
Distributed Vector-OLE: Improved Constructions and
Implementation

Phillipp Schoppmann

Humboldt-Universität zu Berlin

schoppmann@informatik.hu-berlin.de

Adrià Gascón

Google

adriagascon@gmail.com

Leonie Reichert

Humboldt-Universität zu Berlin

leonie.reichert@hu-berlin.de

Mariana Raykova

Google

mpr2111@columbia.edu

ABSTRACT
We investigate concretely efficient protocols for distributed oblivi-

ous linear evaluation over vectors (Vector-OLE). Boyle et al. (CCS

2018) proposed a protocol for secure distributed pseudorandom

Vector-OLE generation using sublinear communication, but they

did not provide an implementation. Their construction is based on

a variant of the LPN assumption and assumes a distributed key

generation protocol for single-point Function Secret Sharing (FSS),

as well as an efficient batching scheme to obtain multi-point FSS.

We show that this requirement can be relaxed, resulting in a weaker

variant of FSS, for which we give an efficient protocol. This allows

us to use efficient probabilistic batch codes that were also recently

used for batched PIR by Angel et al. (S&P 2018). We construct

a full Vector-OLE generator from our protocols, and compare it

experimentally with alternative approaches. Our implementation

parallelizes very well, and has low communication overhead in

practice. For generating a VOLE of size 2
20
, our implementation

only takes 0.52s on 32 cores.

ACM Reference Format:
Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova.

2019. Distributed Vector-OLE: Improved Constructions and Implementation.

In 2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’19), November 11–15, 2019, London, United Kingdom. ACM, New York,

NY, USA, 18 pages. https://doi.org/10.1145/3319535.3363228

1 INTRODUCTION
The ability to distribute correlated randomness between two parties

in the absence of a trusted dealer is a central problem to cryptogra-

phy. In the context of secure computation this ability enables split-

ting the computation in an offline phase which is input independent

and can be executed in advance, and an online phase which is very

efficient. Many previous works have focused on improving and

optimizing methods for generation of correlated randomness in the

context of oblivious transfer extension [3, 4, 6, 34], which provides

offline precomputation for two party computation based on garbled

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3363228

circuits [55], Beaver multiplicative triples [5, 17, 19, 37, 38], which

are at the core of offline computation for secure arithmetic compu-

tation, as well as oblivious linear evaluation (OLE) [9, 23, 24, 45],

which can be viewed as the equivalent of OT extension in arithmetic

setting and which can be used for multiplicative triple generation.

In this paper we focus on vector OLE (VOLE), which is the vector-

ized variant of an oblivious linear evaluation. More concretely, one

party, the sender, holds vectors u, v and a second party, the receiver

has value x . The goal of the protocol is to enable the receiver to

learn w = ux + v without revealing any further information to any

of the parties. The concept of VOLE was introduced by Applebaum

et al. [2]. In the recent work of Boyle et al. [9], the authors showed

that VOLE is implied by a pseudorandom variant of the protocol

where the vectors u, v are pseudorandom and are generated during

the execution of the protocol as outputs to the first party.

Succinctness is a crucial property for correlated randomness

protocols, which aim to distribute long correlated outputs between

the parties by communicating only short seeds. Boyle et al. [9]

showed how to achieve succinctness in the setting of pseudorandom

VOLE. The idea of their approach is to use a random linear code

to extend short (sub-linear) seed vectors to long pseudorandom

vectors. By masking the encoded vectors with a shared, sparse noise

vector, they reduce security of their VOLE generator to the LPN

assumption [7]. The authors leverage functions secret sharing (FSS)

for multi-point functions as a way to distribute the LPN noise vector

to the inputs of the parties in an oblivious manner with succinct

communication. This requires a two-party computation protocol

for distributed generation of the FSS keys for the underlying multi-

point function. The proposed approach reduces the multi-point FSS

to several executions of single point FSS by leveraging batching

techniques. For distributed single-point FSS key generation, the

authors suggest using the two party FSS key generation protocol

of Doerner and shelat [22].

In this work we address pseudorandom VOLE generation from

a practical perspective. In particular, we focus on the primal variant
of the protocol proposed in [9]. This is because to the best of our

knowledge, there is no practical (i.e., implemented) construction of

the “LPN-friendly” codes required for the dual variant. While the

primal variant has a lower bound of Õ(
√
n) on its communication

overhead, our implementation is still very efficient in practice. This

is due to several improvements we make to the construction in [9].

Our main observation is that the non-zero indices of the shared
sparse noise vector needed for LPN are part of the output to one

of the parties. We use this observation in two ways. First, it allows

1

https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228

us to use a more efficient batching scheme than what is proposed

in [9]. Similar to previous work [1, 20], we use cuckoo hashing to

do probabilistic batching. This allows us to split up an instance of

t-point FSS intom = O(t) instances of single-point FSS, wherem is

in practice only slightly larger than t . Second, we modify the FSS

construction itself, which gives us a large constant-factor speedup

in each FSS generation and evaluation. Our protocol is constant

round, does not require secure PRG evaluations, has sub-linear

communication, and like the distributed construction proposed by

[9], provides security in the semi-honest model.

Our VOLE construction implies efficiency improvements in a

wide range of applications such as secure linear algebra, sparse

matrix multiplications and machine learning computations over

sparse data, oblivious polynomial evaluation and private set inter-

section, and improved efficiency for semi-private data accessed in

some ORAM constructions.

1.1 Contributions
As building blocks for our distributed VOLE protocol we develop

constructions of several primitives of independent interest.

A protocol for (n − 1)-out-of-n Random OT (Section 3). An impor-

tant component of our solution is a novel protocol for (n−1)-out-of-
n Random OT that requires one round and logarithmic communi-

cation. While anym-out-of-n OT protocol requires communication

Ω(m), we show how to leverage the fact that all messages are ran-

dom to compress n − 1 messages in a logarithmic number of seeds

in manner oblivious to the sender. In terms of computation, an

execution involves (i) 2n local PRG evaluations per party, and (ii)

logk (n) parallel executions of an (k − 1)-out-of-k OT protocol. In

our implementation we choose k = 2, and thus rely on 1-out-of-2

OT. Our (n− 1)-out-of-n Random OT implies a construction private

puncturable PRF [8], which enables a party to obtain a punctured

PRF key at a location that remains secret to the full PRF key owner.

Known-Index SPFSS (Section 4). The VOLE generation in [9] uses

SPFSS but assumes that one of the parties knows the input that

evaluate to non-zero in the point function, while the function value

us secret-shared. We propose a protocol for known-index SPFSS

that outperforms the alternatives proposed in [9]. The protocol

uses a reduction to (n − 1)-out-of-n Random OT, and thus leverages

the protocol mentioned above. While known-index SPFSS implies

distributed VOLE, its relevance is not limited to this application. It

can be also viewed as a type of “scatter” vector operation, which is a

core component in secure protocols for machine learning tasks [50].

Our protocol outperforms the solutions presented in [50], resulting

in immediate gains for tasks such as gradient descent model training

on sparse data.

Efficient Known-Indices MPFSS from SPFSS (Section 5). To obtain

a solution for distributed VOLE generation, we show an efficient

reduction from known-indices MPFSS, where one party chooses the

indices of the point function, to known-index SPFSS. Our reduction

is based on Cuckoo hashing [46], and in practice it is very efficient,

in particular when compared with the alternatives proposed by

Boyle et al. [9].

Distributed VOLE (Section 6). We combine the above protocol

building blocks with some further optimizations, to obtain a full

protocol for distributed VOLE generation.

Applications (Section 7). We investigate several applications of

our protocols, including linear algebra and matrix manipulation

primitives commonly used in data analysis tasks. We show how our

protocols yield concretely efficient secure two-party instantiations

for Oblivious Polynomial Evaluation. We further show that our

known-index SPFSS protocol can be used to improve the efficiency

(both in asymptotic round complexity and concrete efficiency) of

semi-private accesses in a recent FSS-based distributed ORAM con-

struction [22].

Experimental Evaluation (Section 8). While Boyle et al. [9] pro-

vide estimates for runtime and communication, they do not provide

an implementation or an experimental evaluation. We implement

all of our protocols, both over finite fields and integer rings, as well

as the primal variant of the VOLE protocol proposed by Boyle et

al. [9]. Instantiated over a finite field, we can generate a random

VOLE of length n = 2
20

in about 5s. For comparison, generating the

same using standard Gilboa multiplication takes 70% longer and

has a 160% higher communication overhead. At the same time, our

construction parallelizes nicely: using 32 threads, we can get an

additional speedup of 9.8x, reducing the time to compute the above

triple to 0.52s . In order to have a comprehensive comparison with

alternative approaches we implemented and optimized Gilboa’s

multiplication protocol [30] and presented a comparison between

our random VOLE protocol and a instantiation leveraging Gilboa’s

multiplications.

2 PRELIMINARIES
2.1 Oblivious Transfer
Oblivious transfer (OT) [49] is a fundamental primitive in cryp-

tography that allows a receiver to obliviously select one out of

two messages held by a sender without revealing the selection

bit to the sender and without learning anything about the second

message. The OT functionality is sufficient to implement general

secure computation [39, 42, 55]. Here, a major step towards practi-

cal efficiency was the development of OT extension [6, 34], which

allows to compute many computationally efficient online OTs us-

ing a small number of expensive OTs that can be executed in an

advance offline phase. A variant of OT extension is random OT

(ROT) extension [47], where random messages are generated as

output to the sender while the receiver obtains one of the messages

based on the selection bit. The ROT functionality has been used as

a PRF with a single oblivious evaluation in the context of private

set intersection protocols [47, 48].

All of the above OT notions can be generalized also to a setting

where the sender has multiple messages and the receiver selects

multiple indices. We formalize this in the following definition.

Definition 2.1 (m-out-of-n Oblivious Transfer (OT)). An m-out-

of-n oblivious transfer is a protocol between two parties, sender

and a receiver, where the sender has n messages as input and the

receiver hasm selection indices. The receiver obtains the messages

corresponding to its indices while learning nothing about the re-

maining messages, and the sender learns nothing. If the n messages

2

are random and generated during the execution of the protocol as

output for the sender, the protocol is called randomm-out-of-n OT,

orm-out-of-n ROT.

The communication complexity of 1-out-of-2 OT constructions

is linear in the number of messages that the sender has. Naor and

Pinkas [44] showed a reduction of 1-out-of-n OT to logn instances

of 1-out-of-2 OT, which yields logarithmic communication com-

plexity. Observing that 1-out-of-n OT is equivalent functionality to

symmetric private information retrieval [15] is another approach

to obtain an OT protocol with logarithmic complexity. Considering

the generalm-out-of-n functionality the communication complex-

ity naturally scales linearly inm because we need to transfer at least

that many messages. In Section 3 we show that this is no longer

the case when we consider them-out-of-n ROT functionality and

we present a protocol that requires only logarithmic communica-

tion. In the spirit of the use of random OT extension as a PRF with

single oblivious evaluation, we can view (n − 1)-out-of-n ROT as a

privately punctured PRF [8] where we can generate a partial PRF

key that enables evaluation of the PRF on all but one point, where

the full PRF key holder does not know the punctured point.

2.1.1 OT-based secure product a.k.a Gilboa multiplication.
Gilboa [30] proposed a two-party secure multiplication protocol

of two l-bit numbers. The protocol outputs additive shares, and

requires l 1-out-of-2 OT that can be run in parallel (throughout

this paper we assume l to be a constant, and set it to 64 in our

experiments). Due to the practical efficiency of OT Extension proto-

cols [3, 34], Gilboa multiplication is a common approach to secure

multiplication. In particular, this approach has been considered

in several works as a way to compute Beaver triples for secure

multiplication in the preprocessing model of MPC [21, 27, 43]. In

the context of our work, this protocol is used for scalar vector

multiplications. In terms of practical considerations, one should

note that Gilboa multiplication can be implemented from correlated

OT [3], a more efficient particular case of OT. Moreover, for the

problem of scalar-vector multiplication, one can employ optimiza-

tions based on batching for concrete efficiency (see [43] for details).

We employ these optimizations in our implementation of secure

scalar-vector multiplication based on Gilboa’s protocol, which we

use as a baseline.

2.2 Cuckoo Hashing
Cuckoo hashing [46] is an algorithm to build hash tables for (key,

value) pairs with worst-case constant lookup. A cuckoo hash table

is determined by κ hash functions, where the value corresponding

to a key is guaranteed to reside in one of the κ locations determined

by the hash function evaluations on the key. Hash collisions are

resolved using the cuckoo approach: if a collision occurs when

placing an item in the hash table, the item residing in the location

is evicted and then placed in the table using a different hash func-

tion, potentially evicting another item in the case of collision. This

process continues until all evicted items are placed, if possible. Due

to possible cycles in this graph of evictions, the insertion algorithm

for cuckoo hashing has a chance to fail. For two hash functions,

it is known that inserting n items in a cuckoo tables of size O(n)
incurs more than s insertion failures with probability bounded by

O(n−s) [40]. The exact constants in this asymptotic bound are not

known, but several papers have studied them empirically [1, 14, 20].

