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Abstract. The Gimli permutation was proposed in CHES 2017 and the hash mode Gimli-
Hash is now included in the Round 2 candidate Gimli in NIST’s Lightweight Cryptography
Standardization process. In the Gimli document, the security of the Gimli permutation has
been intensively investigated. However, little is known about the security of Gimli-Hash. The
designers of Gimli have claimed 2128 security against all attacks on Gimli-Hash, whose hash
is a 256-bit value. Firstly, we present the trivial generic preimage attack on the structure of
Gimli-Hash matching the 2128 security bound, both, in time and memory complexity. Following
such a generic preimage attack framework, we then describe specific preimage attacks on 2/3/4/5
(out of 24) rounds of Gimli-Hash using divide-and-conquer methods. As will be shown, the
application of the divide-and-conquer methods much benefits from the properties of the SP-box
and the linear layer of Gimli. Therefore, this work can also be viewed to make the first step
to exploit specific properties of the SP-box. Finally, the divide-and-conquer method was also
applied to a collision attack on up to 5-round Gimli-Hash. As a support of our method, we
provide a practical colliding four-block message pair for the full-state collision of 3-round
Gimli-Hash. We hope our analysis can advance the understanding of Gimli-Hash.

Keywords: hash function · Gimli · Gimli-Hash · preimage attack · collision attack · divide-and-
conquer

1 Introduction

As the demand for lightweight cryptographic primitives in industry increases, NIST is currently
holding a public lightweight cryptography competition, aiming at selecting a lightweight
cryptography standardization by combining the efforts from both academia and industry. Although
such a competition started to call for submissions in 2018, considerable efforts have been put on the
lightweight cryptography in academia since the publication of the ultra-lightweight block cipher
PRESENT in CHES 2007 [8]. The last decade has also witnessed a lot of designs of lightweight
cryptographic primitives, like PICCOLO [11], PHOTON [9], SIMON/SPECK [5], Midori [3],
SKINNY [6], GIFT [4], and QARMA [2], etc.

Gimli was proposed by Bernstein et al. in CHES 2017 [7]. As the designers claimed,
Gimli is distinguished from other well-known permutation-based primitives for its cross-platform
performance. The main strategy to improve the performance of Gimli is to process the 384-bit
data in four 96-bit columns independently and make only a 32-bit word swapping among the
four columns every two rounds. Soon after its publication, the security of such a design strategy
received a doubt from Hamburg, who posted a paper [10] to explain how dangerous such a strategy
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would be. The attack described in [10] is for an ad-hoc mode and mainly exploits the fact that there
is occasional 32-bit word communication among the 4 columns. As a response, the designers of
Gimli claimed that such an ad-hoc mode has never appeared before and would never threaten the
official authenticated encryption scheme and hash scheme based on Gimli.

Since Gimli has been included in the Round 2 candidates in NIST’s Lightweight Cryptography
Standardization process, it is of practical importance to further investigate its security, especially for
its authenticated encryption scheme and hash scheme. As can be noted in the Gimli document [7],
there has been an intensive scrutiny for the Gimli permutation. However, little is known about the
AEAD and hash scheme. Thus, we are motivated to make the first step to look into the security
of its hash scheme Gimli-Hash. Specifically, we would like to see whether it is still possible to
exploit the fact that there is little communication between the 4 columns as done by Hamburg [10]
to devise an attack on the AEAD scheme or the hash scheme.

As a result, the divide-and-conquer method starts to occur in our mind, which may fit well with
the fact that there is little communication between the 4 columns. However, only exploiting such a
fact is obviously insufficient. Thus, to make our divide-and-conquer method feasible and efficient,
we further exploit the properties of the SP-box of Gimli and they are proven to be useful, as can be
seen from our attacks.

Our Contributions. In this paper, we develop a divide-and-conquer method to analyze the security
of Gimli-Hash. This method much benefits from the little communication between the 4 columns
(linear layer) and the properties of the SP-box. While the property of the linear layer has been
intensively exploited in Hamburg’s attack [10], we are the first to investigate the properties of the
SP-box and combine it with the linear layer to devise several attacks.

Specifically, we describe a trivial generic preimage attack on the structure of Gimli-Hash
to match the claimed 2128 security bound at first. Following such a generic preimage attack
framework, we can further devise specific improved preimage attacks on 2/3/4/5 rounds of Gimli-
Hash with divide-and-conquer methods. Moreover, the divide-and-conquer method is also applied
to a collision attack on up to 5-round Gimli-Hash and we provide a practical colliding four-block
message pair for full-state collision of 3-round Gimli-Hash. Our results are summarized in Table 1.

Table 1: The analytical results of reduced Gimli-Hash
Method Attack Type Rounds Memory Time Ref.

Meet-in-the-Middle (second) preimage arbitrary 2128 2128

Divide-and-conquer

(second) preimage

2 (24∼23) 232 264 Sec. 4.2
3 (24∼22) 232 264 Sec. 4.3
4 (24∼21) 264 296 Sec. 4.4
5 (24∼20) 264 296 Sec. 4.5

collision
3 (24∼22) practical example Sec. 5.2
4 (24∼21) 264 264 Sec. 5.1
5 (24∼20) 264 264 Sec. 5.1

Divide-and-conquer (second) preimage
2 (2∼1) 232 264 App. A.1
3 (3∼1) 264 264 App. A.2
4 (4∼1) 264 296 Sec. 4.4

collision 4 (4∼1) 264 264 Sec. 5.1

Organization. This paper is organized as follows. In Section 2, we introduce the notations,
the Gimli permutation, some useful properties of the SP-box and the hash scheme Gimli-Hash.
Then, the generic preimage attack on the structure of Gimli-Hash will be described in Section 3.
Following such a generic framework, we present the preimage attacks and collision attacks using
divide-and-conquer methods in Section 4 and Section 5 respectively. Finally, the paper is concluded
in Section 6.
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2 Preliminaries

In this section, we will present some notations, the description of the Gimli permutation and
Gimli-Hash. Meanwhile, some useful properties of the SP-box will be discussed as well.

2.1 Notation

1. �,�,≪,≫, ⊕, ∨, ∧ represent the logic operations ,shift left, shift right, rotate left, rotate
right, exclusive or, or, and, respectively.

2. Z[i] represent the (i + 1)-th bit of the 32-bit word Z. where the least significant bit is the
1st bit and the most significant bit is the 32nd bit. For example, Z[0] represents the least
significant bit of Z.

3. Z[i ∼ j](0 ≤ j < i ≤ 31) represents the ( j + 1)-th bit to the (i + 1)-th bit of the 32-bit word Z.
For example, Z[1 ∼ 0] represents the two bits Z[1] and Z[0] of Z.

4. A||B represents the concatenation of A and B. For example, if A = 0012 and B = 10012, then
A||B = 00110012.

5. 0n represent an all-zero string of length n.

2.2 Description of Gimli

Gimli was proposed in CHES 2017 [7] and now is a Round 2 candidate in NIST’s Lightweight
Cryptography Standardization process [1]. The Gimli state can be viewed as a two-dimensional
state s = (si, j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3), where si, j ∈ F32

2 , as illustrated in Figure 1.

Figure 1: The Gimli state

The Gimli permutation is described in Algorithm 1. As can be seen from the description of the
Gimli permutation, the permutation can be viewed as the following sequence of operations. For
simplicity, we denote the SP-box, Small-Swap, Big-Swap and AddRoundConstant by SP, S_SW,
B_SW and AC respectively.

(SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP).

Therefore, when we attack r rounds of Gimli, we consider the sequence of first r operations in
the main content and we believe it is meaningful. For example, when our target is 5-round Gimli,
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the sequence of operations is

(SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC).

To make this work complete, we also considered the sequence of the last r operations in Appendix.
We suggest the readers consult the main content at first. Then, the content in the appendix will be
easy to understand.

