆[time′
𝑖]}𝑖∈[𝑡], and 𝐾[time𝑖] ← Constrain(𝐾, time𝑖), 𝐾𝑆[time′

𝑖] ←
StrongConstrain(𝐾, time′

𝑖) for 𝑖 ∈ [𝑡].
Theorem D.4. Assuming the existence of one-way functions, there exists a construction
of timed encryption.

Proof. Let (SK.Enc, SK.Dec) be a symmetric key encryption scheme that uses a 𝜆-bit random
string as its key. Let RC be a range-constrained PRF. We describe the construction below.

• KeyGen(1𝜆): Sample 𝐾 ← RC.KeyGen(1𝜆) defining PRF𝐾 ∶ {0, 1}𝜆 ↦ {0, 1}𝜆 and
output 𝐾.

• Constrain(𝐾, time): Output RC.Constrain(𝐾, time).

• StrongConstrain(𝐾, time): Output PRF𝐾(time).

• Enc(𝐾, time, 𝑚): Let 𝑆𝐾 ← 𝐾 if 𝐾 is strongly constrained, otherwise compute 𝑆𝐾 ←
PRF𝐾(time). output (time, SK.Enc(𝑆𝐾, 𝑚)).

• Dec(𝐾, 𝑐): Parse 𝑐 as (time, 𝑐𝑡). Compute 𝑆𝐾 ← RC.Eval(𝐾, time). Output SK.Dec(𝑆𝐾, 𝑐𝑡).
We note that correctness and encryption with (strongly) constrained key follows directly
from the correctness of range constrained PRF and symmetric key encryption scheme. The
security property can be easily argued from the security of range constrained PRF and
symmetric key encryption.

D.3 Construction
In this section, we formalize the ideas in Section 5.6 into a full construction of GPRAM.

• Memory(1𝜆, 𝐷):
𝐾 ← TE.KeyGen(1𝜆)
𝑆 ← PRFKeyGen(1𝜆) defining PRF𝑆 ∶ {0, 1}𝜆 ↦ ({0, 1}𝑛)𝑀

�̂� ← TE.Enc(𝐾, 0, 𝐷)
𝐷∗ ← OPData(1𝜆, �̂�)
(�̃�, 𝑆𝐾) ← UGPRAM.Memory(1𝜆, 𝐷∗)
crs ← crsGen(1𝜆, 1|𝐷|)
lab1

𝑗,𝑏 ← PRF𝐾(1, 𝑗, 0, 𝑏), ∀𝑗 ∈ [𝜆], 𝑏 ∈ {0, 1}
(d, �̂�) ← ℓ𝑂𝑇 .Hash(crs, 𝐷)
Output �̂� as the garbled memory and (𝐾, 𝑆, 𝑆𝐾) as the secret key
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Step Circuit SC𝜏

Hardwired Values/Circuit: 𝑖, 𝜏 , 𝐾[𝑖, 𝜏 , 1], 𝐼, 𝐾′, 𝑟′, 𝐶
Input: 𝑐CPU, 𝑥
rData ← TE.Dec(𝐾[𝑖, 𝜏 , 1], 𝑥)
state ← TE.Dec(𝐾[𝑖, 𝜏 , 1], 𝑐CPU)
𝑅𝐼 ← PP.Eval(𝐾′, 𝐼)
(state′, R/W, 𝐿, wData) ← 𝐶(state, rData; 𝑅𝐼)
If 𝐶 is an output circuit, 𝑐′

CPU ← state′ ⊕ r′

Else, 𝑐′
CPU ← TE.Enc(𝐾[𝑖, 𝜏 , 1], (𝑖, 𝜏 , 0), state′)

If 𝜏 is at the end of ℓ𝑂𝑇 .UpdatePWrite, d ← tr𝑘
If R/W = write

𝑥′ ← TE.Enc(𝐾[𝑖, 𝜏 , 1], (𝑖, 𝜏 , 1), wData)
Output (𝑐′

CPU, R/W, 𝐿, 𝑥′)
Else output (𝑐′

CPU, R/W, 𝐿, ⊥)