This is done by estimating, for any fixed statistical security param-

eter η, the number of hash functions and the cuckoo table size such

that inserting n items in the table fails with probability at most 2
−η

.

In cryptography, cuckoo hashing has been used as a probabilistic

bath code to optimize Private Set Intersection (PSI) [14, 41, 47, 48]

and Private Information Retrieval (PIR) [1] protocols. We introduce

these ideas in Section 5, where we apply cuckoo hashing to obtain

an optimized multi-point function secret sharing protocol.

2.3 Function Secret Sharing
Function secret sharing [11, 12] is a primitive that allows a key

generator to distribute the evaluation of a function between two

parties in way that neither of the two parties learns anything about

the evaluated function, but jointly the two parties can recover the

evaluation at any point.

Definition 2.2 (Function Secret Sharing). Let F = { f : I → G} be
a class of functions with input domain I and output group G, and
let λ ∈ N denote a security parameter. A function secret sharing

scheme consists of the following two algorithms:

• (K1,K2) ← FSS.Gen(1λ, f) – given a description of f : I →
G, output two keys K1,K2.

• fb (x) ← FSS.Eval(b,Kb , x) – given an evaluation keyKb for

b ∈ {1, 2} and an input x , output a share fb (x) of the value
f (x).

We require the following guarantees from the above algorithms:

Correctness. For any f ∈ F , anyx ∈ I , when (K1,K2) ← FSS.Gen(1λ, f),
we have Pr[

∑
b ∈{1,2} FSS.Eval(b,Kb , x) = f (x)] = 1.

Security. For anyb ∈ {1, 2}, there exists a ppt simulator Simb such

that for any polynomial-size function sequence fλ ∈ F ,{
Kb

��� (K1,K2) ← FSS.Gen(1λ, fλ)
} c
≈{

Kb ← Simb (1
λ, Leakb (fλ))

}
. (1)

Note that the only difference between this definition and the one

of Boyle et al. [12] is the leakage function is allowed to be differ-

ent for each party. In the standard FSS construction, Leak1(fλ) =
Leak2(fλ) = (I ,G), i.e., FSS keys must be simulated given only the

input and output domains for f .

While FSS is defined for any function, an FSS instantiation is

non-trivial if the length of the FSS keys is sub-linear in the size of

the function domain. In this regime of operation we have single

point FSS (SPFSS) constructions for point functions which evaluate

to zero on all but one of their domain points. Boyle et al. [11]

introduced an FSS constructions for point functions where the keys

are of length logarithmic in the function domain size.

Multi-point FSS (MPFSS) is a generalization of FSS where the

shared functions has a larger number of non-zero evaluations. How-

ever, for the purposes of Vector-OLE (cf. Section 2.4), we observe

that it is enough to consider a relaxed variant of MPFSS, where

one party knows the where f is nonzero in the clear. We call this

variant known-indices MPFSS, and we provide a reduction to cuckoo

hashing and known-index SPFSS in Section 5.

3

2.4 Vector OLE
Oblivious linear evaluation (OLE) is functionality that enables two

parties to obtain correlated outputs. One party has input valuesu,v .
The second party has input x and obtains as output w = ux + v .
Similarly to the use of OT for garbled circuits, OLE is a basic building

block for secure arithmetic computation enabling the generation of

multiplicative triples. Vector OLE (VOLE) [2, 9] is a generalization

of OLE to the setting of vector inputs, i.e., one party has input

vectors u, v, the other party has input value x and obtains a vector

w = ux + v. Boyle et al. [9] present application of VOLE to secure

computation and zero-knowledge constructions.

Analogously to OT there is a variant of VOLE referred to as pseu-

dorandom VOLE, where the vectors u, v are generated randomly

during the protocol execution. They are then provided as output to

the first party. This primitive suffices for the construction of VOLE

as well as its applications [9]. In Section 6 we present a new pseu-

dorandom VOLE construction that requires a weaker version of the

distributed MPFSS functionality compared to the approach of Boyle

et al. [9], which can be implemented efficiently as we demonstrate

in Section 8.

Definition 2.3 (Pseudorandom VOLE). A pseudorandom VOLE

consists of the following algorithms:

• (seed1, seed2) ← VOLE.Setup(1λ,n, F, x) – this algorithms

takes vector length n, field F and value x and outputs two

seeds.

• VOLE.Expand(b, seedb) – if b = 1, output (u, v) ∈ Fn × Fn ,
else if b = 2, then output w ∈ Fn .

The correctness of the protocol guarantees thatw = ux + v. The se-
curity property requires that seed1 does not reveal any information

about x and that seed2 does not allow to distinguish (u, v) from
random vectors subject to the correctness property, i.e., for any ppt

algorithm A the following holds:�� Pr[b = b ′
�� b ′ ← A(seed1),

(seed1, seed2) ← VOLE.Setup(1λ,n, F, xb),

(F,n, x1, x2) ← A(1
λ)] − 1/2

�� < negl.�� Pr[b = b ′
�� b ′ ← A(ub , vb , seed2),

(seed1, seed2) ← VOLE.Setup(1λ,n, F, x),

(F,n, x) ← A(1λ), (u1, v1) ← VOLE.Expand(1, seed1),

w← VOLE.Expand(2, seed2),

u2 ←R F
n, v2 ← w − u2x] − 1/2

�� < negl.

2.5 LPN Assumption
The learning parity with noise (LPN) assumption [7] states that

given the noisy dot product of many public binary vectors ai with a

secret binary vector s is indistinguishable from a string of random

bits. Adding noise to a bit is equivalent the flipping the bit with a

fixed probability. We use the following generalization of the LPN

assumption to larger fields.

Definition 2.4 (LPN Assumption). Let C be a probabilistic code

generation algorithm which given inputs values k,q and a field F,

outputs a matrix A ∈ Fk×q . The LPN assumption with respect to C

Functionality 1: (n − 1)-out-of-n-ROT
Parties: P1, P2
Input: P2: Index i ∈ [n]
Output (for P1) :Pseudorandom vector u ∈ Fn

Output (for P2) :vector v = (uj)j,i

with dimension k = k(λ), q = q(λ) queries and noise rate r = r (λ)
states that for any PPT algorithm A the following holds:

Pr[1← A(A, b)
�� F← A(1λ),A← C(k,q, F), e← Berr (F)q ,

s← Fk , b← s · A + e]

≈ Pr[1← A(A, b)
�� F← A(1λ),A← C(k,q, F), b← Fq].

In our construction (Section 6) we use LPN instantiations with

parapets settings as those described by Boyle et al. [9], i.e., high

dimension k , low noise rate 1/kϵ for a constant ϵ and a polynomial

number of queries q = k+o(k). Since we focus on the primal variant

of VOLE, we can instantiate C using a local linear code, where LPN
is assumed to hold [2, 9].

Ring-LPN is a variant of the LPN assumption defined over rings

rather than fields. The security of this assumption is less studied but

there are works that explore its use in the context of protocols for

the purposes of efficiency [18, 33]. In our implementation we eval-

uate the performance of our protocol both in the setting of a field

and a ring which rely on the two variants of the LPN assumption.

2.6 Definitions, Functionalities, and Secure
Two-Party Protocols

All the constructions in this paper describe communication efficient

two-party protocols for computing correlated vectors, for different

types of correlations. This notion has recently been formalized

as a Pseudorandom Correlation Generator (PCG) [10]. As observed
there, communication-efficient PCGs don’t lend themselves to di-

rect simulation-based security proofs. Intuitively, this stems from

the fact that any simulator that takes as input the ideal pseudoran-

dom output and produces succinct messages for the protocol would

be able to compress pseudorandom strings, which is impossible.

However, it was shown that in many applications (including all the

applications of vector OLE we consider), a weaker security defini-

tion is sufficient [9, 10]. We will therefore use the same approach

as Boyle et al. and split up our protocols in two phases, namely

setup (or generation), and expansion (or evaluation). This allows
us to use the following structure in our security proofs: First, (i)

we define correctness and security requirements of the generation

and expansion algorithms. Then, (ii) we define ideal functionalities

for the two phases and show that they satisfy our definition. And

finally (iii), we show that our protocols securely (and efficiently) im-

plement the key generation functionality. We focus on presenting

our two-party protocols in the main paper, and giving the intu-

ition behind for both security and efficiency. Nevertheless, detailed

definitions, functionalities, and security proofs for all our novel

constructions are given in the appendix.

4

Protocol 2: (n − 1)-out-of-n Random OT

Public Params: PRG G of stretch k > 1 and security

parameter λ, integer n = kc with c > 0

Inputs: P1: ⊥; P2: index i ∈ [n]
Outputs:

P1: n random values (r j)j ∈[n]
P2: n − 1 random values (r j)j ∈[n], j,i

Key Generation (ROT.Gen(1λ,n, i)):

(1) P1 generates a PRG seed s0
R
← {0, 1}λ .

(2) P1 computes a k-ary GGM tree of depth α = logk (n),
denoted T = T (s0,α), by associating s0 to T and, if α > 1,

constructing the k children of T recursively as T (sj ,α − 1),
with j ∈ [k] and seeds s1, . . . , sk computed as

(s1 | s2 | . . . | sk) := G(s0)

(3) P2 computes (b1, . . . ,bα), the k-ary encoding of i − 1.
(4) The parties execute α instances of (k − 1)-out-of-k OTs:

• P1 acts as sender. For the lth OT, let (p1, . . . ,pk l) be
the seeds of the lth level of T . The jth message in the

OT is set to be

mj :=
⊕

s ∈{px : x ≡ j mod k }

s

(the jth message is the XOR of the seeds of the jth
children of trees at level l − 1).
• P2 acts as the chooser and inputs, in the lth OT, the

set {0, . . . ,k − 1} \ {bl }, and obtains k − 1 seeds ql , j
with j ∈ [k] \ {bl }.

(5) P1 outputs K1 ← s0
(6) P2 outputs K2 ← (ql , j)l ∈[α], j ∈[k]\{bl } .

Expansion (ROT.Expand(b,Kb)):
(i) If b = 1: P1 returns the list of leaves of T .
(ii) If b = 2: P2 uses the seeds ql , j to reconstruct T , except for

the path to the ith leaf (recall that (b1, . . . ,bα) is the k-ary
encoding of i − 1).
• For the first level, P2 constructs trees

Tj = T (q1, j ,α − 1) with j ∈ [k] \ {b1}.
• For each level l ∈ [α], let T1, . . . ,Tk l be the sub-trees
of T at level l . In previous iterations P2 has computed

all such sub-trees except for Ti j , with

il =
∑
x ∈[l] k

x−1 · bx + 1. P2 then collects the seeds of

the direct children of eachTj as {sj ,1, . . . , sj ,k }j ∈[k]\il .
Then, additional seeds {sbl , j }j,il+1 can be obtained

from (q′l , j)j,bl+1 as

sbl , j :=
⊕

s ∈{sj ,x : x ≡ j mod k }

s ⊕ ql , j

By expanding those seeds using G, P2 computes all

sub-trees of T at level l + 1, except for the one at
position il+1 =

∑
x ∈[l+1] k

x−1 · bx + 1.

P2 returns the list of seeds of leaves of T , except for the one
at position i =

∑
x ∈[α] k

x−1 · bx + 1.

3 (n − 1)-OUT-OF-n RANDOM OT
In this section we consider the question of oblivious selection of

n − 1 items out of n in the case when all items are pseudorandom.

This corresponds to Functionality 1, namely (n−1)-out-of-n random
oblivious transfer. If we allow linear communication, a protocol

for Functionality 1 can be easily obtained using oblivious selection

techniques. We instead propose a protocol with sub-linear com-

munication and linear computation. Our protocol consists of a key

generation phase where P1 learns a key K1 consisting of a single

PRG seed s0, and P2 learns a keyK2 consisting of logk (n) PRG seeds,

via logk (n) parallel executions of a (k − 1)-out-of-k OT protocol,

for parameter k > 1. Expanding the respective seeds to obtain their

length-n outputs takes O(n) PRG evaluations per party.

Key generation via a GGM tree. We crucially leverage the fact that

values are generated pseudo-randomly in order to obtain a protocol

with the above communication complexity. Let us assume, without

loss of generality, that logk (n) is an integer. The n values of u are

generated from a single random seed s0 using a GGM tree T [31]

constructed using a PRG G of stretch k , i.e. G : {0, 1}λ 7→ {0, 1}kλ ,

for security parameter λ. More concretely,T is an ordered complete

k-ary tree of depth logk (n) and n leaves, with its nodes labeled

with seeds in {0, 1}λ (we will refer to nodes and their seeds/labels

indistinctly). The label of the root is s0, and the label sj of the jth
child of a node v is obtained from the seed of v , by applying the

PRG G and parsing the output as (s1 | · · · |sj | · · · |sk).