Algorithm 1 Description of Gimli permutation

Input: s = (si, j)
1: for r from 24 down to 1 inclusive do
2: for j from 0 to 3 inclusive do
3: x← s0, j ≪ 24
4: y← s1, j ≪ 9
5: z← s2, j
6:
7: s2, j ← x ⊕ z � 1 ⊕ (y ∧ z) � 2
8: s1, j ← y ⊕ x ⊕ (x ∨ z) � 1
9: s0, j ← z ⊕ y ⊕ (x ∧ y) � 3

10: end for
11:
12: if r mod 4 =0 then
13: s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 . Small-Swap
14: else if r mod 2 =0 then
15: s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 . Big-Swap
16: end if
17:
18: if r mod 4 =0 then
19: s0,0 ← s0,0 ⊕ 0x9e377900 ⊕ r
20: end if
21: end for
22: return (si, j)

2.3 SP-box

In this section, we present some useful properties of the SP-box in Gimli. The SP-box consists
of three sub-operations: rotations of the first and second words; a 3-input nonlinear T-function;
and a swap of the first and third words. Specifically, consider one column (x, y, z) ∈ F3

232 . Then the
SP-box will update (x, y, z) as follows:

x ← x≪ 24
y ← y≪ 9
x ← x ⊕ z � 1 ⊕ (y ∧ z) � 2
y ← y ⊕ x ⊕ (x ∨ z) � 1
z ← z ⊕ y ⊕ (x ∧ y) � 3
x ← z

z ← x

Property 1. Suppose the input to an SP-box is (x, y, z) and the corresponding output is (x′, y′, z′).
Then, if y[31 ∼ 23] = 0 and y[19 ∼ 0] = 0, we can know that x′ is independent of x.
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Proof. This can be easily proved by considering the expression to calculate x′ as follows.

x′ = z ⊕ (y≪ 9) ⊕ ((x≪ 24) ∧ (y≪ 9)) � 3.

�

Property 2. Suppose the input to an SP-box is (x, y, z) and the corresponding output is (x′, y′, z′).
Then, given (y, z, x′), the probability Pr that (y, z, x′) is a valid tuple is 2−15 without knowing x.

Proof. Based on the expression to calculate x′, we already know that 3 bits of x′ are independent
of x, which are x′j (0 ≤ j ≤ 2). Moreover, supposing y′′ = y≪ 9, if y′′i = 0 (0 ≤ i ≤ 28), we can
also compute x′i+3 without the knowledge of x.

x′ = z ⊕ y′′ ⊕ ((x≪ 24) ∧ y′′) � 3.

Supposing y is uniformly distributed, Pr can be calculated as follows:

Pr = 2−3 ×

∑29
i=0(Ci

29 × 2−i)
229 ≈ 2−15.

To verify it, we first randomly generate a value for x′. Then, we randomly generate n pairs of (y, z)
and determine the computable bits of x′ for each pair. If these computable bits match those of x′,
we increase the counter cnt by 1. Experiments show that cnt

n is close to 2−15 and slightly lower. �

Property 3. Suppose the input to an SP-box is (x, y, z) and the corresponding output is (x′, y′, z′).
Then, given (z′, y, z), we can determine (x, x′, y′). Moreover, given a random tuple (z′, y′, y, z), the
probability that it is valid is 2−32.

Proof. Considering the expression to calculate z′, it is easy to compute x if (z′, y, z) are fixed, as
shown below.

z′ = (x≪ 24) ⊕ z � 1 ⊕ ((y≪ 9) ∧ z) � 2.
x = (z′ ⊕ z � 1 ⊕ ((y≪ 9) ∧ z) � 2)≫ 24.

After x is computed, (x, y, z) are all known and we can therefore compute (x′, y′).
Since we can compute y′ according to the knowledge of (z′, y, z), it is natural to conclude that a

random tuple (z′, y′, y, z) is valid with probability 2−32. �

Property 4. Suppose the input to an SP-box is (x, y, z) and the corresponding output is (x′, y′, z′).
Then, given (z′, y′, x), it is a valid tuple with probability 2−1. Once it is a valid tuple, we can
determine (x′[30 ∼ 0], y, z[30 ∼ 0]).

Proof. To prove this, let x′′ = x≪ 24 and y′′ = y≪ 9. Then, x′′ is also known. Consider the
expressions to calculate z′ and y′, as shown below.

z′ = x′′ ⊕ z � 1 ⊕ (y′′ ∧ z) � 2,
y′ = y′′ ⊕ x′′ ⊕ (x′′ ∨ z) � 1.

Firstly, we can compute

y′′[0] = y′[0] ⊕ x′′[0],
z[0] = z′[1] ⊕ x′′[1],
z[1] = z′[2] ⊕ x′′[2],

y′′[1] = y′[1] ⊕ x′′[1] ⊕ (x′′[0] ∨ z[0]).
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Then, we can recursively compute

y′′[ j] = y′[ j] ⊕ x′′[ j] ⊕ (x′′[ j − 1] ∨ z[ j − 1]),
z[k] = z′[k + 1] ⊕ x′′[k + 1] ⊕ (y′′[k − 1] ∧ z[k − 1]).

for (2 ≤ j ≤ 31) and (2 ≤ k ≤ 30). Thus, we can uniquely compute y and z[30 ∼ 0] if given
(z′, y′, x). Then, according to the following expression to calculate x′

x′ = z ⊕ y′′ ⊕ ((x≪ 24) ∧ y′′) � 3,

we can also determine x′[30 ∼ 0].
Moreover, note that z′0 = x′′0 . Thus, if given a random tuple (z′, y′, x), it is a valid tuple with

probability 2−1. �

2.4 Linear Layer

The linear layer consists of two swap operations, namely Small-Swap and Big-Swap. Small-Swap
occurs every 4 rounds starting from the 1st round. Big-Swap occurs every 4 rounds starting from
the 3rd round. The illustration of Small-Swap and Big-Swap can be referred to Figure 2. In the rest
part, we denote Small-Swap by S_SW and denote Big-Swap by B_SW.

Figure 2: The linear layer

2.5 Gimli-Hash

How Gimli-Hash compresses a message is illustrated in Figure 3. Specifically, Gimli-Hash
initializes a 48-byte Gimli state to all-zero. It then reads sequentially through a variable-length
input as a series of 16-byte input blocks, denoted by M0, M1, · · ·.

Figure 3: The process to compress the message

Each full 16-byte input block is handled as follows:

• XOR the block into the first 16 bytes of the state (i.e., the top row of 4 words).

• Apply the Gimli permutation.

The input ends with exactly one final non-full (empty or partial) block, having b bytes where
0 ≤ b ≤ 15. This final block is handled as follows:
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• XOR the block into the first b bytes of the state.

• XOR 1 into the next byte of the state, position b.

• XOR 1 into the last byte of the state, position 47.

• Apply the Gimli permutation.

After the input is fully processed, a 32-byte hash output is obtained as follows:

• Output the first 16 bytes of the state (i.e., the top row of 4 words), denoted by H0.

• Apply the Gimli permutation.

• Output the first 16 bytes of the state (i.e., the top row of 4 words), denoted by H1.

As depicted in Figure 3, for simplicity, we denote the initial state (all zero) by A′0. The state
after the first block message is added is denoted by A0. Recursively, we denote the state before
adding the i-th (i ≥ 0) message block Mi by A′i . After Mi is added, the state is denoted by Ai.
Formally, we have the following relations:

Ai = A′i ⊕ (Mi||0256),
A′i+1 = f (Ai).

Finally, the last two states of the output are denoted by Ah0 and Ah1 respectively.

3 Generic Preimage Attack on Gimli-Hash

The designers of Gimli-Hash claim that it achieves 2128 security against all attacks. To have a better
understanding, we show the generic preimage attack on Gimli-Hash to explain the claimed security
bound. The attack is illustrated in Figure 4.

