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Abstract

We propose a simple and powerful new approach for secure computation with input-independent
preprocessing, building on the general tool of function secret sharing (FSS) and its efficient in-
stantiations. Using this approach, we can make efficient use of correlated randomness to compute
any type of gate, as long as a function class naturally corresponding to this gate admits an effi-
cient FSS scheme. Our approach can be viewed as a generalization of the “TinyTable” protocol
of Damg̊ard et al. (Crypto 2017), where our generalized variant uses FSS to achieve exponential
efficiency improvement for useful types of gates.

By instantiating this general approach with efficient PRG-based FSS schemes of Boyle et
al. (Eurocrypt 2015, CCS 2016), we can implement useful nonlinear gates for equality tests,
integer comparison, bit-decomposition and more with optimal online communication and with
a relatively small amount of correlated randomness. We also provide a unified and simplified
view of several existing protocols in the preprocessing model via the FSS framework.

Our positive results provide a useful tool for secure computation tasks that involve secure in-
teger comparisons or conversions between arithmetic and binary representations. These arise in
the contexts of approximating real-valued functions, machine-learning classification, and more.

Finally, we study the necessity of the FSS machinery that we employ, in the simple context of
secure string equality testing. First, we show that any “online-optimal” secure equality protocol
implies an FSS scheme for point functions, which in turn implies one-way functions. Then, we
show that information-theoretic secure equality protocols with relaxed optimality requirements
would follow from the existence of big families of “matching vectors.” This suggests that proving
strong lower bounds on the efficiency of such protocols would be difficult.
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1 Introduction

The power of correlated randomness in secure computation has recently been an active area of
research. In the setting of secure computation with preprocessing, two or more parties receive
correlated random inputs from a trusted dealer in an offline phase, before the inputs are known. In
a subsequent online phase, once the inputs are known, the parties use this correlated randomness
to obtain significant speedup over similar protocols in the plain model, either unconditionally or
under weaker cryptographic assumptions. Alternatively, in the absence of a trusted dealer, the
correlated randomness can be generated via an interactive secure protocol that is executed offline,
before the inputs are known, and only the outputs of this protocol need to be stored for later use.
For simplicity, we focus in this work on the case of secure two-party computation with security
against semi-honest adversaries.1

Originating from the work of Beaver [2], who showed how to use “multiplication triples” for
secure arithmetic computation with no honest majority, many current protocols for secure computa-
tion make extensive use of correlated randomness. Commonly used types of two-party correlations
include garbled circuit correlations, OT and OLE correlations, multiplication (“Beaver”) triples
and their authenticated version, and one-time truth-tables [2, 4, 15, 23, 14, 12].

Motivated by secure computation applications that involve integer comparisons or conversions
between arithmetic and boolean values, we introduce a simple and powerful new approach for
secure computation in the preprocessing model. Our approach is based on the general tool of
function secret sharing (FSS) [8] and its efficient instantiations from any pseudorandom generator.
Informally, a (2-party) FSS scheme splits a function f : Gin → Gout from a function class F , where
Gin and Gout are finite Abelian2 groups, into two functions, f0 and f1, such that (1) each fσ is
represented by a compact key kσ that allows its efficient evaluation; (2) each key kσ hides the
function f ; and (3) for any input x ∈ Gin we have f(x) = f0(x) + f1(x).

The idea in a nutshell. Our FSS-based approach for secure computation with preprocessing is
very simple. Denote the two parties by P0 and P1. We represent the function being evaluated as
a circuit C, in which inputs internal wires take values from (possibly distinct) groups. The circuit
nodes are labeled by gates, where each gate g maps an input from a group Gin into an output from
a group Gout. Note that we can use product groups to capture a gate with multiple input or output
wires. To securely evaluate C in the preprocessing model, the dealer generates and distributes the
following type of correlated randomness. First, for every wire j in C, the dealer picks a random
mask rj from the corresponding group. Each party Pσ receives the random masks of the input wires
it owns. The online phase evaluates the circuit gate-by-gate in a topological order, maintaining
the following invariant: for every wire value wj in C, both parties learn the masked value wj + rj .
This is easy to achieve at the inputs level: if input xi is owned by party Pσ, this party can simply
compute and send xi + ri to the other party.

The key idea is the following FSS-based gate evaluation procedure. For each gate g : Gin → Gout,
the dealer uses an FSS scheme for the class of offset functions G that includes all functions of the
form grin,rout(x) = g(x − rin) + rout. If the input to gate g is wire i and the output is wire j, the

1Our techniques naturally generalize to the multi-party setting, though typically with reduced efficiency benefits
over alternative approaches. Moreover, most of our protocols can be extended to the malicious security model by
employing simple authentication techniques (as in [4, 15]).

2Unlike previous applications of FSS, here it is important that the input domain additionally be endowed with
group structure. From here on, the term “group” will always refer to a finite Abelian group.
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dealer uses the FSS scheme for G to split the function gri,rj into two functions with keys k0, k1, and
delivers each key kσ to party Pσ. Now, evaluating their FSS shares on the common masked input
wi + ri, the parties obtain additive shares of the masked output wj + rj , which they can exchange
and maintain the invariant for wire j. Finally, the outputs are reconstructed by having the dealer
reveal to both parties the masks of the output wires.

The above protocol is not only simple, but in a sense is implicit in the literature. It can be
viewed as a generalization of the “TinyTable” protocol of Damg̊ard et al. [14], where the novel idea
is to use efficient FSS for achieving exponential compression (and speedup3) for natural types of
gates that are useful in applications. We discuss several useful instances of this approach below.

While the correlated randomness in the above protocol depends on the topology of C, we
also present a circuit-independent variant where the input and output masks of different gates are
independent of each other. In this variant, for each gate g the dealer chooses additive rin offsets
only for the input wires of g, and provides FSS shares for the function grin,0(x) = g(x − rin) + 0,

together with additive shares of rin. During the online phase, the parties can “match up” the offsets
for adjacent gates, and non-interactively emulate FSS shares of grin,rout(x) = g(x− rin) + rout using

the additive shares, where rout is defined to be (rin)′ for the appropriate next gate g′. The resulting
online communication is one element per wire, as opposed to only one element per computed wire
value as in the circuit-dependent version (where circuit fan-out introduces extra wires but not new
wire values).

Finally, one could alternatively consider a variant of our protocols in which FSS is used to
convert secret-shared inputs to secret-shared outputs rather than common masked inputs to masked
outputs. Whereas in the above protocol both parties first apply FSS on the common masked input
and then exchange their output shares to obtain a masked output, in the alternative variant they
start by reconstructing a common masked input from their input shares, and then apply FSS to
directly obtain the output shares.

Application: simple derivation of existing protocols. By using simple information-theoretic
FSS schemes for truth-tables and low-degree polynomials, our FSS-based approach can be used
to derive in a simple and unified way several previous protocols for secure computation in the
preprocessing model. For instance, protocols from [2, 23, 14, 24, 12] can be easily cast in this
framework. We also present useful generalizations of such protocols to broader classes of algebraic
computations.

Application: online-optimal secure equality, comparison, bit decomposition, and more.
Our FSS-based technique yields a simple new approach for securely performing useful nonlinear
operations on masked or secret-shared values. We first describe the types of nonlinear operations
we can efficiently support, and then the efficiency features of our FSS-based solution.

When performing secure arithmetic computations, it is often useful to switch between an arith-
metic representation, where the values are secret-shared over a big modulus Zq, and a Boolean
representation, where the values are secret shared bit-by-bit over Z2. Other useful nonlinear op-
erations include zero-testing of a shared value or equality testing of two shared values, comparing
between different integer values (i.e., the “greater than” predicate), or checking if an integer value
is in an interval. For all of the above predicates, the input is secret-shared over Zq and the 0/1

3A general method for compressing truth-table correlations was recently suggested in [6]. However, the running
time still grows linearly with the truth-table size, or exponentially with the gate input length.
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output is secret-shared for further computations over either Z2, Zq, or another group. A more
general class of nonlinear computations are spline functions that output a different polynomial on
each interval. A useful special case is the ReLU function g(x) = max(0, x) that is commonly used
as an activation function in neural networks. Finally, one can also consider a garbling-compatible
variant of the above operations, where the bits of the output select between pairs of secret keys
that can be fed to a garbled circuit.

In all of the above cases, we can use computationally secure FSS schemes based on one-way
functions [20, 8, 9] to efficiently realize the corresponding offset classes G using only symmetric
cryptography. Concretely, for all the above types of gates we can use efficient preprocessing to
convert shares of an input into shares of an output with optimal online communication that only
involves a single round of exchanging masked input shares and no further interaction. Each party
can then directly compute its share of the output given its part of the correlated randomness and
the message received from the other party.

The above types of nonlinear “FSS gates” can provide a valuable toolbox for the large body of
work on secure machine learning classification, secure implementation of bounded-precision arith-
metic, and secure approximations of real-valued functions. In fact, they can even be useful for
evaluating standard Boolean circuits. For instance, evaluating an AND/OR gate with fan-in m
reduces to a secure equality of m-bit strings.

Comparison with prior approaches. There is a long line of work on secure implementation
of useful nonlinear computations such as bit-decomposition in different models (see [13, 16, 11, 26]
and references therein). As discussed above, our FSS-based technique has an optimal online cost of
converting secret-shared inputs to secret-shared outputs. Compared to the commonly used “ABY
framework” [16] for performing such operations using garbled circuits, our approach has better
round complexity (1 instead of 2 rounds) and, more importantly, it avoids the big overhead of
sending a key for each bit of the input. In concrete terms, this improves the online communication
complexity by two orders of magnitude. Even in the relatively simple cases of equality testing and
integer comparison, where improved special-purpose protocols are known (see [11] and references
therein), our FSS-based approach has significant advantages over the best previous protocols.

The low online cost of our FSS-based protocols is inherited from the efficiency of recent construc-
tions of FSS schemes for point functions, intervals, and decision trees [20, 8, 9]. These constructions
make a black-box use of any pseudorandom generator, which can be instantiated by AES in practice.
Thus, for the type of “gates” supported by such simple FSS schemes, our protocols significantly
improve the online communication complexity and round complexity of prior approaches while still
being very computationally efficient in the online phase. See Table 1 for comparison.