The 2-party protocol. Our protocol is presented as Protocol 2.

First, P1, the sender, computes the tree T locally from a seed s0
(note that this can be done with 2n − 1 calls to G) and sets s0 to
be its key K1. The rest of the protocol allows P2, the receiver, to

recover all the seeds of T , except for the ones in the path to the ith
leaf. This is done in a way that does not leak i to P1, and requires

only log(n) seeds, which will constitute P2’s keyK2, to be expanded

locally. We now informally discuss the correctness and security of

our protocol, as well as associated communication and computation

costs.

Let (i1, . . . , ilogk (n)) be the path to the i-th leaf (this is a sequence

of values in {0, . . . ,k − 1}, indicating which children to follow at

each level to reach the ith leaf from the root, and in fact corresponds

to the k-ary encoding of the integer i − 1). For example, Figure 1

shows how for n = 8 and i = 3, the path the receiver should not

learn is 010. As mentioned above, our goal is that the receiver can

reconstruct all the tree except for the nodes on this path.

Although it will become clear that the protocol can be paral-

lelized across levels, for explanatory purposes it is useful to think of

it as processingT level by level from the root guaranteeing that, for

each level l ∈ [logk (n)], the receiver can reconstructT up to level l ,
except for the nodes in the path (i1, . . . , il). This property obviously
holds for l = 0 and, to argue the correctness of our protocol, we

now argue inductively how to extend it from level l to level l + 1.
By induction assume that the receiver can reconstruct all sub-

trees T1, . . .Tk l of depth α − l rooted at the nodes of level l except
for exactly one: the one rooted at path (i1, . . . , il). This is, precisely,
T(

∑
x∈[l] kx−1 ·ix+1), which we denote T ∗ for simplicity. Now, let us

show how a single execution of (k − 1)-out-of-k OT is enough to

extend the above property to level l + 1. Intuitively, we want to

5

ensure that the receiver learns all direct children of T ∗, except for
the il+1th one. As T ∗ has k direct children, this corresponds to

a (k − 1)-out-of-k-OT. However, for privacy, it is important that

the sender never learns that T ∗ is in fact the sub-tree that the

receiver cannot reconstruct at level l , as this reveals too much

about the index i . This difficulty can be overcome by constructing

the messages in the (k − 1)-out-of-k-OT as follows.

Let sj ,0, . . . , sj ,k−1 be the seeds of the nodes that are direct

children of each tree Tj . As the receiver knows all the Tj s ex-

cept for T ∗, she has all such seeds except for the ones with j =
(
∑
x ∈[l] k

x−1 · ix + 1), i.e., the children of T ∗. The key idea to

achieve the above goal is to have the sender compute k values

m0 =
(⊕k l

j=1 sj ,0
)
, . . . ,mk−1 =

(⊕k l
j=1 sj ,k−1

)
. Here, m0 is the

XOR of all direct first children of nodes at level l ,m1 is the XOR of

all second children, and so on. Now observe that, given any value

my the receiver can compute the seed s(
∑
x∈[l] kx−1 ·ix+1), j (the yth

child of T ∗) since she knows all the other values XOR-ed into the

mj value. On the other hand,mj does not reveal anything about

the seeds sk l ,x with x , j. Thus, the sender and the receiver run

(k−1)-out-of-k OTwhere the sender’s inputs arem0, . . . ,mk−1 and

the receiver’s input is the set {0, . . . ,k−1} \ {il }. After running this
sub-protocol the receiver can reconstructT up to level l + 1, except
for the nodes in the path (i1, . . . , il+1). This shows how to extend

the construction from level l to l +1, and the protocol finishes when
l = n.

An important observation is that the instances of (k−1)-out-of-k
OT used in the above construction can all be run in parallel. The

correctness of our construction follows from the above discussion,

and its security, stated in the next lemma, follows directly from the

security of G, and the underlying protocol for (k − 1)-out-of-k OT.

A detailed proof can be found in Appendix A.1. In Section 8 we

describe how G is instantiated in our implementation, as well as

other practical considerations and optimizations.

Lemma 3.1. For any constant k > 1, Protocol 2 is a secure two
party computation protocol for the (n − 1)-out-of-n ROT functionality
in the (k−1)-out-of-k OT hybrid model assuming a secure PRGG . The
protocol is one round, and requires O(λ log(n)) communication and
O(λn) computation per party, including 2n PRG evaluations, where λ
is the length of the PRG seed.

Proof Sketch. Showing the security of the above protocol consists
of two steps: first, showing that the keys that the parties receive

have the desired pseudorandom properties (Definition A.1), which

follows from the pseudorandom properties of the GGM construction

and which we formally prove in TheoremA.2. And second, showing

that the key generation protocol is a secure two party computation

protocol for the generation of the keys, which follows from the

OT security and which we prove formally in Theorem A.3. The

communication overhead follows from the fact that the parties

execute logk n OTs, which have linear communication in λ. The
computationO(λn) for each comes from the execution of the logk n
OTs and the expansion of the keys which uses 2n PRG calls.

How to set k , and instantiations of (k − 1)-out-of-k OT. The con-
struction of Protocol 2 works for any integer k > 1. Choosing k
constant results in logarithmic communication, and in fact in our

implementation we use k = 2. In practice, this allows us to lever-

age very efficient implementations of 1-out-of-2 OT based on OT

Extension. When instantiated with k = 2, our protocol resembles

the Function Secret sharing construction by Boyle et al. [11].

Privately Punctured PRF. Ourn−1-out-n randomOT protocol also

provides a construction for a privately punctured pseudorandom

function, where one party has the PRF key and can evaluate the

PRF on any input (in our case this is P1 who has the GGM root)

and the other party has a punctured key which allows it to evaluate

the PRF on all but one inputs (P2 in our case). The OT protocol

enables P2 to obtain its punctured PRF key without revealing the

punctured point to P1 (the punctured key is the output that P2 has

at the end of the KeyExchange phase of the OT protocol). We note

the difference in the punctured key generation algorithm from the

one defined in other contexts for privately puncturable PRFs [8],

where the party who has the full PRF key generates the punctured

key and knows the point at which it is punctured.

4 KNOWN-INDEX SPFSS
In this section we use our n − 1-out-of-n random OT protocol to

construct a 2-party computation protocol to jointly generate FSS

keys for point functions. The setup for our distributed FSS protocol

assumes that one party knows the non-zero evaluation point while

the value at that point is shared between the two parties. Thus,

it is not equivalent to a generic distributed FSS scheme for point

functions, as for example described in [22]. However, this relaxed

version suffices for our VOLE construction described in Section 6.

We call our FSS variant Known-Index SPFSS to emphasize that one

party knows the non-zero index.

Conceptually, the existing construction of point function FSS [11]

generates two PRF keysK1 andK2 such thatPRFK1
(x) = −PRFK2

(x)
for all values of x except the input with non-zero evaluation i . The
values PRFK1

(i) and PRFK2
(i) are random shares of the function

evaluation β at the input i . If two parties need to generate K1 and

K2 in a distributed way, they can use secure general computation

for this task, and Doerner and shelat [22] show a more efficient

way to construct such an MPC protocol in the semi-honest setting.

When one of the parties, P2, knows i , we can construct K1 and

K2 in a distributed fashion as follows. First, P1 and P2 run a secure

(n − 1)-out-of-n-ROT key generation protocol (the construction

from the previous section), for the parties to obtain keys KROT
1

and

KROT
2

. Note that, if the parties compute rb = ROT.Expand(b,KROT
b),

the vectors r1, r2 coincide at every position except for a position

i known to P2. As P2 can negate its vector, we can think of r1

and −r2 as additive shares of a vector of all zeroes except for the
ith position. Now all that remains is to modify r1 and −r2 to fix

the ith position to be a share of a value β shared among P1 and

P2 (see Protocol 3). Crucially, this needs to be done in a way that

does not leak β to either party, and keeps i private from P1. To

do this we leverage the observation that P1 and P2 can compute

sums R =
∑
j r

1

j and R
′ =

∑
j,i r

2

j . The difference R − R
′
will be the

evaluation of PRFK1
(j). Since the parties have shares β1 and β2 of

the point function evaluation β at i , we complete the protocol by

P1 sending Rβ = R − β1 to P2 (note that this hides β1 because P2

6

0

0

0 0

1

11

1

0

0 0

1

11

0

0

0 0

1

11

1

0

0 0

1

11

Sender Receiver

OT

OT

OT

1

0

1

Figure 1: Example of the GGM tree generated by the sender and partially learnt by the receiver. Here, k = 2, n = 8, and i = 3.
Thus, the path not learnt by the receiver is (010). For each level, the parties run an OT where the receiver learns an XOR of
either the left children or the right children of that level. Using previously expanded sub-trees, this information allows the
receiver to learn a new seed (nodes filled in blue) which can be expanded by repeatedly calling G (the nodes resulting from
such expansions are filled in black).

does not know r1i , which is a random mask) who can then appro-

priately set the ith entry of r2 so that r1i + r
2

i = β . Note that, as
long as P2 obtains Rβ in the key generation phase, the corrections

can be applied during expansion. Our construction is presented

in Protocol 3 in terms of the key generation and expansion proce-

dures for (n − 1)-out-of-n-ROT from the previous section, which

encompasses the steps from above.

Lemma 4.1. Protocol 3 securely implements Known-Index SPFSS
over a domain of size n in the (n − 1)-out-of-n-ROT hybrid model.
With (n − 1)-out-of-n-ROT instantiated by the construction of Proto-
col 2, Protocol 3 requires O(λ logn) communication and O(λn) com-
putation per party where λ is the security parameter of the ROT.

Proof Sketch. The main argument in the security proof is that

Rβ is a one-time pad that masks β1, given the property of (n −
1)-out-of-n-ROT that the output of P1 is a random vector. A detailed

proof is given in Appendix A.2.

5 KNOWN-INDICES MPFSS VIA CUCKOO
HASHING

In this section we present a reduction from known-index multi-

point FSS to known index single point FSS. The multi-point setting

is analogous to the SPFSS functionality of Protocol 3, but extended

to functions that fix the value of t ≥ 1 points. We formalize our

Known-Indices MPFSS variant in Definition A.7 in the appendix. A

naive reduction executes t independent instances of known-index
SPFSS on the original database. However, as observed by Boyle

Protocol 3: Distributed Known-Index Single Point FSS

Params and Building Blocks: (n − 1)-out-of-n-ROT;
Point function f : [n] → G, f (i) = β , f (j) = 0 ∀ j , i
Random shares β1, β2 : β1 + β2 = β ; b ∈ {0, 1}
Parties: P1, P2
Inputs: P1 : β1, P2 : β2, i

Key Generation (SPFSS.Gen(1λ, fi ,β)):

(1) The parties run a secure ROT.Gen(1λ,n, i) protocol to
obtain keys KROT

1
and KROT

2
.

(2) The parties execute locally ROT.Expand, from which P1
gets n random values {ri }j ∈[n], and P2 obtains {ri }j ∈[n], j,i .

(3) Let R =
∑
j ∈[n] ri . P1 sends to P2 the value Rβ = R − β1.

(4) P2 computes r̃ = β2 − Rβ +
∑
j ∈[n]\{i } ri .

(5) P1 outputs K1 ← KROT
1

(6) P2 outputs K2 ← (K
ROT
2
, r̃).

Expansion (SPFSS.Eval(b,Kb , x)):
• If b = 1, compute v1 ← ROT.Expand(1,K1) and output v1x .

• If b = 2, parse K2 as

(
KROT
2
, r̃
)
. If x = i , output r̃ . Otherwise,

compute v2 ← ROT.Expand
(
2,KROT

2

)
and output −v2x .

et al. [9], this requires evaluating all t SPFSS instances on the whole

domain, which results in an Ω(tn) computational overhead.

A general idea to improve on this baseline is to rely on batching

schemes that split the domain of size n intom small parts in a way

that allows to distribute the t SPFSS instances across them smaller

parts. One can instantiate this general idea using a combinatorial

7

1

2

n

i

i

i

i

h1

h2

h3

i1

i j

it

.

.

.

.

.

.

...

...

i j

h3

Public P2

m Buckets t IndicesHash Table T

Figure 2: The domain of the MP function is hashed κ times
into m Buckets using κ different hash functions (this ar-
rangement is public). P2 privately builds a cuckoo hash ta-
ble of the indices of the MP function. Then, an instance of
known-index SPFSS is executed for each bucket.

object called batch codes (see Ishai et al. [35] for an introduction).

A batch code with parameters n, t,k,m gives a partition of a data-

base of size n into m parts such that any t indices from [n] can
be recovered by reading at most k entries in each of them parts.

Although batch codes are attractive in that they offer very strong

provable guarantees, they can be hard to instantiate in practice.