Figure 4: Generic preimage attack on Gimli-Hash

Specifically, given a hash value (H0,H1), the generic preimage attack procedure can be divided
into two phases:

Phase 1: Set the rate part of Ah0 to the value of H0. Randomly choose a value for the capacity
part of Ah0. In this way, Ah0 is fully determined and we can compute Ah1 = f (Ah0). It is
expected to make the rate part of Ah1 match with H1 after trying 2128 random values for
the capacity part of Ah0, Once a valid capacity part of Ah0 is found, a valid value for the
full state of Ah0 is determined, thus making the application of f −1 to Ah0 feasible. Then,
we randomly choose 2128 values for (M3,M4) (note that M4 can not take 2128 values due
to the padding rule) and compute backward to obtain the capacity part of A2 denoted by
C2. Store the corresponding 2128 values of C2 in a table T A0.
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Phase 2: Similarly, randomly choose 2128 values of (M0,M1) and compute the capacity part of A′2,
which is also C2. Store the 2128 values of C2 in a table T A1. Find a match between T A0
and T A1. Since there are 2128+128 = 2256 pairs and C2 is a 256-bit value, it is expected
that there is one match. Once the match is found, we can compute M2 and therefore
obtain the preimage.

Consequently, the time complexity and memory complexity of this generic preimage attack are
both 2128.

3.1 Discussion

As can be seen from the generic attack in Figure 4, it consists of two phases.
The first phase is to find a valid capacity part of the Ah0. After it is found, we apply f −1 to this

state and obtain A4. To satisfy the padding rule, we choose a random value of M4, whose size is
smaller than 16 bytes. Then, we can compute A′4. Then, we can further apply f −1 to A′4 and obtain
another new state A3. Next, we choose a random value for M3 of size 16 bytes and compute A′3.
Finally, we apply f −1 to A′3 and obtain the value of the capacity part of A′2, i.e. C2. At this phase,
2128 possible random values of (M3,M4) will be tried in order to collect 2128 possible values of C2.

At the second phase, we choose 2128 random values of (M0,M1) and compute the corresponding
C2. Then, if we can find a match in C2 which is computed by (M0,M1) and (M3,M4) respectively,
we can always use the degree of freedom of M2 to connect the choice for (M0,M1) and (M3,M4)
and finally obtain the preimage.

What we want to emphasize here is that such a generic attack is irrelevant to the padding rule,
which can be satisfied by choosing a non-full (smaller than 16 bytes) value for M4.

4 Preimage Attacks with Divide-and-Conquer Methods

Inspired by the above generic preimage attack, we can devise preimage attacks on 2/3/4/5 rounds
of Gimli-Hash. The main idea is to reduce the time complexity of the first and second phase of
the generic attack respectively. To gain advantage over the generic attack, some properties of the
SP-box and the linear layer will be exploited. We have to emphasize once again that in the main
content, the r-round Gimli-Hash is treated as the sequence of the first r operations of the 24-round
permutation, as stated in Section 2.2.

4.1 Overview

We extend the above generic preimage attack on Gimli-Hash illustrated in Figure 4 to specific
preimage attacks on 2/3/4/5 rounds of Gimli-Hash. Our attack consists of two phases as well.

The first phase is to find a valid capacity part of Ah0 as in the generic attack. Then, we properly
choose just one (not 2128) value for two message blocks (M3,M4) and compute backward to obtain
the capacity part of A′2, i.e. C2. As explained in the generic attack, the padding rule can be satisfied
by properly choosing M4. Thus, the influence of the padding rule has been eliminated at this phase.

At the second phase, different from the generic attack which uses a meet-in-the-middle method
to achieve the match in C2, we will use a divide-and-conquer method to match the C2 computed at
the first phase. To achieve it, the degree of freedom of (M0,M1) will be utilized. Note that (M0,M1)
can take 2256 possible values and C2 is a 256-bit value. Therefore we can expect to find one solution
of (M0,M1) to match C2 . If it cannot be found, which happens with a negligible probability, we
choose another proper value of (M3,M4) and repeat. We have to stress that it is expected to use
only one value of (M3,M4). Once a solution of (M0,M1) is found, we can immediately compute
M2 as follows and obtain the preimage (M0,M1,M2,M3,M4) of the hash value (H0,H1).

(M2||0256) = A2 ⊕ A′2.
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In this way, our preimage attacks are reduced to two subproblems. The first problem is how to
find a valid capacity part of Ah0 to match H1 with complexity less than 2128. The second problem
is how to match a given capacity part with complexity less than 2128. Thus, in the following
description of our preimage attacks on 2/3/4/5 rounds of Gimli-Hash, we will separately explain
how to find a valid capacity part of Ah0 and how to match a given capacity part by utilizing the
degree of freedom of (M0,M1).

4.2 Preimage Attack on 2-Round Gimli-Hash

We present the details of the preimage attack on 2-round Gimli-Hash in this part. As shown in
Figure 5, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F32
2 . Moreover, the capacity part of Ah0 is denoted by si, j (1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

4.2.1 Computing a Valid Capacity Part

Similar to the generic attack, we first generate a valid value for the capacity part of Ah0, as illustrated
in Figure 5. The corresponding procedure is described as follows.

Figure 5: Generate a valid capacity part for the preimage attack on 2-round Gimli-Hash

Step 1: Randomly choose 232 values of (s1,0, s2,0). Then, with the Property 2 of SP-box, we can
find about 232−15 = 217 candidates for (s1,0, s2,0) which may match h4. Store these values
in a table CT0.

Step 2: Similarly, we randomly choose 232 values of (s1, j, s2, j) (1 ≤ j ≤ 3) and partially match
h j+4. Store the candidates in table CT j respectively.

Step 3: Exhaust all possible combinations between CT0 and CT1. For each combination, (h4, h5)
can be fully computed and we compare it with the given hash value. It is expected that
there is only one valid value of (s1,0, s2,0, s1,1, s2,1) since there are totally 264 random values
for it.

Step 4: Similarly, we can obtain the value of (s1,2, s2,2, s1,3, s2,3) to match (h6, h7).

The time complexity can be evaluated as 232 + 217+17 = 234 times of 2-round Gimli permutation. In
this way, we can find a valid capacity part of Ah0.

4.2.2 Matching the Capacity Part

We expand on how to match a given capacity part by utilizing the degree of freedom of the first
two blocks. To have a better understanding, it is better to refer to Figure 6 for the meaning of the
notations in the following description. Specifically, (s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can
be randomly chosen. The goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

The procedure to achieve the goal is described below.
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Figure 6: Preimage attack on 2-round Gimli-Hash

Step 1: Exhaust all 264 possible values of (c0,0, s0,0). Then, the tuple (b1,0, b2,0, d1,0, d2,0) can
be computed for each guess of (c0,0, s0,0). According to the Property 3 of SP-box, the
tuple (b1,0, b2,0, d1,0, d2,0) is valid with probability 2−32. Thus, we expect to obtain 264−32

possible values of (c0,0, s0,0) to match (c1,0, c2,0). For these 232 valid values, we will
collect 232 possible values of (d0,0, d0,1). Note that according to the Property 3, d0,0 can be
computed when (b1,0, b2,0, d1,0, d2,0) is a valid tuple. Store all the 232 valid values of the
tuple (d0,0, d0,1, c0,0, s0,0) in the table GA0.

Step 2: Similarly, exhaust all 264 possible values of (c0,1, s0,1). In this way, we can obtain 232 valid
values of the tuple (d0,0, d0,1, c0,1, s0,1) and store them in the table GA1.

Step 3: Similarly, exhaust all 264 possible values of (c0,2, s0,2). In this way, we can obtain 232 valid
values of the tuple (d0,2, d0,3, c0,2, s0,2) and store them in the table GA2.

Step 4: Similarly, exhaust all 264 possible values of (c0,3, s0,3). In this way, we can obtain 232 valid
values of the tuple (d0,2, d0,3, c0,3, s0,3) and store them in the table GA3.

After obtaining GA0, GA1, GA2 and GA3, we can use GA0 and GA1 and expect to find a match
in (d0,0, d0,1) since there are 264 pairs in total. Similarly, we can use GA2 and GA3 to find a match
in (d0,2, d0,3). Once the match is found, we get the solution of

(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3)

which will correspond to the given capacity part

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

In conclusion, the time and memory complexity of the preimage attack on 2-round Gimli-Hash
are 264 and 232, respectively.