Realizing the dealer. We turn to discuss the offline cost of securely generating and storing the
correlated randomness. The amount of correlated randomness used by our protocols is dominated
by the size of the FSS keys. For equality and comparison gates, this includes a linear number of
PRG seeds (e.g., AES keys) in the bit-length of the inputs, and for bit-decomposition it involves a
quadratic number of PRG seeds. When the input domain is not too big, the distributed generation
of this correlated randomness can be done with good concrete efficiency using a distributed FSS
key generation protocol of Doerner and shelat [17]. Otherwise one can use concretely efficient
general-purpose secure computation protocols (such as [25]) for emulating the dealer. Finally, one
can avoid the cost of securely distributing the correlated randomness by using a third party as
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a dealer and settling for security against a single corrupted party. This is similar to the 3-party
ABY3 framework from [26], except that here the third party is only used to generate correlated
randomness and can remain offline during the actual computation.

Is FSS necessary? Our most useful positive results make use of symmetric cryptography. Given
that most protocols in the preprocessing model are information-theoretic, one may ask if it is
possible to obtain similar results in the information-theoretic model with a polynomial amount of
correlated randomness. For simplicity, we consider a shared equality protocol with optimal online
complexity. In such a protocol, the parties hold n-bit strings x0 and x1, and in a single round of
interaction they send an n-bit message to each other. These messages should hide their inputs.
Following this interaction, they each locally output a single output bit such that the exclusive-or of
the two bits is 1 if and only if x0 = x1. We show that our FSS machinery is not only sufficient for
obtaining this type of protocols, but is also necessary. In particular, any protocol as above implies
the existence of a one-way function. (This implication is more subtle than it may seem since unlike
our simple FSS-based protocol, a general shared equality protocol may correlate the randomness
used to mask the inputs with the randomness used to compute the output shares.) On the other
hand, we show that efficient information-theoretic shared equality protocols with constant-size
output shares would follow from the existence of big families of “matching vectors” [22, 19, 18], a
longstanding open problem in extremal combinatorics. This suggests that strong lower bounds on
the efficiency of information-theoretic shared equality protocols would be difficult to obtain.

Organization. In Section 2, we provide necessary preliminaries. In Section 3, we present our
general framework for secure computation with preprocessing via FSS. In Section 4, we present
applications, instantiating the necessary FSS schemes for specific motivated computation tasks.
We conclude in Section 5 by exploring negative results and barriers.

2 Preliminaries

2.1 Representing Functions

In order to seamlessly handle both arithmetic and Boolean operations, we will consider all functions
to be defined over Abelian groups. For instance, a Boolean function f : {0, 1}n → {0, 1}m will be
viewed as a mapping from the group Zn2 to the group Zm2 . Given our heavy use of function secret
sharing, we use a similar convention for function representation to the one used in [9] (the only
difference being that here we also endow the input domain with a group structure).

Definition 2.1 (Function families). A function family is defined by F = (PF , EF ), where PF ⊆
{0, 1}∗ is an infinite collection of function descriptions f̂ and EF : PF × {0, 1}∗ → {0, 1}∗ is a
polynomial-time algorithm defining the function described by f̂ . Concretely, f̂ ∈ PF describes a
corresponding function f : Df → Rf defined by f(x) = EF (f̂ , x). We require Df and Rf to be
finite Abelian groups, denoted by Gin and Gout respectively. We will typically let Gin and Gout be
product groups, which can capture the case of multiple inputs and outputs. When there is no risk
of confusion, we will sometimes write f instead of f̂ and f ∈ F instead of f̂ ∈ PF . We assume that
f̂ includes an explicit description of Gin and Gout.

By convention, we denote by 0 ∈ G the identity element of G. We will use the notation
1 ∈ G to denote a fixed canonical nonzero element of G; when G is additionally endowed with a
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Gate Protocol Online communication Online Offline storage
Type (bits per party) rounds (bits)

Zero test
[11] m+ o(m) ≥ 3 2m+ o(m)
ABY [16] O(λm) 2 O(λm)
Prop. 4.2 m 1 ≈ λm

Zero test example [11] 77 3 152
m = 64 Prop. 4.2 64 1 8384

Integer comparison
[11] SC1 O(m) O(log logm) 3m+ o(m)
ABY [16] O(λm) 2 O(λm)
Prop. 4.5 m 1 ≈ λm

Comparison example [11] SC1 1120 12 ≈ 300
m = 64 Prop. 4.5 64 1 8512

Bit decomposition
ABY [16] O(λm) 2 O(λm)
Prop. 4.9 m 1 ≈ λm2/2

Spline over Z2m ABY [16] O(m(λk + d)) 2 O(m(λk + d))
k + 1 deg.-d polynomials Prop. 4.6 m 1 ≈ 2km(λ+ d)

Table 1: Comparison of the performance of our protocols to the ABY framework by Demmler,
Schneider and Zohner [16] and protocols of Couteau [11] (bit-decomposition is not directly sup-
ported by [11]). The inputs are taken from a group Gin with m = dlog |Gin|e (e.g., Gin = Z2m). We
let λ denote the seed length of a length-doubling PRG (λ = 128 for an AES-based implementation)
and use big-O notation to hide small constants that are strictly bigger than 1. Online rounds allow
one message per party per round. The specified complexity refers to converting secret-shared input
to secret-shared output, where the input sharing is over Gin and the output sharing is over Z2

(for zero test or comparison) or Zm2 (for bit-decomposition). The online computational cost of our
protocols is dominated by roughly s/λ invocations of the PRG, where s is the offline storage in
bits.
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multiplicative structure, e.g., when G is the additive group of a finite ring, 1 will be set to the
multiplicative identity.

2.2 Secure Computation with Preprocessing

We follow the standard definitional framework for secure computation (cf. [10, 21]), except that we
allow a trusted input-independent setup phase that distributes correlated secret randomness to the
parties. This setup phase can be securely emulated by an interactive preprocessing protocol that
can be carried out before the inputs are known. We focus here on protocols with security against a
semi-honest adversary who may non-adaptively corrupt any strict subset of parties. For simplicity,
we explicitly spell out the definitions for the two-party case, and later explain the (straightforward)
extension to the multi-party case.

Functionalities. We denote the two parties by P0 and P1 and a party index by σ ∈ {0, 1}. We
consider by default protocols for deterministic functionalities that deliver the same output to the
two parties. The general case (of randomized functionalities with different outputs) can be reduced
to this case via a standard reduction [10, 21]. A two-party functionality f is described by a bit-
string f̂ via a function family F , as in Definition 2.1. We assume that the input domain Gin is split
into Gin = Gin

0 ×Gin
1 , capturing the inputs of the two parties.

Protocols with preprocessing. A two-party protocol is defined by a pair of PPT algorithms
Π = (Setup,NextMsg). The setup algorithm Setup(1λ, f̂), given a security parameter λ and function-
ality description f̂ , outputs a pair of correlated random strings (r0, r1). We also consider protocols
with function-independent preprocessing, in which Setup only receives a bound 1S on the size of f̂
instead of f̂ itself. The next-message function NextMsg determines the messages sent by the two
parties. Concretely, the function NextMsg, on input (σ, j, f̂ , xσ, rσ,m), specifies the message sent
by party Pσ in Round j depending on the functionality description f̂ , input xσ, random input rσ,
and vector m of previous messages received from P1−σ. We assume both parties can speak to each
other in the same round. (In the semi-honest model, one can eliminate this assumption by at most
doubling the number of rounds.) If the output of NextMsg is of the form (Out, y) then party Pσ ter-
minates the protocol with output y. We denote by OutΠ,σ(λ, f̂ , (x0, x1)) and ViewΠ,σ(λ, f̂ , (x0, x1))
the random variables containing the output and view of party Pσ (respectively) in the execution of
Π on inputs (x0, x1), where the view includes rσ and messages received from P1−σ.

Security definition. We require both correctness and security, where security is captured by the
existence of a PPT algorithm Sim that simulates the view of a party given its input and output
alone. We formalize this below.

Definition 2.2 (Secure computation with preprocessing). We say that Π = (Setup,NextMsg)
securely realizes a function family F in the preprocessing model if the following holds:

• Correctness: For all f̂ ∈ PF describing f : Gin
0 × Gin

1 → Gout, (x0, x1) ∈ Gin
0 × Gin

1 , λ ∈ N,
σ ∈ {0, 1}, we have Pr[OutΠ,σ(λ, f̂ , (x0, x1)) = f(x0, x1)] = 1.

• Security: For each corrupted party σ ∈ {0, 1} there exists a PPT algorithm Simσ (simula-
tor), such that for every infinite sequence (f̂λ)λ∈N of polynomial-size function descriptions
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from PF and polynomial-size input sequence (xλ0 , x
λ
1)λ∈N for fλ, the outputs of the following

experiments Real and Ideal are computationally indistinguishable:

– Realλ: Output ViewΠ,σ(λ, f̂λ, (x
λ
0 , x

λ
1))

– Idealλ: Output Simσ(1λ, f̂λ, x
λ
σ, fλ(xλ0 , x

λ
1))

We say that Π realizes F with statistical (resp., perfect) security if the above security requirement
holds with statistical (resp., perfect) indistinguishability instead of computational indistinguisha-
bility.

2.3 Function Secret Sharing

We follow the definition of function secret sharing (FSS) from [9]. Intuitively, a (2-party) FSS
scheme is an efficient algorithm that splits a function f ∈ F into two additive shares f0, f1, such
that: (1) each fσ hides f ; (2) for every input x, f0(x)+f1(x) = f(x). The main challenge is to make
the descriptions of f0 and f1 compact, while still allowing their efficient evaluation. As in [8, 9],
we insist on an additive representation of the output rather than settle for an arbitrary compact
output representation. The additive representation is critical for the applications we consider in
this work and is achieved by existing constructions.

We now formally define the notion of FSS. While in this work we consider the 2-party case for
simplicity, the definitions and the applications can be extended in a natural way to the k-party
case.

Definition 2.3 (FSS: Syntax). A (2-party) function secret sharing (FSS) scheme is a pair of
algorithms (Gen,Eval) with the following syntax:

• Gen(1λ, f̂) is a PPT key generation algorithm, which on input 1λ (security parameter) and
f̂ ∈ {0, 1}∗ (description of a function f) outputs a pair of keys (k0, k1). We assume that f̂
explicitly contains descriptions of input and output groups Gin,Gout.

• Eval(σ, kσ, x) is a polynomial-time evaluation algorithm, which on input σ ∈ {0, 1} (party
index), kσ (key defining fσ : Gin → Gout) and x ∈ Gin (input for fσ) outputs a group element
yσ ∈ Gout (the value of fσ(x), the σ-th share of f(x)).