This issue arises in the construction proposed by Boyle et al. [9],

who explore Combinatorial Batch Codes (CBCs) for batching mul-

tiple FSS instances to obtain MPFSS. Since explicit constructions

of the expander graphs required for instantiating a CBC do not

satisfy their efficiency requirements, Boyle et al. propose a heuris-

tic construction of a CBC. This leads to a small failure probability,

which asymptotically depends on t and the expansion factor of the

batch code. However, concrete parameters for the heuristic CBC

construction are not given by Boyle et al., and in their running time

estimates, the authors assume t SPFSS instances on disjoint subsets

of [n] instead of full MPFSS.

A second approach to baching is given by Angel et al. [1], who

introduce a relaxed notion of Probabilistic Batch Codes (PBCs).

Unlike the heuristic CBC construction of Boyle et al. [9], batching

here may fail on each insertion of t indices with a certain probability

(which can be made arbitrarily small). The PBC construction of

Angel et al. [1] is inspired by many works in the PSI literature [14,

20, 25, 48], where cuckoo hashing [46] is commonly used to reduce

PSI to private set membership queries. We follow this line of work,

and base our MPFSS construction on probabilistic batching.

5.1 Batching Known-Index SPFSS
5.1.1 Cuckoo hashing as a PBC. Our approach to buildMPFSS from

single point FSS is to use Cuckoo hashing [46] and simple hashing

in a similar manner as in PSI and PIR protocols [1, 14, 20, 25, 48].

Cuckoo hashing [46] is a multi-choice hashing schemewith eviction

parameterized by κ universal hash functions h1, . . . ,hκ . Cuckoo
hashing achieves the goal of distributing t items in a table T of size

m in a manner that guarantees that each location in T is occupied

by at most one item. The insertion algorithm puts the item to be

inserted x at T [h1(x)] and, if this position is occupied, evicts the

item in that position and relocates it using h2, which may cause

yet another eviction resolved using h3, and so on. This insertion

algorithm may fail when a cycle of evictions is found, and thus

cuckoo hashing has a failure probability that depends on parameters

κ,n, t andm. Several works [14, 20, 48] that use cuckoo hashing

in secure computation protocols have empirically studied such

parameters and how they relate to the failure probability. In our

work we use the estimates of Demmler et al. [20], which leads to the

same parameter choices used by Angel et al. [1] and Chen et al. [14].

While we present our concrete parameter choices in Section 8.2,

we keep these symbolic in the protocol description for presentation

purposes. We therefore introduce a statistical security parameter

η, meaning that the probability of failing at hashing t items is

bounded by 2
−η

. More specifically, we denote by ParamGen(n, t,η)
the function that generates cuckoo hashing parameters, i.e., number

of hash functions κ and cuckoo table sizem, that guarantee this

statistical bound on the insertion failure probability. Note that in

the case of such an insertion failure, P1 learns of it in Step (1) of the

protocol and thus can handle this case in several ways in practice.

For example, it could simply abort the protocol, or it could sample

new hash functions until the hashing step succeeds or a maximum

number of trials is reached. In these cases, hashing failures result

in leakage, as the adversary can infer information about the indices

from the fact that they failed (or did not fail) to hash. A second

option is to sacrifice correctness instead, and simply ignore indices

that failed to hash. This way, no information is leaked from the

generated MPFSS keys, but the multi-point function changes with a

small probability. As discussed in [1, 14], the strategy for handling

hashing failures depends a lot on the exact use case. In the case of

vector OLE, we choose to drop indices that fail to hash (cf. Section 6).

This is also the approach suggested by Boyle et al. [9] for their

heuristic batch code construction. Our protocol therefore achieves

the same type of security guarantee, while at the same time being

concretely efficient.

5.1.2 Our protocol. Our construction is shown in Protocol 4. We

use a cuckoo hashing scheme with capacity t instantiated with κ
hash functionsmapping [n] to [m], where (m,κ) = ParamGen(n, t,η)
as described above. In step (1), the party holding the t non-zero
evaluation points of the multi-point function computes a cuckoo

hash tableT of sizem that contains them. In step (2), the two parties

use all of the κ hash functions to simple-hash the whole domain [n].
This results inm buckets I1, . . . , Im , with κ copies of each integer

in [n] distributed across them uniformly at random. An important

point is that this arrangement is public (see left side of Figure 2).

The parties also fix an order within each bucket Il , and compute

the reverse mapping posl from items to positions.

After having assigned indices to buckets, our protocol securely

runs an SPFSS key generation for each bucket Il . First, in step (3),

the parties obtain shares of the vector v of values to be fixed in each

of the SPFSS instances (the value β in Protocol 3). This needs to be

done in a secure computation because both parties share all βi ’s,
while only P2 knows which βi maps to which bucket. The secure

computation can be implemented using permutation networks [52]

8

Protocol 4: Distributed Known-Indices MPFSS

Public Params: Input domain [n], number of points t ,
statistical security parameter η,
Cuckoo hash parameters: table sizem, and number of hash

functions κ, (m,κ) = ParamGen(n, t,η)
Point function fi,β : [n] → F, fi,β (i j) = β1j + β

2

j for all

j ∈ [t], fi,β (j
′) = 0 for all other inputs.

Parties: P1, P2
Inputs: P1: x , β

1

1
, . . . , β1t ; P2: i1, . . . it , β

2

1
, . . . , β2t

Key Generation (MPFSS.Gen(1λ, fi,β)):
(1) P2 randomly chooses κ hash functions (hj)j ∈[κ], with

hj : [n] → [m]. P2 inserts i1, . . . it into a Cuckoo hash table

T of sizem using h1, . . . ,hκ , and it sends the κ hash

functions to P1. Let empty bins in T be denoted by ⊥.

(2) P1 and P2 do simple hashing with all k1, . . . ,hκ on the

domain [n], to independently buildm buckets I1, . . . , Im , i.e.

Il = (x ∈ [n] | ∃p ∈ [κ] : hp (x) = l), for l ∈ [m], each sorted

in some canonical order. The parties compute functions

posl : Il → [|Il |] that map values to their position in the

l-th bucket.

(3) Let u =
(
(β1j + β

2

j , lj)
)
j ∈[t], where lj is the location of i j in

T . The parties run a secure 2PC protocol to obtain random

shares v1, v2 of the vector v ∈ Fm defined as

vj =
{
a if (a, j) ∈ u,
0 otherwise.

(4) For all l ∈ [m], P1 and P2 run SPFSS .Gen(1λ,дl)

(Protocol 3) to obtain seeds (K l
1
,K l

2
), with дl : [|Il |] → F

defined as

дl (x) =

{
v1l + v2l if T [l] , ⊥ and x = posl (T [l]),
0 otherwise.

(5) P1 outputs K1 =
(
K l
1

)
l ∈[m] and P2 outputs K2 =

(
K l
2

)
l ∈[m].

Expansion (MPFSS.Eval(b,Kb , x)):
Output

∑κ
p=1 SPFSS.Eval

(
b,K

hp (x)
b , poshp (x)(x)

)
.

in a garbled circuit, or using additive homomorphic encryption.

However, as we will see at the end of this section, this step can be

omitted in the special case of Vector OLE.

In Steps (4) and (5), we generate and return SPFSS keys for each

of the buckets, where the values are the shares obtained in the

previous step, and the indexes are known to P2. Note that, since

m ≥ t , some positions inT might be empty, so those instances have

the zero function associated to them (which is known only to P2).

Finally, the evaluation of an MPFSS key on an input x is the sum

the evaluations of the SPFSS keys corresponding to the buckets into

which x is mapped by the cuckoo hash functions.

Lemma 5.1. Assume a secure Known-Index SPFSS scheme with a
secure two-party key generation protocol, both with security param-
eter λ. Then Protocol 4 implements a secure two-party protocol for
generating Known-Indices MPFSS keys in the semi-honest model with
statistical security η. Using Yao garbled circuits to instantiate step (2),
theMPFSS .Gen protocol is constant round, and requiresO(mλ logn)

Protocol 5: MPFSS Optimization for VOLE

Public Params: Input domain [n], number of points t , hash
table sizem = Õ(t), and number of hash functions κ.
Point function fi,xy : [n] → F, fi,xy(i j) = (xy)j for all
j ∈ [t], fi,xy(j

′) = 0 for all other inputs.

Parties: P1, P2
Inputs: P1: x ; P2: i1, . . . it , y1, . . . ,yt
Key Generation (MPFSS.Gen(1λ, fi,xy)):
1,2 These are the same as in Protocol 4.
(3a) Let u = ((yj , lj))j ∈[t], where lj is the location of i j in T .

P2 locally computes the vector w ∈ Fm defined as:

wj =

{
a if (a, j) ∈ u,
0 otherwise.

(3b) The parties run an MPC to compute shares of v = xw.

(4, 5) The rest of the protocol is as Protocol 4.

communication and O(λκn + λm logn) local computation per party,
where (m,κ) = ParamGen(n, t,η) are cuckoo hashing parameters.

Proof Sketch. We outline the intuition for the proof of Lemma 5.1

here and provide the full proof in Appendix A.3. Proving the security

of theMPFSS protocol involves two steps: first, proving that the keys

generated from the generation algorithm satisfy the FSS security

requirements, and second, proving the generation protocol is a

secure two party computation protocol that reveals to each party

only its corresponding key. The first claim follows directly from

the security guarantee of the SPFSS construction used to generate

a key for each bucket. We prove this formally in Theorem A.8. The

second claim follows from the security of the two party protocol

used for the SPFSS key generation, which we prove formally in

Theorem A.9.

The communication and computation for the garbled circuit used

for Step (2) isO(λm logm) since it needs to implement an oblivious

permutation protocol overm items. For each SPFSS instance in Step

(3), we needO(λ logn) communication, since in the worst case each

bucket has sizeO(n). The computation that each party does includes

simple hashing of all elements in O(λκn), SPFSS distributed key

generation for each bucket inO(λm logn) and theMPFSS evaluation

in O(λκn).

An Optimization for Vector-OLE. We leverage another observa-

tion related to the use of MPFSS in the context of vector OLE, which

allows us to construct a more efficient solution. In the VOLE gener-

ator of Boyle et al. [9], the non-zero values for t-point MPFSS are

of the form xy1, . . . , xyt , where one party knows the indices of the

non-zero function values and y1, . . . ,yt , and the other party knows
x . Thus, we can have a secure two party computation protocol

where one party inputs y1, . . . ,yt padded with zero up to the size

of the cuckoo table, in the order in which they are mapped to the

cuckoo bins, and the other party inputs x . The protocol multiplies

x with the permuted vector and outputs shares of the result to the

two parties. That way, we can generate the MPFSS keys needed

for VOLE generation without the expensive secure permutation in

Step (3), and instead use a cheap multiplication protocol such as

Gilboa multiplication [30].

9

6 DISTRIBUTED PSEUDORANDOM VOLE
FROMMULTI-POINT FSS

In this section we present a new construction for two party com-

putation of pseudorandom vector OLE that relies on multi-point

function secret sharing. The main difference between our construc-

tion and the reduction described in the work of Boyle et al. [9] is

the observation that the multi-point function that the two parties

evaluate does not need to be completely hidden from both of them,

since one of the keys contains the non-zero points in the clear.

Thus, it suffices to use our distributed Known-Indices MPFSS from
the previous section. We present our construction in Protocol 6.

The goal of a pseudorandom VOLE is to enable two parties P1
and P2 to obtain the following correlated outputs: P1 obtains vec-

tors u and v, and P2 obtains integer value x and a vector w such

that ux + v = w. The requirements for these correlated outputs

are that 1) u and v do not reveal information about x and 2) given

w, u and v are indistinguishable from random vectors generated

subject to the above relation. Without any further efficiency con-

straints the above functionality can be realized using standard MPC

techniques. However, the goal here is to generate a VOLE correla-

tion with much less communication than the length of the vectors.

In this case, distributed VOLE faces the same problems as other

correlation generators (cf. Section 2.6 and Boyle et al. [10]), i.e.,

that protocol messages of sublinear size can’t be simulated from an

ideal uniform output. Hence, the VOLE functionality is divided into

two parts: an interactive setup protocol VOLE.Setup that produces

short seeds for each party, and an expansion protocol VOLE.Expand
that involves only local computation in which each party expands

the short seed it has obtained from the setup to generate its long

output vectors. It was shown that if these two phases satisfy Defi-

nition 2.3, the resulting pseudorandom correlation can securely be

used for various applications of VOLE, such as secure arithmetic

computation [9, 10].

The idea of the construction of Boyle et al. [9] is to start from

short vector a, b and c of length k < n that have the required

correlation, i.e., c = ax + b, which the two parties can generate

efficiently using MPC, and to expand them to long pseudorandom

vectors using the LPN assumption. This assumption states that

for appropriate code generating matrix C ∈ Fk×n , the vector u =
a ·C+ µ is pseudorandom, where µ is a sparse random vector. Now

if we compute v = b · C − ν1 and w = c · C + ν2, where ν1 and
ν2 are shares of µx , we will achieve the correctness property that

ux + v = w. Additionally, in order to get security, we need that ν1
and ν2 are pseudorandom and do not reveal any information about

µx . This guarantees the pseudorandom properties of u and v under

the correlation and that ν1 (and hence u and v) does not reveal any
information about x .