4.3 Preimage Attack on 3-Round Gimli-Hash

We present the details of the preimage attack on 3-round Gimli-Hash in this part. As shown in
Figure 7, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F32
2 . Moreover, the capacity part of Ah0 is denoted by si, j (1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

4.3.1 Computing a Valid Capacity Part

The main idea to compute a valid capacity part of Ah0 for the preimage attack on 3-round Gimli-
Hash is illustrated in Figure 7. The procedure can be divided into two parallel computations, as
shown below.
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Figure 7: Generate a valid capacity part for the preimage attack on 3-round Gimli-Hash

Parallel-1: Randomly choose 264 values of (s1,0, s2,0, s1,1, s2,1). Then, we can compute (h6, h7).
Compare the computed (h6, h7) with the given hash value. It is expected that there will
be one value of (s1,0, s2,0, s1,1, s2,1) to match the given (h6, h7).

Parallel-2: Randomly choose 264 values of (s1,2, s2,2, s1,3, s2,3). Then, we can compute (h4, h5).
Compare the computed (h4, h5) with the given hash value. It is expected that there will
be one value of (s1,2, s2,2, s1,3, s2,3) to match the given (h4, h5).

Hence, we can find a valid capacity part of Ah0 with 264 time complexity.

4.3.2 Matching the Capacity Part

As shown in Figure 8, (s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen. The
goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

Figure 8: Preimage attack on 3-round Gimli-Hash

The procedure to gain this goal is as follows. To have a better understanding, we suggest to
refer to Figure 8 for the meaning of the notations in the following description.
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Step 1: Exhaust all 264 possible values of (s0,0, c0,2). Note that we can compute backward to
obtain (d1,0, d2,0) for each guess of c0,2. Moreover, we can compute forward to obtain
(b1,0, b2,0) for each guess of s0,0. In other words, for each value of (s0,0, c0,2), we can
obtain a tuple (d1,0, d2,0, b1,0, b2,0). Thanks to the Property 3 of SP-box, the obtained tuple
(d1,0, d2,0, b1,0, b2,0) is valid with probability 2−32. Consequently, we will finally obtain
232 valid values of (s0,0, c0,2). Each valid value of (s0,0, c0,2) will suggest a valid value of
(d0,0, d0,1), where d0,0 is computed according to the valid tuple (d1,0, d2,0, b1,0, b2,0). Finally,
we can collect 232 values of the tuple (d0,0, d0,1, s0,0, c0,2) and store them in MT0.

Step 2: Similarly, exhaust all 264 possible values of (s0,1, c0,3). In this way, we can obtain 232 valid
values of the tuple (d0,0, d0,1, s0,1, c0,3) and store them in MT1.

Step 3: Similarly, exhaust all 264 possible values of (s0,2, c0,0). In this way, we can obtain 232 valid
values of the tuple (d0,2, d0,3, s0,2, c0,0) and store them in MT2.

Step 4: Similarly, exhaust all 264 possible values of (s0,3, c0,1). In this way, we can obtain 232 valid
values of the tuple (d0,2, d0,3, s0,3, c0,1) and store them in MT3.

After obtaining MTi (0 ≤ i ≤ 3), we can use MT0 and MT1 to find a match in (d0,0, d0,1). Since
there are 264 such pairs and they match with each other with probability 2−64, we expect to find one
match. Similarly, we can use MT2 and MT3 to find a match in (d0,2, d0,3). After finding the match,
we can obtain the final valid tuple

(s0,0, s0,1, s0,2, s0,3, c0,0, c0,1, c0,2, c0,3),

which can be used to compute

(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3).

Hence, the time and memory complexity for the preimage attack on 3-round Gimli-Hash are
264 and 232 respectively.

4.4 Preimage Attack on 4-Round Gimli-Hash

We present the details of the preimage attack on 4-round Gimli-Hash in this part. As shown in
Figure 9, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F32
2 . Moreover, the capacity part of Ah0 is denoted by si, j (1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

4.4.1 Computing a Valid Capacity Part

The main idea to compute a valid capacity part of Ah0 for the preimage attack on 4-round Gimli-
Hash is illustrated in Figure 9. The procedure can be divided into three steps, as shown below.

Step 1: Randomly choose 264 values of (s1,0, s2,0, s1,1, s2,1). Then, according to Property 2 of
SP-box, we can partially compute (h4, h5). Compare the computable bits of (h4, h5)
with the given hash value. It is expected there will be 264−15×2 = 234 valid values of
(s1,0, s2,0, s1,1, s2,1) left. Store these values in the table LT0.

Step 2: Randomly choose 264 values of (s1,2, s2,2, s1,3, s2,3). Then, according to Property 2 of SP-
box, we can partially compute (h6, h7). Compare the computable bits of (h6, h7) with the
given hash value. It is expected there will be 264−30 = 234 valid values of (s1,2, s2,2, s1,3, s2,3)
left. Store these values in the table LT1.
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Figure 9: Generate a valid capacity part for the preimage attack on 4-round Gimli-Hash

Figure 10: Preimage attack on 4-round Gimli-Hash

Step 3: Exhaust all the 234+34 = 268 possible combinations for si, j (1 ≤ i ≤ 2, 0 ≤ j ≤ 3)
between LT0 and LT1. For each combination, we can compute the complete (h4, h5, h6, h7)
and compare it with the given hash value. Since we tried 2128 possible values for si, j

(1 ≤ i ≤ 2, 0 ≤ j ≤ 3), it is expected that one of them will match the given hash value.

Hence, with 268 time and 234 memory, we can find a valid capacity part of Ah0.

4.4.2 Matching the Capacity Part

As shown in Figure 10, (s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen. The
goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

For a better understanding, we suggest to refer to Figure 10 for the meaning of the notations in the
following description.

Pre-computing some tables. Before explaining the details, we firstly introduce some tables.
According to Figure 10, we can easily observe that
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• (b1,0, b2,0, b1,2, b2,2) only depends on (s0,0, s0,2), thus taking at most 264 possible values.

• (b1,1, b2,1, b1,3, b2,3) only depends on (s0,1, s0,3), thus taking at most 264 possible values.

Thus, we can pre-compute a table of size 264 to store the above mapping relations. Specifically,
by exhausting all 264 possible values of (s0,0, s0,2), we can obtain 264 values of the tuple

(b1,0, b2,0, b1,2, b2,2, s0,0, s0,2).

Store the 264 values in a table S T0 of size 264, where the (b1,0 × 232 + b2,0)-th row of S T0 stores the
value of (b1,2, b2,2, s0,0, s0,2).

Similarly, by exhausting all 264 possible values of (s0,1, s0,3), we can obtain 264 values of the
tuple

(b1,1, b2,1, b1,3, b2,3, s0,1, s0,3).

Store the 264 values in a table S T1 of size 264, where the (b1,1 × 232 + b2,1)-th row of S T1 stores the
value of (b1,3, b2,3, s0,1, s0,3).

Starting using the tables. After preparing the above two tables, we now describe how to match a
given capacity part by utilizing the first two message blocks. We suggest the readers to refer to
Figure 10 for a better understanding of our following attack procedure.

Step 1: Exhaust 264 possible values of (c0,0, c0,2). For each guess of (c0,0, c0,2), (d1,0, d2,0, d1,2, d2,2)
will be determined. Then, for each such guess, we further exhaust 232 possible values
of d0,0. For each guessed value of (c0,0, c0,2, d0,0), (d0,0, d1,0, d2,0) can be fully determined
and we can therefore compute (b1,0, b2,0). According to the computed value of (b1,0, b2,0),
we retrieve the (b1,0 × 232 + b2,0)-th row of S T0 and obtain the corresponding value of
(b1,2, b2,2, s0,0, s0,2). At this point, (b1,2, b2,2, d1,2, d2,2) is determined. According to the
Property 3 of SP-box, the obtained tuple (b1,2, b2,2, d1,2, d2,2) is valid with probability 2−32.
Once it is valid, we can obtain the corresponding value of d0,2. In other words, each
guessed value of (c0,0, c0,2, d0,0) is correct with probability 2−32. Thus, only 264 possible
values of (c0,0, c0,2, d0,0) will survive. Thus, we can finally obtain 264 possible values of
the following tuple

(d0,0, d0,1, d0,2, d0,3, c0,0, c0,2, s0,0, s0,2).