Definition 2.4 (FSS: Correctness and Security). Let F = (PF , EF ) be a function family (as defined
in Definition 2.1) and Leak be a polynomial-time computable function specifying the allowable
leakage about f̂ . When Leak is omitted, it is understood to output only Gin and Gout. We say that
(Gen,Eval) as in Definition 2.3 is an FSS scheme for the function family F (with respect to leakage
Leak) if it satisfies the following requirements.

• Correctness: For all f̂ ∈ PF describing f : Gin → Gout, and every x ∈ Gin, if (k0, k1) ←
Gen(1λ, f̂) then Pr [Eval(0, k0, x) + Eval(1, k1, x) = f(x)] = 1.

• Security: For each σ ∈ {0, 1} there is a PPT algorithm Simσ (simulator), such that for every
infinite sequence (f̂λ)λ∈N of polynomial-size function descriptions from PF and polynomial-
size input sequence xλ for fλ, the outputs of the following experiments Real and Ideal are
computationally indistinguishable:

– Realλ: (k0, k1)← Gen(1λ, f̂λ); Output kσ.
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– Idealλ: Output Simσ(1λ, Leak(f̂λ)).

We refer to the FSS scheme as being statistical (resp., perfect) if the above holds with statistical
(resp., perfect) indistinguishability instead of computational indistinguishability.

Definition 2.5 (Distributed Point Function (DPF)). A point function fα,β, for α ∈ Gin and
β ∈ Gout, is defined to be the function f : Gin → Gout such that f(α) = β and f(x) = 0 for x 6= α.
A Distributed Point Function (DPF) is an FSS scheme for the family of all point functions, with
the default leakage (i.e., Leak(f̂) = (Gin,Gout)).

Definition 2.6 (Distributed Interval Function (DIF)). An interval function f(a,b),β, for a, b ∈ Gin,

and β ∈ Gout, and given an arbitrary total order ≤ on Gin, is defined to be the function f : Gin →
Gout such that f(x) = β for x ∈ Gin, a ≤ x ≤ b, while f(x) = 0 for x < a or x > b. If a = 0
(the minimal element of Gin) or b = |Gin| − 1 (the maximal element) then we say that f(a,b),β is a
special interval function. A Distributed Interval Function (DIF) is an FSS scheme for the family of
all interval functions, with the default leakage (i.e., Leak(f̂) = (Gin,Gout)) and a similar definition
holds for Distributed Special Interval Functions.

The following theorem captures the complexity of the best known constructions of DPF and
distributed interval functions from a PRG.

Theorem 2.7 (Concrete complexity of DPF and DIF schemes [9]). Given a PRG G : {0, 1}λ →
{0, 1}2λ+2, there exists a DPF for fα,β : Gin → Gout with key size m · (λ + 2) + λ + ` bits, where
m = dlog2 |Gin|e and ` = dlog2 |Gout|e. For `′ = d `

λ+2e, the key generation algorithm Gen invokes
G at most 2(m+ `′) times and the evaluation algorithm Eval invokes G at most m+ `′ times. For
special (resp., general) DIF, the above costs are multiplied by at most 2 (resp., 4).

3 Secure Computation with Preprocessing from FSS

In this section, we develop our primary general transformation for using FSS to obtain secure 2PC
with preprocessing. We then demonstrate how this approach captures and generalizes existing
techniques within this regime.

3.1 Circuit and Offset-Family Notation

We begin by introducing some notation for modeling circuits of computation gates.

Definition 3.1 (Computation Gate). A computation gate is a function family G (Definition 2.1),
where each function describes a pair of Abelian groups (Gin,Gout), and a mapping g : Gin → Gout.
In some cases it will be convenient to interpret Gin and Gout explicitly as product groups, of the
form Gin =

∏
i∈[`] Gin

i and Gout =
∏
i∈[m] Gout

i .

For example, one may consider a zero-test gate, corresponding to the family of zero-test functions
parameterized by different input and output groups.

For syntactic purposes, it will be useful to define notation for the following type of (trivial)
input and output gates.

Definition 3.2 (Input & Output Gates). An input gate is a gate GInp which syntactically receives
no input from other gates (Gin = ∅), and outputs a single value. An output gate is a gate GOut which
syntactically sends no output to further gates (Gout = ∅), and receives as input a single value.
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We now define a circuit of input, output, and computation gates, via two parts: (1) the circuit
syntax, dictating its topological connectivity amongst gates, and (2) the circuit instantiation, se-
lecting a specific function for each gate, such that the choices of input/output groups are consistent
across edges. For example, given multiplication gates followed by a zero-test gate (each correspond-
ing to a family of functions), these gates could be instantiated over any arithmetic ring R followed
by zero-test from Gin = R to any other space Gout with canonical 0 and 1 values.

The syntax of the circuit will be modeled by the structure of a directed acyclic graph, with
nodes serving as gates and edges serving as wires. In order to model fan-out, each gate will be
associated with both an out-degree (dictated by the graph) and an out-arity `out, which may not
be the same. The out-arity corresponds to the number of values output by the gate computation.
Each outgoing edge from the gate corresponds to a wire carrying the value of one of these outputs
to another gate, and is labeled with the corresponding index j ∈ [`out].

Definition 3.3 (Circuit syntax). Let B be a finite set (“basis”) of gates. A circuit C over basis
B specifies a directed acyclic graph (V,E), where each node v ∈ V is labeled with an input and
output arity (`inv , `

out
v ), and a gate type Gv ∈ B, such that:

• Each source node is labeled by an input gate and every sink an output gate (as per Defini-
tion 3.2). We sometimes denote the set of input and output gates of C by Inp and Out.

• The in-arity `inv of each node v ∈ V is equal to its in-degree; each incoming edge into v is
associated with a distinct index i ∈ [`inv ]. Each outgoing edge from v is labeled with an index
j ∈ [`outv ], possibly with repetition (representing fan-out).

• The depth of C, denoted depth(C), is defined as the length of the longest directed path in C.

Definition 3.4 (Circuit instantiation). Let C be a circuit over basis B with graph (V,E). An
instantiation C~g of C is a selection for each v ∈ V of a function gv : Gin

v → Gout
v from the gate

function family Gv, subject to the following constraints:

1. Gin
v =

∏
i∈[`inv ] Gin

(v,i) and Gout
v =

∏
j∈[`outv ] Gout

(v,j) for some abelian groups Gin
(v,i),G

out
(v,j), where

`inv , `
out
v are the arity of v.

2. For every edge (u, v) ∈ E labeled by i ∈ [`outu ] and j ∈ [`inv ], it holds that Gout
(u,i) = Gin

(v,j).

We will sometimes refer to edges (u, v) ∈ E as wires w ∈ C, denoting Gw := Gout
(u,i) = Gin

(v,j).

Remark 3.5 (Instantiation-dependent topology). In some cases, the circuit topology cannot be
completely decoupled from the instantiation. For example, instantiating a bit-decomposition gate
with Gin = Z2k would yield output Gout = Zk2 of arity k. However, we will attempt to keep syntax
and instantiation separate whenever possible for sake of modularity.

Our approach for preprocessing a gate computation relies on FSS sharing of a corresponding
family of functions, formed by allowing different additive offset values to both the input and output
value. In our application to 2PC, these will serve as the values of random wire masks.

Definition 3.6 (Offset function family). Let G be a computation gate. The family of offset
functions Ĝ of G is given by

Ĝ :=

{
g[rin,rout] : Gin → Gout

∣∣∣∣ g : Gin → Gout ∈ G,
rin ∈ Gin, rout ∈ Gout

}
, where

9



g[rin,rout](x) := g(x− rin) + rout,

and where each g[rin,rout] contains an explicit description of rin, rout.

3.2 Secure 2-Party Computation with Preprocessing from FSS

We now demonstrate how to apply the ideas from the introduction to obtain a secure 2-party
computation protocol in the preprocessing model with cheap online complexity. We restrict our
protocol descriptions to the 2-party setting, both for purposes of simplicity, and since this is cur-
rently the setting of most efficient FSS constructions. However, the statements generalize to the
multiparty case (given corresponding multi-party FSS) with any number of corrupted parties.

The following statement constitutes our core protocol, which leverages the structure of the
circuit to provide tailored preprocessing information. Later, in Theorem 3.9, we extend the ap-
proach to support circuit-independent preprocessing, at small extra offline and communication cost.
Roughly, the extra communication corresponds to an element communicated for every wire as op-
posed to every gate output value; note that multiple wires may correspond to the same gate output,
in the case of circuit fanout.

Theorem 3.7 (Circuit-Dependent Preprocessing). Let C be a circuit over basis B. For each G ∈ B,
let (GenĜ ,EvalĜ) be an FSS for the offset-function family Ĝ with key size sizeĜ(λ, |Gin|, |Gout|). Then
for any instantiation C~g of C, there exists a 2-party protocol for securely computing C~g with the
following properties:

• Preprocessing. Given circuit C with gate (“vertex”) indices v ∈ C, denote the set of gates
by Gv and their instantiations by gv, which in particular specify input/output groups Gin

v ,Gout
v .

The preprocessing phase executes GenĜv for each gv and produces output of size
∑

v∈C sizeĜv(λ, |G
in
v |, |Gout

v |).

• Online. The online protocol requires local execution of EvalĜ for each gate, yielding the fol-
lowing properties:

– Rounds: depthB(C).

– Communication:
∑

v∈C log |Gout
v | bits per party.

If the FSS schemes are perfectly (resp., statistically) secure, then the resulting protocol is perfectly
(resp., statistically) secure in the preprocessing model.

The proof of Theorem 3.7 follows the high-level description from the Introduction. We give the
details below.

Proof. Let C~g be an instantiation of the circuit C. This corresponds to a consistent choice of
function for every gate v ∈ C (labeled by gate function family Gv ∈ B), gv : Gin

v → Gout
v , where

gv ∈ Gv. For every gate v ∈ C, and every outgoing position i ∈ [`outv ] of gate v, let Gout
v,i denote the

corresponding assigned group as per the instantiation C~g. (In particular, Gout
v =

∏
i∈[`outv ] Gout

v,i .)

Preprocessing Phase

1. For every (non-output) gate v ∈ C and i ∈ [`outv ] as above, sample a random offset mask
rv,i ← Gout

v,i . (Recall output gates syntactically have empty Gout
v = ∅.) For each v ∈ C,

this induces a corresponding pair of elements:

10



rinv := (rv′1,1, . . . , rv′`inv
,`inv

) ∈ Gin
v and routv := (rv,1, . . . , rv,`inv) ∈ Gout

v .

(Here the components of routv are directly determined by the rv,i, whereas components
of rinv are inherited from the gates v′ for whom these wires were output.)