Given the above idea, the heart of the VOLE generation is obtain-

ing the sharesν1 andν2 in a communication efficient manner. Boyle

et al. [9] propose using a distributed multi-point FSS protocol. Our

observation is that this functionality is more than what is needed

for the pseudorandom VOLE construction. More specifically, an FSS

protocol will guarantee that both shares ν1 and ν2 do not reveal any
information about the multi-point function defined by µx . However,
while x needs to remain hidden, µ is revealed to P1, which in turn

reveals the non-zero indices of µx = ν1 + ν2. This observation is

Protocol 6: Distributed Vector OLE

Public Params: Vector length n, LPN parameters t , k , code

generating matrix C ∈ Fk×n .
Parties: P1, P2.

Inputs: None.
Outputs: P1 : u, v ∈ Fn ; P2 : w ∈ Fn , x ∈ F, such that

ux + v = w.

Share Generation (VOLE.Setup(1λ, F,n))
(1) P1 chooses a set of S random positions S = {s1, . . . , st },

with si ∈ [n], t random values y = (y1, . . . ,yt) ∈ Ft , and a

pair of random vectors a, b ∈ Fk . P2 chooses random x ∈ F.
(2) P1 and P2 run MPFSS.Gen to obtain keys K1,K2 of the

multi-point function fS ,xy.
(3) P1 and P2 run an MPC with inputs a, b and x respectively,

from which P2 obtains a vector c = ax + b.
(4) P1 outputs seed1 ← (K1, S, y, a, b) and P2 outputs

seed2 ← (K2, x, c).
Expansion (VOLE.Expand(b, seedb))
(i) If b = 1, P1 runs ν1[i] ←MPFSS.Eval(1,K1, i) for i ∈ [n]

and defines a vector µ ∈ Fn such that µ[si] = yi for all
i ∈ [t] and µ[s] = 0 for all s < S . P1 outputs

u = a · C + µ, v = b · C − ν1.
(ii) If b = 2, P2 runs ν2[i] ←MPFSS.Eval(2,K2, i) for i ∈ [n]

and outputs w = c · C + ν2.

what allows us to use our known index MPFSS from Section 5 to

generate the shares ν1 and ν2 more efficiently.

We note that as discussed in Section 5, our batching scheme

introduces a small probability 2
−η

of failing to batch all t non-zero
indices. This is also the case for the heuristic batch code construc-

tion of Boyle et al. [9]. However, as also pointed out there, this only

strengthens the required LPN assumption a little: If batching fails

(which results in some elements of µx becoming zero instead of

nonzero), the distribution of noise values will only slightly devi-

ate from uniform, but LPN for such a distribution remains a very

conservative assumption.

Theorem 6.1. Protocol 6 implements a secure distributed vec-
tor OLE generator in the semi-honest model. With step (3) instanti-
ated with OT-based Gilboa multiplication, MPFSS instantiated us-
ing Protocol 5, and C instantiated by a local linear code, the proto-
col is constant round, and requires O

(
λm logn + λk

)
communica-

tion and O(λκn + λm logn) computation per party, where (m,κ) ←
ParamGen(n, t,η), λ is a computational security parameter, and η is
the statistical security parameter of the MPFSS scheme.

Proof Sketch. As mentioned above, our protocol is obtained using

a simple modification of the scheme of Boyle et al. [9], i.e., using

known-index MPFSS instead of full MPFSS. Since the only addi-

tional information our variant reveals is already included in the

VOLE keys, their proof [9, Section 3.2.2] can be trivially adapted to

our protocol. We will give an overview here, but refer the reader

to [9] for the full details.

10

Correctness follows from the observation that µx = ν1 + ν2. It
follows that

ux + v = (a · C + µ)x + b · C − ν1
= (ax + b)C + µx − ν1 = c · C + ν2 = w.

To prove security we need to show that the two security proper-

ties from Definition 2.3 hold. To show the first property we observe

that the only part of seed1 that depends on x is K1. However, since

it is generated using the distributed MPFSS construction, it follows

by the security of known-index MPFSS (see Appendix A.3) that

there is a simulator that can simulate K1 without knowledge of

x . Note that the non-zero indices needed to simulate K1 are also

included in seed1.
To prove the second property we show a transition between

the distributions (u1, v1, seed2) and (u2, v2, seed2) in two steps and

argue that an adversary cannot distinguish the changes applied

in each of them. In the first step the input to the adversary is the

same but we replace the K2 with the simulated MPFSS key, which

is generated from F and n alone. Security of the MPFSS scheme

guarantees that this simulated key is indistinguishable from the real

one. In this distribution u1 = a ·C+ µ and v1 = b ·C−ν1 = b ·C+
ν2−µx = c ·C+ν2−(a ·C+µ)x = c ·C+ν2−u1x . In the next step we

replace u1 and v1 with u2
R
← Fn and v2 ← w−u2x = c·C+ν2−u2x .

By the LPN assumption, u1 and u2 are indistinguishable and since

v1 and v2 are computed in the same way, the change in the second

step in indistinguishable for the adversary.

The communication in the protocol consists of the execution of

the distributed MPFSS key generation and the secure computation

for c, which have cost O(λm logn) and O(λk), respectively. The
computation overhead additionally consists of the expansion of the

MPFSS, which isO(λκn) and the vector matrix multiplications with

the matrix C , which using a local linear code is in O(n).
In our evaluation (Section 8), rely on previous work [20] to

choose a constantκ andm = O(t) such thatη ≥ 40 for the parameter

ranges we’re interested in. Together with the observation that t and
k are both inO(

√
n) [9], this simplifies the communication overhead

of our protocol to O(λ
√
n logn) and the computation to O(λn).

7 APPLICATIONS
Our distributed pseudorandom vector OLE protocol can be seen as

a communication efficient precomputation that enables arbitrary

secure two-party scalar-vector multiplications. This is thanks to

a simple reduction from VOLE to pseudorandom vector OLE. The

reduction is analogous to how a randommultiplication triple can be

exploited to compute extremely efficiently a secure multiplication

in just a round of communication. The reduction from VOLE to

pseudorandom VOLE is given in [9] (Proposition 10). The over-

head of the reduction with respect to running pseudorandom VOLE

generation and expanding the resulting seeds is just the cost of

performing the scalar vector multiplication in the clear, and trans-

mitting a vector of the same length as the input vector. For that

reason, in the context of multi-party computation, distributed pseu-

dorandom vector OLE should be considered as a data independent

preprocessing step that enables fast secure distributed scalar-vector

multiplication, aka vector OLE. In this section we overview some

applications that fit in this paradigm and thus can benefit from our

protocol for distributed vector-OLE, as well as applications of our

sub-protocol for known-Indices MPFSS.

Generally speaking, vector OLE can be used to batch one-against-

many OLE computations, and thus directly provides a way to batch

applications that rely on OLE computations. Such applications in-

clude, for example, PSI [28], and keyword search [26]. The latter

relies on Oblivious Polynomial Evaluation (OPE) for which, as we

will discuss later in this section, an efficient reduction to vector

OLE exists. From a general MPC perspective, vector OLE enables

communication efficient evaluation of arithmetic circuits with mul-

tiplication gates with large fan-out. This includes several important

settings, including protocols for secure distributed data analysis.

7.1 Secure Linear algebra
As mentioned above, vector OLE is directly applicable in settings

were OLE computations, i.e., secure multiplications, can be vector-
ized and thus computed by invoking several instances of vector

OLE. This is the case, for example, in matrix-vector multiplication,

as this operation can be computed, for a matrix of dimensions n×m,

bym invocations of length n vector OLE. Hence interesting settings

for our protocols are the ones where n is a lot larger thanm. This

corresponds to datasets with many records, and a limited number of

features per record, which are natural in the context of training and

evaluation of machine learning models, such as logistic regression.

Similarly, matrix convolutions operations, the main ingredient of

convolutional neural networks, rely on multiplying a small matrix

called kernel (common kernel sizes are 3 × 3, 5 × 5, and 9 × 9) in

a sliding fashion at each position of a input image (or layer input

for intermediate layers). This corresponds to a small number of

vector OLE computations of length the size of the image (which is

commonly 255 × 255).

A natural approach to distributed vector OLE is (vectorized)

Gilboa multiplication, as discussed in Section 2, and thus it has

been used as a way to precompute multiplication triples for MPC

in several works [21, 27, 43]. This approach requires linear commu-

nication and computation in the size of the matrix. In contrast our

Protocol 6 has sub-linear communication. In Section 8 we compare

these two approaches empirically, both in terms of communication

and computation.

7.1.1 Sparse matrix manipulations. As mentioned in the introduc-

tion, known-index MPFSS can also be seen as a type of “scatter”

vector operation. This functionality was presented by Schoppmann

et al. [50] under the name of “Scatter-Init”. In that setting, two

parties hold a share of a sparse vector, represented as a list of index-

value pairs for which one party knows the indices and the values

are additively shared. The goal is to securely convert the vector into

a dense representation, where it is represented as an array of shared

values of length the size of the domain of indices. This conversion

was used in the context of a sparse matrix multiplication protocol

that enables an efficient protocol for two-party secure gradient

descent on sparse training data. Schoppmann et al. [50] propose

a protocol for known-Index MPFSS based on full-blown FSS that

lacks an efficient batching strategy, and thus incurs O(ln) for a
length l sparse vector over a domain of indices of size n. The value
of l in their applications is such that that cost is prohibitive, while

11

our MPFSS only requires O(n) local computation and improves

significantly the efficiency of these functionalities.

7.2 Oblivious Polynomial Evaluation
The problem of oblivious polynomial evaluation (OPE) considers

the setting where one party, the server, has the coefficients of a

polynomial P(x) and a second party, the client, has an input z and
the goal of the protocol is to enable the client to learn P(z) without
learning anything more about the polynomial and without the

server learning anything about the input. OPE has applications to

privacy preserving set operations and data comparison, anonymous

initialization for metering and anonymous coupons [45]. The OPE

setting can be viewed as a generalization of the OLE problem to a

higher degree polynomial.

We show that we can implement the OPE protocol leveraging the

VOLE functionality. In order to this we use the OPE construction

introduced in the works of Naor and Pinkas [45] and Gilboa [29].

The idea of these constructions is to reduce the evaluation of a

degree n polynomial to n evaluations of linear polynomials, which

can be executed in parallel. Next we overview the main idea of

the reduction. Let P(x) = anx
n + · · · + a1x + a0 be a degree n

polynomial. It can be expressed as P(x) = xQ(x) + b0 where Q(x)
is a degree n − 1 polynomial. If the client and the server have

obtained respectively additive shares qC ,qS of the evaluation of

Q(x) = qC + qS , then P(x) = qCx + qSx + b0. If the server fixes its
share qS in advance, then the client’s share qC = Q(x)−qS = Q

′(x)
can be computed using oblivious polynomial evaluation of Q ′(x),
which is of degree n − 1 and its coefficients are known to the server.

Now P(x) = xQ ′(x) + P ′(x) where P ′(x) = qSx + b0 is a linear

polynomial. Therefore the OPE of P(x) reduces to the oblivious

evaluation of Q ′(x) and P ′(x), which can be done in parallel. By

induction we obtain that the evaluation of P(x) can be reduced

to the parallel evaluation of n linear polynomials of the forms

wi = Pi (x) = uix +vi for i ∈ [n]where the server knows the values
(ui ,vi)i ∈[n] and the client knows x and obtains {wi }i ∈[n]. These

corresponds to n OLE evaluations, with the crucial aspect that one

of the inputs is common to all of them. Hence an OPE of degree n
can be implemented with a single vector OLE computation where

the server has two vectors of length n: u and v, which consist of the

values {ui }i ∈[n] and {vi }i ∈[n] respectively, and the client obtains

w = ux + v, which contains the values {wi }i ∈[n].

7.3 Partially Private Distributed ORAM
Doerner and shelat [22] presented a distributed ORAM construction

that has asymptotically linear access time but achieves practically

very competitive concrete efficiency. This advantage is even more

pronounced in the RAM secure computation setting where this

ORAM construction is used for memory access and the access

queries are executed jointly by the two parties. The authors also

consider semi-private queries which consist of both data dependent

and data independent queries. In the latter type the parties know the

accessed index. For these types of queries the FLORAM construction

enables access in constant time.

We consider semi-private queries where the query index is

known only to one of the parties. This corresponds to situations

when data held by one party is indexed at private locations by the

other party. We show that in this setting we can use our SPFSS

construction and avoid having a Write-Only ORAM structure in

the overall construction.

First, we briefly overview the FLORAM construction [22]. The

ORAM in this construction consists of a Read-only ORAM, a Write-

Only ORAM and a stash. The Read-Only ORAM consists of en-

cryptions of the data under a key shared among the two parties.