Store the 264 values in a table FT0.

Step 2: Exhaust 264 possible values of (c0,1, c0,3). For each guess of (c0,1, c0,3), (d1,1, d2,1, d1,3, d2,3)
will be determined. Then, for each such guess, we further exhaust 232 possible values
of d0,1. For each guessed value of (c0,1, c0,3, d0,1), (d0,1, d1,1, d2,1) can be fully determined
and we can therefore compute (b1,1, b2,1). According to the computed value of (b1,1, b2,1),
we retrieve the (b1,1 × 232 + b2,1)-th row of S T1 and obtain the corresponding value of
(b1,3, b2,3, s0,1, s0,3). At this point, (b1,3, b2,3, d1,3, d2,3) is determined. According to the
Property 3 of SP-box, the obtained tuple (b1,3, b2,3, d1,3, d2,3) is valid with probability 2−32.
Once it is valid, we can obtain the corresponding value of d0,3. In other words, each
guessed value of (c0,1, c0,3, d0,1) is correct with probability 2−32. Thus, only 264 possible
values of (c0,1, c0,3, d0,1) will survive. Thus, we can finally obtain 264 possible values of
the following tuple

(d0,0, d0,1, d0,2, d0,3, c0,1, c0,3, s0,1, s0,3).

Store the 264 values in a table FT1.
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After obtaining FT0 and FT1, find a match in (d0,0, d0,1, d0,2, d0,3) between the table
FT0 and FT1. Since there are 2128 pairs and the probability that they match each
other is 2−128, we expect to find one match. For this match, we can know the cor-
responding (s0,0, s0,2, c0,0, c0,2, s0,1, s0,3, c0,1, c0,3), which can be used to compute the tuple
(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3).

Consequently, the time complexity of the preimage attack on 4-round Gimli-Hash is 296 while
the memory complexity is 264.

4.5 Preimage Attack on 5-Round Gimli-Hash

We present the details of the preimage attack on 5-round Gimli-Hash in this part. As shown in
Figure 11, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F32
2 . Moreover, the capacity part of Ah0 is denoted by si, j (1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

4.5.1 Computing a Valid Capacity Part

The main idea to compute a valid capacity part of Ah0 for the preimage attack on 5-round Gimli-
Hash is illustrated in Figure 11. The procedure can be divided into 6 steps, as shown below.

Figure 11: Generate a valid capacity part for the preimage attack on 5-round Gimli-Hash

Step 1: Randomly choose 264 values of (s1,0, s2,0, s1,1, s2,1). For each value of (s1,0, s2,0, s1,1, s2,1),
we can compute the corresponding (b1,0, b2,0, b1,1, b2,1). Store the 264 values of the tuple

(b1,0, b2,0, b1,1, b2,1, s1,0, s2,0, s1,1, s2,1)

in table denoted by BT0.

Step 2: Randomly choose 264 values of (d1,0, d2,0, d1,1, d2,1). For each value of (d1,0, d2,0, d1,1, d2,1),
we can compute (e0,0, e1,0, e2,0, e0,1, e1,1, e2,1) and therefore can compute (b0,0, b1,0, b2,0, b0,1, b1,1, b2,1).
Store the 264 values of the tuple

(b1,0, b2,0, b1,1, b2,1, b0,0, b0,1, d1,0, d2,0, d1,1, d2,1)

in table denoted by BT1.
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Step 3: Find a match in (b1,0, b2,0, b1,1, b2,1) between the table BT0 and BT1. Since the matching
probability is 2−128 and there are 2128 pairs, we expect to find one match. After the match
is found, we record the corresponding valid value of the tuple

(s1,0, s2,0, s1,1, s2,1, d1,0, d2,0, d1,1, d2,1, b0,0, b0,1, b0,2, b0,3).

Step 4: Exhaust 264 values for (d1,2, d2,2). For each value of (d1,2, d2,2), we can compute
(e0,2, e1,2, e2,2) and therefore can compute (b0,2, b1,2, b2,2). Compare the computed value
b0,2 with the one in the recorded tuple obtained at Step 3. It is expected only 232 valid
values of (d1,2, d2,2) will remain. Then, for each of the 232 valid (d1,2, d2,2), we can compute
backward to obtain (g1,2, g2,2). According to the Property 4 of SP-box, (g1,2, g2,2, h2) is a
valid tuple with probability 2−1. Thus, we will finally to obtain 231 valid values of (d1,2, d2,2)
and the corresponding valid value of (g1,2, g2,2, h2). We again use the Property 4 of SP-box
to compute the corresponding (s1,2, s2,2[30 ∼ 0]) with the valid tuple (g1,2, g2,2, h2). When
(s1,2, s2,2[30 ∼ 0]) is determined, we can compute g0,3[30 ∼ 0]. Note that we can also
determine g0,2 when computing backward. In other words, we will have 231 valid values
of (g0,2, g0,3[31 ∼ 0]), each of which will correspond to a valid value of (d1,2, d2,2). Thus,
we can store the 231 valid values of (d1,2, d2,2, g0,2, g0,3[30 ∼ 0]) in a table denoted by GT0.

Step 5: Similar to dealing with (d1,2, d2,2), we can exhaust 264 values for (d1,3, d2,3). For each guess
of (d1,3, d2,3), (e0,3, e1,3, e2,3) is determined and we can therefore compute (b0,3, b1,3, b2,3).
Compare the computed value of b0,3 with the one in the recorded tuple obtain at Step 3.
It is expected only 232 valid values of (d1,3, d2,3) will remain. Then, for each of the valid
tuple (d1,3, d2,3), we can compute (g1,3, g2,3[30 ∼ 0]). According to Property 4 of SP-box,
the tuple (g1,3, g2,3, h3) is a valid tuple with probability 2−1. Once it is valid, we can obtain
the corresponding g0,2[30 ∼ 0]. Note the we can determine g0,3 when computing backward.
Thus, we can finally obtain 231 valid tuples (d1,3, d2,3, g0,2[30 ∼ 0], g0,3), which will be
stored in a table denoted by GT1.

Step 6: Use GT0 and GT1 to find a match in (g0,2[30 ∼ 0], g0,3[30 ∼ 0]). Note there are 262

pairs and the matching probability is 2−62. Therefore, we can expect to find a match.
Once a match is found, we can know the corresponding g0,2[31] according to GT0 and
the corresponding g0,3[31] according to GT1. Then, we can compute the corresponding
(s1,2, s2,2, s1,3, s2,3).

Hence, a valid capacity part of Ah0 can be found in 264 time. The memory complexity at this phase
is 264.

4.5.2 Matching the Capacity Part

As shown in Figure 12, (s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen. The
goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

The procedure to reach this goal is the same with that of the preimage attack on 4-round
Gimli-Hash. One only need to refer to Figure 12 when reading the contents in Matching the
Capacity Part in the preimage attack on 4-round Gimli-Hash. In brief, we first compute two tables
S T0 and S T1 to store the following two mappings.

(b1,0, b2,0)→ (b1,2, b2,2, s0,0, s0,2),
(b1,1, b2,1)→ (b1,3, b2,3, s0,1, s0,3).

Then, we obtain two tables FT0 and FT1 with 296 time to store the candidate values of
(d0,0, d0,1, d0,2, d0,3). Finally, find a match in (d0,0, d0,1, d0,2, d0,3) between the tables FT0 and FT1.
Consequently, the time complexity of the preimage attack on 5-round Gimli-Hash is 296 while the
memory complexity is 264.
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Figure 12: Preimage attack on 5-round Gimli-Hash
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5 Collision Attack on Reduced Gimli-Hash

After the preimage attacks on 2/3/4/5 rounds of Gimli-Hash were presented, it is natural to ask
whether it is possible to find a better collision attack than the preimage attack. This motivates us to
devise the following collision attacks on 3/4/5-round Gimli-Hash. Especially, we can provide the
first colliding message pair for 3-round Gimli-Hash.