Figure 19: Description of the Step Circuit

• Program(𝑆𝐾′, 𝑖, Π):
Parse 𝑆𝐾′ = (𝐾, 𝑆, 𝑆𝐾)
Let 𝑇 be the parallel running time of Π
Π∗ ← OPProg(1𝜆, |𝐷|, 1𝑇 , Π) where 𝑇 ∗ is the parallel running time of Π∗

Let 𝜋(𝐶) be the order for Π∗ such that the step circuits in Π∗ can be evaluated in
order 𝜋−1(1), 𝜋−1(2), ..., 𝜋−1(𝑇 ′) sequentially, where 𝑇 ′ is the sequential running time
of Π∗

Let 𝐾[𝑖, 𝜏 , 1] = TE.Constrain(𝐾, (𝑖||𝜏 ||1))
𝑟 ← PRF𝑆(𝑖)
For 𝜏 ∈ [𝑇 ′] do

Let 𝐶 = 𝜋−1(𝜏)
Let 𝐼 be the interval of random tape that 𝐶 needs to access
Let 𝐶𝜏

CPU ∶= SC𝜏 [𝑖, 𝜏 , 𝐾[𝑖, 𝜏 ], 𝐼, 𝐾′, 𝑟′, 𝜋−1(𝜏)], where 𝑟′ = 𝑟𝑘 if 𝐶 is the output
circuit for CPU 𝑘 ∈ [𝑀], else 𝑟′ = ⊥. The step circuit SC is described in Figure 19

Let Π′ be the PRAM program described by step circuits {𝐶𝜏
CPU}𝜏∈[𝑇 ′]

Output Π̃ ∶= UGPRAM.Program(𝑆𝐾, 𝑖, Π′)

• Input(𝑆𝐾′, 𝑖, {𝑥𝑘}𝑘∈[𝑀]):
Parse 𝑆𝐾′ = (𝐾, 𝑆, 𝑆𝐾)

̂𝑥 ← UGPRAM.Input(𝑆𝐾, 𝑖, {𝑥𝑘}𝑘∈[𝑀])
𝑟 ← PRF𝑆(𝑖)
Output ̃𝑥 ∶= ( ̂𝑥, 𝑟)

• Eval�̃�(𝑖, st, Π̃, ̃𝑥):
Parse ̃𝑥 = ( ̂𝑥, 𝑟)
(𝑦, st′) ← UGRAM.Eval�̃�(st, ̃𝑃 , ̂𝑥)
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Output 𝑦 ⊕ 𝑟 and st′

D.4 Security
For the simulators, the simulated database is simply a garbled database of all zeroes; the
simulated program is a garbled stub PRAM program; and the simulated input is a garbled
zero string and the correct output XOR the random mask 𝑟. To change the garbled program
into the simulator indistinguishably, we change the step circuits from 𝜋−1(𝑇 ′) to 𝜋−1(1) to
their corresponding simulated versions, and finally by the security of timed encryption and
the fact that the database and the input was not read by the simulated program at all, we
can change the database and the input string to zeroes.

Now to finish the proof, we prove that the change we described is indeed computationally
indistinguishable.

Lemma D.5. Let Hybrid𝑡 be the hybrid distribution such that step circuits in [𝑡, 𝑇 ′] garbles
a stub circuit. Assuming the security of adaptive garbled PRAM with unprotected mem-
ory access, timed encryption, puncturable PRF, and oblivious PRAM with strong localized
randomness, we have Hybrid𝑡

𝑐≈ Hybrid𝑡−1 for every 𝑡 ∈ [𝑇 ′].
Proof. We prove via a hybrid argument.

• Hybrid𝑡: This is our starting hybrid.