Each party has a copy of the Read-Only ORAM. The two parties

execute an access query using a two server PIR construction based

on SPFSS to retrieve the corresponding data item. They generate

the distributed query running the distributed FSS key generation.

The Write-Only ORAM consists of two XOR shares of the database,

where each party holds one of the shares. It is updated with a write

for a new item again using an SPFSS which evaluates to a non-zero

value at the location of the write and this evaluation there is the

XOR of the old value and the new value. The stash contains all the

items that are currently in Write-Only ORAM. An ORAM access

that hides read and writes consists of one Read-Only ORAM access,

and one addition to the stash of the item that is written. Periodically

all the content of the Write-Only ORAM is moved to the Read-Only

ORAM using a special protocol with linear communication.

We observe that in setting of partially private queries where one

of the parties knows the access index we can use our distributed

only shared value FSS key generation presented in Section 4. This

results in an improvement in terms of round communication, as

the general SPFSS construction by Doerner and Shelat requires a

logarithmic number of rounds. In Section 8 we show empirically the

benefits of using our variant in the specific setting of semi-private

queries by comparing two implementations of these protocols. Our

results show improvements of up to an order of magnitude.

8 EXPERIMENTAL EVALUATION
8.1 Implementation and Setup
We implement all the protocols needed for Vector-OLE (Protocols 2,

3, 5, 6). Our implementation
1
is written in C++. For OT extension we

use EMP [53], for finite field computations we use NTL [51], and for

matrix multiplications needed in Protocol 6 we rely on Eigen [32].

We use AES to implement the PRG needed for Protocol 2. Just as the

FLORAM implementation of Doerner and shelat [22], we rely on

the Davies-Meyer construction [54] to avoid repeated expansions

of AES keys. We further interleave the setup and expansion phases

in our implementation, and therefore only report the total time in

each of our experiments.

All our experiments are done on Azure Dsv3 machines in the

same region, using 2.4 GHz Intel Xeon E5-2673 v3 CPUs. For our

comparisons against other protocols, we used a single thread. Note

that this does not penalize any protocol in particular, since their

local computations all parallelize well. To show the scalability

of our protocol, we also implement a parallel version of it using

OpenMP [16].

8.2 Parameter Selection
In our experiments, we use λ = 128 as the computational security

parameter. Following the analysis in [9, Section 5.1], we choose

1
Source code available at https://github.com/schoppmp/distributed-vector-ole.

12

https://github.com/schoppmp/distributed-vector-ole

n 2
14

2
16

2
18

2
20

2
22

2
24

t 192 382 741 1422 2735 5205

k 3482 7391 15336 32771 67440 139959

Table 1: Vector-OLE parameters we chose in our evaluation.
These were computed by Boyle et al. such that solving the
corresponding LPN instance requires at least 280 operations
using either low-weight parity check, Gaussian elimination,
or Information Set Decoding [9].

the parameters for Vector-OLE (i.e., number of noise indices t and
number of rows in the code matrix k) such that known attacks

on LPN require at least 2
80

arithmetic operations. The concrete

parameters depending on the vector size n are given in Table 1. To

instantiate the code generatorC ∈ Fk×n , we choose a local linear
code with d = 10 non-zeros per column, which is also suggested

by previous work on Vector-OLE from LPN [2, 9]. Finally, we rely

on the estimates in [20, Appendix B] to choose cuckoo hashing

parameters such that hashing of the t random indices fails with

probability at most 2
−40

, i.e., η = 40. For the values of t in Table 1

and κ = 3, this yields m = 1.5t . Those exact parameters have

also been used in a previous work that uses cuckoo hashing for

batching [1].

8.3 Results
8.3.1 Comparison of Known-Index SPFSS with FLORAM. First, we
compare our distributed Known-Index SPFSS variant (Protocol 3)

with the SPFSS implementation of Doerner and Shelat [22] in order

to demonstrate the efficiency gain we can obtain in settings where

the index might be known to one of the parties, e.g., semi-private

accesses. The results are shown in Figure 3. Our implementation

performs better for all vector lengths we tested. For short vectors,

this is not surprising given that our protocol does not require ex-

pensive garbled circuits, but only log(n) oblivious transfers. Even
for large vectors, where both protocols take time approximately

linear in n, our implementation remains very efficient, which is

made possible by the simplicity of our construction.

8.3.2 Vector-OLE computation. Wealsomeasure the time it takes to

generate a full Vector-OLE. Here, we compare our implementation

of Protocol 6 against three baselines. First, the approach proposed

in [9], i.e., using FLORAM’s FSS implementation in each bucket,

but using our probabilistic batch codes. Second, our variant of

MPFSS, but using naive batching by repeatedly evaluating over

the whole domain. And third, our own implementation of Gilboa’s

multiplication protocol [30]. We already heavily optimized this

second baseline. In particular, we employ all of the optimizations

from [43], and our time per single-element multiplication is lower

than the one reported in [43].

Figure 4 (left) shows a comparison of wall-clock running times of

all three approaches. First, it becomes obvious that using FLORAM

is not practical when compared to either of the alternatives. While

its asymptotic running time matches ours, it is consistently slower

by a large factor. Our second baseline, known-indices MPFSS with

naive batching, outperforms FLORAM for small vectors, but it is

214 216 218 220 222 224

Vector length n

0.01s

0.02s

0.05s

0.1s

0.2s

0.5s

1s

2s

5s

10s

R
un

ni
ng

Ti
m

e

SPFSS vs. FLORAM-FSS (computation)

FLORAM-FSS
SPFSS

Figure 3: Comparison of our single-point FSS variant (Sec-
tion 4) with the implementation of [22].

worse than both Gilboa and our VOLE in terms of asymptotics

as well as concrete efficiency. As for the third baseline, Gilboa’s

multiplication is faster than our protocol for vector lengths below

300k (finite fields) and 2M (integer rings). The large discrepancy

here is due to the fact that in addition to the reduced computational

overhead from the lack of modular reductions, using 64-bit integers

directly allows us to use correlated OT [3].

8.3.3 Communication Experiments. We also investigate the com-

munication overhead of both our VOLE implementation and Gilboa

multiplication. To that end, we artificially limit the bandwidth of

our machine to 100Mbit/s, which is about the download bandwidth

of a consumer household connection. We measure running time

and the number of bytes sent by both parties during the protocol

execution. The results are shown in Figure 4 (middle) and (right).

Compared to Figure 4 (left), the cutoff point where our protocol

outperforms Gilboa is lower, at about 200k for finite fields, and 400k

for integer rings.

8.3.4 Parallelization of VOLE. Finally, we investigate the effect of
parallelization on our VOLE protocol. Figure 5 shows the results for

n = 2
20
. With 8 threads we observe a speedup of about 5x, with 32

threads this increases to over 10x.While we did not run experiments

onmore than 32 cores, the slope of the plot suggests that the running

time can be further reduced with additional hardware parallelism.

9 CONCLUSION
Our work presents a new protocol for shared randomness gener-

ation in the form of a random vector oblivious linear evaluation,

which generates vectors with linear correlations. On the way to

our final construction we also developed several new protocols,

which are of independent interest, in the areas of random OT, pri-

vate puncturable PRFs, and function secret sharing for single and

multi-point functions with known indices. We showed how our

VOLE construction can be leveraged in the context of several secure

computation constructions, and compare them experimentally with

two alternatives.

A possible improvement can be found in our lowest-level prim-

itive, (n − 1)-out-of-n-ROT. While our construction is based on

13

214 216 218 220 222 224

Vector length n

0.01s

0.1s

1s

10s

1m

10m

1h

R
un

ni
ng

Ti
m

e

VOLE vs. Gilboa (10Gbit/s)

FLORAM-VOLE
Gilboa (NTL::zz p, 60)
Gilboa (uint64 t, 64)

MPFSS (Naive Batching)
VOLE (NTL::zz p, 60)
VOLE (uint64 t, 64)

214 216 218 220 222 224

Vector length n

0.01s

0.1s

1s

10s

1m

10m

1h

R
un

ni
ng

Ti
m

e

VOLE vs. Gilboa (100Mbit/s)

214 216 218 220 222 224

Vector length n

107

108

109

1010

B
yt

es
se

nt
by

bo
th

pa
rt

ie
s

VOLE vs. Gilboa (communication)

Figure 4: (Left) running time of our Vector-OLE implementation (VOLE) for generating a single random Vector-OLE. We com-
pare against three baselines: A variant using our batching techniques, but the DPF implementation proposed by Boyle et al. [9],
which is also used in FLORAM [22]; our known-indices MPFSS, but using naive batching (cf. Section 5); and Gilboa multipli-
cation [30], which is also commonly used in the literature to implement two-party multiplications [21, 43]. We also compare
two multiplication types: a 60-bit finite field (NTL::zz_p), and a 64-bit integer ring (uint64_t). It can be seen that VOLE out-
performs the first two baselines, and is faster than Gilboa for vector lengths above 300k (prime field) and 2M (integer ring).
(Middle) running time of our VOLE and Gilboa multiplication in a bandwidth-constrained setting. Here, our implementation
is already more efficient for much smaller vectors, at 200k in the prime field, and 400k in the integer ring. (Right) communi-
cation overhead of our Vector-OLE and Gilboa multiplication. The cutoff points where our implementation outperforms the
baseline are similar to the running time plot in the middle.

1 2 4 8 16 32
Number of threads

0.5s

1s

2s

5s

10s

R
un

ni
ng

Ti
m

e

E�ect of parallelism on VOLE (computation)

VOLE (NTL::zz p, 60), n = 220

VOLE (uint64 t, 64), n = 220

Figure 5: Running time of a Vector-OLE with varying num-
ber of threads.

GGM trees with arbitrary arity, our implementation is limited to

binary trees and 1-out-of-2-OT. We believe that using efficient

(k − 1)-out-of-k-OT sub-protocols from homomorphic encryption

for larger k , we can gain additional concrete efficiency.

In terms of asymptotics, to our knowledge, ours is the first imple-

mentation of Vector OLE with sub-linear communication. However,

it does not reach the asymptotical guarantees that alternative con-

structions (in particular the dual version by Boyle et al.) provide,

namely poly-logarithmic communication. This is due to the lack

of concretely efficient, LPN-friendly encoding schemes, and we

believe that if such encoding schemes become available, our imple-

mentation can yield poly-logarithmic communication complexity

while staying concretely efficient.

ACKNOWLEDGMENTS
We would like to give special thanks to Benny Pinkas for his help

during the development of this paper. We also thank Geoffroy

Couteau and Mike Rosulek for helpful discussions. Adrià Gascón’s

work on this paper was done while at The Alan Turing Institute,

supported by EPSRC grant EP/N510129/1, and funding from the

UK Government’s Defence & Security Programme in support of

the Alan Turing Institute.

REFERENCES
[1] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with

Compressed Queries and Amortized Query Processing. In IEEE Symposium on
Security and Privacy. IEEE, 962–979.

[2] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.

2017. Secure Arithmetic Computation with Constant Computational Overhead.

In CRYPTO (1). Springer, 223–254.
[3] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation.

In CCS. ACM, 535–548.

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2015.

More Efficient Oblivious Transfer Extensions with Security for Malicious Adver-

saries. In EUROCRYPT (1). Springer, 673–701.
[5] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.

In CRYPTO. Springer, 420–432.
[6] Donald Beaver. 1996. Correlated Pseudorandomness and the Complexity of

Private Computations. In STOC. ACM, 479–488.

[7] Avrim Blum, Adam Kalai, and Hal Wasserman. 2003. Noise-tolerant learning, the

parity problem, and the statistical query model. J. ACM 50, 4 (2003), 506–519.

[8] Dan Boneh, Kevin Lewi, and David J. Wu. 2017. Constraining Pseudorandom

Functions Privately. In Public Key Cryptography (2). Springer, 494–524.
[9] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. 2018. Compressing

Vector OLE. In CCS. ACM, 896–912.

[10] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter

Scholl. 2019. Efficient PseudorandomCorrelation Generators: Silent OT Extension

and More. In CRYPTO (3). Springer, 489–518.
[11] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function Secret Sharing. In

EUROCRYPT (2). Springer, 337–367.
[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improve-

ments and Extensions. In CCS. ACM, 1292–1303.

[13] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-

cols. J. Cryptology 13, 1 (2000), 143–202.

14

[14] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Intersection from

Homomorphic Encryption. In CCS. ACM, 1243–1255.

[15] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private

Information Retrieval. In FOCS. IEEE Computer Society, 41–50.

[16] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry-standard API

for shared-memory programming. Computing in Science & Engineering 1 (1998),

46–55.

[17] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority - Or:

Breaking the SPDZ Limits. In ESORICS. Springer, 1–18.
[18] Ivan Damgård and Sunoo Park. 2012. Is Public-Key Encryption Based on LPN

Practical? IACR Cryptology ePrint Archive (2012), 699.
[19] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Mul-

tiparty Computation from Somewhat Homomorphic Encryption. In CRYPTO.
Springer, 643–662.