Similar to the preimage attack, we will try to find a collision in the capacity part, which can
then be easily converted into a valid collision for the reduced Gimli-Hash. Our collision attack
procedure consists of two phases on the whole. The first phase is to find two different messages
which satisfy a certain condition. The second phase is to utilize the degree of freedom of one-block
message to generate a collision in the capacity part. We have to emphasize once again that in the
main content, the r-round Gimli-Hash is treated as the sequence of the first r operations of the
24-round permutation, as stated in Section 2.2.

5.1 Collision Attacks on 4/5-round Gimli-Hash

As described at the beginning of this section, we will describe the two phases of the collision attack
respectively.

5.1.1 The First Phase

At the first phase, we hope to find two random messages m and m′. Denote the state after m and m′

are absorbed by q = (qi, j) and q′ = (q′i, j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3) respectively. Specially, we have the
following conditions on q and q′.

(q1,1 ≪ 9)[28 ∼ 0] = (q1,3 ≪ 9)[28 ∼ 0] = 0,
(q′1,1 ≪ 9)[28 ∼ 0] = (q′1,3 ≪ 9)[28 ∼ 0] = 0.

Therefore, by trying 229+29 = 258 random values of m, we expect to obtain the q satisfying the
condition. By trying 258 random values of m′, we expect to find the corresponding q′ satisfying
the condition. In other words, the time complexity to find a valid m and m′ at this phase is
259 = 258 + 258. After they are found, we move to the second phase.

5.1.2 The Second Phase

After the first phase, two states q = (qi, j) and q′ = (q′i, j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3) can be collected.
Now, we explain how to use one more message block to achieve the collision attack. For a better
understanding, we suggest to refer to Figure 13.

Once there is one more message block to be processed, the message will be first added to
(q0,0, q0,1, q0,2, q0,3) and (q′0,0, q

′
0,1, q

′
0,2, q

′
0,3) respectively according to the specification of Gimli-

Hash. Then, the Gimli permutation will be applied. To avoid introducing more notations and for
simplicity, we treat (q0,0, q0,1, q0,2, q0,3) and (q′0,0, q

′
0,1, q

′
0,2, q

′
0,3) as the controllable variables by the

attacker rather a constant value obtained at the first phase. Moreover, denote the state after the one
more message block is absorbed by c = (ci, j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3), as shown in Figure 13. Then,
the collision attack can be described as follows.

Step 1: Exhaust all 264 possible values of (q0,0, q0,2). Thanks to the Property 1 of SP-box, we can
compute (c1,0, c2,0, c1,2, c2,2) for each guessed value of (q0,0, q0,2), which is irrelevant to the
value of (q0,1, q0,3). Therefore, we can store the 264 values of

(q0,0, q0,2, c1,0, c2,0, c1,2, c2,2)

in a table denoted by L0.
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Figure 13: Collision attack on 5-round Gimli-Hash

Step 2: Exhaust all 264 possible values of (q′0,0, q
′
0,2). Thanks to the Property 1 of SP-box, we can

also compute (c1,0, c2,0, c1,2, c2,2) for each guessed value of (q′0,0, q
′
0,2), which is irrelevant

to the value of (q′0,1, q
′
0,3). Therefore, we can store the 264 values of

(q′0,0, q
′
0,2, c1,0, c2,0, c1,2, c2,2)

in a table denoted by L′0.

Step 3: Find a match in (c1,0, c2,0, c1,2, c2,2) between L0 and L′0. Since there are 264+64 = 2128 pairs,
we expect to find a match. After the match is found, (q0,0, q0,2, q′0,0, q

′
0,2) becomes a fixed

constant.

Step 4: Exhaust all 264 possible values of (q0,1, q0,3). Since (q0,0, q0,2) has been fixed, the full state
of q is known for each guess of (q0,1, q0,3) and we can compute (c1,1, c2,1, c1,3, c2,3). Store
the 264 values of

(q0,1, q0,3, c1,1, c2,1, c1,3, c2,3)

in a table denoted by L1.

Step 5: Exhaust all 264 possible values of (q′0,1, q
′
0,3). Since (q′0,0, q

′
0,2) has been fixed, the full state

of q′ is known for each guess of (q′0,1, q
′
0,3) and we can compute (c1,1, c2,1, c1,3, c2,3). Store

the 264 values of

(q′0,1, q
′
0,3, c1,1, c2,1, c1,3, c2,3)

in a table denoted by L′1.

Step 6: Find a match in (c1,1, c2,1, c1,3, c2,3) between L1 and L′1. Since there are 264+64 = 2128 pairs,
we expect to find a match. After the match is found, (q0,1, q0,3, q′0,1, q

′
0,3) becomes a fixed

constant.

Complexity Evaluation. After the above procedure, we know that f (q) and f (q′) will share the
same capacity part. Then, we use two different one-block messages to eliminate the difference at
the rate part of f (q) and f (q′). In this way, we can obtain a full-state collision. Finally, we use
another non-full one-block message to satisfy the padding rule, which will make the collision valid.
Obviously, the time and memory complexity of our collision attack are 265 and 264 respectively.
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5.1.3 Collision Attack on 4-round Gimli-Hash

The above collision attack procedure can be directly applied to the collision attack on 4-round
Gimli-Hash. The first phase is the same. As for the second phase, one only need to refer to
Figure 14 when reading the above attack procedure of the collision attack on 5-round Gimli-Hash.
Thus, the time and memory complexity of the collision attack on 4-round Gimli-Hash are also 265

and 264 respectively.

Figure 14: Collision attack on 4-round Gimli-Hash

5.2 Practical Collision Attack on 3-Round Gimli-Hash

Like the collision attack on 4/5-round Gimli-Hash, we will also explain the two phases of the
collision attack on 3-round Gimli-Hash respectively.

5.2.1 The First Phase

Similar to the attack on 5-round Gimli-Hash, at this phase, we will generate two different messages
which satisfy a certain condition after they are absorbed. Denote the two messages by m and m′

respectively. Moreover, after m and m′ are absorbed, denote their corresponding state by q = (qi, j)
and q′ = (q′i, j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3) respectively. Especially, we constrain that both m and m′ are
a two-block message, although such a constraint is indeed not necessary. Different from the first
phase for the 5-round collision attack, we only need to add the condition on one 32-bit word of q
and q′ as follows.

(q1,2 ≪ 9)[28 ∼ 0] = 0,
(q′1,2 ≪ 9)[28 ∼ 0] = 0.

In addition, we have the following conditions on the first two columns of q and q′, i.e. they are the
same.

qu,v = q′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1).
Now, we expand on how to generate such a pair of (m,m′). For a better understanding, we refer

the readers to Figure 15, especially for the notations used in the following description.

Step 1: Randomly choose a value of (s0,2, s0,3, b0,2, b0,3). Note that after (s0,2, s0,3) are fixed, we
can always compute (b1,2, b2,2, b1,3, b2,3), which is irrelevant to the value of (s0,0, s0,1).
Then, after fixing (b0,2, b0,3), the last two columns of the state

(b0,2, b0,3, b1,2, b2,2, b1,3, b2,3)

are all known, thus making the computation of (q1,2, q2,2, q1,3, q2,3) feasible, which is
irrelevant to the value of (b0,0, b0,1). Since q1,2 has to satisfy the following condition

(q1,2 ≪ 9)[28 ∼ 0] = 0,
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Figure 15: Generate candidates for the first two blocks for the collision attack on 3-round Gimli-
Hash

we expect to obtain two values of (s0,2, s0,3, b0,2, b0,3) which can make this condition hold
after trying 229+1 = 230 possible values. For a better understanding and simplicity, we
denote the two values by

(s0,2, s0,3, b0,2, b0,3),
(s′0,2, s

′
0,3, b

′
0,2, b

′
0,3),

which will make

(q1,2 ≪ 9)[28 ∼ 0] = 0,
(q′1,2 ≪ 9)[28 ∼ 0] = 0.

hold respectively.