2. For every input gate v ∈ C owned by party P0, set (k0
v , k

1
v) = (routv , ∅); if v ∈ C is an

input gate is owned by P1, set (k0
v , k

1
v) = (∅, routv ).

3. For every computation gate v ∈ C, labeled by gv ∈ Gv, consider the function g
[rinv ,r

out
v ]

v :
Gin
v → Gout

v contained in Ĝv, where rinv , r
out
v are as above. Sample a pair of FSS keys:

(k0
v , k

1
v)← GenĜ(1λ, g[rinv ,r

out
v ]

v ).

4. Output the collection of keys for all gates: (k0
v)v∈C to party P0 and (k1

v)v∈C to party P1.

Online Phase

Execution proceeds topologically through circuit C. For each level ` = 1 to depthB(C), each
party Pσ (σ ∈ {0, 1}) performs the following. Denote by v ∈ C` a gate in level ` of C.

1. Parse messages from previous round. If ` > 1: For each v′ ∈ C`−1 and i′ ∈ [`outv′ ], let
msgoutv′,i′ = msg0

v′,i′ + msg1
v′,i′ ∈ Gout

v′,i′ , where msgσv′,i′ , σ ∈ {0, 1}, were exchanged in the
previous round.

The combined set of values msgw from all previous levels `′ < `, induces a corresponding
element for each gate v ∈ C`,

msginv := (msgv′1,i′1 , . . . ,msgv′
`inv
,i′
`inv

) ∈ Gin
v ,

where each component of the input into v is dictated by the output v′, i′ from the previous
level which feeds into this input.

2. Compute & send messages for this round. For each gate v ∈ C`:
• If v ∈ C` is an input gate owned by party Pb ∈ {0, 1}, then parse kσv = rv and set
msgσv = xv + rv; if v is an input gate owned by P1−σ, then set msgσv = ∅.
• If v ∈ C` is a computation gate of type Gv, then parse kσv as an FSS key, and compute

msgσv = EvalGv(σ, k
σ
v ,msginv ).

Note msginv ∈ Gin
v and msgσv ∈ Gout

v .

Send the vector (msgσv )v∈C` ∈
∏
v∈C` G

out
v to party P1−σ.

Final output. For each output gate v ∈ C, output msgoutv = msg0
v + msg1

v ∈ Gout
v .

We now proceed to analyze the complexity and security of the above protocol Π. The complexity
of the protocol is:

• Preprocessing: Computation is dominated by generation of FSS keys: one execution of GenĜ
on security parameter λ for each gate G. The preprocessing output size is

∑
v∈C sizeĜv(λ, |G

in
v |, |Gout

v |)
where sizeĜv(λ, |G

in
v |, |Gout

v |) denotes the FSS share size for gv ∈ Gv (where we define notation-

ally sizeĜv(λ, |G
in
v |, |Gout

v |) := |Gin
v | for input gates v).
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• Online Round complexity: Messages are exchanged for every level of the circuit ` ∈ [depthB(C)].

• Online Communication: The total per-party communication is equal to
∑

v∈C log |Gout
v |.

• Online Computation: Dominated by evaluation of FSS instances: EvalĜv for each gate gv ∈ Gv.

To prove security of the protocol, we demonstrate and analyze a simulator S, below.

Simulator S: Given the circuit instantiation C~g, identity of corrupt party σ ∈ {0, 1}, corrupt-party
inputs {xv}v∈Inpσ , and output {yv}v∈Out.

• Simulate preprocessing.

1. For each input gate v ∈ Inpσ owned by Pσ, sample random kσv ← Gout
v .

2. For each input gate v ∈ Inp1−σ owned by honest party P1−σ, set kσv = ∅.
3. For each v ∈ C labeled by computation gate gv ∈ Gv with input/output groups Gin

v ,Gout
v ,

simulate the corresponding FSS key. Namely, denote by SimG the FSS simulator for
(GenĜ ,EvalĜ), and let Leakv = (Gin

v ,Gout
v ). Simulate kσv ← SimG(1λ, Leakv).

Output (kσv )v∈C as the preprocessing output for the corrupted party Pσ.

• Simulate online protocol. For each level ` = 1 to depthB(C) of the circuit C:

1. Parse messages from previous round. If ` > 1, then parse messages sent/received in
the previous round as specified in the honest protocol (see protocol above), yielding
msginv ∈ Gin

v for each v ∈ C` in the present level.

2. Compute & send messages for this round. For each gate v ∈ C`, select the message
msg1−σ

v on behalf of the honest party:

– If v /∈ Out is not an output gate: Sample a random element msg1−σ
v ← Gout

v .

– If v ∈ Out is an output gate: Choose msg1−σ
v so as to yield the correct output

yv, as follows. Emulate the actions of the corrupt party in computing msgσv =
EvalĜv(σ, k

σ
v ,msginv ), where kσv was the simulated FSS key for v ∈ C from the pre-

processing phase. Set msg1−σ
v = yv −msgσv .

Simulate sending (msg1−σ
v )v∈C` on behalf of the honest party.

To prove indistinguishability of the simulated experiment, we consider a sequence of intermediate
hybrid experiments.

• Hybrid 0: Real-world execution of Π on honest inputs.

• Hybrid 1: (Correctness of FSS.)

Real-world execution, except that the honest party’s messages msg1−σ
v (previously com-

puted as msg1−σ
v = EvalĜv(k

1−σ
v ,msginv )) are now computed to be the induced share value to

yield correct combined output g
[rinv ,r

out
v ]

v (msginv ) given the corrupt party’s contribution msgσv =
EvalĜv(k

σ
v ,msginv ): i.e.,

msg1−σ
v = g[rinv ,r

out
v ]

v (msginv )− EvalĜv(k
σ
v ,msginv ).
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In particular, this means for every gate v ∈ C, the corresponding reconstructed value msgv is
equal to the correct intermediate computation value x′v masked by rv.

By correctness of the FSS scheme (and a standard hybrid argument across the polynomially
many gates v ∈ C), with all but negligible probability over the choice of the keys in the
preprocessing phase, Hybrids 0 and 1 induce an identical experiment output distribution.

• Hybrid 2: (Security of FSS.)

Similar to Hybrid 1, except that the corrupt party’s FSS keys kσv in the preprocessing phase
are now simulated as in SimG . Honest party messages are still computed in the same way,
using the simulated keys.

Indistinguishability of the two experiments follows directly by the security of the FSS (together
with a hybrid argument across gates v ∈ C), as all honest-party messages are presently
computed independently of the honest FSS keys k1−σ

v .

• Hybrid 3: (Randomness of rv.)

Simulated experiment. The difference between Hybrids 2 and 3 is the following.

– In Hybrid 2, the honest party sends values msg1−σ
v so that combining with the corrupt

party’s messages msgσv yields values msgv per gate v equal to the masked true interme-
diate computation values, x′v + rv.

– In Hybrid 3, the honest party computes and sends a value msg1−σ
v in this fashion for all

output gates, but sends random values for all other gates.

However, the values rv were selected at random for each gate v. Since masked output values
are communicated exactly once per each gate; in particular each mask is used only in one
message, meaning the corresponding values x′v+rv are uniform conditioned on the adversarial
view thus far. Further, each corrupt message msgσv is computed as EvalĜv(k

σ
v ,msginv ), where

msginv depends only on previous-round message values (independent of rv), and the simulated
key kσv (which is also independent of the true rv). Thus, the next-round messages of honest
parties (i.e., reverse-computed shares, formed by subtracting the (x′v + rv) values from the
appropriate pieces of msgσv ), are also uniform.

That is, the two experiments yield an identical distribution.

This concludes the proof of Theorem 3.7.

Remark 3.8 (Compressing preprocessing output). In some cases, the size of the offline prepro-
cessing information can be compressed, when e.g. FSS keys of neighboring gates contain redundant
information. This will be the case, for example, when generating FSS keys for neighboring gates
which are each instantiated by degree-2 functions. (Here, the output mask rw of the first gate will
be identical to the input mask of the second, as they correspond to the same wire; thus including
secret shares of rw as part of both FSS keys is unnecessary.) See discussion in the following section
for further cases.
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Circuit-Independent Preprocessing. The protocol construction in Theorem 3.7 used prepro-
cessing information that was tailored to the topology of the given circuit C. More concretely, we
were able to “match up” the input/output offset masks rv of every pair of gates sharing a wire,
hardcoding the same offset into the FSS keys for the respective functions. In particular, this en-
abled “for free” a direct translation from masked output of one gate to appropriate masked input
to all gates in the next level which accepted this value as input (via fan-out).

In some cases, it may be advantageous to produce generic preprocessing information that de-
pends on the individual gate structure, but which can be used for any circuit built from such gates
(independent of the topology linking the gates together). Our approach generalizes to this circuit-
independent setting with a small amount of additional overhead, via a few small changes, which
we now describe.

The only difference between the two constructions is that the circuit-dependent correlation
could directly “match up” the outgoing mask rout for a gate to be equal to the incoming mask rin of
any gate to which it enters. In contrast, when the structure of the circuit C is not a priori known,
this can be effectively emulated as follows.

• For each gate g, we will sample a random input offset mask rin (but not rout), and provide

FSS shares for the offset function g[rin,0] = g(x− rin) + 0, together with additive secret shares
of the mask rin (which was not needed previously). Note that a mask per input corresponds
directly to a mask per wire in the circuit.

• Then, once the structure of the circuit C is known (during the protocol), a party Pσ can locally
convert his overall collection of preprocessing information over all gates (kσv , (r

in
v )σ)v∈C into

FSS shares for the desired “matched up” g[rin,rout] (where rout is equal to the input mask rin for
the next gate that the gate v output value will enter into), by leveraging the additive secret
shares of all wire masks rin together with linearity of FSS reconstruction: i.e., outputting
Eval(σ, kσv , x) + (routv )σ.

This effectively reduces us back to the circuit-dependent version, in terms of correctness and
security. Observe, however, that whereas in the circuit-dependent version, rin values of all target
gates for fan-out wires of the same value could a priori be coordinated, in this setting (when this
structure is not a priori known), the parties must send a separate element per fan-out wire. We
also must provide the additive shares of the input masks rin as part of the correlated randomness.

Theorem 3.9 (Circuit-Independent Preprocessing). Let B be a finite gate basis; for each G ∈ B, let
(GenĜ ,EvalĜ) be an FSS for the offset-function family Ĝ with key size sizeĜ(λ, |Gin|, |Gout|). Then
there exists a 2-party protocol for securely computing any B-circuit instantiation C~g consisting of
sG ∈ N gates g of type G for each G ∈ B, with the following complexity:

• Preprocessing. (Independent of C~g) The preprocessing phase executes sG executions of GenĜ
for each gate G ∈ B and produces output size∑

G∈B
sG ·

(
sizeĜ(λ, |Gin|, |Gout|) + log |Gin|

)
.