[20] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. 2018. PIR-PSI: Scaling

Private Contact Discovery. PoPETs 2018, 4 (2018), 159–178.
[21] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS. The
Internet Society.

[22] Jack Doerner and abhi shelat. 2017. Scaling ORAM for Secure Computation. In

CCS. ACM, 523–535.

[23] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto

Trifiletti. 2017. TinyOLE: Efficient Actively Secure Two-Party Computation from

Oblivious Linear Function Evaluation. In CCS. ACM, 2263–2276.

[24] Nico Döttling, Daniel Kraschewski, and JörnMüller-Quade. 2012. David &Goliath

Oblivious Affine Function Evaluation - Asymptotically Optimal Building Blocks

for Universally Composable Two-Party Computation from a Single Untrusted

Stateful Tamper-Proof Hardware Token. IACR Cryptology ePrint Archive (2012),
135.

[25] Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. 2016.

Efficient Set Intersection with Simulation-Based Security. J. Cryptology 29, 1

(2016), 115–155.

[26] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-

word Search and Oblivious Pseudorandom Functions. In TCC. Springer, 303–324.
[27] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,

Samee Zahur, and David Evans. 2017. Privacy-Preserving Distributed Linear

Regression on High-Dimensional Data. PoPETs 2017, 4 (2017), 345–364.
[28] Satrajit Ghosh and Tobias Nilges. 2019. An Algebraic Approach to Maliciously

Secure Private Set Intersection. In EUROCRYPT (3). Springer, 154–185.
[29] Niv Gilboa. [n. d.]. Private Communication.

[30] Niv Gilboa. 1999. Two Party RSA Key Generation. In CRYPTO. Springer, 116–129.
[31] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How to construct

random functions. J. ACM 33, 4 (1986), 792–807.

[32] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

[33] Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof

Pietrzak. 2012. Lapin: An Efficient Authentication Protocol Based on Ring-LPN.

In FSE. Springer, 346–365.
[34] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious

Transfers Efficiently. In CRYPTO. Springer, 145–161.
[35] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2004. Batch codes

and their applications. In STOC. ACM, 262–271.

[36] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography (2

ed.). Chapman and Hall/CRC Press.

[37] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. In CCS. ACM, 830–842.

[38] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ

Great Again. In EUROCRYPT (3). Springer, 158–189.
[39] Joe Kilian. 1988. Founding Cryptography on Oblivious Transfer. In STOC. ACM,

20–31.

[40] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. 2009. More Robust Hash-

ing: Cuckoo Hashing with a Stash. SIAM J. Comput. 39, 4 (2009), 1543–1561.
[41] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-

ficient Batched Oblivious PRF with Applications to Private Set Intersection. In

CCS. 818–829.
[42] Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao’s Protocol for

Two-Party Computation. J. Cryptology 22, 2 (2009), 161–188.

[43] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-PreservingMachine Learning. In IEEE Symposium on Security and Privacy.
IEEE Computer Society, 19–38.

[44] Moni Naor and Benny Pinkas. 1999. Oblivious Transfer and Polynomial Evalua-

tion. In STOC. ACM, 245–254.

[45] Moni Naor and Benny Pinkas. 2006. Oblivious Polynomial Evaluation. SIAM J.
Comput. 35, 5 (2006), 1254–1281.

[46] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. J. Algorithms
51, 2 (2004), 122–144.

[47] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster Private Set

Intersection Based on OT Extension. In USENIX Security Symposium. USENIX

Association, 797–812.

[48] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2018. Scalable Private

Set Intersection Based on OT Extension. ACM Trans. Priv. Secur. 21, 2 (2018).
[49] Michael O. Rabin. 1981. How To Exchange Secrets with Oblivious Transfer. TR-81

edition, Aiken Computation Lab, Harvard University (1981).

[50] Phillipp Schoppmann, Adrià Gascón, Mariana Raykova, and Benny Pinkas. 2019.

Make Some ROOM for the Zeros: Data Sparsity in Secure Distributed Machine

Learning. In CCS. ACM.

[51] Victor Shoup et al. 2001. NTL: A library for doing number theory. https://www.

shoup.net/ntl.

[52] AbrahamWaksman. 1968. A Permutation Network. J. ACM 15, 1 (1968), 159–163.

[53] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty computation toolkit. https://github.com/emp-toolkit.

[54] Robert S. Winternitz. 1984. A Secure One-Way Hash Function Built from DES. In

IEEE Symposium on Security and Privacy. IEEE Computer Society, 88–90.

[55] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In FOCS. IEEE Computer Society, 162–167.

A SECURITY PROOFS
In this section, we will prove security of all our main constructions,

that is, Protocols 2, 3, and 4. We do not provide a full proof for

Protocol 6, but as we discuss in Section 6, this proof can be obtained

directly by taking the one given by Boyle et al. [9] and replacing

their MPFSS construction by ours. As described in Section 2.6, we

split our proofs in three phases, i.e., we (i) define correctness and

security requirements, (ii) define ideal functionalities that satisfy

these requirements, and (iii) prove our key generation protocols

securely implement the ideal functionalities.

We note that our definitions are also closely related to the Pseudo-

randomCorrelation Generators (PCGs) of Boyle et al. [10]. However,

as our key generators take additional argument beyond the security

parameter, we cannot use their definition out-of-the-box. Still, our

(n − 1)-out-of-n-ROT is defined in a similar way as PCGs. For our

FSS variants, we stick to pure simulation-based proofs using Defini-

tion 2.2, which ensures they cen be used as a drop-in replacement

for the constructions of Boyle et al. [9].

A.1 (n − 1)-out-of-n-ROT
Definition A.1 (Pseudorandom (n − 1)-out-of-n-OT Generator). A

pseudorandom (n−1)-out-of-n-OT generator for a groupG consists

of the following two algorithms:

• (K1,K2) ← ROT.Gen(1λ,n, i) - Outputs two keys when

given an output size n and a single index i ∈ [n].

• vb ← ROT.Expand(b,Kb) - Given an evaluation key Kb for

b ∈ {1, 2}, outputs a vector of length n.

Here, λ ∈ N denotes a security parameter. Additionally, the follow-

ing properties must hold:

Correctness. For any n ∈ N and i ∈ [n], any pair (K1,K2) in the

image of ROT.Gen(1λ,n, i), and vb ← ROT.Expand(b,Kb)
for b ∈ {1, 2}, we have that v1 is computationally indistin-

guishable from a uniformly random vector from Gn , and
v1j = v

2

j for all j ∈ [n] \ {i}.

Security. There are ppt simulators Simb for b ∈ {1, 2} such that

for any n ∈ N and i ∈ [n],{
K1

���� (K1,K2)
R
← ROT.Gen(1λ,n, i),

}
c
≈{

K1

����K1

R
← Sim1(1

λ,n)

}
, (2)

15

http://eigen.tuxfamily.org
https://www.shoup.net/ntl
https://www.shoup.net/ntl
https://github.com/emp-toolkit

Functionality 7: n − 1-out-of-n-ROT
Public Parameter: k
Key Generation (ROT.Gen(1λ,n, i)):
(1) Run steps (1) and (2) from Protocol 2 as P1 to obtain a

k-ary GGM tree T with root s0 and depth α = logk (n),
using seeds of size λ.

(2) For each level l ∈ [α], let (p1, . . . ,pk l) be the seeds of the
lth level of T , and for each j ∈ [k] \ {bl }, compute

ql , j ←
⊕

s ∈{px : x ≡ j mod k }

s .

(3) Let (b1, . . . ,bα) be a k-ary encoding of i − 1. Return
K1 ← s0 and K2 ←

(
i, (ql , j)l ∈[α], j ∈[k]\{bl }

)
.

Expansion (ROT.Expand(b,Kb)):
Let α = logk (n).

• If b = 1, compute the GGM tree T = T (Kb ,α) and output

the n leaves of T .
• If b = 2, parse Kb as

(
i, (ql , j)l ∈[α], j ∈[k]\{bl }

)
, where

(b1, . . . ,bα) is a k-ary encoding of i − 1. Then run steps

(5) and (7) of Protocol 2 as P2.

and{
K2,v

1

i

����� (K1,K2)
R
← ROT.Gen(1λ,n, i),

v1 ← ROT.Expand(1,K1)

}
c
≈{

K2,v
1

i

����K2

R
← Sim2(1

λ,n, i),v1i
R
← G

}
. (3)

Informally, the above security definition ensures that P1 does not

learn anything about i , while P2 does not learn anything about v1i ,
i.e., the random value it chooses not to receive, beyond the fact that

it is random.

Theorem A.2. Functionality 7 is a pseudorandom generator for
(n − 1)-out-of-n-OT.

Proof. Correctness. First, observe that a GGM tree T with n
leaves and initial seed s0 implements a PRF Fs0 : [n] → {0, 1}

λ
with

key s0, where Fs0 (j) is the j-th leaf of T [31, 36]. Since s0 is chosen
uniformly at random, v1 ← ROT.Expand(1,K1) =

(
Fs0 (j)

)
j ∈[n] is

indistinguishable from a vector drawn uniformly at random from

Gn . Second, observe that in ROT.Expand(2,K2) in Functionality 7,

all seeds of sub-trees ofT that do not lie on the path to the i-th leaf

are recovered. Since the expansion of G is deterministic, all leaves

of these sub-trees are equal to the corresponding leaves in T , and
therefore v1j = v

2

j for all j ∈ [n] \ {i}.

Security. We construct simulators Simb for b ∈ {1, 2} as follows.

b = 1. Sample a random seed s ′
0
∈ {0, 1}λ and output s ′

0
. Indistin-

guishability of the two sides in Eq. (2) follows immediately

as K1 on the left hand side is also sampled uniformly from

{0, 1}λ .

b = 2. Let α = logk (n), and let (b1, . . . ,bα) be a k-ary encoding of

i−1. Construct a partial GGM tree by following the path from

the root to the i-th leaf, sampling uniformly random seeds for

all siblings of nodes on that path, and expanding them using

the GGM construction. Now, for each level l ∈ [α] and each

j ∈ [k] \ {bl }, compute q′l , j as in Step (2) of Functionality 7,

and output K ′
2
←

(
i, (q′l , j)l ∈[α], j ∈[k]\{bl }

)
.

We will now show the indistinguishability of the two sides

of Eq. (3) using a hybrid argument. We construct α +1 hybrid
distributions by successively modifying ROT.Gen as follows.

LetH0
be the left-hand side of Eq. (3), and let (p1, . . . ,pα)

denote the nodes on the path from the root to the i-th leaf of

the GGM tree generated in ROT.Gen. Now, for each l ∈ [α],
constructH l

fromH l−1
by replacing the result of the PRG

expansion of pl by k uniformly random strings from {0, 1}λ ,

and proceeding normally from then on to compute K ′
2
. Note

that neitherH l−1
norH l

contain pl , but both contain at least

one of the children. Thus, any distinguisher betweenH l−1

and H l
could be used to distinguish the output of a PRG

from random. Now, by construction of Sim2 above, H
α
is

precisely the right-hand side of Eq. 3 which concludes the

security proof.

□

What remains to be shown is that the key generation of Proto-

col 2 securely implements Functionality 7. We reduce this to the

security of the (k − 1)-out-of-k-OT sub-protocol used in Protocol 2.

Theorem A.3. Steps (1) – (4) of Protocol 2 implement Functional-
ity 7 in the (k − 1)-out-of-k-OT-hybrid model with security against
semi-honest adversaries.

Proof. For each b ∈ {1, 2}, we construct a simulator Simb for

the view of Pb in the (k − 1)-out-of-k-OT-hybrid model.

b = 1. Since P1 does not receive any messages in Protocol 2, Sim1

is the identity function. Since the computation performed

is the same in Protocol 2 and Functionality 7, the simulated

and real views are identically distributed.

b = 2. Here, in addition to the outputs of the ideal functionality,

P2 receives the outputs of the OTs in Step (4). However, note

that these are directly passed through to P2’s output and are

therefore trivially simulatable. Since the values computed

in Step (2) of Functionality 7 are precisely the ones selected

by the OT functionality, the two views are again identically

distributed.

□

We can now compose Protocol 2 with any (k − 1)-out-of-k-OT
protocol using a standard modular composition theorem, as for

example given by Canetti [13], thus obtaining a secure protocol in

the plain model.

A.2 Known-Index SPFSS
Here, we define out Known-Index SPFSS as an instance of Defini-

tion 2.2 from the preliminaries section.

Definition A.4 (Known-Index SPFSS). Let F = { fi ,β : [n] → G}
denote a class of point functions, where for all x ∈ [n],

fi ,β =

{
β if x = i,
0 otherwise.

A Known-Index Single-Point Function Secret Sharing (Known-Index
SPFSS) scheme is a FSS scheme for F , where Leak1(fi ,β) = (I ,G)

16

Functionality 8: Known-Index SPFSS

Key Generation (SPFSS.Gen(1λ, fi ,β)):
Let [n] denote the domain of fi ,β .