Step 2: Randomly choose a fixed value (c0, c1) ∈ F2
232 for (s0,0, s0,1) and (s′0,0, s

′
0,1), i.e.

s0,0 = s′0,0 = c0,

s0,1 = s′0,1 = c1.

In this way, the first message block of m and m′ denoted by m0 and m′0 are fixed as follows.

m0 = (c0, c1, s0,2, s0,3),
m′0 = (c0, c1, s′0,2, s

′
0,3).

Then, we can compute

p = (pi, j) = f (m0||0256),
p′ = (p′i, j) = f (m′0||0

256),

where (0 ≤ i ≤ 2, 0 ≤ j ≤ 3). For such a value of (m0,m′0), we can know that

pu,v = p′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1).
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Step 3: Randomly choose a fixed value (c2, c3) ∈ F2
232 for (b0,0, b0,1) and (b′0,0, b

′
0,1), i.e.

b0,0 = b′0,0 = c2,

b0,1 = b′0,1 = c3.

In this way, the second message block of m and m′ denoted by m1 and m′1 are fixed as
follows.

m1 = (c2 ⊕ p0,0, c3 ⊕ p0,1, b0,2 ⊕ p0,2, b0,3 ⊕ p0,3),
m′1 = (c2 ⊕ p′0,0, c3 ⊕ p′0,1, b

′
0,2 ⊕ p′0,2, b

′
0,3 ⊕ p′0,3).

With the first message block, we have ensured that

bu,v = b′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1).

With the second message block, we can therefore ensure that

qu,v = q′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1).

Obviously, the time complexity of the first phase is dominated by Step 1 in the above attack
procedure. Therefore, the time complexity of the first phase is 230.

5.2.2 The Second Phase

After obtaining two potential messages m and m′, we can further utilize the degree of freedom
of one more message block m2 (resp. m′2) to generate a collision in the capacity part, as in the
collision attack on 5-round Gimli-Hash. Now, we expand on how to use one more message block
to achieve the collision attack. For a better understanding, we suggest to refer to Figure 16.

Figure 16: Collision attack on 3-round Gimli-Hash

Once there is one more message block to be processed, the message will be first added to
(q0,0, q0,1, q0,2, q0,3) and (q′0,0, q

′
0,1, q

′
0,2, q

′
0,3) respectively. Then, the Gimli permutation will be

applied. To avoid introducing more notations and for simplicity, let us treat (q0,0, q0,1, q0,2, q0,3) and
(q′0,0, q

′
0,1, q

′
0,2, q

′
0,3) as the controllable variables by the attacker rather a constant value obtained at

the first phase. Moreover, denote the state after the one more message block m2 is absorbed by
c = (ci, j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3), as shown in Figure 16.

Similar to the first phase, we can adjust two words of m2 and m′2 to keep

q0,0 = q′0,0,

q0,1 = q′0,1.
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Moreover, we have ensured at the first phase that

qu,v = q′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1). In this way, we have already made the collision occur in

(c1,0, c2,0, c1,1, c2,1).

Therefore, the main target at the second phase is to find the value of (q0,2, q0,3) and (q′0,2, q
′
0,3) which

can make the collision occur in

(c1,2, c2,2, c1,3, c2,3).

The corresponding attack procedure is described below. Once again, we refer the readers to
Figure 16 for a clear understanding.

Step 1: Exhaust all 232 possible values of q0,3. Thanks to the Property 1 of SP-box, we can compute
(c1,3, c2,3) for each guessed value of q0,3, which is irrelevant to the value of q0,2. Therefore,
we can store the 232 values of

(q0,3, c1,3, c2,3)

in a table denoted by LI0.

Step 2: Exhaust all 232 possible values of q′0,3. Thanks to the Property 1 of SP-box, we can compute
(c1,3, c2,3) for each guessed value of q′0,3, which is irrelevant to the value of q′0,2. Therefore,
we can store the 232 values of

(q′0,3, c1,3, c2,3)

in a table denoted by LI′0.

Step 3: Find a match in (c1,3, c2,3) between LI0 and LI′0. Since there are 232+32 = 264 pairs, we
expect to find a match. After the match is found, (q0,3, q′0,3) becomes a fixed constant.

Step 4: Exhaust all 232 possible values of q0,2. Since q0,3 has been fixed at Step 3, we can compute
(c1,2, c2,2). Store the 232 values of

(q0,2, c1,2, c2,2)

in a table denoted by LI1.

Step 5: Exhaust all 232 possible values of q′0,2. Since q′0,3 has been fixed at Step 3, we can compute
(c1,2, c2,2). Store the 232 values of

(q′0,2, c1,2, c2,2)

in a table denoted by LI′1.

Step 6: Find a match in (c1,2, c2,2) between LI1 and LI′1. Since there are 232+32 = 264 pairs, we
expect to find a match. After the match is found, (q0,2, q′0,2) becomes a fixed constant.

After the above procedure, we know that f (q) and f (q′) will share the same capacity part. Then,
we use two different one-block messages (m3,m′3) to eliminate the difference at the rate part of
f (q) and f (q′). In this way, we can obtain a full-state collision. Finally, we use another non-full
one-block message to satisfy the padding rule, which will make the collision valid. Obviously, the
time and memory complexity of our collision attack are 233 and 232 respectively.

Experimental Verification. Due to the practical time and memory complexity, we have
implemented the collision attack on 3-round Gimli-Hash. After the whole attack procedure
(the first and second phase) is repeated twice, we obtained the following four-block message pair
that can lead a full-state collision, as listed in Table 2. By appending another arbitrary non-full
message block and considering the padding rule, we can generate an arbitrary valid collision.
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Table 2: Four-block message pair for full-state collision of 3-round Gimli-Hash
m0 0xb28d37cb 0xf45c55d6 0xde66f7c3 0x311b4daf
m1 0xff2ecb4b 0xad17efea 0x72cd23ee 0xd9b8184
m2 0xe6c17a12 0x4e6b8149 0x6bcf4f78 0xb2bb53c3
m3 0x41dc5ce8 0x556eee8c 0xe2a8eec 0xc6f2b830
m′0 0xb28d37cb 0xf45c55d6 0x6385d8fc 0x2c337f96
m′1 0xe2d9e2fb 0xd86356a7 0xb6e4ad39 0x23205c31
m′2 0x1ded3fee 0xc29968a4 0x3a53f26 0x8e721abb
m′3 0xa7604db7 0x271cc14a 0xe2a8eec 0xc6f2b830

Full-state Value
0xb058f51 0x7bdae866 0x9d91e603 0x2990292f
0x3fc4504a 0x72dcd367 0xf28ddd2f 0x68af4c32
0x28015655 0x7c507696 0x5f998b7f 0xb8638e53

6 Conclusion

Following the generic preimage attack framework for Gimli-Hash, specific preimage attacks on
2/3/4/5 rounds of Gimli-Hash with divide-and-conquer methods are developed. The divide-and-
conquer methods much rely on the properties of the SP-box and the linear layer. Moreover, to
obtain better collision attacks, the divide-and-conquer methods are further extended to a practical
collision attack on 3-round Gimli-Hash and theoretical collision attacks on 4/5-round Gimli-Hash.
It is natural to ask whether it is possible to extend the divide-and-conquer method to attack more
rounds.
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A Preimage Attacks on Another Reduced Version of Gimli-
Hash

As shown in Section 2, the sequence of operations for the 24-round permutation is as follows:

(SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP).

In this section, we present the preimage attacks on 2/3 rounds of Gimli-Hash by choosing the
sequence of operations for 2-round permutation and 3-round permutation as follows:

2 − round : (SP→ B_SW)→ (SP),
3 − round : (SP)→ (SP→ B_SW)→ (SP).

In other words, we choose the sequence of last 2/3 operations. Note that such a way to choose in
the reduced version for 4-round permutation is the same with the main content, we therefore omit
it in the appendix. In addition, we can not attack 5-round Gimli-Hash for such a way to choose in
the reduced version.