• Online. The online execution takes depth(C) rounds (as before), but requires communication∑
v∈C log |Gin

v | bits per party (vs.
∑

v∈C log |Gout
v |). Equivalently, one element is communicated
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per wire, as opposed to only one element per value (where fan-out introduces extra wires but
not values).

Proof. (sketch) Ultimately, the discussion above leads to the following changes in the protocol
construction from Theorem 3.7:

• Preprocessing. For each gate v, we independently sample an input mask rinv ← Gin
v . In order

to translate to the target input mask rinv′ for some future gate, in the preprocessing we also
give additive shares [rinv ] of rinv . This induces the extra term of log |Gin

G | bits for each gate
within the preprocessing output information. Note this is independent of the topology of the
circuit.

• Online. For each computation gate, compute FSS output shares evaluated as shareσv :=
EvalĜv(k

σ
v ,msginv ). Recall these yield (additive) shares of the unmasked intermediate compu-

tation value (yv). However, instead of directly exchanging these shares (which will never be
done!), for each fan-out copy that becomes input of a new gate v′, the parties will now ex-
change v-to-v′ “additively translated” share values: that is, exchanging the value sharev+[rinv′ ].

Correctness: By the additive reconstruction of the FSS, adding in this translation offset
directly yields the rinv′-masked value (yv + rinv′), exactly as needed to input into the FSS’ed
gate-offset function for the gate v′.

Security: The additive shares of the masks rinv are perfectly hiding. During the online execu-
tion, observe that each reconstructed pair of messages is masked by a fresh mask rinv , since
independent of fan-out, each input mask will be used only once.

Complexity: This requires additional elements to be added to the correlated randomness. For
gates with fan-out 1, there is no affect to online communication, as this translation can be
absorbed into the exchange of shares directly. However, the parties must now send separate
“translations” for each copy of a fan-out wire in this setting (as the gates they are entering
will be different), whereas this was not needed in the C-dependent solution.

This concludes the proof of Theorem 3.9.

3.3 Recasting and Generalizing Existing Protocols

We begin by briefly demonstrating that common existing approaches to 2PC with preprocessing
(and even useful extensions) can be cast as instances of the FSS-based framework, for special simple
cases of FSS.

3.3.1 Low-Degree Gates

The first category is FSS of low-degree polynomials, which can be attained simply by providing
additive secret shares of each coefficient. More broadly:

Observation 3.10 (FSS via Coefficient-Sharing). For any module M over coefficient ring R, and
family of functions of the form F = {

∑m
i=1 αiFi(x) |αi ∈ R} for public functions (Fi)i∈[m] : Gin →

M , there exists an FSS scheme for F with perfect security and correctness, as follows:

• Gen(1λ, f): Parse the description of f ∈ F as secret coefficients (αi)i∈[m] ∈ Rm. The output
FSS keys are additive secret shares of each αi over R, yielding key size m log |R|.
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• Eval(σ, kσ, x): Parse kσ = (ασi )i∈[m]. Output
∑

i∈[m] α
σ
i Fi(x).

Note that FSS keys perfectly hide the coefficients αi, and thus f . Correctness holds by the
distributive law within the module M .

As an example of “public functions” Fi, one can consider, e.g., input monomials of a certain
degree. Indeed, we can use this approach to instantiate FSS schemes for offset-function classes Ĝ
for the following types of low-degree gates.

Definition 3.11 (Low-Degree Gates).

1. The degree-d gate Gdeg-d is the class of functions gdeg-d : Rn → Rm parameterized by a ring
R and n,m ∈ N, such that for each i ∈ [m], the ith output function (gdeg-d)i(x1, . . . , xn) is a
polynomial over R of degree no greater than d.

2. The bilinear map gate Gblin is the class of functions gblin : Gin
1 × Gin

2 → Gout such that Gin =
Gin

1 ×Gin
2 ,Gout are Abelian groups, and gblin is a bilinear map.

Note that these two classes are incomparable: Gdeg-d addresses higher-order polynomials, beyond
degree 2. On the other hand, Gblin captures bilinear operations across different structures beyond
a single ring R: e.g., multiplication of non-square matrices, Gin

1 = Rm1×m2 , Gin
2 = Rm2×m3 , and

Gout = Rm1×m3 .

Proposition 3.12 (Information-Theoretic FSS for Low-Degree Gates). Let d ∈ N . Then there
exists perfectly secure FSS for the following offset-function families, with the given complexities:

• Ĝdeg-d: For Gin = Rn, Gout = Rm, key size is m
(
n+d
d

)
(log |R|) bits.

• Ĝblin: For Gin = Gin
1 ×Gin

2 ,Gout, key size is (log |Gin|+ log |Gout|) bits.

Proof. Consider the following FSS constructions.

• For Ĝdeg-d: Recall we are sharing offset functions of the form g
[rin,rout]
deg-d , where g = (g1, . . . , gm)

is a degree-d polynomial g : Rn → Rm, and with offsets rin = (rin1 , . . . , r
in
n ) ∈ Rn and

rout = (rout1 , . . . routm ) ∈ Rm. By definition, for each i ∈ [m],

(g
[rin,rout]
deg-d )i(x1, . . . , xn) = gi(x1 − rin1 , . . . , xm − rinm) + routi .

In particular, each (g
[rin,rout]
deg-d )i itself is a degree-d polynomial in the inputs, where the coeffi-

cients of each degree ≤ d monomial in the variables xi depends on the secret values rin, rout.
By Observation 3.10, we can thus obtain secure FSS by giving additive secret shares of each of
these coefficients. There are

(
n+d
d

)
distinct monomials of degree ≤ d in the n input variables;

for each output i ∈ [m], the FSS key will contain an additive share of size log |R| for each
monomial.

• For Ĝblin: Given an offset function of the form g
[rin,rout]
blin , parse as a bilinear function g :

Gin
1 ×Gin

2 → Gout, and rin = (rin1 , r
in
2 ) ∈ Gin

1 ×Gin
2 , and rout ∈ Gout. By definition,

g
[rin,rout]
blin (x1, x2) = g(x1 − rin1 , x2 − rin2 ) + rout

= g(x1, x2)− g(rin1 , x2)− g(x1, r
in
2 ) + g(rin1 , r

in
2 ) + rout.
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Consider the following observations: (1) g(x1, x2) is publicly computable. (2) r3 := g(rin1 , r
in
2 )+

rout is a fixed additive term, independent of the input x. (3) Bilinearity of g implies the
functions g(·, x2) and g(x1, ·) are linear in the corresponding second position.

We can thus achieve FSS for this function class by giving out additive secret shares of the
values rin1 , r

in
2 , and r3 := g(rin1 , r

in
2 ) + rout. The corresponding FSS key size is log |Gin

1 | +
log |Gin

2 |+ log |Gout| = (log |Gin|+ log |Gout|) bits.

Plugging these FSS constructions into our protocols from the previous section (Theorems 3.7
and 3.9), we obtain secure computation protocols isomorphic to existing protocols from the litera-
ture. In addition, the FSS abstraction extends directly to broader classes: e.g., directly supporting
general bilinear gates over different rings Ri (such as matrix multiplications), as well as arbitrary
low-degree gates over a ring R.

Note that a degree-d mapping can have circuit complexity ∼ nd. In the corresponding approach,
this increases only the size of the FSS preprocessing information (corresponding to more coefficients)
whereas the online communication scales just with the input and output size of the gate. Similarly,
bilinear operations such as matrix multiplication when expressed as circuits over the base ring R
require significantly more small gates as compared to a single matrix input and output when viewed
as a single large bilinear gate.

Corollary 3.13 (2PC with Preprocessing: Low-Degree & Bilinear Gates). Applying our FSS
framework (Theorems 3.7, 3.9) for circuits of degree-d and bilinear gates Gdeg-d,Gblin as above yields
perfectly secure protocols in the preprocessing model isomorphic to (and generalizing) the following:

• Beaver Triples [2]: Applying Theorem 3.9, yielding circuit-independent preprocessing 2PC for
low-degree and bilinear gates.

• Circuit-Dependent Beaver (e.g., [14, 24, 12, 3]): Applying Theorem 3.7, yielding circuit-
dependent preprocessing 2PC for low-degree and bilinear gates.

Proof. Consider the two approaches.
(Circuit-independent). Applying the protocol framework of Theorem 3.9, we obtain the follow-

ing structure. We describe for the case of multiplication gates over a ring R to illustrate the Beaver
triple structure (but observe that the construction extends directly to more general degree-d and
bilinear gates).

• For each multiplication gate v with input wires (w1, w2) and output wire w3, sampling random
r1, r2 ← R, and generating FSS shares for the gate-offset function will correspond to sharing
the function

g[(r1,r2),0]
v (x1, x2) = (x1 − r1)(x2 − r2)

= x1x2 − r1x2 − x2r1 + r1r2.

Note that x1x2 is always with coefficient 1 and publicly computable. Applying Observa-
tion 3.10 for the remaining (secret) coefficients yields FSS keys that are additive secret shares
of 3 values: r1, r2, and r1r2.
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• The circuit-independent 2PC preprocessing included FSS keys of each such gate offset func-
tion, as well as additive shares of the input masks themselves. In this case, additive shares
of the input masks are already included as part of the FSS keys. Thus, the final resulting
correlation corresponds directly to Beaver triples: for each gate, additive shares of random
r1, r2, and r1r2.

(Circuit-dependent). Applying Theorem 3.7 results in an optimization of this approach, as
in [14, 24, 12], where the offset masks are correlated across gates.

3.3.2 Truth-Table Gates

The second category is a straightforward FSS of arbitrary functions of polynomial-size domain,
formed by simply providing additive secret shares of each element of the truth table. Perfect
secrecy and evaluation with additive reconstruction follow in a trivial manner.

Observation 3.14 (FSS via Shared Truth Table). Let F be any family of functions where for
a given (Gin,Gout), the truth table of a function f ∈ F can be described by s = s(Gin,Gout)
elements of the output space Gout. Then there exists an FSS scheme for F with perfect security
and correctness, with key size s · log |Gout| bits.