• Hybrid𝑡,1: In this hybrid, we change how the garbled program and the garbled input
are generated. In particular, we will use the simulator for UGPRAM to equivocate
the circuit 𝑆𝐶𝑡 (UGPRAM will generate some additional step circuits but we do not
need to worry about them in this security proof), and we compute the correct output
of 𝑆𝐶𝑡 as 𝑦𝑡 and send it using UGPRAM’s simulator when we are asked to garble the
input. The computational indistinguishability follows from the equivocal security of
adaptive UGPRAM.

• Hybrid𝑡,2: In this hybrid, we change what is written to the database by 𝑦𝑡. In par-
ticular, if it performs a write, we hardwire wData to 0 before encrypting using timed
encryption. Note that the adversary now only has constrained key up to (𝑖, 𝑡 − 1, 1),
the computational indistinguishability follows from the security of timed encryption
scheme.

• Hybrid𝑡,3: In this hybrid, we change how 𝑦𝑡 is generated. In particular, we change
state’ to 0, and if the circuit is the output circuit for CPU 𝑘, we also change the
garbled input to 𝑦 ⊕ 𝑟. Note that the adversary now only has constrained key up to
(𝑖, 𝑡 − 1, 1), the computational indistinguishability follows from the security of timed
encryption scheme if the circuit is not output, otherwise the distributions are identical.

• Hybrid𝑡,4: By strong localized randomness property of OPRAM, there exists a set
𝑃𝑡 ∶= 𝑃Π∗(𝜋−1(𝑡)) of size at most 𝑂(1) such that property 3 in the definition of
strong localized randomness holds. We puncture the PRF key at 𝐼(𝑃𝑡) and 𝐼 where
𝐼(𝑃𝑡) represents the random tape accessed by the circuits in 𝑃𝑡. We hardwire the
PRF outputs for 𝜋−1(𝑡) and circuits in 𝑃𝑡 and use the punctured key in the rest of
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the step circuits. Now it follows from the correctness property of puncturable PRF
that programs garbled in Hybrid𝑡,4 and Hybrid𝑡,5 have the same output in each step
circuit for each input 𝑥, therefore by adaptive security of UGPRAM, Hybrid𝑡,3 is
computationally indistinguishable from Hybrid𝑡,4.

• Hybrid𝑡,5: In this hybrid, we replace the hardwired PRF outputs with random strings.
The computational indistinguishability follows from the security of puncturable PRFs.

• Hybrid𝑡,6: In this hybrid, we use the simulator for UGPRAM to equivocate all the cir-
cuits in 𝑃𝑡 as well. The computational indistinguishability follows from the equivocal
security of adaptive UGPRAM.

• Hybrid𝑡,7: In this hybrid, we change the memory location 𝐿 accessed by 𝑆𝐶𝑡−1 to be
sampled according to the procedure of OPRAM but independently of everything else.
The computational indistinguishability follows from the security of strong localized
randomness property of OPRAM.

• Hybrid𝑡,8: In this hybrid, we change 𝑆𝐶𝑡 to a dummy circuit that outputs 𝑦𝑡 (which
is a string because it does not depend on the input, furthermore, the encryption is
done using a strongly constrained key), and the rest of the circuits in 𝑃𝑡 is reverted to
the circuits used in Hybrid𝑡,5. 𝑦𝑡 does not change due to the encrypting with strongly
constrained key property of timed-encryption, and therefore the computational indis-
tinguishability follows from the equivocal security of adaptive UGPRAM.

• Hybrid𝑡,9: In this hybrid, we reverse the change made in Hybrid𝑡,5, namely, we replace
the hardwired random strings in the step circuits in 𝑃𝑡 with the corresponding PRF
output. The computational indistinguishability follows from the security of punc-
turable PRFs.

• Hybrid𝑡−1: The difference between this hybrid with Hybrid𝑡,9 is the punctured PRF
keys. In this hybrid, we reverse the change made in Hybrid𝑡,4. Similar to before, the
computational indistinguishability follows from the adaptive security of UGPRAM.

This completes the proof of the lemma.
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