(1) Generate keys for a (n − 1)-out-of-n-ROT scheme(
KROT
1
,KROT

2

)
← ROT.Gen(1λ,n, i).

(2) Compute v1 = ROT.Expand(1,K1) and r̃ = β −v1i .

(3) Output K1 = KROT
1

and K2 =
(
KROT
2
, r̃
)
.

Expansion (SPFSS.Eval(b,Kb , x)):
Let G denote the image of fi ,β .

• If b = 1, compute v1 ← ROT.Expand(1,K1) and output

v1x .

• If b = 2, parse K2 as

(
KROT
2
, r̃
)
. Note that KROT

2
contains

the non-zero index i . If x = i , output r̃ . Otherwise,
compute v2 ← ROT.Expand

(
2,KROT

2

)
and output −v2x .

and Leak2(fi ,β) = (I ,G, i), i.e., we allow the recipient of K2 to

additionally learn the non-zero index i (but not the value β).

In Functionality 8, we define key generation and evaluation pro-

cedures for our known-index FSS scheme. We will now prove that

this functionality indeed satisfies Definition A.4, and that Protocol 3

implements the key generation phase securely.

Theorem A.5. Functionality 8 is a Known-Index Single-Point
Function Secret Sharing scheme.

Proof. Correctness. For any j ∈ [n] \ {i}, the correctness of the
ROT scheme guarantees thatv1j = v

2

j , and hence SPFSS.Eval(1,K1, j)+

SPFSS.Eval(2,K2, j) = v1j − v
2

j = 0. On the other hand, for j = i ,

we have SPFSS.Eval(1,K1, j) + SPFSS.Eval(2,K2, j) = v1i + r̃ =

v1i + β −v
1

i = β .
Security. We construct the following simulators Simb for b ∈

{1, 2}, assuming simulators SimROT
b for the random OT scheme

used.

b = 1. Output SimROT
1
(1λ,n). Indistinguishability follows fromEq. (2)

in Definition A.1.

b = 2. Sample r
R
← G and output

(
SimROT

2
(1λ,n, i), r

)
. Note that

this distribution is the same as the right side of Eq. (3). There-

fore, any distinguisher of the two sides of Eq. (1) could be

used to distinguish the distributions in Eq. (3) by choosing a

β ← G and replacing v1i in Eq. (3) by β −v1i .

□

Theorem A.6. Steps (1)–(6) in Protocol 3 together implement
SPFSS.Gen(1λ, fi ,β) from Functionality 8 with security against semi-
honest adversaries, where i is input by P2 and β is secret-shared
between the two parties.

Proof. We first prove that Protocol 3 is secure in the (n −
1)-out-of-n-ROT-hybrid model when all calls to ROT.Gen are per-

formed by the ideal Functionality 7. We construct simulators Simb
for b ∈ {1, 2} for the views of both parties in the ideal model.

b = 1. The only messages received by P1 come from the execution

of ROT.Gen, and thus Sim1 is the identity function.

b = 2. Here, in addition to the output of ROT.Gen, P2 receives Rβ .
Simulate this with β2− r̃ +

∑
j ∈[n]\{i } SPFSS.Eval(2,K2, j). In

the (n − 1)-out-of-n-ROT-hybrid model, this simulated view

is distributed identically to the real view.

To prove security in the plain model, we again use the modular com-

position theorem for semi-honest security together with a secure

protocol for ROT.Gen, as proven in Theorem A.3 □

A.3 Known-Indices MPFSS
We will now prove security of our batched FSS implementation.

However, as discussed in Section 5, there is a small probability that

the batching fails (note that this is also the case for the heuristic

batch code construction suggested by Boyle et al. [9]). Here we

have two options if batching fails: We could abort the key genera-

tion, sacrificing security as this leaks some information about the

non-zero indices that failed to be batched; or we could sacrifice

correctness by returning keys that will result in shares of zeros for

some indices that should be non-zero. Both are valid approaches

depending on the concrete application, as also discussed in [1, 14].

For our VOLE construction, we will opt for the second choice, since

this will allow us to achieve the same security guarantee as Boyle

et al. [9], i.e., our scheme is either secure under standard LPN (if

batching succeeds), or under a slightly stronger variant of LPN (if

batching fails). See also the discussion in Section 6. We will not

mention this explicitly in the following definitions and proofs, but

whenever cuckoo hashing is performed, we assume that failures are

handled by dropping indices that would result in a hashing failure.

Definition A.7 (Known-Indices MPFSS). For any t,n ∈ N, let F ={
fi,β : [n] → G

}
be a class of multi-point functions, where i ∈ [n]t ,

β ∈ Gt , and

fi,β (x) =

{
βj if x = i j for some j ∈ [t],
0 otherwise.

Let furtherη, λ ∈ N denote statistical and computational security pa-

rameters, respectively. A Known-Indices Multi-Point Function Secret
Sharing (Known-Indices MPFSS) scheme consists of the following

two algorithms:

• (K1,K2) ← MPFSS.Gen(1λ,η, f) – given a description of

f ∈ F , outputs two keys.

• fb (x) ← MPFSS.Eval(b,Kb , x) – given a key for party b ∈
{1, 2} and an input x ∈ [n], return a share of f (x).

Where the following properties have to be satisfied:

Correctness. For any f ∈ F , and any x ∈ I , when (K1,K2) ←

MPFSS.Gen(1λ,η, f), we have

Pr

[∑
b ∈{1,2}

MPFSS.Eval(b,Kb , x) = f (x)

]
≥ 1 − 2−η .

Security. For anyb ∈ {1, 2}, there exists a ppt simulator Simb such

that for any polynomial-size function sequence fλ ∈ F ,{
Kb

��� (K1,K2) ← MPFSS.Gen(1λ,η, fλ)
} c
≈{

Kb ← Simb (1
λ,η, Leakb (fλ))

}
, (4)

where Leak1(fi,β) = ([n],G) and Leak2(fi,β) = ([n,G], i).
17

Functionality 9: Known-Indices MPFSS

Key Generation (MPFSS.Gen(1λ,η, fi,β)):
Let [n] denote the domain of fi,β , and t the number of

non-zero points.

(1) Choose parameters (κ,m) ← ParamGen(n, t,η) for a
cuckoo hashing scheme such that hashing any t indices
from [n] fails with probability at most 2

−η
.

(2) Perform Steps (1) and (2) from Protocol 4, i.e., choose κ
random hash functions and use them to insert

(i1, . . . , it) into a cuckoo hash table T , and simple-hash

the domain [n]. Let posl be defined as in Protocol 4.

(3) Let u =
(
(βj , lj)

)
j ∈[t], where lj is the location of i j in T .

Compute v ∈ Gm , where

vj =

{
a if (a, j) ∈ u,
0 otherwise.

(4) Call SPFSS.Genm times as in Step (4) from Protocol 4 to

obtainm sets of keys

((
K l
1
,K l

2

))
l ∈[m]

(5) Output Kb =
((
hp

)
p∈[κ],

(
K l
b
)
l ∈[m]

)
for b ∈ {1, 2}.

Expansion (MPFSS.Eval(b,Kb , x)):
Parse Kb as

((
hp

)
p∈[κ],

(
K l
b
)
l ∈[m]

)
and output∑κ

p=1 SPFSS.Eval
(
b,K

hp (x)
b , poshp (x)(x)

)
.

Note that the security guarantee of Definition A.7 is the same as

in Definition 2.2. Themain difference is in the correctness guarantee,

where we allow the output to be incorrect with a small probability

depending on the statistical security parameter η.
Functionality 9 describes our MPFSS procedure. We will now

prove its correctness and security guarantees according to Defini-

tion A.7.

Theorem A.8. Functionality 9 is a Known-Index MPFSS scheme.

Proof. Correctness. First, observe that the parameters for cuckoo

hashing are chosen in Step (1) such that insertion fails with prob-

ability of at most 2
−η

. Thus, it remains to show in the case that

cuckoo hashing succeeds,

fi,β (x) =
∑

b ∈{1,2}

MPFSS.Eval(b,Kb , x)

=
∑

b ∈{1,2}

κ∑
p=1

SPFSS.Eval
(
b,K

hp (x)
b , poshp (x)(x)

)
=

κ∑
p=1

дhp (x)(poshp (x)(x))

where дl (x) is defined as in Step (4) of Protocol 4. There are two

cases.

(1) x = i j for some j ∈ [t]. Then, since cuckoo hashing was

successful, for exactly one p∗ ∈ [κ], T
[
hp∗ (x)

]
= x . Let

l∗ = hp∗ be the location of x in T . Then дl ∗ (posl ∗ (x)) = βj ,

while дl (posl (x)) = 0 for all l ∈
{
hp (x)

��p ∈ [κ] \ {p∗}}.

(2) x < i. Then for all possible locations l ∈
{
hp (x)

��p ∈ [κ]},
T [l] , x and thus дl (posl (x)) = 0.

Security.We construct simulators Simb for b ∈ {1, 2} by calling

simulators SimSPFSS.Gen
b for the SPFSS key generation algorithm

used in Step (4) of Functionality 9.

Both simulators start by computing (κ,m) ← ParamGen(n, t,η)
and samplingκ random hash functions (hp)p∈[κ]. They then simple-

hash the domain [n], resulting inm buckets of sizes (Il)l ∈[m].

b = 1. For each bucket l ∈ [m], call SimSPFSS.Gen
1

(1λ, Il ,G) to ob-

tain keys

(
K l
1

)
. Output

((
hp

)
p∈[κ],

(
K l
1

)
l ∈[m]

)
. Indistinguisha-

bility of the distributions in Eq. (4) follows from the fact

that the hp (and therefore the bucket sizes Il) are identically
distributed, and for each bucket the simulated keys are in-

distinguishable from the real ones due to the security of the

SPFSS.Gen procedure (Eq. (1)).

b = 2. Construct a cuckoo hash table T of sizem using the hash

functions (hp)p∈[κ] and i1, . . . , it as in Step (2) of Func-

tionality 9. Now for each bucket l ∈ [m], compute K l
2
←

SimSPFSS.Gen
1

(
1
λ, Il ,G, posl (T [l])

)
and output

((
hp

)
p∈[κ],(

K l
2

)
l ∈[m]

)
. Again, indistinguishability follows from the fact

that both views are identically distributed up to and includ-

ing the creation of T , and then from the fact that the simu-

lated and real keys for each bucket are indistinguishable by

Eq. (1).

□

TheoremA.9. Protocol 4 implementsMPFSS.Gen(1λ,η, fi,β) from
Functionality 9 with security against semi-honest adversaries, where i
is input by P2 and β is secret-shared element-wise between the parties.

Proof. We will first prove security assuming an ideal func-

tionalities SPFSS.Gen (Functionality 8) for SPFSS key generation,

and F 2PC
for generic two-party computation. Then we again rely

on modular composition to obtain a protocol in the plain model.

We construct simulators Simb for the the views of both parties

b ∈ {1, 2}. Both simulators perform simple hashing to obtain bucket

sizes consistent with the keys from the ideal output. Then, the sim-

ulation depends on b:

b = 1. The only messages Sim1 needs to simulate are the outputs

of F 2PC
, which by construction are equal to the inputs to

the calls to SPFSS.Gen, since all other messages received by

P1 are part of the output. Since by definition, v1 in Step (3)

of Protocol 4 is a random share, this can be simulated by

sampling v1
R
← G. The resulting view is identical to the one

in the (SPFSS.Gen, F 2PC
)-hybrid model.

b = 2. Sim2 needs to first perform cuckoo hashing to generate a

hash table T consistent with the input indices i and hash

functions from the ideal output. It can then call F 2PC
with

a uniform vector v1
R
← G as above. The inputs to each

SPFSS.Gen call are computed from T as in Step (4) of Proto-

col 4. The resulting view is again identical to the one in the

(SPFSS.Gen, F 2PC
)-hybrid model.

□

18

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Oblivious Transfer
	2.2 Cuckoo Hashing
	2.3 Function Secret Sharing
	2.4 Vector OLE
	2.5 LPN Assumption
	2.6 Definitions, Functionalities, and Secure Two-Party Protocols

	3 (n-1)-out-of-n Random OT
	4 Known-Index SPFSS
	5 Known-Indices MPFSS via Cuckoo Hashing
	5.1 Batching Known-Index SPFSS

	6 Distributed Pseudorandom VOLE from Multi-Point FSS
	7 Applications
	7.1 Secure Linear algebra
	7.2 Oblivious Polynomial Evaluation
	7.3 Partially Private Distributed ORAM

	8 Experimental Evaluation
	8.1 Implementation and Setup
	8.2 Parameter Selection
	8.3 Results

	9 Conclusion
	Acknowledgments
	References
	A Security Proofs
	A.1 (n-1)-out-of-n-ROT
	A.2 Known-Index SPFSS
	A.3 Known-Indices MPFSS