Note that one can always express the truth table of a function g : Gin → Gout using |Gin| many
elements of Gout. However, for some interesting function classes, this can be made even smaller. For

example, functions with bounded locality: where Gin =
∏n
i=1 G̃in, and each output of the function

depends only on a bounded number `(Gin,Gout) of fixed coordinates of the input; in such case, the

full truth table of the function can be expressed given just |G̃in|` · log |Gout| bits, as opposed to

|Gin| · log |Gout| = |G̃in|n · log |Gout| bits.
In a straightforward way, this translates to the offset-function family F̂ of any such function

family F .

Analogous to the case of low-degree functions, plugging these general truth table FSS construc-
tions into our 2PC protocols from Theorems 3.7 and 3.9 yields secure computation protocols that
reproduce existing protocols from the literature.

Corollary 3.15 (2PC with Preprocessing: Truth Table Gates). Applying our FSS framework
(Theorems 3.7, 3.9) for circuits of arbitrary gates G as above rederives perfectly secure protocols in
the preprocessing model isomorphic to the following:

• One-Time Truth Tables [23, 14]: Applying Theorem 3.9 together with Observation 3.14 for
arbitrary truth tables.

• Leveled circuits, with sublinear online communication [12]: Applying Theorem 3.7, together
with Observation 3.14 for circuits with bounded locality.

Proof. (One-Time Truth Tables). For a given gate function g, the truth table of the offset-function

g[rin,0] (recall in the circuit-independent setting, we take rout = 0) is simply a randomly shifted
version of the original truth table, and FSS shares of this function will be precisely additive shares
of the shifted truth table.

(Leveled Circuits). The core technical insight in [12] is that a leveled circuit of size s can be
partitioned into large “gates” of depth log log s, whose input locality are each bounded by log s,
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and thus whose truth tables can each be described in polynomial size. Applying Theorem 3.7
to such circuit decomposition yields a comparable protocol, with polynomial-size preprocessing
information, and where parties need only communicate O(s/ log log s) elements, corresponding to
just inputs and outputs of these gates, in depth(C)/ log log s rounds.

4 Applications

In this section we explore applications of our technique to useful types of gates for which we can
obtain significant improvements over the current state of the art.

4.1 Zero Test / Equality

We start with gates that either compare a single group element to 0 or check that two group
elements are equal.

Definition 4.1 (Equality-Type Gates).

1. The zero-test gate Gzt is the class of functions gzt : Gin → Gout parameterized by Abelian
groups Gin,Gout and given by

gzt(x) =

{
0 ∈ Gout if x = 0 ∈ Gin

1 ∈ Gout else
.

2. The equality-test gate Geq is the class of functions geq : Gin × Gin → Gout parameterized by
Gin,Gout and given by

geq(x, x′) =

{
0 ∈ Gout if x = x′ ∈ Gin

1 ∈ Gout else
.

Note that the offset function class of the zero-test gate is precisely the class of point functions,
where the special input α corresponds to the input offset and the output value β to the output
offset. Hence, realizing a zero-test gate (on a masked input) reduces to a single DPF evaluation.

Proposition 4.2 (Zero Test from DPF). There is an FSS scheme (Genzt,Evalzt) for the offset
function family Ĝzt making black-box use of a PRG. The scheme has the same key size and number
of PRG invocations as a DPF with input domain Gin and output domain Gout.

Proof. Consider the following construction, where (GenDPF,EvalDPF) is a distributed point function.

• Genzt(1
λ, g

[rin,rout]
zt ): Parse g

[rin,rout]
zt to recover Gin,Gout, rin, rout. Sample and output keys

(k′0, k
′
1) ← GenDPF(1λ, fα,β), for α = rin ∈ Gin and β = 1 ∈ Gout. Sample random addi-

tive secret shares 〈r0, r1〉 of rout ∈ Gout. Output keys k0 = (k′0, r0) and k1 = (k′1, r1).

• Evalzt(σ, kσ, x): Output EvalDPF(σ, k′σ, x) + rσ.

Correctness and security can be easily seen to follow from those of the DPF. Moreover, the con-
struction does not involve additional cryptographic operations beyond making a single call to the
DPF.
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The case of comparing two group elements can be easily reduced to the above case of a zero-
test. Indeed, by taking the difference between the two masked inputs, the problem reduces to a
zero-test of a masked input whose mask is the difference between the two masks, where the latter
are known to the key generation algorithm. We provide an explicit description of the corresponding
FSS scheme below.

Theorem 4.3 (Equality Test from DPF). There is an FSS scheme (Geneq,Evaleq) for the offset
function family Ĝeq making black-box use of a PRG. The scheme has the same key size and number
of PRG invocations as a DPF with input domain Gin and output domain Gout.

Proof. Consider the following construction, where (GenDPF,EvalDPF) is a distributed point function.

• Geneq(1λ, g
[rin,rout]
eq ): Parse g

[rin,rout]
eq to recover Gin = (Gin

1 × Gin
2 ),Gout, rin, rout, where rin =

(rin1 , r
in
2 ) ∈ Gin. Sample and output keys (k′0, k

′
1)← GenDPF(1λ, fα,β), for α = (rin1 − rin2 ) ∈ Gin

and β = 1 ∈ Gout. Sample random additive secret shares 〈r0, r1〉 of rout ∈ Gout. Output keys
k0 = (k′0, r0) and k1 = (k′1, r1).

• Evaleq(σ, kσ, (x1, x2)): Output EvalDPF(σ, kσ, (x1 − x2)) + rσ.

Security follows directly. Correctness holds since the point function fα,β(x) evaluates to β = 1
exactly when (x1 − x2) = α = (rin1 − rin2 ), or equivalently, when (x1 − rin1 ) = (x2 − rin2 ). As before,
the only cryptographic operations involve a single call to the DPF.

4.2 Integer Comparison, Interval Membership, and Splines

We turn from equality-type gates to the slightly more involved case of gates related to integer
comparisons. The offset functions of such gates can be easily expressed in terms of distributed
interval functions (DIFs) as constructed in [9]. See Definition 2.6 and Theorem 2.7.

Definition 4.4 (Comparison-Type Gates).

1. The interval-containment gate G(a,b) is the class of functions g(a,b) : Gin → Gout parameterized

by Abelian groups Gin,Gout endowed with a total ordering a ≤ b ∈ Gin, and given by

g(a,b)(x) =

{
0 ∈ Gout if a ≤ x ≤ b ∈ Gin

1 ∈ Gout else
.

We also sometimes consider the sub-family of “special” (one-sided) intervals, in which a = 0
is set to the minimum element of Gin (or, alternatively, the family wherein b is set to the
maximum element of Gin). For these sub-families, Leak is amended to include this information.

2. The comparison gate G≤ is the class of functions g≤ : Gin × Gin → Gout parameterized by
Abelian groups Gin,Gout endowed with a total ordering, and given by

g≤(x, x′) =

{
0 ∈ Gout if x ≤ x′ ∈ Gin

1 ∈ Gout else
.
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3. The spline gate Gspline is the class of functions g
(~a, ~f)

: Gin → Gout parameterized by Abelian

groups Gin,Gout endowed with a total ordering, a list ~a = a1 < a2 < · · · < ak ∈ Gin, and a
list of functions ~f = f0, . . . , fk : Gin → Gout, given by

g
(~a, ~f)

(x) =


f0(x) ∈ Gout if x ≤ a1 ∈ Gin

f1(x) ∈ Gout if a1 < x ≤ a2 ∈ Gin

...

fk(x) ∈ Gout if ak < x

.

By default, we consider the case where Gin and Gout are the additive groups of the same finite
ring (e.g., R = Z2m), and each fi is a degree-d univariate polynomial over R. This is useful
in the context of approximating real-valued functions.

We start with the case of interval containment. The key observation is that the offset function
of an interval (a, b) is can be expressed as the sum of two special intervals.

Proposition 4.5 (Interval-Containment from FSS for Intervals). There exists an FSS scheme
(Gen(a,b),Eval(a,b)) for the offset function family Ĝ(a,b) making black-box use of a PRG. The scheme
has the same cost (in key size and number of PRG invocations) as two instances of a special DIF
with input domain Gin and output domain Gout, except that each key includes an additional element
of Gout. Moreover, there is an FSS scheme with the same parameters for the offset function family
Ĝ≤ of comparison gates.

Proof. We argue that each function in the offset family Ĝ(a,b) can be expressed as the sum of two

special intervals plus the constant offset rout. Indeed, the effect of the input offset rin is cyclically
shifting the interval function f(a,b),1 to the right. There are two possible cases:

1. There is no wrap-around, namely we get another standard interval of the form f(a′,b′),1. If
a′ = 0, this is a special interval. Otherwise it can be expressed as the sum of two special
intervals: f(a′,b′),1 = f(0,b′),1 + f(0,a′−1),−1.

2. There is a wrap-around, in which case we get a sum of two disjoint special intervals: one
starting with a+ rin and one ending with (b+ rin) mod |Gin|.

We can now realize FSS for the offset function by letting Gen generate independent keys for the
two instances of a DIF, and Eval output the sum of the two output shares. Finally, given additive
shares of the output offset rout as part of the key, Eval can add rout to the output. We can obtain
an analogous statement for comparison gates Ĝ≤ similarly to the reduction of Ĝeq to Ĝzt.

We turn to the case of spline functions, starting with the default case where Gin and Gout are
the same finite ring R and each function fi(x) is a degree-d univariate polynomial over R. Here
the high level idea is to use 2(k + 1) instances of special DIF to additively share, for each interval,
the d+ 1 coefficients of either the degree-d polynomial f ′i(x

′) = fi(x
′ − rin) + rout in case the input

x′ is in the shifted i-th interval or the 0 polynomial if x′ is not in this interval. The 2(k+ 1)(d+ 1)
coefficients can then be linearly combined with public coefficients to yield additive output shares.
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Proposition 4.6 (Splines from FSS for Intervals). There exists an FSS scheme (Gen
(~a, ~f)

,Eval
(~a, ~f)

)

for the offset function family Ĝspline, where Gin = Gout = R and each fi, 0 ≤ i ≤ k, is a polynomial
of degree at most d over R, making black-box use of a PRG. The scheme has the same cost (in key
size and number of PRG invocations) as 2(k + 1) instances of a special DIF with input domain R
and output domain Rd+1.