Although the reduced version for 2/3-round Gimli-Hash is different from that in the main
content, the procedure of the preimage attack is the same, which consists of Computing a Valid
Capacity Part and Matching the Capacity Part. As for the collision attack, we however could
not find a better one than the preimage attack. Thus, we only focus on the preimage attacks here.

Although the collision attack on 3-round Gimli-Hash in the main content can be trivially
applied to the new reduced 2-round Gimli-Hash, it is actually difficult to find a match due to the

https://eprint.iacr.org/2017/743


26 Preimages and Collisions for Up to 5-Round Gimli-Hash Using Divide-and-Conquer Methods

Figure 17: Generate a valid capacity part for the preimage attack on 2-round Gimli-Hash

non-randomness of the elements in two tables according to our experiments, which are generated
by only exhausting just one 32-bit word. The reason why there is a match for 3-round Gimli-Hash
in the main content, we believe, is that the randomness will increase as the number of rounds
increases.

A.1 Preimage Attacks on 2-round Gimli-Hash

We present the details of the preimage attack on 2-round Gimli-Hash in this part. As shown in
Figure 17, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F32
2 . Moreover, the capacity part of Ah0 is denoted by si, j (1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

Computing a Valid Capacity Part. At first, we generate a valid value for the capacity part of the
first output block, as illustrated in Figure 17.

The procedure can be described as follows. Please refer to Figure 17 to understand the meaning
of notations.

Step 1: Randomly choose 232 values of (s1,0, s2,0). Then, with the Property 2 of SP-box, we can
find about 232−15 = 217 candidates for (s1,0, s2,0) which may match h4. Store these values
in a table CT0.

Step 2: Similarly, we randomly choose 232 values of (s1, j, s2, j) (1 ≤ j ≤ 3) and partially match
h j+4. Store the candidates in table CT j respectively.

Step 3: Exhaust all possible combinations between CT0 and CT2. For each combination, (h4, h6)
can be fully computed and we compare it with the given hash value. It is expected that
there is only one valid value of (s1,0, s2,0, s1,2, s2,2) since there are totally 264 random values
for it.

Step 4: Similarly, we can obtain the value of (s1,1, s2,1, s1,3, s2,3) to match (h5, h7).

The time complexity can be evaluated as 232 + 217+17 = 234 times of 2-round Gimli permutation. In
this way, we can find a valid capacity part of Ah0.

Matching the Capacity Part We expand on how to match a given capacity part by utilizing
the degree of freedom of the first two blocks. To have a better understanding, it is better to
refer to Figure 18 for the meaning of the notations in the following description. Specifically,
(s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen. The goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

The procedure to achieve the goal is described below.

Step 1: Exhaust all 264 possible values of (c0,0, s0,0). Then, the tuple (b1,0, b2,0, d1,0, d2,0) can
be computed for each guess of (c0,0, s0,0). According to the Property 3 of SP-box, the
tuple (b1,0, b2,0, d1,0, d2,0) is valid with probability 2−32. Thus, we expect to obtain 264−32
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Figure 18: Preimage attack on 2-round Gimli-Hash

possible values of (c0,0, s0,0) to match (c1,0, c2,0). For these 232 valid values, we will
collect 232 possible values of (d0,0, d0,2). Note that according to the Property 3, d0,0 can be
computed when (b1,0, b2,0, d1,0, d2,0) is a valid tuple. Store all the 232 valid values of the
tuple (d0,0, d0,2, c0,0, s0,0) in the table GA0.

Step 2: Similarly, exhaust all 264 possible values of (c0,1, s0,1). In this way, we can obtain 232 valid
values of the tuple (d0,1, d0,3, c0,1, s0,1) and store them in the table GA1.

Step 3: Similarly, exhaust all 264 possible values of (c0,2, s0,2). In this way, we can obtain 232 valid
values of the tuple (d0,0, d0,2, c0,2, s0,2) and store them in the table GA2.

Step 4: Similarly, exhaust all 264 possible values of (c0,3, s0,3). In this way, we can obtain 232 valid
values of the tuple (d0,1, d0,3, c0,3, s0,3) and store them in the table GA3.

After obtaining GA0, GA1, GA2 and GA3, we can use GA0 and GA2 and expect to find a match
in (d0,0, d0,2) since there are 264 pairs in total. Similarly, we can use GA1 and GA3 to find a match
in (d0,1, d0,3). Once the match is found, we get the solution of

(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3)

which will correspond to the given capacity part

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

In conclusion, the time and memory complexity of the preimage attack on 2-round Gimli-Hash
are 264 and 232, respectively.

A.2 Preimage Attacks on 3-round Gimli-Hash

The preimage attack on 3-round Gimli-Hash will be discussed in this part. As shown in Figure 19,
we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F32
2 . Moreover, the capacity part of Ah0 is denoted by si, j (1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

Computing a Valid Capacity Part. The main idea to compute a valid capacity part for the
preimage attack on 3-round Gimli-Hash is illustrated in Figure 19. The procedure can be divided
into 4 steps, as shown below. Please refer to Figure 19 for the meaning of the notations.

Step 1: Randomly choose 232 values of (s1,0, s2,0). Then, with the Property 2 of SP-box, we can
find about 232−15 = 217 candidates for (s1,0, s2,0) which may match h4. Store these values
in a table CT0.
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Figure 19: Generate a valid capacity part for preimage attack on 3-round Gimli-Hash

Figure 20: Preimage attack on 3-round Gimli-Hash

Step 2: Similarly, we randomly choose 232 values of (s1, j, s2, j) (1 ≤ j ≤ 3) and partially match
h j+4. Store the candidates in table CT j respectively.

Step 3: Exhaust all possible combinations between CT0 and CT2. For each combination, (h4, h6)
can be fully computed and we compare it with the given hash value. It is expected that
there is only one valid value of (s1,0, s2,0, s1,2, s2,2) since there are totally 264 random values
for it.

Step 4: Similarly, we can obtain the value of (s1,1, s2,1, s1,3, s2,3) to match (h5, h7).

Hence, with 217+17 = 234 time, we can find a valid capacity part for the first output block.

Matching the Capacity Part. Now we describe how to match a given capacity part. It is better
to refer to Figure 20 for the meaning of the notations in the following description. Specifically,
(s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen. The goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

The attack procedure can be found below.



Fukang Liu, Takanori Isobe, Willi Meier 29

Step 1: Exhaust all possible values of (s0,0, s0,2). Then we can collect 264 values of

(b1,0, b2,0, b1,2, b2,2, s0,0, s0,2).

Store these values in a table MT0 of size 264.

Step 2: Exhaust all possible values of (c0,0, c0,2). Then we collect 264 values of

(b1,0, b2,0, b1,2, b2,2, c0,0, c0,2).

Store these values in a table MT1 of size 264.

Step 3: Exhaust all possible values of (s0,1, s0,3). Then we can collect 264 values of

(b1,1, b2,1, b1,3, b2,3, s0,1, s0,3).

Store these values in a table MT2 of size 264.

Step 4: Exhaust all possible values of (c0,1, c0,3). Then we collect 264 values of

(b1,1, b2,1, b1,3, b2,3, c0,1, c0,3).

Store these values in a table MT3 of size 264.

Step 5: Find a match in (b1,0, b2,0, b1,2, b2,2) between the tables MT0 and MT1. Since there are 2128

such pairs and they match with each other with probability 2−128. Therefore, it is expected
to find only one match. Record the corresponding (s0,0, s0,2, c0,0, c0,2).

Step 6: Use MT2 and MT3 to find one match in (b1,1, b2,1, b1,3, b2,3). Record the corresponding
(s0,1, s0,3, c0,1, c0,3).

After the above procedure, we can obtain the solution of

(s0,0, s0,1, s0,2, s0,3, c0,0, c0,1, c0,2, c0,3),

which can be used to compute the corresponding

(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3)

and will match the given capacity part

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

Hence, the time and memory complexity for preimage attack on 3-round Gimli-Hash are both
264.
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