Proof. We express the shifted spline function as the sum of k+1 cyclically shifted interval functions.
As before, each shifted interval can be expressed as the sum of two special intervals. For the shifted
interval i, 0 ≤ i ≤ k, the payload βi ∈ Rd+1 is the coefficient vector of the univariate polynomial
f ′i , where f ′i(x

′) = fi(x
′ − rin) + rout. Note that if x is not in the shifted interval, the output of the

shifted interval function will be βi = (0, 0, . . . , 0) ∈ Rd+1. Finally, given the k+ 1 additively-shared
coefficient vectors βi, the parties can homomorphically evaluate 〈

∑k
i=0 βi , (1, x′, (x′)2, . . . , (x′)d)〉 =

g
[rin,rout]

(~a, ~f)
(x′), where 〈·, ·〉 denotes inner product over R. Since x′ is public, this can be done via a

local linear combination of the (k + 1)(d+ 1) ring elements included in the payloads βi.

We note that, with some loss of concrete efficiency, the spline construction can be generalized
to accommodate any functions fi from a class that supports efficient FSS. Such a construction can
be obtained by using the general tensoring operator for FSS from [9] (Theorem 3.2 of full version)
to obtain an FSS scheme for functions that output the same output as fi on a shifted interval and
0 outside the interval.

4.3 Bit Decomposition

As a concluding item, we turn our attention to the more involved task of bit decomposition.

Definition 4.7 (Bit-Decomposition Gate). The bit-decomposition gate Gbit is the class of functions
gbit : ZM → Zm2 parameterized by M ∈ N (and m := dlogMe), given by

gbit(a) = (am−1, . . . , a0) ∈ Zm2 such that

m−1∑
i=0

2iai = a ∈ ZM .

We now describe how to obtain the required FSS for these gates.

Remark 4.8 (Bit Decomposition for Special Modulus). For the sake of simplicity, we present in
Proposition 4.9 a construction of bit decomposition for the special case of ZM for M = 2m. In this
setting, modular arithmetic over M does not incur wraparound carries. The same construction and
analysis covers also a promise setting where M is arbitrary, but both the input x ∈ ZM and the
secret offset rin ∈ ZM are guaranteed to be of low magnitude (bounded by e.g.

√
M), as stated in

Corollary 4.10. The general case of ZM with arbitrary inputs and offsets requires a slightly more
sophisticated treatment. We discuss the extension of our construction in Remark 4.11 below.

Proposition 4.9 (Bit-Decomposition for M = 2m). There exists an FSS (Genbit,Evalbit) for the
offset function family Ĝbit (restricted to ZM with M = 2m) making black-box use of a pseudorandom
generator PRG : {0, 1}λ → {0, 1}2(λ+1) with the following complexities.

• Genbit for function gbit : ZM → Zm2 (with M = 2m) makes m(m− 1) calls to PRG. It outputs
keys k0, k1 each of size (λ+ 4)m(m− 1)/2 +m bits.
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• Evalbit makes m(m− 1)/2 calls to PRG.

Proof. Consider the following construction, making use of an FSS for special intervals (GenSI,EvalSI).
Recall the goal is to recover shares of the (rout-shifted) bit representation of x+(−rin) ∈ ZM , where
rin, rout are known at time of FSS generation. Let ~r = (rm−1, . . . , r0) ∈ Zm2 denote the bit repre-
sentation of (−rin) ∈ ZM (note the additive inverse for notational convenience). For (public) input
x ∈ ZM , we similarly denote its bit representation as (xm−1, . . . , x0).

Given public input x, we will compute (shares of) each bit of (x+(−rin)) over ZM by computing
“grade-school” addition on the bits. Each desired output bit yi, i ∈ {0, . . . ,m−1} can be expressed
as a sum over Z2: yi = xi ⊕ ri ⊕ carryi,~r(x), where carryi,~r(x) ∈ {0, 1} is equal to 1 precisely when
there is a carry entering into bit i from the lower-order bits, indexes j < i. Note that for M = 2m,
there are no wraparound carries.

The function xi⊕ ri is linear over the output space Z2 and can thus be directly evaluated given
the public input x and additive secret shares of ri (over Z2). The challenge is in implementing the
nonlinear function carryi,~r(x), while hiding the value of ~r. To do so, we make a simple observation:

carryi,~r(x) = 1 if and only if (
∑i−1

j=0 2jxj) ≥ 2i−(
∑i−1

j=0 2jrj) ∈ Z2i . That is, there is a carry exactly if
the numbers formed by the two truncated bit strings (xi−1, . . . , x0) and (ri−1, . . . , r0) sum to greater
than 2i (note they will never reach 2i+1). For each index i ∈ {0, . . . ,m−1}, we can thus implement
FSS for carryi,~r(x) directly by one FSS for a special (one-sided) interval f(a,2i−1) : Z2i → {0, 1},
which evaluates to 1 on input x′ ∈ Z2i precisely if x′ > a.

We thus achieve the desired FSS with the following construction.

• Genbit(1
λ, g

[rin,rout]
bit ):

1. Parse g
[rin,rout]
bit to recover M, rin ∈ ZM , rout ∈ Zm2 . Parse rin as its bit representation

~r = (rm−1, . . . , r0).

2. For each i ∈ {0, . . . ,m− 1}, do the following.

(a) Sample special interval FSS keys (ki0, k
i
1)← GenSI(1

λ, f(a,2i−1)), for f(a,2i−1) : Z2i →
{0, 1}, with a = 2i − (

∑i−1
j=0 2jrj) ∈ Z2i .

(b) Sample random additive secret shares 〈zi0, zi1〉 of (ri ⊕ routi ) over Z2.

3. Output keys k0 = (ki0, z
i
0)m−1
i=0 and k1 = (ki1, z

i
1)m−1
i=0 .

• Evalbit(σ, kσ, x): Parse kσ = (kiσ, z
i
σ)m−1
i=0 and x = (xm−1, . . . , x0) For each i ∈ {0, . . . ,m− 1},

do the following.

1. Execute carryiσ = EvalSI

(
σ, kiσ,

∑i−1
j=0 2jxj

)
.

2. Let yiσ = σ ·xi⊕ carryiσ⊕ ziσ ∈ Z2. Note that a single party will contribute xi. (Recall ziσ
incorporates party σ’s shares of both the ri bit itself, as well as output offset bit routi .)

• Output (ym−1
σ , . . . , y0

σ) ∈ Z2
m as party σ’s output share.

Correctness of the construction holds as argued above; FSS security holds directly by the security
of the underlying FSS scheme for special intervals (and additive secret sharing).

As mentioned, this case extends beyond just ZM for M = 2m, if we are in a promise setting of
small inputs as compared to the modulus size. This can be useful within applications, e.g., in order
to emulate computations over a non-2m modulus by emulating over ZM for an artificially large M .
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Corollary 4.10 (Bit Decomposition for Small Inputs). There is an FSS scheme for the family of
bit-decomposition functions with small inputs

Ĝsmall-input
bit :=

{
g[rin,rout] : ZM → Zm2

∣∣∣∣ gbit : ZM → Zm2 ∈ Gbit,
rin ∈ ZM , |rin| ≤

√
M, rout ∈ Zm2

}
,

where the FSS guarantees correctness for inputs x ∈ ZM of small magnitude |x| ≤
√
M . The

complexities of the FSS are as in Proposition 4.9.

Remark 4.11 (Bit Decomposition for General Modulus). Our bit-arithmetic approach can be
extended to the setting of general modulus M , by combining with an additional branch that either
computes the same function as in the M = 2m case (if no wraparound occurs), or the function with
an additional additive offset of 2m−M (if a wraparound does occur). Ultimately, the computation
of each carryi,~r can be expressed by the linear combination of two different functions, each an
AND of two special intervals (namely, [> value to wraparound] ∧ [> value to induce carry given
wraparound] as well as [< value to wraparound] ∧ [> value to induce carry without wraparound]).

This can be instantiated via FSS for 2-dimensional intervals, as described in [9]. We leave
optimization of such scheme to future work.

4.4 Garbling-Compatible Variants

For the purpose of minimizing round complexity, it can be beneficial to combine FSS-based gate
evaluation with garbled circuits, where the outputs of FSS gates are fed into a garbled circuit. This
motivates garbling-compatible variants of the above types of gates, where the bits of the output
select between pairs of secret keys that correspond to inputs of the garbled circuit.

We can realize this modified functionality with a low additional cost for almost all of the above
types of gates (the only exception is spline gates, whose output is not binary). This is done in the
following way. The secret keys are incorporated into the function families as part of the function
description. The key selection is done by incorporating the keys in the DPF or DIF payload β. For
instance, in the case of interval membership, the input domain is partitioned into intervals, where
for each interval a DIF whose payload is the corresponding key is used to produce an additive
secret-sharing of the key corresponding to membership in the (shifted) interval.

5 Negative Results and Barriers

In this section we rule out information-theoretic protocols that achieve the efficiency features of
our FSS-based protocols, showing that the machinery we use is in a sense necessary. This should
be contrasted with the fact that most positive results on secure computation given a trusted source
of correlated randomness are information-theoretic.

We also give evidence that ruling out information-theoretic protocols with slightly relaxed effi-
ciency features is difficult, by establishing a link with the existence of big matching vector families,
a well known open problem in extremal combinatorics.

5.1 Online-Optimal Shared Equality Implies DPF

One of the simplest nontrivial instances of our positive results is a secure protocol for string equality
with preprocessing and with secret-shared output. Concretely, we consider a protocol that given a
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pair of n-bit strings (x0, x1) and correlated randomness (r0, r1) outputs a secret-sharing of a single
bit that indicates whether x0 = x1.

We define an online-optimal protocol to be one that has a single online round in which the mes-
sage sent by each party is of the same length as its input. (By the perfect correctness requirement,
the message length cannot be shorter than the input.) Note that this optimality feature is indeed
satisfied by our DPF-based protocol, whose existence can be based on any OWF. We show that
any online-optimal protocol can be used to build a DPF, though possibly with an exponential com-
putation overhead in the input length. The latter suffices to prove that an online-optimal shared
equality protocol implies a OWF.

Given the very restricted nature of an online-optimal protocol, this converse direction of showing
that it implies a DPF may appear to be a mere syntactic translation. However, there are two
main challenges that complicate this proof. First, the mapping of the inputs to messages does
not necessarily rely on just additive masking. We get around this by requiring this masking to be
efficiently invertible. (This requirement is not needed in case the input domain size is polynomial in
the security parameter.) Second, the class of online-optimal protocols can deviate from the template
of first masking the inputs using a pair of independent random strings and then independently
applying an FSS scheme to the offset class defined by mapping the masked inputs to the secret-
shared output. Indeed, a general protocol allows an arbitrary dependence between the two parts.
As a result of these subtleties, it is not clear how to extend our argument from equality to general
functions. Even in the case of equality, we need to assume the protocol to have the extra “efficient
inversion” property mentioned above, unless the input domain is small.

We now formalize the notion of an online-optimal shared equality protocol and prove that it
implies a DPF.

Definition 5.1 (Online-optimal shared equality protocol). A protocol Π = (Setup,Msg,Out) is
an online-optimal shared equality protocol with inversion algorithm Inv if it satisfies the following
requirements:

• Syntax: The protocol has the following structure.

1. Setup(1λ, 1n) outputs correlated randomness (r0, r1) of size poly(λ, n).

2. In the online phase party Pσ, on input xσ ∈ {0, 1}n, sends a single message mσ =
Msg(σ, rσ, xσ) to P1−σ, where mσ ∈ {0, 1}n.

3. Party Pσ outputs yσ ∈ {0, 1} where yσ = Out(σ, rσ, xσ,m1−σ).

• Correctness: For any x0, x1 ∈ {0, 1}n, the resulting outputs y0, y1 always satisfy y0 ⊕ y1 =
EQ(x0, x1), where EQ outputs 1 if the two inputs are equal and outputs 0 otherwise.

• Security: The protocol Π computationally hides from Pσ the input x1−σ. Formally, it satisfies
the security requirement of Definition 2.2 with respect to the constant function f(x0, x1) = 0.

• Inversion: The algorithm Inv extracts the input from the corresponding randomness and
message. That is, for any σ ∈ {0, 1} and rσ, xσ,mσ consistent with an execution of Π, we
have Inv(σ, 1λ, rσ,mσ) = xσ.

Note that the correctness requirement implies that xσ is uniquely determined by rσ and mσ.
Moreover, whenever n = O(log λ), one can implement Inv in polynomial-time via brute-force search.
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Gen(1λ, α): . We assume here that Gin = Z|α|2 , Gout = Z2, and β = 1

1: n← |α|; Sample random ρ← {0, 1}n;
2: (r0, r1)← Setup(1λ, 1n);
3: Let π0, π1 : {0, 1}n → {0, 1}n defined by πσ(xσ) = Msg(σ, rσ, xσ);
4: ∆← π1(π−1

0 (ρ)); . Use Msg to compute π1 and Inv to compute π−1
0

5: Output (k0, k1) where kσ = (rσ, ρ, α⊕∆);

Eval(σ, kσ, x):

1: n← |x|;
2: Parse kσ as (rσ, ρ, α

′);
3: Let xσ ← Inv(σ, 1λ, rσ, ρ) if σ = 0 or Inv(σ, 1λ, rσ, α

′ ⊕ x) if σ = 1;
4: Let yσ ← Out(σ, rσ, xσ, α

′ ⊕ x) if σ = 0 or Out(σ, rσ, xσ, ρ) if σ = 1;
5: Output yσ . yσ = T rσσ [ρ, α′ ⊕ x]

Figure 1: DPF from online-optimal shared equality protocol (Setup,Msg,Out, Inv).

This will suffice for constructing a DPF on a polynomial-size input domain, which implies a OWF.
In our DPF-based shared equality protocol, however, the message is obtained by simply adding (or
XORing) the input and a part of the randomness, and thus Inv can be implemented in linear time.

We now construct a DPF given oracle access to Π and Inv as in Definition 5.1. The intuition
for the construction is the following. Given Inv, the output of each party σ can be computed from
rσ,m0,m1 alone (without relying on the input xσ). The correlated randomness (r0, r1) then defines
a pair of tables T rσσ , where T rσσ [m0,m1] contains the output of Pσ on randomness rσ and messages
(m0,m1). The two tables can be viewed as shares of a shifted identity matrix T = T r00 ⊕ T r11 ,
where the location ∆ of the 1-entry in the first row of T is masked by randomness of both parties.
To convert this into a DPF for a point function fα,1, we include α ⊕ ∆ in both keys. This does
not reveal α to either party and yet effectively allows the parties to convert the first row of T into
one that contains 1 only in position α and 0 elsewhere, as required for sharing fα,1. Finally, to
guarantee security even in the case of super-polynomial input domains, we need to replace the first
row with a random row ρ, where ρ is included in both DPF keys.

The construction is formally described in Figure 1.

Theorem 5.2. If (Setup,Msg,Out, Inv) form an online-optimal shared equality protocol as in Def-
inition 5.1, then (Gen,Eval) defined in Figure 1 is a DPF.

Proof. We separately argue correctness and security.
For correctness, letting πσ, T

rσ
σ be as in Figure 1 and T = T r00 ⊕ T

r1
1 , we can write:

y0 ⊕ y1 = T [ρ, α′ ⊕ x] (1)

= EQ(π−1
0 (ρ), π−1

1 (α′ ⊕ x)) (2)

= EQ(π1(π−1
0 (ρ)), α′ ⊕ x) (3)

= EQ(∆, α′ ⊕ x) (4)

= EQ(∆, (α⊕∆)⊕ x) (5)

= EQ(α, x) (6)
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as required, where (1) follows from Lines 3-4 of Eval, (2) from the correctness of the equality
protocol, (3) from applying π1 to both sides from the left, (4) from Line 4 of Gen, (5) from Line 5
of Gen and Line 2 of Eval, and (6) by masking both sides with α⊕∆.

We turn to argue security. A key kσ produced by Gen is of the form kσ = (rσ, ρ, α⊕∆), where
∆ = π1(π−1

0 (ρ)). From the (computational) security of the equality protocol against P0, it follows
that (r0, ρ, π1(ρ)) ≈ (r0, ρ, π1(ρ′)), where ρ′ is distributed uniformly over {0, 1}n independently of
ρ, and since π1 is a permutation we have

(r0, ρ, π1(ρ)) ≈ (r0, ρ, ρ
′). (7)

Similarly, from the security against P1 it follows that

(r1, ρ, π0(ρ)) ≈ (r1, ρ, ρ
′). (8)

It follows from (7) that

(r0, ρ, π1(π−1
0 (ρ))) ≡ (r0, π0(ρ), π1(ρ)) ≈ (r0, π0(ρ), π1(ρ′)) ≡ (r0, ρ, ρ

′)

and hence k0 = (r0, ρ, α ⊕ ∆) ≈ (r0, ρ, ρ
′) as required. Similarly, it follows from (8) and from

(ρ, π−1
0 (ρ)) ≡ (π0(ρ), ρ) that k1 = (r1, ρ, α⊕∆) ≈ (r1, ρ, ρ

′) as required.

Corollary 5.3. If there exists an online-optimal shared equality protocol as in Definition 5.1 with
efficient (Setup,Msg,Out) (but possibly without an efficient inversion algorithm Inv) then a one-way
function exists.

Proof. The algorithm Inv can be implemented in time poly(λ, 2n) via a brute-force search that
enumerates over all possible choices of xσ. Suppose that the DPF described in Figure 1 (with oracle
to Inv) has key size |kσ| = O((λ + n)c) for a positive integer c. Then, letting n(λ) = (c + 1) log λ,
we get a DPF with domain size N(λ) = λc+1 and asymptotically smaller key size |kσ| = O(λc).
Using Theorem 5 from [20], this implies a one-way function.

5.2 Matching Vectors Imply Shared Equality

In the previous section we have shown that any shared equality protocol that has optimal online
complexity implies a DPF, which in turn implies a one-way function. This raises the following
question: suppose we relax the optimality requirement by, say, allowing each online message to be
of length 10n or even poly(n) rather than n. Does such a protocol still imply a DPF? Alternatively,
can we get an information-theoretic protocol with this complexity?

We do not know the answer to the above question. However, we show that if we slightly
relax the output sharing requirement by allowing a constant-size (rather than single-bit) shares,
then the problem of shared equality reduces to finding big families of matching vectors modulo
a composite [22, 19, 18, 5], a well studied problem in combinatorics. Given known constructions
of matching vectors, this connection implies some unexpected (but rather weak) upper bounds.
Perhaps more interestingly, the lack of progress on ruling out much bigger matching vector families
suggests that proving strong lower bounds on information-theoretic shared equality protocols would
be difficult.

Definition 5.4 (Matching vectors). [18] Let m be a positive integer and S ⊆ Zm \ {0}. We say
that subsets U = {u1, . . . , uN} and V = {v1, . . . , vN} of vectors in Zhm form an S-matching family
if the following two conditions are satisfied:
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• For all i ∈ [N ], 〈ui, vi〉 = 0, where 〈·, ·〉 denotes inner product over Zm;

• For all i, j ∈ [N ] such that i 6= j, 〈ui, vj〉 ∈ S.

The best known constructions of matching vectors over a constant composite modulus m are
of quasi-polynomial size. For instance, for m = 6 the best known construction is of size N =
hO(log h/ log log h) [22]. Whether bigger sets of matching vectors exist is a well known open problem,
and only weak upper bounds are known; see [5] for the current state of the art.

We now show how to use families of matching vectors over a constant-size modulus m to obtain
an information-theoretic shared equality protocol that has a single online round and constant-size
output shares.

Theorem 5.5. Let n be a positive integer and N = 2n. Suppose there is a family of matching
vectors with parameters m,h,N as in Definition 5.4. Then there is a perfectly secure shared
equality protocol (Setup,Msg,Out) for n-bit inputs with the following efficiency features:

• Setup outputs correlated randomness (r0, r1) consisting of O(h) elements of Zm;

• Msg(σ, rσ, xσ) outputs a message in Zhm;

• Out(σ, rσ, xσ,m1−σ) outputs an output share in Zm.

Moreover, the two output shares produced by Out are equal if and only if x0 = x1.

Proof. The protocol first encodes each input into a corresponding matching vector, and then com-
putes shares of the inner product using the correlated randomness. In more detail, Setup generates
a pair of random masks R0, R1 ∈ Zhm and additive shares of their inner product (this can be viewed
as a generalized Beaver triple, or an instance of our FSS-based construction for a bilinear gate).
Msg first encodes xσ into a corresponding matching vector Xσ (where x0 is encoded using U and x1

using V ) and outputs Xσ +Rσ. Finally, Out uses the correlated randomness and the two messages
to compute subtractive shares of the inner product of X0 and X1 (namely, the difference between
the outputs is the inner product). Security follows from the masking, and correctness from the
definition of a matching vector family.

Generalizing Theorem 5.5 to other useful predicates beyond equality seems challenging. Indeed,
there are strong limitations on the existence of big sets of matching vectors with respect predicates
other than equality, even for simple ones such as the “greater than” predicate [1]. This should
be contrasted with our (computational) FSS-based protocols, which are not only more efficient for
the simple case of equality but also apply almost as efficiently to the “greater than” predicate and
other types of simple predicates.
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